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Spin- and charge-density oscillations in spin chains and quantum wires
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We analyze the spin- and charge-density oscillations near impurities in spin chains and quantum wires.
These so-called Friedel oscillations give detailed information about the impurity and also about the interactions
in the system. The temperature dependence of these oscillations explicitly shows the renormalization of back-
scattering and conductivity, which we analyze for a number of different impurity models. We are also able to
analyze screening effects in one dimension. The relation to the Kondo effect and experimental consequences
are discussed.
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I. INTRODUCTION

There is growing interest in impurities in low-dimension
electron and magnetic systems spurred by high-tempera
superconductivity and experimental progress in produc
ever smaller electronic structures. There appears to be
central aspects that are studied most in this context, nam
the effect of impurities on the transport properties in mes
copic systems on the one hand,1 and impurity-impurity inter-
actions in antiferromagnetic systems due to impurity-indu
magnetic order2 on the other hand. In this paper we sho
that the charge and spin densities near impurities give a g
deal of information about both of those aspects and allow
to study a number of impurity models in one dimension
detail.

Induced density fluctuations at twice the Fermi wave v
tor, so-called Friedel oscillations,3 are a common impurity
effect in fermionic systems, which are enhanced in low
dimensions. There are two distinct physical effects that
give rise to Friedel oscillations. The most common sourc
a simple interference effectas considered in the origina
work by Friedel.3 Fermions scatter off the impurity, resultin
in a superposition of incoming and outgoing wave functio
Summing up the squares of the corresponding wave fu
tions up to the sharp cutoff at the Fermi wave vectorkF
results in a characteristic interference pattern with a 2kFx
modulation, namely the Friedel oscillations. Clearly, this p
tern can give a great deal of information about the impur
in particular, details about the scattering process. A sec
source for the 2kFx oscillations areinteraction effectsdue to
the screening of an impurity with a net charge or a magn
moment. A typical example of this effect is the Kond
screening cloud,4 which we also analyze in this paper. Th
2kFx oscillations due to screening have typically a differe
characteristic amplitude as a function ofx than those due to
backscattering, as we will discuss in more detail below.

We now consider the density oscillations in on
dimensional systems such as spin chains and interac
quantum wires~Luttinger liquids! in order to understand th
detailed effects of impurity scattering and screening a
function of temperature. In the classic work by Kane a
PRB 620163-1829/2000/62~7!/4370~13!/$15.00
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Fisher1,5 it was found that a generic impurity in a spinle
Luttinger liquid results in a renormalization of the condu
tivity with temperature, which leads to a perfectly reflectin
barrier atT50 for repulsive interactions. Interestingly, th
behavior can also be explained in terms of repeated sca
ing off the Friedel oscillations, which gives an explicit e
pression of the transmission coefficient in the weak coupl
limit.6 Independently, the analogous renormalization beh
ior was also found in the spin-1/2 chain,7 where a generic
perturbation in the chain effectively renormalizes to an op
boundary condition asT→0. However, it is possible that a
special symmetry in the Hamiltonian reverses this renorm
ization, which leads to resonant tunneling in quantu
wires5,8 or the healing of a two-link problem in the spin-1/
chain.7 The renormalization behavior in that case is ana
gous to the two-channel Kondo effect.9

The renormalization flow can easily be tested numerica
by examining the scaling of the finite size energy gaps,7,10

but we now would like to determine the reflection coefficie
directly by analyzing the induced density oscillations, whi
are also interesting in their own right. In addition, we al
consider the density oscillations from impurity models ne
an edge, impurities with a net charge or magnetic mom
~Kondo-type impurities!, and integrable impurities. The de
tailed renormalization of the impurity backscattering as w
as screening can be studied in each case by analyzing
induced density oscillations as a function of temperatu
which we determined numerically with the transfer mat
renormalization group~TMRG! for impurities.9,11,12This al-
lows us to make predictions for conductivity measureme
in quantum wires and for Knight shift measurements in s
chains, e.g., nuclear magnetic resonance~NMR! experi-
ments. In all cases we find a typical renormalization to
fixed point of the Luttinger liquid model, which is describe
in terms of a simple~open or periodic! boundary condition in
agreement with field theory calculations.

The rest of this paper is organized as follows. In Sec
we present the model Hamiltonian and review the results
Friedel oscillations due to an open end~i.e., complete back-
scattering!. Different impurity models of a modified link
two modified links, an edge impurity, Kondo impurities, an
4370 ©2000 The American Physical Society
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an integrable impurity are then analyzed in detail in Sec.
Section IV contains a description of the numerical metho
used and a critical discussion about the possible nume
errors. We conclude with a summary and a discussion ab
experimental relevance in Sec. V.

II. THE MODEL

The standard model we are considering here are spin
interacting fermions on a one-dimensional lattice, descri
by the Hamiltonian

H5(
i

@2t~C i
†C i 111C i 11

† C i !1Unini 112mni #,

~1!

where ni5C i
†C i is the fermion density. Although this

Hamiltonian neglects the spin degrees of freedom of r
electrons in quantum wires, it captures the essential phy
in conductivity experiments. Moreover, this model is equiv
lent to the spin-1/2 chain

H5(
i

F J

2
~Si

1Si 11
2 1Si

2Si 11
1 !1JzSi

zSi 11
z 2BSi

zG , ~2!

where the spin operators are related to the fermion field
the Jordan-Wigner transformation

Si
z5ni2

1
2 , Si

25~21! iC iexpS ip(
j

i 21

nj D , ~3!

with J52t, Jz5U, andB5m2U.
The model in Eq. ~1! can be analyzed by standa

bosonization techniques in the low-temperature limit. F
low energies we only consider excitations around the Fe
points 6kF and introduce left- and right-moving fermio
fields with a linear dispersion relation

C~x!5e2 ikFxcL~x!1eikFxcR~x!. ~4!

The chiral fermion fields can then be bosonized using
usual bosonization rules

cL/R
† cL/R5

1

A4p
~]xf6Pf!, ~5!

wherePf is the conjugate momenta to the boson fieldf.
This results in the following boson Hamiltonian density:

H5
v
2

@g21~]xf!21gPf
2 #, ~6!

which can be solved by a simple rescaling of the boson w
the interaction parameterg. The parameterg and the velocity
v can in principle be calculated for any interaction stren
U and chemical potentialm with Bethe ansatz techniques.13

To lowest order in U we get g5122U/pv and v
5A4t22m212U/p, so thatg,1 for repulsive interactions

We now want to analyze the density oscillations us
this formalism. Already from the decomposition of the fe
mion field in Eq.~4! it is clear that the fermion density ma
contain an oscillating component with 2kFx. To see this ex-
.
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plicitly we can write the charge density in quantum wires~or
equivalently the spin densitŷSz& in spin chains! in terms of
left and right movers:

^C†C&5^cL
†cL&1^cR

†cR&

1ei2kFx^cL
†cR&1e2 i2kFx^cR

†cL&. ~7!

