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Spin- and charge-density oscillations in spin chains and quantum wires
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We analyze the spin- and charge-density oscillations near impurities in spin chains and quantum wires.
These so-called Friedel oscillations give detailed information about the impurity and also about the interactions
in the system. The temperature dependence of these oscillations explicitly shows the renormalization of back-
scattering and conductivity, which we analyze for a number of different impurity models. We are also able to
analyze screening effects in one dimension. The relation to the Kondo effect and experimental consequences
are discussed.

l. INTRODUCTION Fishel® it was found that a generic impurity in a spinless
Luttinger liquid results in a renormalization of the conduc-

There is growing interest in impurities in low-dimensional tivity with temperature, which leads to a perfectly reflecting
electron and magnetic systems spurred by high-temperatutearrier atT=0 for repulsive interactions. Interestingly, this
superconductivity and experimental progress in producindgehavior can also be explained in terms of repeated scatter-
ever smaller electronic structures. There appears to be twing off the Friedel oscillations, which gives an explicit ex-
central aspects that are studied most in this context, namelyression of the transmission coefficient in the weak coupling
the effect of impurities on the transport properties in mesostimit.® Independently, the analogous renormalization behav-
copic systems on the one hahdnd impurity-impurity inter-  ior was also found in the spin-1/2 chdirwhere a generic
actions in antiferromagnetic systems due to impurity-inducegberturbation in the chain effectively renormalizes to an open
magnetic ordéron the other hand. In this paper we show boundary condition a3 —0. However, it is possible that a
that the charge and spin densities near impurities give a gregpecial symmetry in the Hamiltonian reverses this renormal-
deal of information about both of those aspects and allow ugation, which leads to resonant tunneling in quantum
to study a number of impurity models in one dimension inwires*® or the healing of a two-link problem in the spin-1/2
detail. chain! The renormalization behavior in that case is analo-

Induced density fluctuations at twice the Fermi wave vecgous to the two-channel Kondo effect.
tor, so-called Friedel oscillatiorfsare a common impurity The renormalization flow can easily be tested numerically
effect in fermionic systems, which are enhanced in lowerby examining the scaling of the finite size energy gaps,
dimensions. There are two distinct physical effects that camut we now would like to determine the reflection coefficient
give rise to Friedel oscillations. The most common source iglirectly by analyzing the induced density oscillations, which
a simpleinterference effecas considered in the original are also interesting in their own right. In addition, we also
work by FriedeF Fermions scatter off the impurity, resulting consider the density oscillations from impurity models near
in a superposition of incoming and outgoing wave functionsan edge, impurities with a net charge or magnetic moment
Summing up the squares of the corresponding wave funa&ondo-type impuritie and integrable impurities. The de-
tions up to the sharp cutoff at the Fermi wave vedtar tailed renormalization of the impurity backscattering as well
results in a characteristic interference pattern withkax2 as screening can be studied in each case by analyzing the
modulation, namely the Friedel oscillations. Clearly, this patinduced density oscillations as a function of temperature,
tern can give a great deal of information about the impurity,which we determined numerically with the transfer matrix
in particular, details about the scattering process. A secontenormalization grougTMRG) for impurities® 112 This al-
source for the Rex oscillations arénteraction effectslue to  lows us to make predictions for conductivity measurements
the screening of an impurity with a net charge or a magnetién quantum wires and for Knight shift measurements in spin
moment. A typical example of this effect is the Kondo chains, e.g., nuclear magnetic resonaribVR) experi-
screening cloud,which we also analyze in this paper. The ments. In all cases we find a typical renormalization to a
2kgex oscillations due to screening have typically a differentfixed point of the Luttinger liquid model, which is described
characteristic amplitude as a functionythan those due to in terms of a simpléopen or periodicboundary condition in
backscattering, as we will discuss in more detail below.  agreement with field theory calculations.

We now consider the density oscillations in one- The rest of this paper is organized as follows. In Sec. Il
dimensional systems such as spin chains and interactinge present the model Hamiltonian and review the results for
guantum wiregLuttinger liquids in order to understand the Friedel oscillations due to an open efig., complete back-
detailed effects of impurity scattering and screening as &cattering. Different impurity models of a modified link,
function of temperature. In the classic work by Kane andtwo modified links, an edge impurity, Kondo impurities, and

0163-1829/2000/62)/437013)/$15.00 PRB 62 4370 ©2000 The American Physical Society



PRB 62 SPIN- AND CHARGE-DENSITY OSCILLATIONS IN . .. 4371

an integrable impurity are then analyzed in detail in Sec. lll.plicitly we can write the charge density in quantum wifes
Section IV contains a description of the numerical methodsquivalently the spin densi§§gS,) in spin chaingin terms of
used and a critical discussion about the possible numericéft and right movers:

errors. We conclude with a summary and a discussion about

experimental relevance in Sec. V. (WY = (! )+ (Plr)

Il. THE MODEL + 2Pl ) + eI HF kg ). 7

The standard model we are considering here are spinledde first two uniform terms just represent the overall fermion
interacting fermions on a one-dimensional lattice, describedensity in the bulk system, while the last two “Friedel”
by the Hamiltonian terms are the density oscillationgs. we are interested in. In

a system with translational invariance the left- and right-
moving fields are uncorrelatedpE¢R>=0 and no density
oscillations are present. An impurity, however, scatters left
(1) into right movers and the amplitude of the oscillations gives
detailed information about the backscattering.
where nj=V¥[W, is the fermion density. Although this  As the simplest example of this effect, let us consider an
Hamiltonian neglects the spin degrees of freedom of reabpen boundary, i.e., an impurity with complete backscatter-
electrons in quantum wires, it captures the essential physiqgg at the origin. In this case the correlation functions can be
in conductivity experiments. Moreover, this model is equiva-calculated directly:**~*8For the particular case of the left-

szi [—t(UW +P], ) +Unin - uni],

lent to the spin-1/2 chain right correlation function at equal space and time we find
HIZ %(5.+5|11+373++1)+st.2 |Z+1—BSZ} @ <¢[(x)¢R(x)>u<m g, ®
where the spi.n operators are r_elated to the fermion field b%o that the density oscillations are given by
the Jordan-Wigner transformation
i-1 . T ¢
St=n,— 1, s|=(—1)‘x1fiexp(i7r§j) nj), 3) ”OSC“S'”(Z"FX)(M) ' ©

. _ _ The Friedel oscillations are exponentially damped with tem-
with J=2t, J,=U, andB=yn—U. perature, because the incoming and outgoing wave functions

The_ m_odel n I_Eq.(l) can be analyzed by s'_car_ldard that form the interference pattern lose coherence due to tem-
bosonization techniques in the low-temperature limit. For

low eneraies we onlv consider excitations around the I:ermperature fluctuations. In the limit— 0 we recover the result
. 9 only ) ; "7t Ref. 19 where a power-law decay of the Friedel oscillation
points =kg and introduce left- and right-moving fermion 9 }
. : ) : . : Nose< 1/x9 was predicted.
fields with a linear dispersion relation . ; . . :
It is now important to realize that the fermions or spins
W (x) = e KFXy (%) + eKFX a(X). 4 are still pinned to a lattice, i.ex= integer, which gives
(x) v(x) Yr(X) @ interesting additional effects. In particular, at half-fillikg
The chiral fermion fields can then be bosonized using the= 7/2, the Friedel oscillations in E¢9) are identically zero,
usual bosonization rules sin(mx)=0 for integerx, which can easily be understood
from particle-hole symmetryor equivalently spin-flip sym-
+ 1 metry). Half-filling is a natural state for the spin chains in
¢L/R¢L/R=T(5x¢iﬂ¢)y (5 zero magnetic field, but a small magnetic field changes the
m Fermi vector slightlyke=7/2+B/v. In that case, Eq(9)

wherell, is the conjugate momenta to the boson fieid becomes
This results in the following boson Hamiltonian density: )

Nosc™ (— 1)*sin(2Bx/v) . (10

v .

