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We develop and study an atom-only description of the Dicke model with time-periodic couplings
between atoms and a dissipative cavity mode. The cavity mode is eliminated giving rise to effective
atom-atom interactions and dissipation. We use this effective description to analyze the dynamics of
the atoms that undergo a transition to a dynamical superradiant phase with macroscopic coherences
in the atomic medium and the light field. Using Floquet theory in combination with the atom-
only description we provide a precise determination of the phase boundaries and of the dynamical
response of the atoms. From this we can predict the existence of dissipative time crystals that show
a subharmonic response with respect to the driving frequency. We show that the atom-only theory
can describe the relaxation into such a dissipative time crystal and that the damping rate can be
understood in terms of a cooling mechanism.

Time-periodic driving of quantum systems allows for
the creation of tailored out-of-equilibrium structures in-
cluding quantum states with topological order [1, 2] and
self-organized coherent patterns [3–9]. Here, one distin-
guishes between off-resonant driving and resonant driv-
ing. In the high frequency limit, the former results
in a quasi static quantum system that experiences an
engineer-able and time-averaged Hamiltonian [10, 11].
Resonant driving, instead, enables strong dynamical co-
herences between otherwise weakly coupled quantum
states which can force the quantum system in exotic
spatio-temporal pattern. This is exciting as it allows
the controlled, on-demand generation of purpose-oriented
quantum states but comes at the cost of inserting large
amounts of energy into the system which can lead to
heating and eventually coherence loss. A possible cure to
this problem is the use of engineered dissipation [12, 13]
which is designed to drain away excess energy and damp
the system into a coherent limit cycle.

To study such mechanisms the time-periodic dissipa-
tive Dicke model describing the time-modulated interac-
tion of atoms with a cavity is a rich prototypical plat-
form. In this setup periodic driving can induce the for-
mation of subharmonic spatio-temporal pattern, so called
dissipative time crystals, which are accompanied by su-
perradiant light emission into the cavity and were re-
cently the focus of several experimental and theoretical
works [13–19]. While the interest mostly lies in the evo-
lution of the atomic configuration, the cavity is crucial in
two ways [20–22]: (i) it mediates tunable time-periodic
atom-atom interactions which are essential for the pat-
tern formation and (ii) it opens a dissipative channel
which can drain energy introduced by the drive. The on-
set of the spatio-temporal structure can be understood
from (i) the time-periodic modulation of the interactions
that can induce a parameteric resonance in the atomic
ensemble [14, 23, 24]. However, the stabilization of the
emerging pattern can only be explained by the presence
of (ii) the cavity-generated dissipation which makes an
ad-hoc elimination of the cavity difficult [13]. Espe-

cially in the limit of strong atom-photon interaction it
seems therefore natural to treat the dynamics of atoms
and cavity on equal footing, which is the usual approach.
However, as we show in this Letter it is possible to com-
pletely eliminate the photons even for periodically-driven
systems. The resulting atom-only description has several
advantages [25, 26]: it allows the detailed study not only
of the non-equilibrium phase diagram, but also of the
full evolution towards stable limit cycles. In return, it is
possible to get a much deeper insight in the dissipation
mechanism of the atomic degrees of freedom, which sta-
bilize the spatio-temporal patterns. Moreover, it allows
an analytical description in terms of Floquet theory for
large systems and paves the way for future engineering
of tailored dynamic atomic models, which can be used as
quantum simulators of complicated interacting systems.
Model– We consider the time-periodic dissipative

Dicke model and eliminate the cavity in order to derive
an effective atom-only Master equation which is of Lind-
blad form [27]. The dynamics of the density operator ρ̂
describing the atoms and one coupled cavity mode with
loss rate κ is governed by the master equation (ℏ = 1)

∂ρ̂

∂t
= −i

[
Ĥ, ρ̂

]
− κ(â†âρ̂+ ρ̂â†â− 2âρ̂â†). (1)

The coupling to N two-level atoms that are driven by an
external laser is described by the Hamiltonian [28, 29]

Ĥ = δcâ
†â+∆n̂↑ +

g(t)√
N

(â+ â†)
(
b̂†↑b̂↓ + b̂†↓b̂↑

)
, (2)

where δc is the detuning between the cavity resonance
and the external laser drive, â† and â are the cavity field
creation and annihilation operators, and the bosonic op-
erators b̂†↑b̂↓ change one atomic state from the ground
state |↓⟩ to the metastable excited state |↑⟩ of energy

∆. The operators n̂↑ = b̂†↑b̂↑ and n̂↓ = b̂†↓b̂↓ measure the
number of atoms in each state such that N = n̂↑ + n̂↓.
A modulation of the external driving laser leads to a
time-periodic collective coupling g(t) = g0 + g1 cosωt,
corresponding to two side-bands of the drive.

ar
X

iv
:2

31
0.

