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We investigate dipole oscillations of ultracold Fermi gases along the BEC-BCS crossover through disordered
potentials. We observe a disorder-induced damping of oscillations as well as a change of the fundamental
Kohn-mode frequency. The measurement results are compared to numerical density matrix renormalization
group calculations as well as to a three-dimensional simulation of noninteracting fermions. Experimentally, we
find a disorder-dependent damping, which grows approximately with the second power of the disorder strength.
Moreover, we observe experimentally a change of oscillation frequency which deviates from the expected
behavior of a damped harmonic oscillator on a percent level. While this behavior is qualitatively expected from
the theoretical models used, quantitatively the experimental observations show a significantly stronger effect than
predicted by theory. Furthermore, while the frequency shift seems to scale differently with interaction strength
in the BEC versus BCS regime, the damping coefficient apparently decreases with the strength of interaction,
but not with the sign, which changes for BEC- and BCS-type Fermi gases. This is surprising, as the dominant
damping mechanisms are expected to be different in the two regimes.
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I. INTRODUCTION

Ultracold, dilute gases allow one to experimentally probe
fundamental properties of quantum fluids [1–3]. An important
question concerns the transport properties of quantum fluids
in disordered media, which have been subject of intense
studies since the observation of superfluid flow of helium
[4]. This has sparked the investigation of ultracold quantum
gases in disordered media [5–8]. In disordered potentials, the
phenomenon of Anderson localization [9], i.e., interference-
induced absence of diffusion, has been observed in various
physical realizations of quasinoninteracting gases [10–14].

A fascinating feature of cold gases is the ability to ad-
ditionally control the interaction strength via magnetic Fes-
hbach resonances [15]. For ultracold Fermi gases, this has
opened the door to experimentally access the crossover from a
molecular Bose-Einstein condensate (mBEC) via a resonantly
interacting Fermi gas, to a BCS-type superfluid [16–20].

The fundamental oscillation mode in a harmonic trap,
the so-called Kohn mode, is not affected by interactions
[21,22]. For an additional external potential, however, the
frequency and damping of the Kohn mode can sensitively
indicate interactions with the environment. Dipole oscillations
of a quantum gas have revealed, for example, the damping
of an oscillating BEC in weak disorder [7] or the mutual
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influence of oscillating Bose and Fermi quantum gases [23].
Moreover, it was shown that weak disorder is expected to in-
troduce a shift of the oscillation frequency [24]. Furthermore,
for numerical simulations of the interacting Gross-Pitaevskii
equation of one-dimensional gases in disorder [25], signatures
for localization of weakly interacting gases were found in the
thermalization of dipole oscillations.

Here, we study the dipole oscillation of an interacting
6Li Fermi gas across the BEC-BCS crossover. We focus on
probing the oscillation frequency and damping of the quantum
gas for different interaction scenarios along the BEC-BCS
crossover. We compare our findings to one-dimensional den-
sity matrix renormalization group (DMRG) calculations as
well as to a three-dimensional simulation of noninteracting
fermions.

II. EXPERIMENTAL SETUP

Experimentally, we prepare degenerate quantum gases of
N � 106 fermionic 6Li atoms by forced evaporative cooling
in an equal mixture of the two lowest-lying Zeeman substates
of the electronic ground state 2S1/2. Evaporation takes place
in a hybrid magnetic-optical trap at a magnetic field of 840 G
close to a Feshbach resonance centered at 832.2 G [26]; for
details of setup and sequence, see [27]. After evaporation,
the sample is held at a constant trap depth for 250 ms
to ensure thermal equilibrium before the magnetic field is
ramped to its final value during 200 ms [Fig. 1(b)], setting
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FIG. 1. Schematic illustration of experimental setup and mea-
surement sequence. (a) Experimental setup. The sample (red ellip-
soid) is trapped in a superposition of an optical dipole trap (blue tube)
and a magnetic saddle potential (yellow surface). The beams used for
absorption imaging (red arrow) and speckle potential (green volume)
propagate along the same axis in opposing directions. The inset
shows a 15 μm × 15 μm section of the speckle intensity distribution
in the x-y plane. (b) Measurement sequence. (Orange) Magnetic field
setting the scattering length a, (blue) magnetic field gradient for
cloud displacement, (green) disorder potential strength V̄ . After a
variable hold time ξ , the column-density distribution in the x-y plane
is recorded using absorption imaging (red line).