H=§[g‘1(ﬂx¢)2+gﬂfb], ©) vsinh 27xT/v
Now, the Friedel oscillations are simply alternating on the

which can be solved by a simple rescaling of the boson withattice and for distances below the magnetic length scale,

the interaction parameter The parameteg and the velocity <y/B, we can use sin@x/v)—2Bxv so that remarkably the

v can in principle be calculated for any interaction strengthoscillations actuallyncreasewith x*~9. This effect was first

U and chemical potentigk with Bethe ansatz techniqu&$. observed for the Heisenberg chairl,€J, g=1/2, v

To lowest order inU we get g=1-2U/mv and v = =J#/2), where the local susceptibilitiggx) can be written

=4t~ 2+ 2U/ 7, so thatg<1 for repulsive interactions. ag’

We now want to analyze the density oscillations using

this formalism. Already from the decomposition of the fer- x(X)=xo0—c(—1)*}*Xx), (11)

mion field in Eq.(4) it is clear that the fermion density may

contain an oscillating component withk2x. To see this ex-  with the amplitude of the alternating part given by
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in the presence of impurities. Clearly the eigenfunctions are
given by plane wave solutiong&) that contain a special mix

of left- and right-moving components due to the impurity.
Just like the case without impurities there are in fact always
two such degenerate orthogonal solutions. We found the so-
lutions for generic impurity models and looked at the spatial
structure of the square of the wave functions, which contains
an interference pattern of incoming and outgoing waves. In
general, we always find

1
. . . . [(x|K)[P=—=[1+ VR(k)coq 2kx+2®)], (13
0 20 40 60 80 100 ™
X where the summation over the two degenerate solutions is
FIG. 1. Local susceptibility close to the open end of a spin-1/2implied. HereR(k) is the ordinaryk-dependent reflection
chain from TMRG data foiT=0.04] compared to Eqs(11) and  Coefficient that has been determined independently according
(12) with ¢=0.51, which was determined by matching the charac-to textbook methods. Therefore, the magnitude of the inter-
teristic maxima. ference is exactly given by the square root of the reflection
coefficient, which is maybe not too surprising but very useful
in our analysis. In particular, when we consider the fermion
XX = . (12)  density at half-filling we are really directly looking at the
sinh 4T spatial structure of the wave function. We can write near

) o half-filling (i.e., for a small fieldB in the spin chain modegl
Here x, is the bulk susceptibility in the ch&hand we mea-

sureT in units of J. The sign was chosen so that tfwn- w2+ Blv 5
stan} overall amplitudec of the alternating part is positive. n(x)— 1/2:f /2 |(x[k)[“dk
The superscript bs indicates that the alternating susceptibility "

is due to backscattering. As shown in Fig. 1 from TMRG

. . . .. A B—>OB T 2
simulations there is a characteristic maximum because the _ - <x _>
temperature damping eventually dominates over the increas- v 2
ing oscillations. Clearly, the expression in E42) repro- _ « b
duces the shape of this alternating part rather well, although =Blxo—cr(= 1™, (14)
we have neglected possible logarithmic correctignaltipli- ~ where we have used the fact that the spin density for the

cative and additive which may be responsible for the ap- Heisenberg chain in a small field is just given by the suscep-
parent shift in the characteristic maximum in Fig. 1. Thetibility in Eq. (11), but with a coefficientck that now de-
numerical TMRG results of the local susceptibility near thepends on the reflection coefficieR near half-filling. To-
open endy®(x) will be used as the reference data for agether with Eq(13) we therefore arrive at the central result

completely backscattering impurity in our studies in the nexthat at half-fillingthe reflection coefficient is proportional to
section. The numerical data automatically contain all correcto the square of the alternating density amplitude

tions due to irrelevant higher-order operators. The logarith-
mic corrections to Eq(12) due to the leading irrelevant op-
erator have a special behavior near a boun&hwhich we
have not tried to predict for the local susceptibility, but nu-
merically we find that a possible multiplicative logarithmic Wherec=cg-, is the coefficient corresponding to complete
correction for y(x) appears to have aegative power of backscatteymg in Eg{.;l). We use this formula to estimate
In(x). The maximum in Fig. 1 occurs at<1/T with an am- the' refle'ctlon'coefflment_ from the d_en5|ty oscillations for
plitude y < 15T, which results in a characteristic feature in Va&rious impurity models in the following. _
NMR experiments, so that it was possible to confirm this _AS mentioned above there may also be-2 density os-
effect experimentally as welf At zero temperature the c[l[atlpng due to screening, so that the alternating suscepti-
ground state has a staggered magnetization, which has PAity is in general a sum of two parts:
maximum in the center of a finite chajmssuming an odd alty o _ _ X screenin b M
number of sites?®> The magnetization for finite cr?ains with X X=X =xo=(=1)x ) — crx"(X)J(— )"
) . ) . (16)
impurities has also recently been analyzed, which resulted in
interesting patterns that reveal the nature of the strong cofn the case of overscreening the neighboring sparselec-
relations in the systerf. trong overcompensate the magnetior electrig impurity

Even for a partially reflecting impurity we expect that the and leave an effective impurity with opposite moment, which
same alternating contribution as in E@2) due to back- inturn gets screened by the next nearest neighbors and so on.
scattering is present, but with an amplituci¢hat increases This finally results in a screening cloud. Screening is purely
monotonically with the reflection coefficiem®. In fact we  an interaction effect where akgx density oscillation is in-
can make a firm connection between the relative amplitudeduced by an “active” impurity Hamiltonian zp[z//RHimp>
and the reflection coefficients by considering free fermions#0. The Xgx oscillations due to backscattering, however,
U =0 for which we can find the eigenfunctions exactly evenare purely an interference effect and are even present in non-

R:
Cc

2
%) , (15
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FIG. 2. One modified link.

interacting fermion systems. The special shape and the in-
creasing nature of the alternating part in EG2) for g
=1/2 make it possible to easily identify the contribution due .
to backscattering, so that we can always separate the two 0.2 1 ;
possible effects near half-filling. In what follows we there-
fore always use the special choice of coupllig 2t corre- . . :
sponding to the Heisenberg modekJ. This model can be 0 20 40 60
used to demonstrate the generic behavior of impurity effects X

in mesoscopic systems and also gives experimental conse- , . .
quences for spin-chain compounds. The Luttinger liquid pa- FIQ. 3. Envelope of thle alternating susceptibility of the one-link
rameter takes the valug=1/2 in this case, which is the impurity at T=0.04J for J'/J=0.0,0.2,0.4,0.6,0.8 from above.
strongest possible interaction at half-filling before Umklapp
scattering becomes relevant.