00
04

6v
1 

 [
qu

an
t-

ph
] 

 2
9 

Se
p 

20
23

https://orcid.org/0000-0002-2585-5246
https://orcid.org/0000-0001-5864-0447


2

FIG. 1. The time-averaged superradiance order parameter
⟨X̂2⟩tav calculated from the mean-field equations (7),(8) and
evaluated at κt = 104 as function of the driving frequency
ω/(2ωres) and driving strength g1/g0. Curved solid lines mark
the threshold to superradiance that are calculated from the
stability analysis above which γmax > 0. The horizontal gray
solid line indicates the threshold gc1/g0 given by Eq. (12). The
dashed horizontal line shows the parameter visible in Fig. 3,
g1 = 0.75g0. We used δc = κ, ∆ = 0.1κ, g0 = 0.5gc.

In the static limit, g1 = 0, the dissipative Dicke model
[Eq. (1)] shows a transition from normal state to super-
radiance at g = gc = [∆(δ2c + κ2)/(4δc)]

1/2 [30, 31]. Su-
perradiance is signaled by macroscopic coherences in the
atomic medium ⟨X̂2⟩ ∝ N2, X̂ = b̂†↑b̂↓+ b̂†↓b̂↑, and a large

cavity field ⟨â†â⟩ ∝ N . In this Letter, we focus on the
subcritical regime to study the influence of time periodic
driving with g(t) < gc at all times. In this situation, a
dynamical superradiant configuration can still be found
depending on the driving amplitude g1 when the driv-
ing frequency ω is close to a parametric resonance [14].
In Fig. 1 we show our results for the regions of super-
radiance in parameter space spanned by g1 and ω. The
colorbar shows the time-averaged mean value of the su-

perradiance order parameter ⟨X̂2⟩tav =
∫ t+T

t
⟨X̂2(t)⟩/T

with T = 2π/ω. A derivation of this phase diagram is
shifted to a later point in this Letter.

Atom-only description– First, we will derive the atom-
only description, by extending the theory of Ref. [27]
and applying it for the first time to a time-dependent
problem. In the limit of a short cavity relaxation time,
|δc − iκ| ≫ ∆, ω, g, we apply a Schrieffer-Wolf transfor-

mation D̂(t) = exp(â†β̂(t)− β̂†(t)â) to eliminate the pho-
tonic degrees of freedom. The condition for decoupling
the atoms from the cavity modes in the master equation
leads to a time-dependent equation of the transformation
operators β̂(t)

i
∂β̂

∂t
= (δc − iκ)β̂ +

g(t)√
N

(
b̂†↑b̂↓ + b̂†↓b̂↑

)
+ [∆n̂↑, β̂] (3)

which is solved by β̂(t) = c+(t)b̂
†
↑b̂↓ + c−(t)b̂

†
↓b̂↑ in the

steady state. The resulting differential equation is dis-
cussed in the appendix, which yields an expansion

c±(t) ≈ − 1√
N

(
g(t)

δc − iκ
+

iġ(t)

(δc − iκ)2
∓ ∆ g(t)

(δc − iκ)2

)
,

(4)
where the first term corresponds to the quasi-static solu-
tion. With β̂ we can then write the effective master equa-
tion for the atomic density operator ρ̂at = Trcav[D̂

†ρ̂D̂]
by tracing over the cavity degrees of freedom

∂ρ̂at
∂t

= −i
[
Ĥat, ρ̂at

]
−κ(β̂†β̂ρ̂at+ρ̂atβ̂

†β̂−2β̂ρ̂atβ̂
†). (5)

This atom-only description includes the coherent time
evolution of the atoms governed by the Hamiltonian

Ĥat =∆n̂↑ +
g(t)

2
√
N

(
β̂†[b̂†↑b̂↓ + b̂†↓b̂↑] + H.c.