The first two uniform terms just represent the overall fermi
density in the bulk system, while the last two ‘‘Friedel
terms are the density oscillationsnosc we are interested in. In
a system with translational invariance the left- and rig
moving fields are uncorrelated̂cL

†cR&50 and no density
oscillations are present. An impurity, however, scatters
into right movers and the amplitude of the oscillations giv
detailed information about the backscattering.

As the simplest example of this effect, let us consider
open boundary, i.e., an impurity with complete backscat
ing at the origin. In this case the correlation functions can
calculated directly.7,14–18 For the particular case of the left
right correlation function at equal space and time we find

^cL
†~x!cR~x!&}S pT

vsinh 2pxT/v D g

, ~8!

so that the density oscillations are given by

nosc}sin~2kFx!S pT

vsinh 2pxT/v D g

. ~9!

The Friedel oscillations are exponentially damped with te
perature, because the incoming and outgoing wave funct
that form the interference pattern lose coherence due to t
perature fluctuations. In the limitT→0 we recover the resul
of Ref. 19 where a power-law decay of the Friedel oscillati
nosc}1/xg was predicted.

It is now important to realize that the fermions or spi
are still pinned to a lattice, i.e.,x5 integer, which gives
interesting additional effects. In particular, at half-fillingkF
5p/2, the Friedel oscillations in Eq.~9! are identically zero,
sin(px)50 for integer x, which can easily be understoo
from particle-hole symmetry~or equivalently spin-flip sym-
metry!. Half-filling is a natural state for the spin chains
zero magnetic field, but a small magnetic field changes
Fermi vector slightlykF5p/21B/v. In that case, Eq.~9!
becomes

nosc}~21!xsin~2Bx/v !S pT

vsinh 2pxT/v D g

. ~10!

Now, the Friedel oscillations are simply alternating on t
lattice and for distances below the magnetic length scalex
,v/B, we can use sin(2Bx/v)→2Bx/v so that remarkably the
oscillations actuallyincreasewith x12g. This effect was first
observed for the Heisenberg chain (Jz5J, g51/2, v
5Jp/2), where the local susceptibilitiesx(x) can be written
as17

x~x!5x02c~21!xxbs~x!, ~11!

with the amplitude of the alternating part given by
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xbs~x!5
xAT

Asinh 4xT
. ~12!

Herex0 is the bulk susceptibility in the chain20 and we mea-
sureT in units of J. The sign was chosen so that the~con-
stant! overall amplitudec of the alternating part is positive
The superscript bs indicates that the alternating susceptib
is due to backscattering. As shown in Fig. 1 from TMR
simulations there is a characteristic maximum because
temperature damping eventually dominates over the incr
ing oscillations. Clearly, the expression in Eq.~12! repro-
duces the shape of this alternating part rather well, altho
we have neglected possible logarithmic corrections~multipli-
cative and additive!, which may be responsible for the ap
parent shift in the characteristic maximum in Fig. 1. T
numerical TMRG results of the local susceptibility near t
open endxbs(x) will be used as the reference data for
completely backscattering impurity in our studies in the n
section. The numerical data automatically contain all corr
tions due to irrelevant higher-order operators. The logar
mic corrections to Eq.~12! due to the leading irrelevant op
erator have a special behavior near a boundary,21 which we
have not tried to predict for the local susceptibility, but n
merically we find that a possible multiplicative logarithm
correction for x(x) appears to have anegativepower of
ln(x). The maximum in Fig. 1 occurs atx}1/T with an am-
plitudexalt}1/AT, which results in a characteristic feature
NMR experiments, so that it was possible to confirm t
effect experimentally as well.22 At zero temperature the
ground state has a staggered magnetization, which h
maximum in the center of a finite chain~assuming an odd
number of sites!.23 The magnetization for finite chains wit
impurities has also recently been analyzed, which resulte
interesting patterns that reveal the nature of the strong
relations in the system.24

Even for a partially reflecting impurity we expect that th
same alternating contribution as in Eq.~12! due to back-
scattering is present, but with an amplitudec that increases
monotonically with the reflection coefficientR. In fact we
can make a firm connection between the relative amplitu
and the reflection coefficients by considering free fermio
U50 for which we can find the eigenfunctions exactly ev

FIG. 1. Local susceptibility close to the open end of a spin-
chain from TMRG data forT50.04J compared to Eqs.~11! and
~12! with c50.51, which was determined by matching the char
teristic maxima.
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in the presence of impurities. Clearly the eigenfunctions
given by plane wave solutionsuk& that contain a special mix
of left- and right-moving components due to the impurit
Just like the case without impurities there are in fact alwa
two such degenerate orthogonal solutions. We found the
lutions for generic impurity models and looked at the spa
structure of the square of the wave functions, which conta
an interference pattern of incoming and outgoing waves
general, we always find

z^xuk& z25
1

p
@11AR~k!cos~2kx12F!#, ~13!

where the summation over the two degenerate solution
implied. HereR(k) is the ordinaryk-dependent reflection
coefficient that has been determined independently accor
to textbook methods. Therefore, the magnitude of the in
ference is exactly given by the square root of the reflect
coefficient, which is maybe not too surprising but very use
in our analysis. In particular, when we consider the ferm
density at half-filling we are really directly looking at th
spatial structure of the wave function. We can write ne
half-filling ~i.e., for a small fieldB in the spin chain model!

n~x!21/25E
p/2

p/21B/v
z^xuk& z2dk

5
B→0B

v U K xUp2 L U2

5B@x02cR~21!xxbs#, ~14!

where we have used the fact that the spin density for
Heisenberg chain in a small field is just given by the susc
tibility in Eq. ~11!, but with a coefficientcR that now de-
pends on the reflection coefficientR near half-filling. To-
gether with Eq.~13! we therefore arrive at the central resu
that at half-fillingthe reflection coefficient is proportional t
to the square of the alternating density amplitude

R5S cR

c D 2

, ~15!

wherec5cR51 is the coefficient corresponding to comple
backscattering in Eq.~11!. We use this formula to estimat
the reflection coefficient from the density oscillations f
various impurity models in the following.

As mentioned above there may also be 2kFx density os-
cillations due to screening, so that the alternating susce
bility is in general a sum of two parts:

xalt~x![x~x!2x05~21!x@xscreening~x!2cRxbs~x!#~21!x.
~16!