(_1 )x+1 Xalt(x)
o
~

via the Jordan-Wigner transformation in Eg) with a modi-
fied Heisenberg coupling between two spins:

ll. IMPURITY MODELS
o H=3> §-S;1+3'S-St. (19
A. One modified link i#0
Maybe the simplest impurity to consider is a weak link in We now want to analyze the density oscillation near the im-
the chain, i.e., a modified hoppinj between two sites in purity in order to extract the reflection coefficient as de-
the chain as shown in Fig. 2, scribed above. In Fig. 3 we show the amplitude of the alter-
nating spin density for different coupling strengtids.
+ + - + Clearly the shape as a function of distarxcemains largely
H= _ti;o (WiWi t W W) =3 (WoW +W W), the same as in Fig. 1 for all' so that the functional depen-
(17) dence in Eq(12) is still adequate, but with an overall coef-
ficient ¢ which is now related to the reflection coefficiaRt
The wave functions and reflection coefficigR¢k) for this ~ as postulated in E|15).

problem can be calculated exactly, with the result that The reflection coefficient is directly related to the renor-
malization behavior above. The basic idea behind renormal-

{4 9t23724 314 ization is to use an effective Hamiltonian with renormalized
= ) (18 parameters as a function ®f To estimate the reflection co-
t4—2t2"2cos k+J'* efficient it is therefore possible to make a simplified but in-
tuitive analysis by using the free-fermion result in Ef8),

but with a renormalized coupling strengih(T). Below the
crossover temperatufie< Ty , the effective potential is small
and given by the renormalization behavior of the leading

irrelevant operatod’ (T)oJ’' TY9~1, This results in

R(K)

However, once the interactidd is introduced this problem
becomes highly nontrivial and the reflection coefficient
renormalizes with temperatufie The interacting system has
been studied in the context of both spinless fermi@msl the
spin-1/2 chairf, where it was found that repulsive interac-
tions U>0 make the perturbation of one link relevant, so
that it renormalizes to a completely reflecting barrierTas
—0. A small weakening of a link’ <t produces a relevant which is the universal behavior near the stable fixed point as
backscattering operator in the periodic chain of scaling difirst predicted in Ref. 1. Above the crossover temperature
mensiond=g, so that this link effectively weakens further T>T, the renormalization behavior is better described by a
as the temperature is lowered. Below a crossover temperggjevant operator on the periodic chain, gividg-J'(T)

ture Ty (analogous to a Kondo temperaturihe link has o (3—3/)T9-1, From this result it would even seem that we
weakened so much that it is more useful to consider thean recover the periodic chain in the high-temperature limit,
problem of two open ends that are weakly coupled, which isyyt it is of course important to realize that the renormaliza-
now described by an irrelevant operator of scaling dimensioion, js no longer possible above a cutoff of orderFor an
d=1/g. Therefore, this coupling weakens further and ulti-jpjtia| bare couplingd’~J very close to the unstable fixed
mately the open boundary condition represents the stablgyint T, <J we therefore find that the effective coupling
fixed point asT—0. The same analysis is also true for astops renormalizing at its bare valdé—J’ for largeT. In

. . o Lo
o ens lock into & “singlet” sate as the effective coupling SUTMAY: the temperature dependence alyas ot as
9 P gatlmiversal as in Eq(20), but we may still write

grows, and the remaining ends are weakly coupled with

virtual coupling of ordett?/J’, which is again irrelevant. Rec(J—J")2 (21)
We consider the interacting system with= 2t, which we '

can write in terms of an S@)-invariant spin Hamiltonian for J’'~J andT>Ty.

1—RxJ/2T20-2 (20
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FIG. 5. Two modified links.

caseU=2t we can again write this model in terms of a
Heisenberg spin chain model

H=d 2, S:SH+'%:(SatS). (22
This type of impurity may correspond to a charge island that
is weakly coupled to a mesoscopic wire or to doping in a
quasi-one-dimensional compound where one atom in the
chain has been substituted. We have recently considered this

=0.1,0.2,0.4,0.6,0.8 from above. The lines are guides for the eyetype of impurity in the context of doping in spin-1/2 com-

It is now straightforward to extract the relative coefficient
cr/c in Eq. (14) from the numerical data by simply dividing
the amplitude of the alternating part for each couplirign
Fig. 3 by the reference data qf* for the open chain. Ac-
cording to Eq(15) the square of this relative coefficient then

gives the reflection coefficient. Figure 4 shows the results foflul
the temperature dependent reflection coefficient from ou

pounds and as a simple experimental example of the two-
channel Kondo effect.In this section we analyze the in-
duced density oscillations in more detail, especially in
connection with the reflection coefficient.

The model in Eq(22) is equally simple as the one-link
impurity, but the renormalization behavior is known to be
te different’ Already for the noninteracting case at half-
filling the system shows a resonant behavior with perfect

TMRG data. The renormalization to a perfectly reflectivetransmissiorR=0, so that this corresponds to the simplest

barrier can clearly be seen as-0. The behavior for cou-
plings close to the periodic fixed poind'(=0.4J) is consis-
tent with Eqg.(21). For smaller couplings the crossover tem-

case of resonant tunneling considered by Kane and Fi8her
(at half-filling the impurity potential is automatically tuned
to the resonant conditionWith interactiondJ # 0 the reflec-

peratureT, is larger, and we see an extended region wherdion coefficient is no longer exactly zero, but shows nonthe-

the scaling of the stable fixed point witH? and T?972 in
Eqg. (20) holds (hereg=1/2). We can also compare our re-
sults to the findings of Matveeet al. in Ref. 6 where an
explicit formula for the transmission coefficient was given,
1-Rx[(D/T)?*Ry/(1—Rp)+ 1]~ %, in terms of the nonin-
teracting reflection coefficieR, in Eq. (18), a cutoffD, and

a smallinteraction parameter=1/g— 1. Unfortunately, the
interaction parameter is large in our case 1 so that this
formula does not quantitatively agree with our findings in
Fig. 4. Qualitatively, their result looks rather similar, but we

observe a sharper renormalization at low temperatures ne

the unstable fixed point)( =0.4J). Indeed we find that the
region where the famous scaling in Eg0) is valid turns out
to be extremely narrow fod’ =0.4J.

Another aspect is the high-temperature behavior wher

the noninteracting reflection coefficient in E48) should be
approached.This is indeed the case near the unstable fixe
point J’=0.4J where the noninteracting value is quickly

reached with high accuracy. However, near the stable fixe

point (J'=<0.4J) we find that the reflection coefficient can

renormalize even well below the noninteracting value, so

that the interactions actuallgnhancethe conductivity at
higher temperatures in this case. The reason for this une

pected behavior is that the crossover temperature is larger

than the cutoff near the stable fixed point>J, so that the

less a renormalization to perfect transmissionTasO in
sharp contrast to the one-link impurity. This difference in
renormalization behavior is easily explained by the different
parity symmetry of the problerthamely site instead of link
parity). For a small perturbation from a periodic chalh
~J the leading operator is nowrelevant with scaling di-
mension ofd=1+ g, so that a perfectly transmitting chain is
the stable fixed point. For small couplings=0 on the other
hand, the leading perturbing operator is marginally relevant,
and the situation is similar to the two-channel Kondo effect
mhere the two ends of the chain play the role of two inde-
pendent channefs.