)
. (6)

The non-trivial time-dependence of β̂(t) therefore enters
both the (i) cavity-mediated interactions in the second
term of Eq. (6) and the (ii) cavity-generated dissipation
∝ κ in Eq. (5).
Formation of a stable atomic state– The resulting

atomic theory in Eqs. (5) and (6) can be used for a quan-
tum mechanical description of the complete dynamics of
the bosonic state, which is the main tool for the results
in this Letter. In particular, it should predict correctly
the expectation values in time-averaged stationary states,
which are also accessible via stochastic simulations as
discussed in the appendix, where the atomic and pho-
tonic degrees of freedom are modelled as semiclassical
fields. As shown in Fig. 2(a) the dynamics of ⟨X̂2(t)⟩tav
calculated from the atomic master equation (solid) and
the semiclassical simulation (dashed) with N = 100 both
show the same evolution to the steady state correspond-
ing to dissipative time crystal. The excellent agreement
on short and on long timescales is a clear indication
that the atom-only theory is valid and we have included
the correct cavity-mediated interactions and dissipation.
Note that it is far from trivial that the atomic state can
evolve towards a dissipative time crystal without explic-
itly simulating the cavity degrees of freedom.
For very large atom numbers N the simulation of

the atom-only master equation becomes very challenging
since the dimension of the Liouvillian in Eq. (5) scales
as N4. To provide an efficient method to describe the
dynamics for very large N a mean-field description for
φs = ⟨b̂s⟩, s =↓, ↑ can be derived from Eq. (5) (see ap-
pendix)

dφ↓

dt
=i

V0 − iV1

N
|φ↑|2φ↓ + i

V0 + iV1

N
φ2
↑φ

∗
↓, (7)

dφ↑

dt
=− i

(
∆− V0 + iV1

N
|φ↓|2

)
φ↑ + i

V0 − iV1

N
φ2
↓φ

∗
↑.

(8)
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FIG. 2. The time-averaged observable ⟨X̂2⟩tav as function
of time for N = 102. The sold line is calculated from the
atom-only effective master equation (5), the dashed line from
the stochastic semiclassical simulation of atoms and cavity
field, and the dotted line from the atom-only mean-field equa-
tions (7),(8). (b) Mean-field trajectory of X(t), Y (t), Z(t) for
1.1 × 103 ≤ ωt ≤ 1.7 × 103calculated from Eqs. (7),(8) with
V1 ̸= 0 (black) and V1 = 0 (red). The remaining parame-
ters are δc = κ, ω = 2ωres, g0/gc = 0.5, g1/g0 = 0.2, and
∆ = 0.1κ.

This mean-field description includes (i) coherent interac-
tions and (ii) dissipation that are described as non-linear
terms proportional to V0 = −

√
Ng(t)Re(c+ + c−) and

V1 = Nκ(|c−|2 − |c+|2), respectively. The amplitude c−
(c+) describe the likelihood of atoms undergoing a tran-
sition from |↑⟩ to |↓⟩ (|↓⟩ to |↑⟩). An imbalance, in our
case N(|c−|2 − |c+|2) = 4δc∆g2(t)/(δ2c + κ2)2 > 0 for
∆, δc > 0, leads to a preferential reduction of atomic ex-
citations. Consequently, dissipation described by V1 has
a nice physical interpretation: it is a cooling rate which
is crucial for the stabilization of the system over long
timescales as we show below.

As shown in Fig. 2(a) the mean-field theory (dotted)
evolves to the correct steady state for large times even
for a modest value of N = 100. This is an important
finding since the simple differential equations (7),(8) can
be used to observe the relaxation towards a non-trivial
stable dynamical state, which maps the whole phase di-
agram very efficiently in terms of the stationary mean
field value ⟨X̂2⟩tav/N2. The result is shown in Fig. 1.
On short timescales we find an exponential growth and
oscillations of the mean-field ⟨X̂2⟩tav/N2 in Fig. 2(a) that
is not visible in the quantum simulation of Eq. (5). The
oscillations in the mean field value of ⟨X̂2⟩tav/N2 depend

on the initial value and disappear in the ensemble aver-
age. We have also checked that the short time mean field
behavior approaches the correct quantum dynamics for
larger N .

We can now explore the role of dissipation for the for-
mation of the time crystal. In Fig. 2(b) we switch off
dissipation by hand, setting V1 = 0 and show the tra-
jectory of X(t) = φ∗

↑φ↓ + φ∗
↓φ↑, Y (t) = i(φ∗

↓φ↑ − φ∗
↑φ↓),

Z(t) = |φ↑|2−|φ↓|2 with V1 ̸= 0 (black) and V1 = 0 (red)
and after times ωt > 1.1 × 103 where we have reached
the stationary state. Note that X2 + Y 2 + Z2 = N2 is
a conserved quantity such that trajectories lie always on
a sphere. The black curve shows a limit cycle, a sta-
ble oscillation on the sphere. In contrast, the red curve
shows a highly oscillatory behavior. This key finding
demonstrates the role of dissipation and that it can be
described as a cooling mechanism for the atoms which
stabilizes the dissipative time crystal.