the required value of the s-wave scattering length a and, thus,
the interaction parameter (kFa)−1 [28], with kF the Fermi
wave vector. The trapping frequencies are (�x,�y,�z ) =
2π × (195, 22.6, 129) Hz, yielding the Fermi energy EF =
h̄(3�x�y�zN )1/3 � 600 nK × kB, where h̄ is the reduced
Planck constant. The precise value of �y depends on the
magnetic field (Appendix).

Depending on the magnitude and sign of the interac-
tion parameter, the gas is in the BEC [(kFa)−1 � 1], uni-
tary [(kFa)−1 ≈ 0], or BCS [(kFa)−1 � −1] regime [28]. In
the BEC regime, fermions of opposite spin form bosonic
molecules.

We characterize the gas in the BEC regime at a magnetic
field of 680 G [(kFa)−1 ≈ 4], where it is possible to measure
the absolute temperature by fitting the characteristic bimodal
density profile [29]. From this, we infer the temperature T =
150 nK and corresponding reduced temperature T/TF = 0.35,
where TF = EF/kB is the Fermi temperature and kB the Boltz-
mann constant. According to [30], the reduced temperature
T/TF deep in the BEC regime is an upper bound for T/TF

in the strongly interacting and BCS regime, provided that
(kFa)−1 changes adiabatically during magnetic field ramps.

The speckle potential is created by passing a laser beam
of wavelength 532 nm through a diffusive plate and focusing
the light using an objective with numerical aperture 0.29
onto the atoms. They experience a repulsive and spatially
random (but temporally constant) dipole potential V , which
we characterize by its average V̄ at the focal point of the
objective. The typical grain size of the speckle is given by
the Gaussian-shaped autocorrelation function of the potential
with 1/e widths, i.e., correlation lengths [31], σx,y = 750 nm
transversely to and σz ≈ 10 μm along the beam propagation
direction. As the speckle beam profile has a Gaussian en-
velope with waist 850 μm, the disorder potential is slightly
inhomogeneous with less than 10 % variation of V̄ across
the typical cloud size and oscillation trajectory. Importantly,
molecules experience double the disorder strength as they
possess twice the polarizability of unbound atoms.
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FIG. 2. (a) Schematic illustration of experimental sequence.
(a)–(c) Oscillation trajectories of density profiles for V̄ /Epot = 0.06
and 0 ms � ξ � 360 ms. Colored lines depict the center-of-mass
position and white lines mark the trap center. (b) BEC regime
[(kFa)−1 = 1.1]. (c) Unitary regime [(kFa)−1 = 0]. (d) BCS regime
[(kFa)−1 = −0.7].

In order to initiate oscillations, we displace the cloud by
A ≈ 75 μm (Appendix) along its long axis [y in Fig. 1(a)] by
application of a magnetic gradient field, which is increased
during a 100-ms ramp. Subsequently, the speckle disorder
potential is introduced during a 50-ms linear ramp of intensity
in order to minimize excitation of the gas. We release the
cloud by suddenly extinguishing the magnetic gradient field
and, therefore, almost instantaneously shifting the trap center
to its initial position; see Fig. 2(a). The shift amplitude A sets
the initial potential energy Epot = m�2

yA2/2 which drives the
dipole oscillation in the combined potential of the magnetic-
optical trap and the disorder. Here, m is the atomic mass
mLi ≈ 6 u for gases in the BCS and unitary regime and the
molecular mass 2mLi in the BEC regime. After variable hold
times ξ of up to 1 s, we record the atomic density distribution
using resonant high-intensity absorption imaging [32]. The
center-of-mass position of the cloud is extracted by fitting a
two-dimensional (2D) Thomas-Fermi profile to the measured
density distribution.