Apart from the renormalization behavior there is another
key difference between the one- and two-link impurities: In

éhe two-link impurity model there is an "“active” impurity

site that carries a spin or charge degree of freedom, which in

durn must bescreenedy the surrounding system. Therefore,

the density oscillations are no longer simply determined by
Hwe backscattering in Eq12), but there is also a so-called

screening cloud induced in the system. From perturbation
theory in the leading irrelevant operator the functional de-

pendence of this screening cloud can be calcufaaed the

)Egtal alternating density®" is a sum of two contributions

x¥"(x)=c,(—1)*In[coth xT)]— cr(—1)*x"(x), (23

renormalization may continue beyond the bare coupling conghere the first term is the induced screening cloud while the

stants at higher temperatures.

B. Two modified links

We now consider the impurity divo neighboring modi-

second term is the familiar contribution due to backscattering
in Eq. (12). Interestingly, the two contributions have oppo-
site sign, so that the density oscillations vanish at a special
distance from the impurity, but then increase again due to the
backscattering contribution. This behavior is shown in Fig. 6

fied links in the chain as shown in Fig. 5. For the interactingtogether with a fit to the two contributions in E@®3). The
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0 20 40 60
X

FIG. 6. Alternating part of the local susceptibility for the two- ' :
link impurity for T/J=0.04 andJ'/J=0.6. Fit to Eq.(23). 0 02 04 m 0.6 08 1
special distance at which the density oscillations vanish pg g coefficient, vsJ’ of the two link impurity for different

grows as we approach the stable fixed poit¢J or T temperatured/J=0.2,0.1,0.04,0.025,0.0167,0.01 from below. For

—0). As already with the one-link problem, we use againy’~J and/or low temperaturesc, approaches a universal

the numerical open chain data as a referenceyPdinstead  T-independent curvéhick line). Inset:c, vs T. The lines are guides

of the more simplified analytical form of the backscatteringfor the eye.

contribution in Eq.(12) since this minimizes the corrections

due to irrelevant operators. However, even the analyticagtant, while the screening cloud is reduced which is the open

form in Eq. (12) gives very good fits, so that none of our chain behavior. Below  on the other hand backscattering is

findings are affected by this choice. reduced, while the coefficient for the induced screening
It is now straightforward to extract the reflection coeffi- cloud is constant, which is the behavior of the two channel

cient from the numerical data with the help of E45 and  Kondo fixed point. Note, that although the coefficientis

Eq. (23) as shown in Fig. 7. Below a crossover temperaturefinite asT— 0, the screening cloud itself diverges logarith-

Ty depending onJ’ the reflection coefficient clearly de- mically with —In(xT), which is a clear indication of the fa-

creases and eventually approaches perfect transmission g®us overscreening in the two-channel Kondo effect. As we

T—0. AboveTy the renormalization of the reflection coef- approach the unstable fixed point the order of limits becomes

ficient is rather weak and converges to a finite constangrucial: For zero coupling there is no screening cloud at all

_(never approaching complete reflection as the temperatuligm;_,lim; ,c,=0, while for zero temperature the coeffi-

increasep cient becomes infinite liga_glimy_oc,=%. Remarkably,
Equally interesting is the induced screening cloud. In thisexactly at zero temperature a minute perturbation therefore

case, the coefficiert; approaches a constant@s'Ty as it  induces an infinite screening cloud, although this behavior
should, since this contribution was determined from perturoccurs in an unphysical limit.

bation theory around the stable fixed point. Above the cross-
over temperature, however, this contribution vanishes
quickly. This behavior is shown in Fig. 8: In general the
behavior of the coefficient, vsJ’ is temperature dependent  Another category of impurities we can consider are im-
andc, increases as the temperature is lowered. However, agerfections near the end of a chain. In this case the boundary
T<T all curves approach a limiting value, which gives a always gives complete backscattering, but as we will see the
universal behavior as a function df (thick line). impurity can still give interesting effects on the density os-
The competing contributions in ER3) have the opposite cillations. The simplest case to consider is a modified link at
renormalization behavior: Abov&y backscattering is con- the edge of a chain as depicted in Fig. 9. For the interacting
caseU=2t it is again useful to write the Hamiltonian in
1 : . : : terms of the Heisenberg spin-chain model

C. Impurity at the edge

H=Ji§1$-s+1+3'so~sl. (24)

Just like the two-link impurity was related to the two-
channel Kondo problem, we can identify the field theory
description of the edge impurity model with the regular one-
channel Kondo problem. There are two possible fixed points:
The case)’ =0 corresponds to the unstable fixed point of a

T

ik
o----0——o— 06— — o —

FIG. 7. Reflection coefficienR of the two-link impurity for 0 1 5 3 4 5

J'/3=0.05,0.1,0.2,0.4,0.6,0.8 from above. The lines are guides for
the eye. FIG. 9. Edge impurity.
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FIG. 10. Alternating susceptibility for the edge impurity at FIG. 12. Coefficientc, vs J' of the edge impurity forT/J
T/3=0.04 forJ’'/3=0,0.1,0.2,0.4,0.6,1.0 from above. Fits to Eq. =0.2,0.1,0.04,0.02,0.133,0.01 from below. The lines are a guide for

(25). the eye.

decoupled spin at the ind of a chain with a marginally relyhere the first term is the induced screening cloud, while the
evant perturbation 03’ = 0. The ca;e] ._‘] correqunds o . second term is the backscattering contribution in #8) but
the completely screened spin, which is a stable fixed poinfyis, 5 phase shifb. However, the coefficient always takes
with a leading irrelevant operator of scaling dimensin o yajue corresponding to complete backscattering in Eq.
=2. Just as with the ordinary Kondo effect bot.h. fixed p0|r]ts(11)_ There is also an implied shift of®/  in the argument
are represented by the same boundary condition and diffef; \ bs \yhich we used for a self-consistent fitting. The effec-
only by a simpler/2 phase shift on the fermionéThe infi- e houndary condition in the continuum limit is therefore
nite coupling fixed poind’ — < is also stable, but is actually ocppically between two lattice sitéalthough it is not really
absolutely equivalent to the’=J fixed point since both 5t meaningful to define locations on the scale of less than a
cases represent=/2 phase shift on the fermions by remov- |5tice spacing in the continuum limit theory anyway
ing or adding a site, respectivglyFor intermediate cou- Figure 10 shows the envelope of the alternating part of the
plings the phase shifb takes on values between 0 an® g sceptibility for temperaturd@=0.04) and different cou-
which will be reflected in the backscattering contribution of plings J’, which always fits well to the superposition in Eq.
the density oscillations as we will see below. (25). At the fixed points)’ =0 andJ’ =J there is no screen-

A screening cloud for the impurity spin at the end should;, “1yt the backscattering contribution has opposite signs
also be present in this model, but with a different behawordue to thewr/2 phase shift.
than for the overscreened case in E2f). Instead we find s how straightforward to extract the screening cloud
that the leading operator that causes the screening gloud éﬁnplitudeq and the phase shifb from our numerical data
thﬁ. sr?rrr:e ats) that for ?n egge mafgnenc field indhe Cha'r?’ for all temperatures and coupling$. As expected we find
whic df.is een ian]:a yzi mhRe ' 25;’ sho vx_/edcan (;Jset € COlRat the phase shift increases wilh and renormalizes to
responding result for the shape of the induced screening e, yajues as the temperature is lowered as shown in Fig.
cloud. Taking into account finite temperatures and the phasg; ™ | he limit of very low temperatures the jump to the
shift on the fermions we can write for the density oscillationsg; v\ fixed point valueb = m/2 becomes more abrupt as a

function of J’.