In the case of overscreening the neighboring spins~or elec-
trons! overcompensate the magnetic~or electric! impurity
and leave an effective impurity with opposite moment, whi
in turn gets screened by the next nearest neighbors and s
This finally results in a screening cloud. Screening is pur
an interaction effect where a 2kFx density oscillation is in-
duced by an ‘‘active’’ impurity Hamiltonian̂ cL

†cRH imp&
Þ0. The 2kFx oscillations due to backscattering, howeve
are purely an interference effect and are even present in

2
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PRB 62 4373SPIN- AND CHARGE-DENSITY OSCILLATIONS IN . . .
interacting fermion systems. The special shape and the
creasing nature of the alternating part in Eq.~12! for g
51/2 make it possible to easily identify the contribution d
to backscattering, so that we can always separate the
possible effects near half-filling. In what follows we ther
fore always use the special choice of couplingU52t corre-
sponding to the Heisenberg modelJz5J. This model can be
used to demonstrate the generic behavior of impurity effe
in mesoscopic systems and also gives experimental co
quences for spin-chain compounds. The Luttinger liquid
rameter takes the valueg51/2 in this case, which is the
strongest possible interaction at half-filling before Umkla
scattering becomes relevant.

III. IMPURITY MODELS

A. One modified link

Maybe the simplest impurity to consider is a weak link
the chain, i.e., a modified hoppingJ8 between two sites in
the chain as shown in Fig. 2,

H52t(
iÞ0

~C i
†C i 111C i 11

† C i !2J8~C0
†C11C1

†C0!.

~17!

The wave functions and reflection coefficientR(k) for this
problem can be calculated exactly, with the result that

R~k!5
t422t2J821J84

t422t2J82cos 2k1J84
. ~18!

However, once the interactionU is introduced this problem
becomes highly nontrivial and the reflection coefficie
renormalizes with temperatureT. The interacting system ha
been studied in the context of both spinless fermions1 and the
spin-1/2 chain,7 where it was found that repulsive intera
tions U.0 make the perturbation of one link relevant,
that it renormalizes to a completely reflecting barrier asT
→0. A small weakening of a linkJ8&t produces a relevan
backscattering operator in the periodic chain of scaling
mensiond5g, so that this link effectively weakens furthe
as the temperature is lowered. Below a crossover temp
ture TK ~analogous to a Kondo temperature! the link has
weakened so much that it is more useful to consider
problem of two open ends that are weakly coupled, which
now described by an irrelevant operator of scaling dimens
d51/g. Therefore, this coupling weakens further and u
mately the open boundary condition represents the st
fixed point asT→0. The same analysis is also true for
slight strengthening of a linkJ8*t, because in this case th
two ends lock into a ‘‘singlet’’ state as the effective couplin
grows, and the remaining ends are weakly coupled wit
virtual coupling of ordert2/J8, which is again irrelevant.

We consider the interacting system withU52t, which we
can write in terms of an SU~2!-invariant spin Hamiltonian

FIG. 2. One modified link.
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via the Jordan-Wigner transformation in Eq.~3! with a modi-
fied Heisenberg coupling between two spins:

H5J(
iÞ0

Si•Si 111J8S0•S1 . ~19!

We now want to analyze the density oscillation near the
purity in order to extract the reflection coefficient as d
scribed above. In Fig. 3 we show the amplitude of the alt
nating spin density for different coupling strengthsJ8.
Clearly the shape as a function of distancex remains largely
the same as in Fig. 1 for allJ8 so that the functional depen
dence in Eq.~12! is still adequate, but with an overall coe
ficient c which is now related to the reflection coefficientR
as postulated in Eq.~15!.

The reflection coefficient is directly related to the reno
malization behavior above. The basic idea behind renorm
ization is to use an effective Hamiltonian with renormaliz
parameters as a function ofT. To estimate the reflection co
efficient it is therefore possible to make a simplified but
tuitive analysis by using the free-fermion result in Eq.~18!,
but with a renormalized coupling strengthJ̃8(T). Below the
crossover temperatureT,TK , the effective potential is smal
and given by the renormalization behavior of the lead
irrelevant operatorJ̃8(T)}J8T1/g21. This results in

12R}J82T2/g22, ~20!

which is the universal behavior near the stable fixed poin
first predicted in Ref. 1. Above the crossover temperat
T.TK the renormalization behavior is better described b
relevant operator on the periodic chain, givingJ2 J̃8(T)
}(J2J8)Tg21. From this result it would even seem that w
can recover the periodic chain in the high-temperature lim
but it is of course important to realize that the renormaliz
tion is no longer possible above a cutoff of orderJ. For an
initial bare couplingJ8;J very close to the unstable fixe
point TK!J we therefore find that the effective couplin
stops renormalizing at its bare valueJ̃8→J8 for largeT. In
summary, the temperature dependence aboveTK is not as
universal as in Eq.~20!, but we may still write

R}~J2J8!2, ~21!

for J8;J andT.TK .

FIG. 3. Envelope of the alternating susceptibility of the one-li
impurity at T50.04J for J8/J50.0,0.2,0.4,0.6,0.8 from above.
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4374 PRB 62STEFAN ROMMER AND SEBASTIAN EGGERT
It is now straightforward to extract the relative coefficie
cR /c in Eq. ~14! from the numerical data by simply dividin
the amplitude of the alternating part for each couplingJ8 in
Fig. 3 by the reference data ofxbs for the open chain. Ac-
cording to Eq.~15! the square of this relative coefficient the
gives the reflection coefficient. Figure 4 shows the results
the temperature dependent reflection coefficient from
TMRG data. The renormalization to a perfectly reflecti
barrier can clearly be seen asT→0. The behavior for cou-
plings close to the periodic fixed point (J8*0.4J) is consis-
tent with Eq.~21!. For smaller couplings the crossover tem
peratureTK is larger, and we see an extended region wh
the scaling of the stable fixed point withJ82 and T2/g22 in
Eq. ~20! holds ~hereg51/2). We can also compare our re
sults to the findings of Matveevet al. in Ref. 6 where an
explicit formula for the transmission coefficient was give
12R}@(D/T)2aR0 /(12R0)11#21, in terms of the nonin-
teracting reflection coefficientR0 in Eq. ~18!, a cutoffD, and
a small interaction parametera51/g21. Unfortunately, the
interaction parameter is large in our casea51 so that this
formula does not quantitatively agree with our findings
Fig. 4. Qualitatively, their result looks rather similar, but w
observe a sharper renormalization at low temperatures
the unstable fixed point (J8*0.4J). Indeed we find that the
region where the famous scaling in Eq.~20! is valid turns out
to be extremely narrow forJ8*0.4J.