Figure 2 shows time series of cloud oscillations for disor-
der strength V̄ /Epot = 0.06 and all three explored interaction
parameters. In all cases, we observe a damped harmonic
oscillation of the center-of-mass position.

III. NUMERICAL DMRG CALCULATIONS

In order to theoretically simulate the dipole oscillations as a
function of time in a quantum many-body system we consider
a one-dimensional (1D) version of the corresponding setup
based on the Hamiltonian:

Ĥ =
∑

σ=↑,↓

∫
dx�†

σ (x)

(
− h̄2

2m
∂2

x + 1

2
m�2x2

)
�σ (x), (1)

modeling Fermions with spin σ = −σ̄ . In the time-dependent
DMRG [33–35] simulations we implement the model on a
lattice including also disorder and interactions:

Ĥ =
∑

i

∑
σ=↑,↓

[
−J (c†

i,σ ci+1,σ + H.c.)

+ (
Vi + αx2

i

)
ni,σ + U

2
ni,σ ni,σ

]
, (2)
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in the limit of flat traps and small densities, where the param-
eters are related by

m = h̄2

2Jd2
, � = 2d

√
αJ

h̄
, xi = id, (3)

and U is the on-site interactions using the local densities
ni,σ = c†

i,σ ci,σ and lattice spacing d . The uncorrelated disorder
is modeled in the form Vi = δ ri, with a disorder strength δ

and a random value taken from the continuous uniform distri-
bution ri ∈ [0, 1] for each site. Specifically, we time-evolve
an oscillating wave packet of N = 6 particles with equal
number of particles in each spin component in a trap with
α = 0.0015 J/d2 after shifting by A = 8d . The 1/e radius of
the cloud at U = 0 is about 10 sites. Using a time step of
τ = 1

10
1
J we managed to resolve about two and one-half full

oscillations with disorder averaging over eight realizations,
keeping up to M = 800 states.

It is known that for negative U the 1D system crosses over
from a weakly bound BCS-like state for U = 0− to a BEC-
like state for U → −∞ [36] which mimics the corresponding
behavior of the three-dimensional (3D) system. For repulsive
interactions U > 0 the 1D system is described by dimer exci-
tations [36–38], which do not have a simple correspondence
in the 3D experiment and will not be considered here. The
relation between U and scattering length a was determined
by considering a simple 1D scattering problem on a lattice
to be a = −Jd/U . The effective Fermi wave vector kF =√

2mEF/h̄ is given by the energy EF = (N + 1)h̄�/2 of the
highest occupied state in the trap, where we have neglected
the interaction dependence [39]. Therefore, we find

1

akF
= − U

(N + 1)1/2d1/2α1/4J3/4
, (4)

which we have used in the following to compare the simula-
tions to experimental data.

IV. NUMERICAL SIMULATION OF
NONINTERACTING FERMIONS

Additionally, we model the experiment considering non-
interacting fermions in a three-dimensional harmonic trap
which are subjected to a speckle potential. We investigate
the evolution of the atomic cloud after exciting its dipole
mode by rapidly shifting the center of the trap, following
the experimental sequence. In order to simulate this sys-
tem, we consider the time-dependent Schrödinger equation
ih̄ ∂

∂t |�(t )〉 = Ĥ |�(t )〉 with the Hamiltonian,

Ĥ = − h̄2

2m
∇2 + 1

2
m

(
�2

xx2 + �2
y (y − A)2 + �2

z z2
)

+V (x, y, z), (5)

where the first term is the kinetic energy of particles with mass
m = mLi, the second term describes the harmonic trapping
potential, with frequencies as in the experiment, centered at
position (0, A, 0), and the last term is the speckle potential
V with the spatially averaged value V̄ . In the experiment,
the correlation length of the disorder σz in the z direction is
large, therefore we assume the speckle potential to be constant

in this direction [V (x, y, z) = V (x, y)]. In order to perform
three-dimensional simulations, we additionally assume that
V (x, y) = V (x) + V (y). We do not expect this simplification
to have a significant impact for small values of V̄ . We diago-
nalize the discrete form of the Hamiltonian [Eq. (5)] in each
direction with discrete sizes �x = �y = �z and calculate the
density of particles in time.