alliy) = ¢ (_1)Xﬁ — cogmx+ 2d)cy*x), (25) The screening cloud coefficiemt, again approaches a
X ! Jsinh(4xT) X ' constant as we lower the temperature beljwas shown in
Fig. 12. Although formally the behavior looks similar to the
2 : : & overscreened case of the two link problem in Fig. 8 it is

important to realize that now the screening cloud in &%)
T=0.01J is finite asT—0 and drops off with X (while in the two
link case the screening cloud was divergent witlxTh

Qa4 t ] : o
D. Generalized two-link impurity

T=0.25J It is now instructive to summarize the findings of the three
impurity models in the previous subsections by considering
one generalized two link impurity model thatriet symmet-

ric as shown in Fig. 13:

0 0.2 04 0.6 0.8 1
JJ 3 ]

FIG. 11. Phase shift of alternating part of the edge impurity for 3 2 1 0 1 2 3

T/J=0.25,0.1,0.04,0.02,0.01 from below. The lines are guides for
the eye. FIG. 13. Generalized two-link impurity.
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I P S imp=1
\ P 4
1 - J’/’;\ r
_____ - . 7 \\
W 2 -1 0 1 2 3
A S FIG. 15. The spin-1 impurity.
- 0 . i
0 = 1. 7 I A—III D it was always possible to interpret the Heisen-
! ™o ! berg Hamiltonians equally well in terms of mesoscopic sys-
tems and electrons hopping on the lattice by identifying the

spin-1/2 impurity in terms of an extra site or charge island.
FIG. 14. Renormalization flow diagram. However, for the spin-1 impurity in Eq27) no meaningful
interpretation in terms of spinless fermions is possible. On
the other hand this impurity model has important implica-
H=J 2 S:S;1+3S1:S+0,%'S. (260 tions for doping in quasi-one-dimensional spin-1/2 com-
i#-1,0 . . . .
pounds, so that we find it useful to discuss it here.

The three impurity cases above can be identified easily: Similar to the impurity models in Secs. 11l B and Ill C we
o find again that the field theory language is analogous to a
(1) J>#J,=J one modified link in Eq(19), Kondo impurity model. The two ends of the spin chain play
(2) J1=J,7#J two modified links in Eq(22), the role of the two channels coupled to a spin-1 impurity. A
(3) J:=0, J,#J edge impurity in Eq(24). small antiferromagnetic coupling is therefore marginally rel-

) o ) evant and the renormalization flow goes to the strong cou-
The density oscillations for the more general model in Eqpjing limit. The stable fixed point is given by an open spin
(26) are much more complex than in the special cases, so thghain with two sites removed and a decoupled singlet con-
a detailed analysis of this effect is not always useful. Thegjning the spin-1 and the two end spirk {-).
renormalization behavior on the other hand is straightfor-  j,st as with the edge impurity in Sec. Ill C this Kondo-
ward and can be read off from what we already know aboufype model is an exactly screened impurity. The shape of the

the special cases. N _ screening cloud is again given by that of an edge magnetic
A weak couplingl; =0 andJ,=0 to an additional site is  fie|¢? just like in Eq.(25)

always marginally relevant, so that the open chain with a

decoupled impurity site is unstable for any antiferromagnetic (=T
coupling (i.e., negative hopping probability The periodic x2(x) =) ————=—Ccr(— 1)¥*(x), (28
chain on the other hand is only stable for the special site- VsSinh(4xT)

parity symmetric casé,=J,, where the renormalization be- . . . . .
havior is analogous to the two-channel Kondo effect. In genyvh_ere the first term is again the mduce(_i screening _clou_d,
while the second term is the backscattering contribution in

eral, however, one of the o couplings is larger anqu. (12). As shown in Fig. 16 the fits to this expression are

renormalizes to unity, absorbing the spin. The smaller cou lent ) ina th hain dat ; ¢
pling is then irrelevant as in the one-link problem, so that theeifCe en (agalr_1 using the open chain data as a reterence for
9). The coefficient, for the induced screening cloud again

stable fixed point is an open chain with an absorbed impurityX h want for t " balowvhich
site J;=J, J,=0 (or J,=J, J;=0) in most cases, except 2PP'OACNES a constant fof temperatures belguvich re-

for a site-parity symmetric impurity or two ferromagnetic sults in a universal curve a—0 as shown in Fig. 17. The

coupling constants. The complete renormalization flow isbﬁcksca;]t?trmg dcor(]efflment IS ag |nd|cija}t|on Ofﬂ:het effect|vte
summarized in Fig. 14 where the possible fixed points ardNase Shilt and changes sign depending on the temperature

indicated by the black dots. In cases where the coupling gidnd coupling strength. From Fig. 16 it is clear that the back-

verges to infinity a singlet forms, and we can therefore agairscattering coefficientcg is positive for small coupling

describe the system by one of the four finite fixed points in

the figure. Interestingly, the more stable fixed points always

have a lower ground state degeneracy, in accordance with the

g theoren?® The phase diagram in Fig. 14 is valid for all

interaction strengthsQU <2t as long as the system is half- %

filled. "
|

. TMRG data

— fit

E. Spin-1 impurity

We now turn to a magnetic impurity in the chain with
spin Smp=1 given by the Heisenberg Hamiltonian 15

0 20 40 60
X

H=J> S-S, 1+ Smp (So+ 2
i;o S:S1H " Smp* (S + S @7) FIG. 16. Envelope of alternating partBtJ=0.04 for the spin-1

impurity. From above atx=20:J'/J=0,0.05,0.1,0.2,0.4,0.8,4.0.
as shown in Fig. 15. In the previous impurity models in SecsFits to Eq.(28).
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20 1 * Simp= 1

o Y —— TW=02
L i TH=0.1

L2 W 1y - TW=004 -
. R 0 HILR ——- TiJ=0.02 2 -1 0 1 2 3
& BN o w00t

Rt : FIG. 19. The integrable impurity.

c L
110
3

usual 14T behavior as shown in the right part of Fig. 18.
The detailedl dependence can be predicted for any particu-
lar value ofJ’ of an actual experimental compound.