Threshold to dynamical Superradiance– Last but not
least it is possible to derive analytical results for the on-
set of superradiance using Floquet theory. We assume
that all atoms are initially in the ground state and ex-
plore when driving induces an instability towards super-
radiance. With most bosons in |↓⟩, we eliminate fluc-
tuations in the ground state using φ↓ ≈

√
N , which

linearizes Eq. (8). The resulting complex differential
equation for φ↑ = (φ↑, φ

∗
↑) can be solved using Floquet

theory by making the ansatz φ↑(t) = eλFltu(t) with a
T = 2π/ω periodic vector u and the Floquet eigenvalue
λFl = γFl − iνFl, γFl, νFl ∈ R. Details of this derivation
are reported in the appendix. The stability of the fluctu-
ations is determined by γmax which is the maximum of all
possible real parts γFl. Whenever γmax ≤ 0 (γmax > 0)
we expect the system to be non-superradiant (superradi-
ant). The boundary to superradiance that is calculated
with this method is shown as black line in Fig. 1 and pre-
dicts accurately the superradiant regions. Furthermore,
to get analytical insight, we reformulate the coupled com-
plex differential equation as real second-order differential
equation for x↑ = φ↑ + φ∗

↑

d2x↑

dt2
+ 2V1(t)

dx↑

dt
+∆ [∆− 2V0(t)]x↑ = 0. (9)

In this differential equation V0 modifies the resonance fre-
quency ∆ originating from the (i) cavity-mediated inter-
actions and V1 serves as a damping of fluctuations coming
from (ii) the cavity-generated dissipation. If we perform
a first order perturbation theory in g1/g0 ∼ ∆/

√
δ2c + κ2,

Eq. (9) becomes a Mathieu equation [32] with V1(t) ≈ γ0
and ∆[∆ − 2V0(t)] ≈ ω2

res − 8∆δcg0g1/[δ
2
c + κ2] cos(ωt).

Here, we have introduced the time-independent damping

γ0 =
4κδc∆g20
[δ2c + κ2]2

, (10)
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and resonance frequency

ωres = ∆

√
1− g2

g2c
. (11)

The Mathieu equation without damping is known to
exhibit instabilities around the parametric resonances
nω = 2ωres [32]. In presence of damping γ0, instabilities
require sufficiently strong driving, provided by the time-
periodic term [32]. Accordingly we observe in Fig 1 su-
perradiance close to the resonance condition nω = 2ωres

for pump power in the sidebands ∝ g1/g0 above a cer-
tain threshold. This finding is in agreement with previ-
ous works where dynamical superradiance has been con-
nected to the Mathieu equation [14, 23], which again
shows that the atomic quantum theory in Eq. (5) gives
the correct behavior without describing explicitly the
cavity. Moreover, this allows us to obtain simple results
for the damping rate (10) and resonance frequency (11)
and enables us to calculate the threshold in g1. For this
we perform a perturbative analysis around the first in-
stability at ω = 2ωres reported in the appendix. We show
that the instability occurs at

gc1 =
2κωresg0
δ2c + κ2

. (12)

The result given by Eq. (12) is visible as gray solid line
in Fig. 1. It agrees well with the threshold found using
Floquet theory at ω = 2ωres and highlights the role of
dissipation in determining the threshold.

Dynamical response of the atoms– For a more compre-
hensive test of the atom-only theory and the resulting
Floquet theory, we again turn to semiclassical simulations
of atoms and cavity (see appendix) for the same param-
eters as in Fig. 1, g1 = 0.75g0, and different values of ω
(black dashed line in Fig. 1). For these parameters we
expect three superradiant regimes around the parametric
resonance ω = 2ωres, 2ω = 2ωres, and 3ω = 2ωres. We use
the semiclassical simulations to calculate ⟨X̂2(t)⟩ shown
as function of time t and driving frequency ω in Fig. 3(a).
The atom only theory predicts the borders of the super-
radiant regimes (black vertical lines), which fully agrees
with large values ⟨X̂2⟩ ∝ N2. In Fig. 3(b), to compare
the stationary state, we show the time-averaged superra-
diant order parameter ⟨X̂2⟩tav for both, the semiclassical
simulation of atoms and field (circles) and the atom-only
mean-field theory (black solid line) at steady state. Both
show a remarkable asymmetry of ⟨X̂2⟩tav where at each
resonance the lower threshold to superradiance is a con-
tinuous transition while the upper threshold is marked
by a sudden jump of ⟨X̂2⟩tav. In general, we find excel-
lent agreement between the mean-field and semiclassical
results which shows that the atom-only theory predicts
the correct stationary state in a large parameter space.