We consider 2 × 105 fermions at zero temperature in the
harmonic trapping potential shifted to position A = 71 μm
along the y direction. At time t = 0, we quench the position
of the trap to y = 0 and calculate the evolution of the density
of atoms up to time t = 1 s with time step �t = 2.78 ms.
We simulate this system for three different discrete sizes
of �y = 52.5 nm, 105 nm, and 210 nm where the results
converge for �y � 105 nm. In the following we choose �y =
105 nm for a system of size 525 μm × 126 μm × 126 μm
where the number of discrete points along different directions
are Ly = 5000 and Lx = Lz = 1200. We calculate the center-
of-mass evolution in time for different disorder strengths V̄
as considered in the experiment. For each disorder strength,
the results are averaged over different realizations of disorder.
When the speckle potential is off (V̄ = 0), the center of mass
shows pure dipole oscillations.

V. RESULTS

Experimentally as well as for both numerical approaches,
we extract the center-of-mass oscillation for identical relative
disorder strengths V̄ /Epot. For the DMRG calculations, also
similar interaction strengths are considered. All oscillation
trajectories are fitted by the classical equation of an under-
damped harmonic oscillator,

y(t ) = Afit exp(−γ t ) sin(ωfitt + φ) + y0, (6)

with amplitude Afit, fitted oscillation frequency ωfit, damping
coefficient γ , phase φ, and offset y0. For a classical harmonic
oscillator we expect

ωcl =
√

�2
y − γ 2, (7)

and we are interested in the deviations from this expectation
due to the disorder potential, as well as in the disorder-
induced damping. For the experimental data, we correct for
the finite curvature of the speckle envelope by introducing
the corresponding trapping frequency ωs ∝

√
V̄ and writing

ωcl =
√
�2

y − γ 2 − ω2
s . As ωs < 2π × 1 Hz for all explored

disorder strengths, the maximum relative change in ωcl is
below 0.1 %.

For the fits of the 1D DMRG data an additional damping
factor exp(−γlattt2) has been taken into account, which results
from damping due to lattice effects [40,41]. The damping
γlatt has been determined independently for each interaction
strength by fitting the corresponding oscillations in the clean
lattice-harmonic trap system.

Figure 3 shows the results for the deviation of the oscilla-
tion frequency. We use the relative deviation from the expec-
tation, i.e., (ωfit − ωcl )/ωcl. Experimentally, we find that the
frequency of oscillation shifts to smaller values at a percent
level. Moreover, while the unitary gas shows the strongest
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FIG. 3. Relative deviation of dipole-oscillation frequency from
the classical case. Dots indicate experimental data at the color-
coded interaction parameter, crosses indicate results from the 1D
DMRG calculation, and squares show results of the simulation of
noninteracting fermions. The diamonds indicate the frequency shift
predicted in [24].

shift, the oscillation frequency in the BCS regime is less
affected than the BEC despite stronger interactions.

A quantitative comparison to theoretical predictions from
the models described above, and to a prediction for a BEC
with healing length larger than the disorder correlation length
[24], shows a qualitatively similar behavior. But while the
theoretical predictions all lie within the same range of oscil-
lation shifts in the sub-percent range, the experiment shows a
much stronger effect. We attribute this to a combined effect
of strong interactions, superfluid flow, and three dimensions
of the problem, which in this combination are not captured
by the models we use. Importantly, for disorder strengths
V̄ /Epot � 0.2, the strong damping (see Fig. 4) obstructs the
determination of an oscillation frequency from experimen-
tal data, because the system approaches the overdamped
regime.