0 ‘C, A F. Integrable impurity model
0 1 2 Finally, we would like to consider a more exotic impurity
JN model that has been especially constructed to preserve the

FIG. 17. Coefficientc, of the spin-1 impurity for T/J integrability of the entire systeR{. We consider here the

~0.2,0.1,0.04,0.025,0.0167,0.0133,0.01 from below. Inset: BackSIMPlest nontrivial example of such an impurity model

scattering coefficientr. The dashed lines are a guide for the eye, Which corresponds to an impurity spin wi,,=1 that is
coupled in a special way to two sites in the ché&ee Fig.

strengths)’ (or equivalently high temperaturesnd negative 19).. The corresponding Hamiltonian has been set up in Ref.

for larger coupling strengthd’ (or equivalently lower tem-
peratures The renormalization o€y is explicitly shown in

7J 4J
the inset of Fig. 17. AST—0 the jump ofcy to negative H=J2 S-S~ 350'51+ 3[(SO+81)-Smp
values happens at smallét and becomes very sharp. 10
More interesting are the experimental consequences for +{So SimpS1- Smpt] (29)

Knight shift experiments in doped spin-1/2 chain compounds
(as for example Ni doping in CuO chajns-or that case we whereSy, is the external spin-1 impurity ar{d} denotes the
can predict an interesting NMR spectrum with a characterisanticommutator.
tic feature(sharp edgecorresponding to the maximum inthe A closer analysis of this mod@lshowed that the thermo-
alternating susceptibility. Such a sharp edge has been olynamics at low temperatures were in fact described by a
served before in NMR experiments on spin-1/2 chain comperiodic spin chain with one additional site and an asymp-
pounds with nonmagnetic defeéfsin that case the sharp totically free impurity spin withS=1/2, so that it appears
edge broadens with a [T behavior as discussed in Sec. II. that the original spin 1 has somehow been partially absorbed
For the magnetic spin-1 impurities a sharp edge from théy the chain. From a field theory point of view it was later
maximum in the backscattering part may also be present, bghown that this type of impurity corresponds in fact to an
it depends on if the temperature is above or belgwhow  unstable fixed point that can only be reached by an artificial
this feature changes. AbovB, the backscattering part be- tuning of the coupling parametets.
comes weaker as the temperature is lowered, but the induced We are now interested in what kind of density oscillations
screening cloud increases, so that the sharp kink may vanishight be observable from such an impurity. Interestingly, we
in a quickly broadening line shape from the screening cloudound that the density oscillations weitkentically zero at all
as shown in the left part of Fig. 18. BeloW, on the other temperaturesas if the system was translationally invariant.
hand, the screening has saturated and the backscattering cdrte impurity Hamiltonian in Eq(29) was of course con-
tribution dominates agaitalbeit with a phase shift There-  structed in a way to avoid all backscattering, but it is remark-
fore, the kink feature in the NMR spectrum will sharpen able that even the induced alternating part from the magnetic
further as the temperature is lowered and widen with thémpurity vanishes exactly, i.e., no conventional screening
takes place.

Nonetheless, the impurity spin is somehow reduced from
a spin 1 to an effective spin 1/2 as the temperature is low-
ered. This can be explicitly seen from the impurity suscepti-
bility in small magnetic fields

H I n

— TH=0.2
---- TH=0.067
y | == TH=0.04
i =-— Ti=002

CCurie

T ’

(S =B (30

NMR signal

where we have assumed some type of Curie law. At high
temperatures the impurity susceptibility must follow the Cu-
rie law for a spin-1Ccie= 2/3, while at low temperatures a
Curie law for a spin-1/Z¢ .= 1/4 has been predicted up to
logarithmic correction€® In Fig. 20 we plot the temperature
FIG. 18. NMR signal of the spin-1 impurity far'/J=0.1 (left) dependent Curie constafite., the impurity susceptibility
andJ’/J=1.4 (right). times temperatuje It appears that the asymptotic value
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impurities the thermodynamics of the system is entirely de-
. termined by the highest eigenvalug, and corresponding

] eigenstate of the pure transfer matfiy, which always ap-
pears with an infinite power in the partition function in Eq.
« TWRG data (32). The measurement of the spiar charge density near

it the impurity is again straightforward. For the spin density at
] a distance of sites from the impurity we write

<¢M|T§AZ(TM)j/2Timp| ¢M>

0.45 -

urie

o
O 035¢f

(S$))=— (34)
) ) ) ) )\]/24’1 T
08 o1 o0z 03 04 M Wml Timpl )
T Since we stepwise approximate the transfer matrix, it is
FIG. 20. Susceptibility of the spin 1 in the integrable model IMportant to make a careful error analysis. The error due to
multiplied by temperature, fit to Eq31). the Trotter approximation is the simplest to estimate since it

is just proportional to the square of the time step1/TM.

tions asT— 0. The fit in the figure is gible compared to the DMRG truncation errors. To estimate
the truncation errors we can compare our results to the exact
1 1 In(In(27/T)/b) solution of the free-fermion Hamiltonian in E@L) with U
Ceuie=7+ 3 In2a/T) 2 > (3)  =0. The structure of the transfer matrix is not fundamentally
In(27/T) changed by takindg =0 so that the truncation error will be
with a=1.62 andb=1.32. of the same order as fdf # 0. Keeping 64 states we find for
the local response of the spins closest to typical impurities a
IV. NUMERICAL METHOD relative error of less than 10 for T>0.04, less than 10°

for 0.02<T<0.04 and a relative error of less than £0for

The numerical method we have used here is based on th@mperatures 0.64T7<0.02. However, already from Eq.
density matrix renormalization groth(DMRG) applied to  (34) it is clear that the spin and charge densities far away
transfer matrices. While the ordinary DMRG considers thefrom the impurity will contain a larger error. Each transfer
properties of individual eigenstates in a finite system, we arenatrix contains a small error which then gets exponenti-
interested in the thermodynamic limit, namely properties ofated in Eq.(34) and hence the oscillating part of the density
an infinite system at finite temperatures. This can bgs?) is suppressed exponentially with distarjce
achieved by the transfer matrix renormalization gréup '
(TMRG), which we adapted especially for impuritiés as (Shose< (1) =exp —je), (35)
we will review briefly. We consider the partition functiéh ) )
of the models in Eqs(1) and (2). After the standard Trotter wheree depends only on temperature. This exponential sup-

decomposition, we obtain for an infinite systetn¢ ) pression with the distance from the boundary is again a con-
sequence of the fact that the incoming and outgoing waves

Z= lim trTH?— lim A2, (32)  lose coherence but this time due to error fluctuations. How-

Mo M=o ever, the corresponding energy scale from the truncation er-

ror is always smaller than the temperature in our case. We
observe that the suppression error in B3p) is actually very

determines the thermodynamics of the system, which we fin ystematic, so that we can even correct our_data very well
numerically. We start with small time steps so’that the Troto 9 Eq.§35). For free fermions we find to high accuracy
R . . the following dependence of the error on temperature,
ter error is negligible, and successively increase the number
of tim_e incc_esM to regch lower temperatures. At each step €=0.06 ex— 58T), (36)
the dimension ofT), increases so we keep only the most
important states to describe the state with the highest eigetwhere we have kept 64 states in the TMRG simulations. For
value\,, by using the DMRG algorithm with some modifi- interacting fermions the suppression also has the exponential
cations for asymmetric matricé5.A measurement of the dependence in Eq35), but the energy scale is in general
local spin-density at sit¢ for example is straightforward, dependent on the interactidth For the Heisenberg model an
since we can just absorb the measuring operﬁfto’nto one independent analysis of the free energy hinted at a value of
of the transfer matrice$y,— T5Z approximatelye=0.02 exp(-34T), but the value in Eq(36)
is more reliable and gives a relatively good estimate of the
(ol TR m) error for all interaction strengths. We chose to correct our
T’ (33 data for the alternating fermion densities by dividing out the
factor in Eq.(35) together with the estimate in E6) in all
where (| and|y) are the left and right target states for cases presented above. However, the use of this correction or
the eigenvalua ), . So far we have considered a translationalthe particular choice of the errermakes no qualitative dif-
invariant system. ference in any of our findings, since the temperature suppres-
We now introduce a generic impurity which modifies onesion always dominate6.e., the energy scale in E¢36) is
of the transfer matrice$y— T;n,. Even in the presence of always smaller than the temperatur&nother important en-

where Ty, is the transfer matrix wittM time slices. In the
limit of infinite system size only the largest eigenvalug