Another aspect is the high-temperature behavior wh
the noninteracting reflection coefficient in Eq.~18! should be
approached.6 This is indeed the case near the unstable fix
point J8*0.4J where the noninteracting value is quick
reached with high accuracy. However, near the stable fi
point (J8&0.4J) we find that the reflection coefficient ca
renormalize even well below the noninteracting value,
that the interactions actuallyenhancethe conductivity at
higher temperatures in this case. The reason for this un
pected behavior is that the crossover temperature is la
than the cutoff near the stable fixed pointTK@J, so that the
renormalization may continue beyond the bare coupling c
stants at higher temperatures.

B. Two modified links

We now consider the impurity oftwo neighboring modi-
fied links in the chain as shown in Fig. 5. For the interact

FIG. 4. Reflection coefficientR of one modified link forJ8/J
50.1,0.2,0.4,0.6,0.8 from above. The lines are guides for the e
r
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caseU52t we can again write this model in terms of
Heisenberg spin chain model

H5J (
iÞ21,0

Si•Si 111J8S0•~S211S1!. ~22!

This type of impurity may correspond to a charge island t
is weakly coupled to a mesoscopic wire or to doping in
quasi-one-dimensional compound where one atom in
chain has been substituted. We have recently considered
type of impurity in the context of doping in spin-1/2 com
pounds and as a simple experimental example of the t
channel Kondo effect.9 In this section we analyze the in
duced density oscillations in more detail, especially
connection with the reflection coefficient.

The model in Eq.~22! is equally simple as the one-lin
impurity, but the renormalization behavior is known to b
quite different.7 Already for the noninteracting case at ha
filling the system shows a resonant behavior with perf
transmissionR50, so that this corresponds to the simple
case of resonant tunneling considered by Kane and Fish5,8

~at half-filling the impurity potential is automatically tune
to the resonant condition!. With interactionsUÞ0 the reflec-
tion coefficient is no longer exactly zero, but shows nonth
less a renormalization to perfect transmission asT→0 in
sharp contrast to the one-link impurity. This difference
renormalization behavior is easily explained by the differe
parity symmetry of the problem~namely site instead of link
parity!. For a small perturbation from a periodic chainJ8
;J the leading operator is nowirrelevant with scaling di-
mension ofd511g, so that a perfectly transmitting chain
the stable fixed point. For small couplingsJ8*0 on the other
hand, the leading perturbing operator is marginally releva
and the situation is similar to the two-channel Kondo effe
where the two ends of the chain play the role of two ind
pendent channels.9

Apart from the renormalization behavior there is anoth
key difference between the one- and two-link impurities:
the two-link impurity model there is an ‘‘active’’ impurity
site that carries a spin or charge degree of freedom, whic
turn must bescreenedby the surrounding system. Therefor
the density oscillations are no longer simply determined
the backscattering in Eq.~12!, but there is also a so-calle
screening cloud induced in the system. From perturba
theory in the leading irrelevant operator the functional d
pendence of this screening cloud can be calculated9 and the
total alternating densityxalt is a sum of two contributions

xalt~x!5cI~21!xln@coth~xT!#2cR~21!xxbs~x!, ~23!

where the first term is the induced screening cloud while
second term is the familiar contribution due to backscatter
in Eq. ~12!. Interestingly, the two contributions have opp
site sign, so that the density oscillations vanish at a spe
distance from the impurity, but then increase again due to
backscattering contribution. This behavior is shown in Fig
together with a fit to the two contributions in Eq.~23!. The

.

FIG. 5. Two modified links.
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special distance at which the density oscillations van
grows as we approach the stable fixed point (J8→J or T
→0). As already with the one-link problem, we use aga
the numerical open chain data as a reference forxbs instead
of the more simplified analytical form of the backscatteri
contribution in Eq.~12! since this minimizes the correction
due to irrelevant operators. However, even the analyt
form in Eq. ~12! gives very good fits, so that none of ou
findings are affected by this choice.

It is now straightforward to extract the reflection coef
cient from the numerical data with the help of Eq.~15! and
Eq. ~23! as shown in Fig. 7. Below a crossover temperat
TK depending onJ8 the reflection coefficient clearly de
creases and eventually approaches perfect transmissio
T→0. AboveTK the renormalization of the reflection coe
ficient is rather weak and converges to a finite const
~never approaching complete reflection as the tempera
increases!.

Equally interesting is the induced screening cloud. In t
case, the coefficientcI approaches a constant asT,TK as it
should, since this contribution was determined from pert
bation theory around the stable fixed point. Above the cro
over temperature, however, this contribution vanish
quickly. This behavior is shown in Fig. 8: In general th
behavior of the coefficientcI vs J8 is temperature dependen
andcI increases as the temperature is lowered. Howeve
T!TK all curves approach a limiting value, which gives
universal behavior as a function ofJ8 ~thick line!.

The competing contributions in Eq.~23! have the opposite
renormalization behavior: AboveTK backscattering is con

FIG. 6. Alternating part of the local susceptibility for the two
link impurity for T/J50.04 andJ8/J50.6. Fit to Eq.~23!.

FIG. 7. Reflection coefficientR of the two-link impurity for
J8/J50.05,0.1,0.2,0.4,0.6,0.8 from above. The lines are guides
the eye.
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stant, while the screening cloud is reduced which is the o
chain behavior. BelowTK on the other hand backscattering
reduced, while the coefficient for the induced screen
cloud is constant, which is the behavior of the two chan
Kondo fixed point. Note, that although the coefficientcI is
finite asT→0, the screening cloud itself diverges logarit
mically with 2 ln(xT), which is a clear indication of the fa
mous overscreening in the two-channel Kondo effect. As
approach the unstable fixed point the order of limits becom
crucial: For zero coupling there is no screening cloud at
limT→0limJ8→0cI50, while for zero temperature the coeffi
cient becomes infinite limJ8→0limT→0cI5`. Remarkably,
exactly at zero temperature a minute perturbation there
induces an infinite screening cloud, although this behav
occurs in an unphysical limit.

C. Impurity at the edge

Another category of impurities we can consider are i
perfections near the end of a chain. In this case the boun
always gives complete backscattering, but as we will see
impurity can still give interesting effects on the density o
cillations. The simplest case to consider is a modified link
the edge of a chain as depicted in Fig. 9. For the interac
caseU52t it is again useful to write the Hamiltonian in
terms of the Heisenberg spin-chain model

H5J(
i 51

`

Si•Si 111J8S0•S1 . ~24!