To understand the dynamical response of the atoms,
which is crucial to determine whether one finds a subhar-
monic and time-crystalline order, we employ the two-time

FIG. 3. (a) Superradiant order parameter ⟨X̂2⟩ obtained from
stochastic simulations as function of time in units of 1/κ and
of ω/(2ωres). The vertical black solid lines mark the thresh-
old of superradiance obtained from the atom-only stability
analysis. (b) Time-averaged superradiance order parame-

ter ⟨X̂2⟩tav as function of ω/(2ωres) evaluated after a time
κt = 104 where the atoms have reached steady state. The
solid black lines are obtained from the mean-field equations
and the circles from the semiclassical simulations. (c) Spec-
trum S1(ν) calculated from the stochastic simulations with
κt0 = 5 × 103 and where we choose tmax = t0. The spec-
trum is shown as function of ν/ω and ω/(2ωres). The red
dashed lines in (c) show the imaginary part νFl of the Flo-
quet spectrum. Remaining parameters are δc = κ, ∆ = 0.1κ,
g0 = 0.5gc. The stochastic simulations are averaged over 104

trajectories.

correlation function g1(t, t0) = ⟨X̂(t+ t0)X̂(t0)⟩ and cal-

culate its Fourier transform S1(ν) =
∫ tmax

0
dteiνtg1(t, t0).

Here, t0 is a long time after which the dynamics of the
system becomes independent of its initial condition and
tmax is a long-time cut-off. The numerical result of S1(ν)
is shown in Fig. 3(c) as function of ν and driving fre-
quency ω. The spectrum S1(ν) spikes in ν for all values of
ω that highlight resonances in the atomic medium. These
resonances are in agreement with the Floquet frequencies
νFl that are visible as red dashed lines in Fig. 3(c). We
find νFl = nω/2 in the dynamical superradiant phase
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corresponding to the parametric resonance nω = 2ωres.
This implies that the response of the atoms is flat with
respect to the driving frequency which leads to an in-
herit robustness. Moreover, the response is subharmonic
whenever n is odd which becomes clear when considering
that the underlying model is a single-mode theory of b̂↑
that oscillate with ωres: the first resonance at ω = 2ωres

describes resonant excitation of bosons with frequency
ωres = ω/2, the second resonance 2ω = 2ωres would re-
sult in a response with the same periodicity ωres = ω and
so on.

Conclusions–In conclusion, we have derived and ver-
ified an atom-only theory for the time-periodic dissipa-
tive Dicke model. With this theory we studied the onset
of superradiance including the dynamical response and
the threshold determined by the cavity-generated dissi-
pation, the driving frequency and amplitude. Besides
the numerical efficiency and maybe most remarkably, this
atom-only theory allows us also to describe the long-time
relaxation into a dissipative time crystalline structure
that we can understand from an effective cooling mecha-
nism. We remark that all studied quantities in this paper
including the superradiance order parameter and spec-
trum can be measured from the cavity output. This is
a consequence of working in the regime where the cav-
ity adiabatically follows the atomic motion which enables
to make detailed experimental predictions for the cavity
field intensity and spectrum based on an atom-only de-
scription. Future theoretical avenues that build on the
presented theory could use the atom-only theory to de-
rive quantum fluctuations and low energy excitations of
the dissipative time crystal. This can be used to deter-
mine if the emergent states are quantum entangled [33].
In addition, one can apply the atom-only theory to more
complicated systems with many and eventually infinitely
many atomic modes. This paves the way to the efficient
theoretical description of the atomic medium under peri-
odic driving, which can be used to analyze the generation
of squeezed and entangled atomic states with quantum
information and metrology applications.

SBJ acknowledges stimulating discussions with A. Pel-
ster, R. Betzholz, G. Morigi, J. Reilly, and M. J. Hol-
land. We acknowledge support from Research Centers of
the Deutsche Forschungsgemeinschaft (DFG): Projects
A4 and A5 in SFB/Transregio 185: OSCAR.

APPENDIX

Elimination of the cavity field

In this section we present details on the derivation of
the operator β̂ which is determined by

i
∂β̂

∂t
= (δc − iκ)β̂ +

g(t)√
N

(
b̂†↑b̂↓ + b̂†↓b̂↑

)
+ [∆n̂↑, β̂].