The results for the damping are depicted in Fig. 4, where
we show the fitted coefficients normalized by the disorder-
free oscillation frequency γ /�y. Experimentally, we find that
the damping grows approximately quadratically with disorder
strength in all three interaction regimes [Fig. 4(a)]. This is
consistent with the experimental outcomes for a BEC oscil-
lating in disorder in [7]. Notably, the damping is considerably
weaker for the resonantly interacting Fermi and BCS gas as
for the BEC, which is in accordance with the observation
of superfluidity with relatively large critical velocity in the
unitary regime [42–44]. Moreover, it seems that the general
scaling of the damping only depends on the absolute value of
(kFa)−1 [see inset of Fig. 4(a)], despite the fact that dephasing
and wavelike excitation of the quantum fluid is expected to
prevail in the BEC, while pair breaking might occur in the
BCS regime.

The theoretical models produce qualitatively the same
result as the experiment, i.e., the damping increases
monotonously with disorder strength. The numerical DMRG
calculations show that the damping significantly increases
with attractive interactions (U < 0) towards the BEC regime,
which is also seen in experiment. The magnitude of this

(a)

(b)

FIG. 4. Damping γ of the oscillation through disorder. Dots
indicate experimental data at the color-coded interaction parameter,
crosses indicate results from the 1D DMRG calculation, and squares
show results of the simulation of noninteracting fermions. The error
bars of the experimental data are smaller than the marker size for
most points. The dotted line marks the critical damping γ = �y.
(a) Experimental results. The inset shows the same data in the log-log
scale with the solid lines being quadratic fits to the data points.
(b) Comparison of experimental results to models.

effect, however, is in all cases more than one order of mag-
nitude lower as in the measurements. In particular, numer-
ical simulations show weakly damped oscillations for all
disorder strengths considered, while experimentally we find
the crossover to the overdamped regime for a disorder strength
which corresponds to only � 4% of the Fermi energy.

We attribute this relatively strong damping to strong inter-
actions in the cloud. At the same time, the quantitative com-
parison with theory shows again a much stronger experimental
effect than predicted by theory. Also here, the combination of
strong interactions and three spatial dimensions might explain
this strongly damped dynamics.

VI. CONCLUSION

The following physical picture is suggested by our investi-
gations. For the oscillating cloud, strong interactions allow the
quantum gas to react on small length scales to the disordered
potential. This bending is associated with a large kinetic
energy. As the quantum fluid flows, a strong energy change
on small length scales will lead to excitations in the quantum
gas, causing damping. At the same time, it facilitates retarding
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the dynamics of the gas leading to stronger reduction of the
oscillation frequency with stronger interactions. The concrete
quantitative description of the frequency shift and damping
will be the focus of future studies, in particular the scal-
ing with interaction parameter (kFa)−1 and the microscopic
mechanisms underlying the transport of a BEC wave function
versus the gas in the BCS regime.

In the future it will be interesting to observe the transition
from the weakly damped to the overdamped regime in order to
investigate the connection between superfluid dynamics and
diffusion in disorder. Moreover, the quantum phase transition
to a quantum fluid is predicted to be affected by disorder
[45,46], and dipole oscillations have shown to be a sensitive
tool for probing superfluid properties. Furthermore, it is an
interesting question if for larger speckle potential depths,
the interacting counterpart of Anderson localization emerges.
Anderson localization has been observed in noninteracting
gases [10–14] and investigated theoretically also in inho-
mogeneous systems [47,48]. For the blue-detuned speckle
potential used experimentally, the classical percolation thresh-
old, i.e., the energy threshold below which particles cannot
explore the full potential, is around 10−4 × V̄ [49]. Thus,
the system is highly sensitive to reveal even the smallest
fraction of localized particles if a localization transition
occurs.

TABLE I. Overview of parameters for different magnetic fields.
Scattering lengths taken from [26]. The values for A and Epot are
averages of all measurement series with different disorder strength.

Magnetic field (G) 763.6 832.2 900.0

�y/2π (Hz) 22.6 23.6 24.5
a (a0) 4510 ∞ −7739
Interaction parameter 1.1 0.0 −0.7
A (μm) 78 76 72
Epot (nK) 45 46 44
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APPENDIX: EXPERIMENTAL PARAMETERS

Table I lists the experimental parameters for the magnetic
fields used in the experiment.
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