Just like the two-link impurity was related to the two
channel Kondo problem, we can identify the field theo
description of the edge impurity model with the regular on
channel Kondo problem. There are two possible fixed poin
The caseJ850 corresponds to the unstable fixed point o

or

FIG. 8. CoefficientcI vs J8 of the two link impurity for different
temperaturesT/J50.2,0.1,0.04,0.025,0.0167,0.01 from below. F
J8'J and/or low temperaturescI approaches a universa
T-independent curve~thick line!. Inset:cI vs T. The lines are guides
for the eye.

FIG. 9. Edge impurity.
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4376 PRB 62STEFAN ROMMER AND SEBASTIAN EGGERT
decoupled spin at the end of a chain with a marginally r
evant perturbation forJ8*0. The caseJ85J corresponds to
the completely screened spin, which is a stable fixed p
with a leading irrelevant operator of scaling dimensiond
52. Just as with the ordinary Kondo effect both fixed poin
are represented by the same boundary condition and d
only by a simplep/2 phase shift on the fermions.~The infi-
nite coupling fixed pointJ8→` is also stable, but is actuall
absolutely equivalent to theJ85J fixed point since both
cases represent ap/2 phase shift on the fermions by remo
ing or adding a site, respectively!. For intermediate cou-
plings the phase shiftF takes on values between 0 andp/2
which will be reflected in the backscattering contribution
the density oscillations as we will see below.

A screening cloud for the impurity spin at the end shou
also be present in this model, but with a different behav
than for the overscreened case in Eq.~23!. Instead we find
that the leading operator that causes the screening clou
the same as that for an edge magnetic field in theXXZ chain,
which has been analyzed in Ref. 25, so we can use the
responding result for the shape of the induced screen
cloud. Taking into account finite temperatures and the ph
shift on the fermions we can write for the density oscillatio

xalt~x!5cI

~21!xAT

Asinh~4xT!
2cos~px12F!cxbs~x!, ~25!

FIG. 10. Alternating susceptibility for the edge impurity
T/J50.04 for J8/J50,0.1,0.2,0.4,0.6,1.0 from above. Fits to E
~25!.

FIG. 11. Phase shift of alternating part of the edge impurity
T/J50.25,0.1,0.04,0.02,0.01 from below. The lines are guides
the eye.
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where the first term is the induced screening cloud, while
second term is the backscattering contribution in Eq.~12! but
with a phase shiftF. However, the coefficientc always takes
the value corresponding to complete backscattering in
~11!. There is also an implied shift of 2F/p in the argument
of xbs, which we used for a self-consistent fitting. The effe
tive boundary condition in the continuum limit is therefo
technically between two lattice sites~although it is not really
that meaningful to define locations on the scale of less tha
lattice spacing in the continuum limit theory anyway!.

Figure 10 shows the envelope of the alternating part of
susceptibility for temperatureT50.04J and different cou-
plings J8, which always fits well to the superposition in E
~25!. At the fixed pointsJ850 andJ85J there is no screen
ing, but the backscattering contribution has opposite si
due to thep/2 phase shift.

It is now straightforward to extract the screening clo
amplitudecI and the phase shiftF from our numerical data
for all temperatures and couplingsJ8. As expected we find
that the phase shift increases withJ8 and renormalizes to
larger values as the temperature is lowered as shown in
11. In the limit of very low temperatures the jump to th
stable fixed point valueF5p/2 becomes more abrupt as
function of J8.

The screening cloud coefficientcI again approaches
constant as we lower the temperature belowTK as shown in
Fig. 12. Although formally the behavior looks similar to th
overscreened case of the two link problem in Fig. 8 it
important to realize that now the screening cloud in Eq.~25!
is finite asT→0 and drops off with 1/x ~while in the two
link case the screening cloud was divergent with lnxT).

D. Generalized two-link impurity

It is now instructive to summarize the findings of the thr
impurity models in the previous subsections by consider
one generalized two link impurity model that isnot symmet-
ric as shown in Fig. 13:

r
r

FIG. 12. CoefficientcI vs J8 of the edge impurity forT/J
50.2,0.1,0.04,0.02,0.133,0.01 from below. The lines are a guide
the eye.

FIG. 13. Generalized two-link impurity.
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H5J (
iÞ21,0

Si•Si 111J1S21•S01J2S0•S1 . ~26!

The three impurity cases above can be identified easily:

~1! J2ÞJ15J one modified link in Eq.~19!,
~2! J15J2ÞJ two modified links in Eq.~22!,
~3! J150, J2ÞJ edge impurity in Eq.~24!.

The density oscillations for the more general model in E
~26! are much more complex than in the special cases, so
a detailed analysis of this effect is not always useful. T
renormalization behavior on the other hand is straightf
ward and can be read off from what we already know ab
the special cases.

A weak couplingJ1*0 andJ2*0 to an additional site is
always marginally relevant, so that the open chain with
decoupled impurity site is unstable for any antiferromagne
coupling ~i.e., negative hopping probability!. The periodic
chain on the other hand is only stable for the special s
parity symmetric caseJ15J2, where the renormalization be
havior is analogous to the two-channel Kondo effect. In g
eral, however, one of the two couplings is larger a
renormalizes to unity, absorbing the spin. The smaller c
pling is then irrelevant as in the one-link problem, so that
stable fixed point is an open chain with an absorbed impu
site J15J, J250 ~or J25J, J150) in most cases, excep
for a site-parity symmetric impurity or two ferromagnet
coupling constants. The complete renormalization flow
summarized in Fig. 14 where the possible fixed points
indicated by the black dots. In cases where the coupling
verges to infinity a singlet forms, and we can therefore ag
describe the system by one of the four finite fixed points
the figure. Interestingly, the more stable fixed points alw
have a lower ground state degeneracy, in accordance with
g theorem.26 The phase diagram in Fig. 14 is valid for a
interaction strengths 0,U<2t as long as the system is hal
filled.

E. Spin-1 impurity

We now turn to a magnetic impurity in the chain wi
spin Simp51 given by the Heisenberg Hamiltonian

H5J(
iÞ0

Si•Si 111J8Simp•~S01S1! ~27!

as shown in Fig. 15. In the previous impurity models in Se

FIG. 14. Renormalization flow diagram.
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III A–III D it was always possible to interpret the Heisen
berg Hamiltonians equally well in terms of mesoscopic s
tems and electrons hopping on the lattice by identifying
spin-1/2 impurity in terms of an extra site or charge islan
However, for the spin-1 impurity in Eq.~27! no meaningful
interpretation in terms of spinless fermions is possible.
the other hand this impurity model has important implic
tions for doping in quasi-one-dimensional spin-1/2 co
pounds, so that we find it useful to discuss it here.

