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We consider a magnetic impurity in the antiferromagnetic spin-1y2 chain which is equivalent to the
two-channel Kondo problem in terms of the field theoretical description. Using a modification of the
transfer-matrix density matrix renormalization group we are able to determine the crossover function
for the impurity susceptibility over a large temperature range, which exhibits universal data collapse.
We also calculate the local susceptibilities near the impurity, which show an interesting competition
of boundary effects. This results in quantitative predictions for experiments on doped spin-1y2 chains,
which could observe two-channel Kondo physics directly. [S0031-9007(98)06869-0]
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Magnetic impurities in low-dimensional antiferromag
nets are recently of much theoretical and experimen
interest in connection with high temperature supercondu
tivity. We now study an impurity model in the spin-1y2
chain consisting of two altered bonds in the chain, which
known to have an equivalent field theory description to th
spin sector of the two-channel Kondo (2CK) model [1,2
The 2CK model has received much interest in the theore
cal physics community [3] since it was first proposed i
1980 [4] and this model is often cited as a standard examp
of non-Fermi-liquid physics. Bethe ansatz [3] and confo
mal field theory techniques [5] have led to almost comple
understanding. On the other hand it is much less clear
what extent experimental applications exist, although the
is some hope that the conductance behavior through me
constrictions can be explained by the 2CK effect [6].

To study the 2CK effect experimentally, site-parity
symmetric bond defects could feasibly be created b
doping quasi-one-dimensional spin-1y2 compounds, and
Knight shift experiments would then be able to observ
2CK physics explicitly. Our goal is therefore to pro-
vide quantitative predictions for the local susceptibilitie
in a range around the impurity, which turn out to exhibi
an interesting competition between two boundary effect
Moreover, we are able to explicitly show the expecte
data collapse of the impurity susceptibility for differen
coupling strengths. For this purpose we have develop
a modification of the transfer-matrix density matrix renor
malization group (DMRG) [7].

The model we are considering is the antiferromagnet
spin-1y2 chain with two altered bonds,

H ­ J
L21X
i­1

$Si ? $Si11 1 J 0s $SL 1 $S1d ? $S0 , (1)

which is known to have an equivalent field theory
description of the 2CK effect as we will outline below.
Interestingly, an integrable spin-1 chain with a spin-1y2
impurity is also equivalent to the 2CK problem on the
level of the Bethe ansatz equations [8], but we cann
analyze that model in terms of the field theory.
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The low-temperature and long-wavelength properti
of the unperturbed spin-1y2 chain are well described by
a conformal field theory Hamiltonian in terms of1 1 1
dimensional bosons

H ­
Z

dx
y

2
fs≠xfd2 1 P2

fg , (2)

where Pf is the conjugate operator to the boson fie
f. This field theory has been discussed in more det
elsewhere [1], and we will just focus on a more pedagog
cal description in this Letter. For temperatures and wa
vectors well below some cutoffL , J the spin-1y2 chain
exhibits critical behavior and scale invariance. Scale i
variance means that we get the same physical results
some quantityO if we rescale the temperature or dis
tances with some factorG, as long as we also multiply the
physical quantityO with Gd :

O sT d ­ G2dO sGT d , (3)

where d is referred to as the scaling dimension ofO ,
and the temperatureT can also be replaced by the invers
system size1yL. For example, operators in the “free”
Hamiltonian (2) have a scaling dimension ofd ­ 1 (after
integration overx). This means that the energy spacin
of the spectrum is proportional to1yL. “Higher order
operators” in the Hamiltonian are operators withd . 1,
which give small corrections to the spectrum of orde
1yLd and are hence termed “irrelevant” and are neglect
in Eq. (2). (We have also neglected one marginal opera
cos

p
8p f which turns out to be justified although the

corrections are only logarithmically small.) For the res
of this Letter we will work in the thermodynamic limit
L ! ` and rescaleT instead.

We can now analyze the perturbationJ 0 on the bonds
in Eq. (1) in terms of the scaling dimensions of th
local operators, which arise in Eq. (2) due to the broke
translational invariance. If the perturbation on the bon
dJ ­ J 2 J 0 is small, we can use perturbation theor
on a chain with periodic boundary conditions. In thi
case the local operator with the lowest scaling dimensi
© 1998 The American Physical Society
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which still observes the site-parity symmetry of th
problem is known to be≠x sin

p
2p f of dimensiond ­

3y2 [1]. This operator gives the leading corrections b
is still irrelevant. In particular, for a given coupling
strengthdJ the size of the corrections becomes effective
smaller by a factor ofGd21 if we rescaleT by G , 1.
The opposite is also true: If we increase the temperatu
the effective perturbation strengthGd21dJ may become
so strong that a systematic expansion fails at som
special temperatureTK , called the crossover (or Kondo)
temperature. AboveTK we therefore expect a completely
different behavior, namely, that of an open chain ifTK ,

T , L. We say that the systemrenormalizesfrom an
open boundary condition to the infrared fixed point of
healed periodic chain as the temperature is lowered. F
smalldJ we havedefinedTK as the temperature at which
the productTd21

K dJ becomes large, so that we can writ
TK ~ dJ1ys12dd ­ dJ22 in this limit. Hence, rescalingT
by G is equivalent to changingTK by 1yG, i.e., altering
the initial coupling strengthdJ by Gd21 ­ G1y2, which is
really the meaning of renormalization.