(13)

To solve this equation we make the ansatz β̂(t) =

c+(t)b̂
†
↑b̂↓+c−(t)b̂

†
↓b̂↑ which results in the following equa-

tions

i
dc±
dt

= (δc ±∆− iκ)c± +
g(t)√
N

. (14)

and can be formally solved

c± ≈ −i√
N

∫ t

0

dτ e[−i(δc±∆)−κ]τg(t− τ) (15)

where we dropped the homogeneous solution since it is
negligible after times t ≫ κ−1. Assuming ω ≪ κ, δc we
can use that g(t) changes sufficiently slow such that we
can approximate in the integral g(t − τ) = g(t) − τ ġ(t)
and arrive at

c± ≈− g(t)√
N [δc ±∆− iκ]

− iġ(t)√
N [(δc ±∆)− iκ]

2

≈− 1√
N

(
g(t)

δc − iκ
+

iġ(t)

[δc − iκ]2
∓ ∆g(t)

[δc − iκ]2

)
(16)

where we used κt ≫ 1 for the first equation and ∆, ω ≪
δc, κ in the second equation. This shows the result pre-
sented in the Letter.

Derivation of the mean-field equations

In this section we derive the mean-field equations that
are presented in the main text from the master equation

∂ρ̂at
∂t

= −i
[
Ĥat, ρ̂at

]
− κ(β̂†β̂ρ̂at + ρ̂atβ̂

†β̂ − 2β̂ρ̂atβ̂
†).

(17)

To do this we derive the differential equations φs = ⟨b̂s⟩
for s =↑, ↓. We use

d⟨b̂s⟩
dt

= −i
[
b̂s, Ĥat

]
− κ

〈
β̂†[β̂, b̂s] + [b̂s, β̂

†]β̂
〉

(18)
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and β̂(t) = c+(t)b̂
†
↑b̂↓ + c−(t)b̂

†
↓b̂↑ to find

dφ↓

dt
=− i

g(t)√
N

Re (c+ + c−) |φ↑|2φ↓

− i
g(t)√
N

(
c∗+ + c−

)
(φ↑)

2φ∗
↓

+ κ(|c−|2 − |c+|2)|φ↑|2φ↓, (19)

dφ↑

dt
=− i∆φ↑ − i

g(t)√
N

Re (c+ + c−) |φ↓|2φ↑

− i
g(t)√
N

(
c+ + c∗−

)
(φ↓)

2φ∗
↑

+ κ(|c+|2 − |c−|2)|φ↓|2φ↑. (20)

To derive these equations we have made a mean-field ap-
proximation where we can factorize the expectation value
of arbitrary products of annihilation and creation opera-
tors.

Using Eq. (16) we can then derive

g(t)√
N

Re(c+ + c−) =− V0

N
(21)

g(t)√
N

(c∗+ + c−) =− V0 + iV1

N
(22)

κ(|c−|2 − |c+|2) =
V1

N
(23)

with

V0 =
2δcg

2(t)

δ2c + κ2
− 4δcκg(t)ġ(t)

[δ2c + κ2]2
, (24)

V1 =
4δc∆κg2(t)

[δ2c + κ2]2
. (25)

Inserting the above equations in Eqs. (19) and (20) leads
to the mean-field description shown in the main text.

Dynamics in the |φ↑| ≪
√
N approximation

In this section we present a special case of the mean-
field equations using the approximations |φ↑| ≪

√
N and

|φ↓| ≈
√
N . From these equations we also show how one

can derive the second order differential equation that is
given in the Letter.

Using φ↓ ≈
√
N we can derive a complex differential

equation for φ↑ which reads

dφ↑

dt
= −i [∆− (V0 + iV1)]φ↑ + i(V0 − iV1)φ

∗
↑. (26)

This differential equation together with its complex con-
jugate can be given as a non-hermitian Schrödinger equa-
tion

dφ↑

dt
= −iΥHnhφ↑. (27)

with φ↑ = (φ↑, φ
∗
↑)

T , the diagonal matrix Υ =
diag(1,−1) and the non-hermitian Hamiltonian

Hnh =

(
∆− V0 − iV1 −V0 + iV1

−V0 − iV1 ∆− V0 + iV1

)
. (28)

In a next step we derive from Eq. (27) the second order
differential equation that is presented in the main text.
For this we define x↑ = φ↑ +φ∗

↑ and y↑ = i(φ↑ −φ∗
↑) and

derive

dx↑

dt
=−∆y↑, (29)

dy↑
dt

=(∆− 2V0)x↑ − 2V1y↑. (30)

Taking the derivative of Eq. (29) and inserting Eq. (30)
we arrive at the second order differential equation that
was presented in the main text.