Similar to the impurity models in Secs. III B and III C w
find again that the field theory language is analogous t
Kondo impurity model. The two ends of the spin chain pl
the role of the two channels coupled to a spin-1 impurity.
small antiferromagnetic coupling is therefore marginally r
evant and the renormalization flow goes to the strong c
pling limit. The stable fixed point is given by an open sp
chain with two sites removed and a decoupled singlet c
taining the spin-1 and the two end spins (J8→`).

Just as with the edge impurity in Sec. III C this Kond
type model is an exactly screened impurity. The shape of
screening cloud is again given by that of an edge magn
field25 just like in Eq.~25!

xalt~x!5cI

~21!xAT

Asinh~4xT!
2cR~21!xxbs~x!, ~28!

where the first term is again the induced screening clo
while the second term is the backscattering contribution
Eq. ~12!. As shown in Fig. 16 the fits to this expression a
excellent~again using the open chain data as a reference
xbs). The coefficientcI for the induced screening cloud aga
approaches a constant for temperatures belowTK which re-
sults in a universal curve asT→0 as shown in Fig. 17. The
backscattering coefficient is an indication of the effecti
phase shift and changes sign depending on the temper
and coupling strength. From Fig. 16 it is clear that the ba
scattering coefficientcR is positive for small coupling

FIG. 15. The spin-1 impurity.

FIG. 16. Envelope of alternating part atT/J50.04 for the spin-1
impurity. From above atx*20:J8/J50,0.05,0.1,0.2,0.4,0.8,4.0
Fits to Eq.~28!.
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4378 PRB 62STEFAN ROMMER AND SEBASTIAN EGGERT
strengthsJ8 ~or equivalently high temperatures! and negative
for larger coupling strengthsJ8 ~or equivalently lower tem-
peratures!. The renormalization ofcR is explicitly shown in
the inset of Fig. 17. AsT→0 the jump ofcR to negative
values happens at smallerJ8 and becomes very sharp.

More interesting are the experimental consequences
Knight shift experiments in doped spin-1/2 chain compoun
~as for example Ni doping in CuO chains!. For that case we
can predict an interesting NMR spectrum with a characte
tic feature~sharp edge! corresponding to the maximum in th
alternating susceptibility. Such a sharp edge has been
served before in NMR experiments on spin-1/2 chain co
pounds with nonmagnetic defects.22 In that case the shar
edge broadens with a 1/AT behavior as discussed in Sec.
For the magnetic spin-1 impurities a sharp edge from
maximum in the backscattering part may also be present,
it depends on if the temperature is above or belowTK how
this feature changes. AboveTK the backscattering part be
comes weaker as the temperature is lowered, but the ind
screening cloud increases, so that the sharp kink may va
in a quickly broadening line shape from the screening clo
as shown in the left part of Fig. 18. BelowTK on the other
hand, the screening has saturated and the backscattering
tribution dominates again~albeit with a phase shift!. There-
fore, the kink feature in the NMR spectrum will sharpe
further as the temperature is lowered and widen with

FIG. 17. Coefficient cI of the spin-1 impurity for T/J
50.2,0.1,0.04,0.025,0.0167,0.0133,0.01 from below. Inset: Ba
scattering coefficientcR . The dashed lines are a guide for the ey

FIG. 18. NMR signal of the spin-1 impurity forJ8/J50.1 ~left!
andJ8/J51.4 ~right!.
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usual 1/AT behavior as shown in the right part of Fig. 1
The detailedT dependence can be predicted for any parti
lar value ofJ8 of an actual experimental compound.

F. Integrable impurity model

Finally, we would like to consider a more exotic impurit
model that has been especially constructed to preserve
integrability of the entire system.27 We consider here the
simplest nontrivial example of such an impurity mod
which corresponds to an impurity spin withSimp51 that is
coupled in a special way to two sites in the chain~see Fig.
19!. The corresponding Hamiltonian has been set up in R
27:

H5J(
iÞ0

Si•Si 112
7J

9
S0•S11

4J

9
@~S01S1!•Simp

1$S0•Simp ,S1•Simp%#, ~29!

whereSimp is the external spin-1 impurity and$,% denotes the
anticommutator.

A closer analysis of this model28 showed that the thermo
dynamics at low temperatures were in fact described b
periodic spin chain with one additional site and an asym
totically free impurity spin withS51/2, so that it appears
that the original spin 1 has somehow been partially absor
by the chain. From a field theory point of view it was lat
shown that this type of impurity corresponds in fact to
unstable fixed point that can only be reached by an artifi
tuning of the coupling parameters.29

We are now interested in what kind of density oscillatio
might be observable from such an impurity. Interestingly,
found that the density oscillations wereidentically zero at all
temperaturesas if the system was translationally invarian
The impurity Hamiltonian in Eq.~29! was of course con-
structed in a way to avoid all backscattering, but it is rema
able that even the induced alternating part from the magn
impurity vanishes exactly, i.e., no conventional screen
takes place.

Nonetheless, the impurity spin is somehow reduced fr
a spin 1 to an effective spin 1/2 as the temperature is lo
ered. This can be explicitly seen from the impurity suscep
bility in small magnetic fields

^Simp
z &5B

CCurie

T
, ~30!

where we have assumed some type of Curie law. At h
temperatures the impurity susceptibility must follow the C
rie law for a spin-1CCurie52/3, while at low temperatures
Curie law for a spin-1/2CCurie51/4 has been predicted up t
logarithmic corrections.28 In Fig. 20 we plot the temperatur
dependent Curie constant~i.e., the impurity susceptibility
times temperature!. It appears that the asymptotic valu

k-
.

FIG. 19. The integrable impurity.



c

t

th
a
o
b

p

r

fin
ot
b

ep
s

ge
-

,

or
a

ne
f

de-

q.

at

t is
to

e it

ate
xact

lly

r
s a

.
ay

er
-
ity

up-
on-
ves
w-
er-

We

ell
y

For
ntial

n
e of

the
ur

he

n or

res-

e

PRB 62 4379SPIN- AND CHARGE-DENSITY OSCILLATIONS IN . . .
CCurie51/4 is indeed approached with logarithmic corre
tions asT→0. The fit in the figure is

CCurie5
1

4
1

1

8 ln~2p/T!
1a

ln~ ln~2p/T!/b!

ln~2p/T!2
~31!

with a51.62 andb51.32.