1
()= S Sfe A —
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ergy scale is the finite magnetic fieRlthat is used in the 0.4
simulations(i.e., how close the system is to half-fillihg/Ne 4
typically used a value oB=0.003, which makes the mag- 03|  Qmwelnkimpury
netic length scale in Eq10) always negligible compared to 222[;;;;”:{;” o
the finite temperature correlation length. t ol B oy 1o Cne end
V. CONCLUSION
. . . 01t

We have considered a number of impurity models and
were able to extract detailed information about the back-
scattering amplitude, the backscattering phase shift, and the Og 02 03 04 o5 os

impurity screening effects by examining the Friedel oscilla- 7
tions. The results for the various impurities have direct and _
indirect implications for a large number of theoretical mod-  FIG. 21. Crossover temperatufg of four different Kondo-type

els and experimenta| Systems as we will summarize be|ow_impuritieS.TK has been mU|t|p|I6d by arbitrary constants in order to
compare the four cases.

A. Kondo-type impurities . . . .
_ _ ype imp analysis”!! We have determined this way as a function
Kondo Impurlty pI’OblemS are maybe the most famous eX'Of CouplingJ’ in each case as Shown in F|g mp to an

amples of impurity renormalization effects ever since thegrbitrary overall scale The Kondo temperature shows the
classic work by Wilsorf* Many of the impurity models we sgme exponential dependence for sni4l

have considered here are analogous to Kondo impurity prob-

lems in terms of the field theory language. In particular, the Ty exp(—0.851/3"), (37

field theory description of a Heisenberg chain is the same as L ) .

that of the spin channel for an electron field with spirhile @S Shown in Fig. 21coming from the same marginally rel-
the charge excitations are negledtedoreover, it is known €Vant operator at the unstable fixed point in all casébe

that coupling the open end of a Heisenberg chain to an imdnderscreened case of a spin 1 coupled to the end of one

purity spin produces the same impurity operators as in th&hain has also been included in Fig. 21 for completeness.
real Kondo probleri:*2 The number of channels in the More mterestm.g in the context pf the density oscnlatlon.s
equivalent Kondo problems is given by the open ends thaf maybe the _scallng of the screening clou_d. As the_ screening
the impurity spin is connected (@.g., the two-link impurity ploud we define that par_t of the alternatlng. density that is
in Sec. Il B is analogous to the two-channek &2 Kondo  induced by the magnetic impurity, labeled &yin Egs.(23),
problem). It is important to realize that the Heisenberg spins(29): and(28). In Ref. 4 it was postulated that the screening
in the chains that we consider here have different expressiorfdoUd in the real Kondo effect should be a function of the
in terms of the boson fields than the real electron spins in thécaling variablexT andT/T . In our cases we can make a
full three-dimensional Kondo problems. Nonetheless, we cagimilar argument except that we need to include an overall
still use our models to gain some insight into the centraf@ctor T~ to account for the dimensionality of the correla-
aspects of renormalization, scaling, crossover temperaturdOn functions. We therefore obtain the following scaling law
and screening clouds. : _

We have shown that the Kondo-type impurities indeed XTI (XT,T/Ty). (38)
show the expected renormalization to a screened impurityhdeed we find that the shape of the screening cloud is not
spin. In particular, we have found a diverging screeningaffected byT, and can always be expressed as a function of
cloud (and vanishing backscatterindor the overscreened the scaling variableT. The coefficient, must therefore be
case in Sec. lll B, while the exactly screened cases in Secg.function of T/T, multiplied by appropriate powers at As
IINC and IIl E are characterized by a finite screening cloudan example we can take the two link problengat1/2 with
and a phase shift in the backscatteringTas 0. the screening cloud given in E€R3), where the coefficient

To analyze the renormalization process more quantitagan pe written as, = f(Ty/T)/\T with some functiorf. In
tively it is important to introduce the concept of scaling. It Fig. 22 we replot the coefficierd; analogous to Fig. 8 but
can be expected that the impurity introduces a new energyjith the argument replaced By /T instead of)’. The inset
scale that de.pends on the |n|t|al bare coupling constants, s that the data indeed collapse if multipliedbf/ as
Commonly this energy scale is referred to as the crossovggnjieq by Eq.(38). The solid line in Fig. 8 therefore is
temp_eratureTK. By making use of §cal_e invariance it is then roportional to 1{Tx and diverges exponentially witt’
possible to describe the renormalization process universall ccording to Eq(37). Similar arguments can be made for the

‘T‘ terms of.the lsingle paramgt§VTK. In'p.a.rticular, impg- coefficientsc, in the screening clouds of the exactly screened
rity properties like the impurity susceptibility are descrlbedCases in Eqs(25) and (28), except that, = (T, /T)/T and

by a universal scaling functiofin,=f(T/Tk)/T, which is e : :
valid for all T and T below the cutoff. This behavior was the solid line is proportional to T in that case.

demonstrated explicitly before for the two-weak-link
problen? and works for all Kondo-type impurities in this
paper(not shown. In fact it is possible to extract the cross-  Our results also have immediate experimental conse-
over temperatur@ ¢ up to an arbitrary overall scale explic- quences for impurities in spin-chain compounds such as
ity by collapsing the data according to the scaling KCuF; or SL,CuQ;. The spin density oscillations are directly