Details of the Floquet analysis

In this section we present details on the Floquet anal-
ysis presented in the paper. We use Floquet theory
for the linear differential equation (27) with g = g0 +
g1 cos(ωt) and decompose its square into Fourier com-
ponents, g2(t) = g20 + 2g0g1 cos(ωt) + g21 cos

2(ωt). Ac-
cordingly, we decompose the linear operator A(t) =
−iΥHnh(t) into Fourier components

A(t) =

2∑
m=−2

A(m)e−imωt (31)

with

A(0) =

(
−i(ω0 − V

(0)
0 )− V

(0)
1 iV

(0)
0 + V

(0)
1

−iV
(0)
0 + V

(0)
1 i(ω0 − V

(0)
0 )− V

(0)
1

)
(32)

and

V
(0)
0 =

2δc

[
g20 +

g2
1

2

]
δ2c + κ2

, (33)

V
(0)
1 =

4κδcω0

[
g20 +

g2
1

2

]
[δ2c + κ2]2

. (34)

The rotating components with ω are given by

A(±1) =

(
iV

(±1)
0 − V

(±1)
1 iV

(±1)
0 + V

(±1)
1

−iV
(±1)
0 + V

(±1)
1 −iV

(±1)
0 − V

(±1)
1 ,

)
(35)

and

V
(±1)
0 =

2δcg0g1
δ2c + κ2

∓ i2δcκωg0g1
[δ2c + κ2]2

, (36)

V
(±1)
1 =

4κδcω0g0g1
[δ2c + κ2]2

. (37)
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The next order, rotating with 2ω, are given by

A(±2) =

(
iV

(±2)
0 − V

(±2)
1 iV

(±2)
0 + V

(±2)
1

−iV
(±2)
0 + V

(±2)
1 −iV

(±2)
0 − V

(±2)
1

)
, (38)

where we defined

V
(±2)
0 =

2δc
g2
1

4

δ2c + κ2
∓

i4δcκω
g2
1

4

[δ2c + κ2]2
, (39)

V
(±2)
1 =

4κδcω0
g2
1

4

[δ2c + κ2]2
. (40)

We apply now Floquet theory to the liner system

dv

dt
= Av. (41)

For this we write φ↑(t) = eλtu(t) with a time-periodic
u(t) = u(t+ T ) and T = 2π/ω. We find then

λu+
du

dt
= Au. (42)

Since u is periodic with period T , we can decompose it
into Fourier components

u =
∑
n

une
inωt (43)

and find

λun =

2∑
m=−2

[A(m) − inδm,0ω]un−m. (44)

Defining now the 2×2 identity matrix I2 we can find the
solution of the above equation by finding the eigenvalues
λFl and eigenvectors

u =

∞∑
n=−∞

un ⊗ |n⟩ (45)

of

A =

∞∑
n=−∞

2∑
m=−2

[
A(m) − inωδm,0I2

]
|n⟩⟨n−m|. (46)

The latter is approximated using a sufficiently high cut-
off in n such that the results have converged.

Threshold for ω = 2ωres

In this section we derive the estimate for the critical
value gc1 close to resonance ω = 2ωres + ϵ, ϵ ≪ ωres,
using perturbation theory. This is done in the limit where
g1 ≪ g0 where we can use the Mathieu equation

d2x↑

dt2
+ 2γ0

dx↑

dt
+
[
ω2
res − 4∆b cos(ωt)

]
x↑ = 0 (47)

with b = 2δcg0g1/(δ
2
c + κ2). Equivalent derivations of

the threshold are given in Ref. [32, 34]. We assume that
γ0,

√
∆b ≪ ωres and make the ansatz

x↑ =

∞∑
n=−∞

xn(t)e
−inω

2 t. (48)

The functions xn are time-dependent Fourier amplitudes.
We can then derive a differential equation for xn that
takes the form

ẍn − (inω − 2γ0) ẋn −
[(

n2ω2

4
− ω2

res

)
+ inγ0ω

]
xn

= 2∆b(xn−2 + xn+2) (49)