IV. NUMERICAL METHOD

The numerical method we have used here is based on
density matrix renormalization group30 ~DMRG! applied to
transfer matrices. While the ordinary DMRG considers
properties of individual eigenstates in a finite system, we
interested in the thermodynamic limit, namely properties
an infinite system at finite temperatures. This can
achieved by the transfer matrix renormalization grou12

~TMRG!, which we adapted especially for impurities9,11 as
we will review briefly. We consider the partition functionZ
of the models in Eqs.~1! and ~2!. After the standard Trotte
decomposition, we obtain for an infinite system (L→`)

Z5 lim
M→`

trTM
L/2→ lim

M→`

lM
L/2 , ~32!

whereTM is the transfer matrix withM time slices. In the
limit of infinite system size only the largest eigenvaluelM
determines the thermodynamics of the system, which we
numerically. We start with small time steps so that the Tr
ter error is negligible, and successively increase the num
of time slicesM to reach lower temperatures. At each st
the dimension ofTM increases so we keep only the mo
important states to describe the state with the highest ei
valuelM by using the DMRG algorithm with some modifi
cations for asymmetric matrices.11 A measurement of the
local spin-density at sitej for example is straightforward
since we can just absorb the measuring operatorSj

z into one
of the transfer matricesTM→TM

sz

^Sj
z&5

1

Z
tr Sj

ze2bH→ ^cMuTM
sz~ j !ucM&
lM

, ~33!

where^cMu and ucM& are the left and right target states f
the eigenvaluelM . So far we have considered a translation
invariant system.

We now introduce a generic impurity which modifies o
of the transfer matricesTM→Timp . Even in the presence o

FIG. 20. Susceptibility of the spin 1 in the integrable mod
multiplied by temperature, fit to Eq.~31!.
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impurities the thermodynamics of the system is entirely
termined by the highest eigenvaluelM and corresponding
eigenstate of the pure transfer matrixTM which always ap-
pears with an infinite power in the partition function in E
~32!. The measurement of the spin~or charge! density near
the impurity is again straightforward. For the spin density
a distance ofj sites from the impurity we write

^Sj
z&5

^cMuTM
sz~TM ! j /2TimpucM&

lM
j /211^cMuTimpucM&

. ~34!

Since we stepwise approximate the transfer matrix, i
important to make a careful error analysis. The error due
the Trotter approximation is the simplest to estimate sinc
is just proportional to the square of the time stept51/TM.
We found that a value oft50.05/J makes this error negli-
gible compared to the DMRG truncation errors. To estim
the truncation errors we can compare our results to the e
solution of the free-fermion Hamiltonian in Eq.~1! with U
50. The structure of the transfer matrix is not fundamenta
changed by takingU50 so that the truncation error will be
of the same order as forUÞ0. Keeping 64 states we find fo
the local response of the spins closest to typical impuritie
relative error of less than 1024 for T.0.04, less than 1023

for 0.02,T,0.04 and a relative error of less than 1022 for
temperatures 0.01,T,0.02. However, already from Eq
~34! it is clear that the spin and charge densities far aw
from the impurity will contain a larger error. Each transf
matrix contains a small errore which then gets exponenti
ated in Eq.~34! and hence the oscillating part of the dens
^Sj

z& is suppressed exponentially with distancej:

^Sj
z&osc}~12e! j5exp~2 j e!, ~35!

wheree depends only on temperature. This exponential s
pression with the distance from the boundary is again a c
sequence of the fact that the incoming and outgoing wa
lose coherence but this time due to error fluctuations. Ho
ever, the corresponding energy scale from the truncation
ror is always smaller than the temperature in our case.
observe that the suppression error in Eq.~35! is actually very
systematic, so that we can even correct our data very w
using Eq.~35!. For free fermions we find to high accurac
the following dependence of the error on temperature,

e50.06 exp~258T!, ~36!

where we have kept 64 states in the TMRG simulations.
interacting fermions the suppression also has the expone
dependence in Eq.~35!, but the energy scalee is in general
dependent on the interactionU. For the Heisenberg model a
independent analysis of the free energy hinted at a valu
approximatelye50.02 exp(234T), but the value in Eq.~36!
is more reliable and gives a relatively good estimate of
error for all interaction strengths. We chose to correct o
data for the alternating fermion densities by dividing out t
factor in Eq.~35! together with the estimate in Eq.~36! in all
cases presented above. However, the use of this correctio
the particular choice of the errore makes no qualitative dif-
ference in any of our findings, since the temperature supp
sion always dominates~i.e., the energy scale in Eq.~36! is
always smaller than the temperature!. Another important en-

l
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4380 PRB 62STEFAN ROMMER AND SEBASTIAN EGGERT
ergy scale is the finite magnetic fieldB that is used in the
simulations~i.e., how close the system is to half-filling!. We
typically used a value ofB50.003, which makes the mag
netic length scale in Eq.~10! always negligible compared t
the finite temperature correlation length.

V. CONCLUSION

We have considered a number of impurity models a
were able to extract detailed information about the ba
scattering amplitude, the backscattering phase shift, and
impurity screening effects by examining the Friedel oscil
tions. The results for the various impurities have direct a
indirect implications for a large number of theoretical mo
els and experimental systems as we will summarize belo

A. Kondo-type impurities

Kondo impurity problems are maybe the most famous
amples of impurity renormalization effects ever since
classic work by Wilson.31 Many of the impurity models we
have considered here are analogous to Kondo impurity p
lems in terms of the field theory language. In particular,
field theory description of a Heisenberg chain is the same
that of the spin channel for an electron field with spin~while
the charge excitations are neglected!. Moreover, it is known
that coupling the open end of a Heisenberg chain to an
purity spin produces the same impurity operators as in
real Kondo problem.7,32 The number of channels in th
equivalent Kondo problems is given by the open ends
the impurity spin is connected to~e.g., the two-link impurity
in Sec. III B is analogous to the two-channel S51/2 Kondo
problem!. It is important to realize that the Heisenberg sp
in the chains that we consider here have different express
in terms of the boson fields than the real electron spins in
full three-dimensional Kondo problems. Nonetheless, we
still use our models to gain some insight into the cen
aspects of renormalization, scaling, crossover tempera
and screening clouds.

We have shown that the Kondo-type impurities inde
show the expected renormalization to a screened impu
spin. In particular, we have found a diverging screen
cloud ~and vanishing backscattering! for the overscreened
case in Sec. III B, while the exactly screened cases in S
III C and III E are characterized by a finite screening clo
and a phase shift in the backscattering asT→0.