B. Doping in spin chains
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found that a generic impurity indeed renormalizes to com-
plete backscattering as the temperature is lowered, and we
also could explicitly observe the “healing effect” in the
symmetric resonant tunneling case as predicted by Kane and
Fisher*®>8 Our numerical results not only confirm the
asymptotic power laws, but also give a quantitative estimate
of the conductivity for all temperatures and impurity
strengths. For a generic impurity with little or intermediate
backscattering we find that the asymptotic scaling region
turns out to be extremely narrow. For impurities with strong
backscattering we find that the conductivityeehancedy
/T interactions at higher temperatures.
One obvious question is how those results can be gener-
FIG. 22. The coefficient, for the two-link impurity in Eq.(23) alized to electron systems with spin and carbon nanotubes. A
as a function of Ty/T for different temperaturesT/J number of works have addressed the question of impurities
=0.2,0.1,0.04,0.025,0.0167,0.01 from below. in wires with spin'®3*3*and found a richer structure since
renormalization takes place in both the spin and the charge
linked to the local Knight shiftgésusceptibilities close to the ~ channels. However, if realistic B invariant interactions
corresponding impurities, which can be measured by starare assumed the generic behavior is very similar to the spin-
dard NMR techniques or muon spin resonance. NMR experiless case, so that we expect that our results for the reflection
ments have already successfully detected the sharp featugeefficient carry over in a straightforward fashion. The shape
corresponding to the maximum in Fig. 1 from open bound-and amplitude of the density oscillations, however, will in
aries due to nonmagnetic defects that were naturally presegeneral be very different for electron systems with spin. For
in the crystaf? We now propose to use intentional doping carbon nanotubes it has been shown that the Friedel oscilla-
with magnetic or nonmagnetic impurities to see the predictedions impose a characteristic pattern that can be observed
renormalization effects. Impurities of one or two modified with scanning tunneling microscopy For wires with spin it
links in the chain can possibly be created by doping thds expected that the Friedel oscillations from an open end can
surrounding nonmagnetic atoms in the crystal at link or siteeveal the nature of the spin-charge separation in real
parity symmetric locations. The spin 1 impurities in Sec.space® Although our results do not allow for quantitative
[l E could be produced in a more straightforward way by predictions of the density oscillations in systems with spin,
substituting Cu ions by Ni ions in the corresponding com-we generally expect that strong, long-range density oscilla-
pounds. In Sec. Il E we discussed explicitly how the renor-tions should be present from backscattering in one dimen-
malization effects for spin-1 impurities would show up in ansion. One experimental consequence of those oscillations is
actual experiment. Similar arguments can also be made fdhat the measurement through a lead close to an impurity is
the two-link’ or one-link impurities by simply using the ana- very sensitive to the exact location. Previous studies have
lytic form of the corresponding alternating spin densitiesshown that even the distance between two leads can play a
with the coefficientxg andc, that we have calculated. crucial role¥” The current may be strongly enhanced or de-
In general we find a strong enhancement of the antiferropleted, depending on if the distance to the impurity is a mul-
magnetic order near impurities. This enhancement can alsiéple of 2kex or not. Especially interesting are therefore ex-
be observed in higher dimensidrend may have important periments with an adjustable lead such as a tunneling tip.
consequences for impurity-impurity interactions. In one di-The direct observation of those oscillations could give de-
mension this effect is strongest, but the complex functionatailed information about both the nature of the impurity and
dependence we found here is often beyond the intuitive exalso about the interactions in the system.
planation in terms of valence bond states.

ACKNOWLEDGMENTS

C. Impurities in mesoscopic systems S.R. acknowledges support from the Swedish Foundation

Finally, our analysis also allows us to draw importantfor International Cooperation in Research and Higher Edu-
conclusions for transport measurements in one dimensionahtion (STINT). S.E. is thankful for the support from the
mesoscopic structures. This is probably the first time that th&wedish Natural Science Research Council through the re-
conductivity could be explicitly extracted from numerical search grants F-AA/FU 12288-301 and S-AA/FO 12288-
data for Luttinger liquid—type models. Not surprisingly, we 302.

1C.L. Kane and M.P.A. Fisher, Phys. Rev. Lé88, 1220(1992. 5C.L. Kane and M.P.A. Fisher, Phys. Rev.4B, 15 233(1992.
2G.B. Martins, M. Markus, J. Riera, and E. Dagotto, Phys. Rev. 6K.A. Matveev, D.X. Yue, and L.I. Glazman, Phys. Rev. Lé&tt,

Lett. 78, 3563(1997). 3351(1993; D.X. Yue, L.I. Glazman, and K.A. Matveev, Phys.
3J. Friedel, Nuovo Cimento Suppl, 187 (1958. Rev. B49, 1966(1994).

4E.S. Soensen and |. Affleck, Phys. Rev. &8, 9153(1996. ’S. Eggert and |. Affleck, Phys. Rev. 45, 10 866(1992.



4382 STEFAN ROMMER AND

8C.L. Kane and M.P.A. Fisher, Phys. Rev.4B, 7268(1992.

9S. Eggert and S. Rommer, Phys. Rev. L&t, 1690 (1998;
Physica B261, 200 (1999.

105 3. Qin, M. Fabrizio, and L. Yu, Phys. Rev. 38, R9643(1996:
S.J. Qin, M. Fabrizio, L. Yu, M. Oshikawa, and |. Affledkid.
56, 9766(1997.

11s. Rommer and S. Eggert, Phys. Rev5® 6301(1999.

2R .J. Bursill, T. Xiang, and G.A. Gehring, J. Phys. & L583
(1996; X.Q. Wang and T. Xiang, Phys. Rev.38, 5061(1997;

N. Shibata, J. Phys. Soc. J@6, 2221(1997.

13N.M. Bogoliubov, A.G. Izergin, and V.E. Korepin, Nucl. Phys. B
275, 687(1986.

¥AE. Mattsson, S. Eggert, and H. Johannesson, Phys. R&6, B
15 615(1997.

153, Eggert, H. Johannesson, and A. Mattsson, Phys. Rev.76ett.
1505(1996.

18\, Fabrizio and A.O. Gogolin, Phys. Rev. B, 17 827(1995.

17s. Eggert and I. Affleck, Phys. Rev. Left5, 934 (1995.

183, Eggert, A.E. Mattsson, and J.M. Kinaret, Phys. Re%6BR15
537(1997.

1°R. Egger and H. Grabert, Phys. Rev. L&, 3505(1995.

205, Eggert, I. Affleck, and M. Takahashi, Phys. Rev. L&g&. 332
(19949.

21y, Brunel, M. Bocquet, and Th. Jolicoeur, Phys. Rev. L88,
2821(1999; I. Affleck and S.J. Qin, J. Phys. 32, 7815(1999.

22M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida, Phys.

SEBASTIAN EGGERT PRB 62
Rev. B55, 14 129(1997); Phys. Rev. Lett76, 4612(1996; N.
Fujiwara, H. Yasuoka, M. Isobe, and Y. Ueda, Phys. Re%3B
11 134(1998.

23M. Laukamp, G.B. Martins, C. Gazza, A.L. Malvezzi, E. Dagotto,
P.M. Hansen, A.C. Lopez, and J. Riera, Phys. Re§7BL0 755
(1998.

24M. Nishino, H. Onishi, P. Roos, K. Yamaguchi, and S. Miyashita,
Phys. Rev. B61, 4033(2000.

25|, Affleck, J. Phys. A31, 2761(1998.

28|, Affleck and A.W.W. Ludwig, Phys. Rev. Let67, 161 (1997).

27N. Andrei and H. Johannesson, Phys. L&80A, 108 (1984).

28p_ schlottmann, J. Phys.: Condens. Ma&e6617(1991).

2E.S. Swensen, S. Eggert, and I. Affleck, J. Phys.28, 6757
(1993.

305 R. White, Phys. Rev. Let69, 2863(1992; Phys. Rev. B48
10 345(1993.

31K.G. Wilson, Rev. Mod. Phys47, 773 (1975.

32|, Affleck, Acta Phys. Pol. B26, 1869(1995; cond-mat/9512099.

33A. Furusaki and N. Nagaosa, Phys. Rev4B 4631(1993.

34E. Wong and I. Affleck, Nucl. Phys. B17, 403 (1994).

35C.L. Kane and E.J. Mele, Phys. Rev.3, 12 759(1999; W.
Clauss, D.J. Bergeron, M. Freitag, C.L. Kane, E.J. Mele, and
A.T. Johnson, Europhys. Let.7, 601 (1999.

36s. Eggert, Phys. Rev. Let84, 4413(2000.

373.M. Kinaret, M. Jonson, R.l. Shekter, and S. Eggert, Phys. Rev.
B 57, 3777(1998; Physica E(Amsterdam 1, 265 (1997).