From the equation above we observe that all amplitudes
xn with n2 ̸= 1 are of higher order in 2∆b/ω2

res. Thus
we restrict the equations of motion to n = ±1. The
components x±1 are evolving slowly with ẋ±1/x±1 ≪
ωres. In this regime we can approximate the differential
equation by

d

dt

(
x1

x−1

)
= A

(
x1

x−1

)
(50)

with

A =

(
−γ0 + i ϵ2 i ∆b

ωres

−i ∆b
ωres

−γ0 − i ϵ2

)
, (51)

where we used ω2 ≈ 4ωres(ωres+ϵ). The eigenfrequencies
are given by the eigenvalues of A and to derive them we
calculate the characteristic polynomial

p(λ) = det [A− λI2] = (λ+ γ0)
2 +

ϵ2

4
− ∆2b2

ω2
res

. (52)

The zeros of this polynomial are the eigenfrequencies that
are given by

λ± = −γ0 ±

√
∆2b2

ω2
res

− ϵ2

4
. (53)

The fluctuations are stable if the solution is damped.
This is the case if

g21 ≤ 4κ2ω2
resg

2
0

(δ2c + κ2)2
+

(δ2c + κ2)2ω4
res

4δ2c∆
2g20

(
1− ω

2ωres

)2

. (54)

Therefore, at resonance ω = 2ωres, we find the threshold
which is given in the main text.

Stochastic Simulation of the dissipative Dicke model

In this section we give the explicit form of the stochas-
tic differential equation that we integrate to find part of
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the numerical results given in the main text. We define
the operators

X̂ =b̂†↑b̂↓ + b̂†↓b̂↑ (55)

Ŷ =i(b̂†↓b̂↑ − b̂†↑b̂↓) (56)

Ẑ =b̂†↑b̂↑ − b̂†↓b̂↓. (57)

Our starting point are the Heisenberg-Langevin equa-
tions for these operators and cavity degrees of freedom

dâ

dt
=− κâ− iδcâ− i

g√
N

X̂ +
√
2κâin(t), (58)

dX̂

dt
=−∆Ŷ , (59)

dŶ

dt
=∆X̂ − 2

g(t)√
N

(â+ â†)Ẑ, (60)

dẐ

dt
=2

g(t)√
N

(â+ â†)Ŷ . (61)

We introduced the noise operators âin with vanishing
mean value ⟨âin⟩ = 0, second moments ⟨âin(t)âin(t′)⟩ =

0 = ⟨â†in(t)âin(t′)⟩ and ⟨âin(t)â†in(t′)⟩ = δ(t− t′).
Instead of evolving the complex field we define the her-

mitian quadratures âx = â†+ â and âp = i(â†− â). Their
time evolution coupled to the spin degrees is given by

dâx
dt

=− κâx + δcâp +
√
2κN̂ x(t), (62)

dâp
dt

=− κâp − δcâx − 2
g(t)√
N

X̂ +
√
2κN̂ p(t), (63)

dX̂

dt
=−∆Ŷ , (64)

dŶ

dt
=∆X̂ − 2

g(t)√
N

âxẐ, (65)

dẐ

dt
=2

g(t)√
N

âxŶ , (66)

with N̂ x = [âin(t) + â†in(t)] and N̂ p = −i[âin(t)− â†in(t)].
The stochastic differential equations that are used in the
main part of the paper are now derived by exchanging
the quantum operators with real functions using a sym-
metric ordering. In addition we exchange the quantum
noise by classical noise which warrants the correct second
moments [35]. The stochastic semiclassical differential
equations are

dax
dt

=− κax + δcap +
√
2κN x(t), (67)

dap
dt

=− κap − δcax − 2
g√
N

X +
√
2κN p(t), (68)

dX

dt
=−∆Y, (69)

dY

dt
=∆X − 2

g√
N

axZ, (70)

dZ

dt
=2

g√
N

axY, (71)

with N a fulfilling ⟨N a⟩ = 0 and ⟨N a(t)N b(t′)⟩ =
δabδ(t− t′). We use these stochastic differential equa-
tions to simulate the semiclassical dynamics of the cou-
pled spin and cavity dynamics. In this paper we consider
as the initial state with ⟨Z⟩ = −N , ⟨X⟩ = 0 = ⟨Y ⟩ and
the cavity in the vacuum state ⟨ax⟩ = ⟨ap⟩ = 0. To
incorporate quantum fluctuations in the stochastic semi-
classical variables ax, ap, X, Y , and Z, we initialize them
by independent Gaussian random variables with ⟨a2x⟩ =
1 = ⟨a2p⟩, ⟨X2⟩ = N = ⟨Y 2⟩, and ⟨Z2⟩ = ⟨Z⟩2 = N2.
With these initial conditions we integrate the stochastic
differential equations and average over several initializa-
tions that we report in the captions of the figures in the
main text.
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