To analyze the renormalization process more quan
tively it is important to introduce the concept of scaling.
can be expected that the impurity introduces a new ene
scale that depends on the initial bare coupling consta
Commonly this energy scale is referred to as the crosso
temperatureTK . By making use of scale invariance it is the
possible to describe the renormalization process univers
in terms of the single parameterT/TK . In particular, impu-
rity properties like the impurity susceptibility are describ
by a universal scaling functionx imp5 f (T/TK)/T, which is
valid for all T and TK below the cutoff. This behavior wa
demonstrated explicitly before for the two-weak-lin
problem9 and works for all Kondo-type impurities in thi
paper~not shown!. In fact it is possible to extract the cros
over temperatureTK up to an arbitrary overall scale explic
itly by collapsing the data according to the scali
d
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analysis.9,11 We have determinedTK this way as a function
of coupling J8 in each case as shown in Fig. 21~up to an
arbitrary overall scale!. The Kondo temperature shows th
same exponential dependence for smallJ8,

TK} exp~20.85J/J8!, ~37!

as shown in Fig. 21~coming from the same marginally re
evant operator at the unstable fixed point in all cases!. The
underscreened case of a spin 1 coupled to the end of
chain has also been included in Fig. 21 for completenes

More interesting in the context of the density oscillatio
is maybe the scaling of the screening cloud. As the screen
cloud we define that part of the alternating density that
induced by the magnetic impurity, labeled bycI in Eqs.~23!,
~25!, and~28!. In Ref. 4 it was postulated that the screeni
cloud in the real Kondo effect should be a function of t
scaling variablesxT andT/TK . In our cases we can make
similar argument except that we need to include an ove
factor Tg21 to account for the dimensionality of the correl
tion functions. We therefore obtain the following scaling la

xscreening5Tg21f ~xT,T/TK!. ~38!

Indeed we find that the shape of the screening cloud is
affected byTK and can always be expressed as a function
the scaling variablexT. The coefficientcI must therefore be
a function ofT/TK multiplied by appropriate powers ofT. As
an example we can take the two link problem atg51/2 with
the screening cloud given in Eq.~23!, where the coefficient
can be written ascI5 f (TK /T)/AT with some functionf. In
Fig. 22 we replot the coefficientcI analogous to Fig. 8 bu
with the argument replaced byTK /T instead ofJ8. The inset
shows that the data indeed collapse if multiplied byAT as
implied by Eq. ~38!. The solid line in Fig. 8 therefore is
proportional to 1/ATK and diverges exponentially withJ8
according to Eq.~37!. Similar arguments can be made for th
coefficientscI in the screening clouds of the exactly screen
cases in Eqs.~25! and ~28!, except thatcI5 f (TK /T)/T and
the solid line is proportional to 1/TK in that case.

B. Doping in spin chains

Our results also have immediate experimental con
quences for impurities in spin-chain compounds such
KCuF3 or Sr2CuO3. The spin density oscillations are direct

FIG. 21. Crossover temperatureTK of four different Kondo-type
impurities.TK has been multiplied by arbitrary constants in order
compare the four cases.
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linked to the local Knight shifts~susceptibilities! close to the
corresponding impurities, which can be measured by s
dard NMR techniques or muon spin resonance. NMR exp
ments have already successfully detected the sharp fe
corresponding to the maximum in Fig. 1 from open boun
aries due to nonmagnetic defects that were naturally pre
in the crystal.22 We now propose to use intentional dopin
with magnetic or nonmagnetic impurities to see the predic
renormalization effects. Impurities of one or two modifie
links in the chain can possibly be created by doping
surrounding nonmagnetic atoms in the crystal at link or s
parity symmetric locations. The spin 1 impurities in Se
III E could be produced in a more straightforward way
substituting Cu ions by Ni ions in the corresponding co
pounds. In Sec. III E we discussed explicitly how the ren
malization effects for spin-1 impurities would show up in
actual experiment. Similar arguments can also be made
the two-link9 or one-link impurities by simply using the ana
lytic form of the corresponding alternating spin densit
with the coefficientscR andcI that we have calculated.

In general we find a strong enhancement of the antife
magnetic order near impurities. This enhancement can
be observed in higher dimensions2 and may have importan
consequences for impurity-impurity interactions. In one
mension this effect is strongest, but the complex functio
dependence we found here is often beyond the intuitive
planation in terms of valence bond states.2

C. Impurities in mesoscopic systems

Finally, our analysis also allows us to draw importa
conclusions for transport measurements in one dimensi
mesoscopic structures. This is probably the first time that
conductivity could be explicitly extracted from numeric
data for Luttinger liquid–type models. Not surprisingly, w

FIG. 22. The coefficientcI for the two-link impurity in Eq.~23!
as a function of TK /T for different temperaturesT/J
50.2,0.1,0.04,0.025,0.0167,0.01 from below.
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found that a generic impurity indeed renormalizes to co
plete backscattering as the temperature is lowered, and
also could explicitly observe the ‘‘healing effect’’ in th
symmetric resonant tunneling case as predicted by Kane
Fisher.1,5,8 Our numerical results not only confirm th
asymptotic power laws, but also give a quantitative estim
of the conductivity for all temperatures and impuri
strengths. For a generic impurity with little or intermedia
backscattering we find that the asymptotic scaling reg
turns out to be extremely narrow. For impurities with stro
backscattering we find that the conductivity isenhancedby
interactions at higher temperatures.

One obvious question is how those results can be ge
alized to electron systems with spin and carbon nanotube
number of works have addressed the question of impuri
in wires with spin5,6,33,34and found a richer structure sinc
renormalization takes place in both the spin and the cha
channels. However, if realistic SU~2! invariant interactions
are assumed the generic behavior is very similar to the s
less case, so that we expect that our results for the reflec
coefficient carry over in a straightforward fashion. The sha
and amplitude of the density oscillations, however, will
general be very different for electron systems with spin. F
carbon nanotubes it has been shown that the Friedel osc
tions impose a characteristic pattern that can be obse
with scanning tunneling microscopy.35 For wires with spin it
is expected that the Friedel oscillations from an open end
reveal the nature of the spin-charge separation in
space.36 Although our results do not allow for quantitativ
predictions of the density oscillations in systems with sp
we generally expect that strong, long-range density osc
tions should be present from backscattering in one dim
sion. One experimental consequence of those oscillation
that the measurement through a lead close to an impurit
very sensitive to the exact location. Previous studies h
shown that even the distance between two leads can pl
crucial role.37 The current may be strongly enhanced or d
pleted, depending on if the distance to the impurity is a m
tiple of 2kFx or not. Especially interesting are therefore e
periments with an adjustable lead such as a tunneling
The direct observation of those oscillations could give d
tailed information about both the nature of the impurity a
also about the interactions in the system.
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