To compare this system with the 2CK effect it is mor
instructive to start with open boundary conditions an
consider a weak antiferromagnetic coupling0 , J 0 ø
J. In this case the leading operator isSz

0f≠xfs0d 1

≠xfsLdg with dimensiond ­ 1 which turns out to give
logarithmically relevantcontributions as the temperature
is lowered. For smallJ 0, the Kondo temperature is
given by TK ~ e2byJ 0

, whereb is some constant. If we
identify the central spin$S0 with the Kondo impurity and
the two ends of the chain with the spin sectors of th
two electron channels, it is evident how this scenario
equivalent to the 2CK problem [5]: A small coupling
(J 0 ø J) to the impurity is marginally relevant as we
lower the temperature and the system renormalizes
an intermediate coupling (J 0 ­ J) fixed point, i.e., the
periodic chain.

We have chosen the numerical transfer matrix DMR
[7] to test these concepts. The partition function o
the spin-1y2 chain can be written in terms of transfe

matricesZ ­ trsT Ly2d L!`
! lLy2, wherel is the largest

eigenvalue ofT . The transfer matrix DMRG constructs
a transfer matrix for a finite number of time slicesM
and then successively increasesM by keeping only the
most relevant basis states that are necessary to calcu
l. We now extend this method to nonuniform system
by using the eigenstatejcll corresponding to the highes
eigenvaluel. We can include any impurity interaction
which is described by a local matrixTlocal explicitly in
the partition function

Z ­ trsT Ly221
Tlocald

L!`
! lLy221kcljTlocaljcll .

(4)

If the eigenstatejcll is known to reliable precision from
the DMRG, it is straightforward to determine any thermo
dynamic property (even locally). This method proved
be superior in speed, accuracy, and temperature range c
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pared to Monte Carlo simulations, which we have used f
checking purposes.

The first task is to show that our renormalization
picture is accurate, i.e., that we can indeed use period
boundary conditions to describe the system at sufficien
low temperatures. For this purpose we consider the line
responsex0 of the impurity spin $S0 to a local magnetic
field B0, which is given by the Kubo formula

x0sT d ­
Z 1yT

kSz
0stdSz

0s0dl dt . (5)

For open boundary conditions the reponse of the fre
impurity spin is given by the Curie lawx0 ~ 1y4T . For
periodic boundary conditions the autocorrelation functio
is determined by the leading field theory operator whic
obeys the same symmetries as$S0. We found this operator
to be cos

p
2p f with d ­ 1y2 and an autocorrelation

function proportional to1yt, which leads to a logarithmic
divergence asT ! 0. In Fig. 1 we show this crossover
from Curie law to logarithmic behavior at an effective
cutoff Leff ­ minsL, TK d, depending on the coupling
strengthJ 0 with a scaling behavior of the formx0sT d ­
gsTyLeffdyLeff (Fig. 1 inset). The logarithmic behavior
was observed before at one coupling only by othe
methods [9]. Note, however, that the responsex0 is only
an indication of the autocorrelation functions, but it mus
not be confused with the impurity susceptibility, since
we have only applied the magnetic field at one spin. I
fact every spin in the periodic chain shows a logarithm
response to alocal magnetic field.

From an experimental point of view it is much more
interesting to look at the impurity susceptibility, which
can be defined as the size independent contribution
the total system susceptibilityximp ­ limL!`sxsystem 2

Lxd, wherex is the susceptibility per site far away from
any boundary. While our method is, in principle, capabl
of extracting the impurity susceptibility directly, we were

-4				    -2 0 2
log(T)

0

2

4

6

χ 0

-4            -2 0 2 4
log(T/Λeff)

0

1

Λ
ef

fχ
0

J'=0.3J

J'=0.7J

J'=0.5J

J'=J

J'=0
(Curie)

B0=Λeff

FIG. 1. The linear response of the impurity spin to a loca
magnetic field. Inset: The data collapse for 14 differen
J 0 ­ 0.1J, . . . , J and the effect of afinite field B0 ­ Leff.
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able to obtain results at much lower temperatures
considering the linear response of the impurity spin to
uniformfield B instead:

ximp ø
dkSz

0lB

dB
2 J 0x , (6)

which gives a good indication of the true impurity sus
ceptibility [in contrast tox0 in Eq. (5), where we con-
sidered only alocal field B0]. From the 2CK effect it is
known that the impurity susceptibility is logarithmically
divergent belowTK while it shows a Curie-law behavior
above [3,5]. Interestingly, this crossover shows a unive
sal data collapse, because changing the coupling stren
(i.e., TK ) is equivalent to rescaling the temperature, i.e
there is only one independent variableTyTK

ximpsT d ­ fsTyTKdyTK , (7)

wherefsxd is a universal function (ignoring higher orde
operators). This data collapse is clearly seen in Fig
with an appropriate choice ofTK as a function ofJ 0

(inset), showing the predicted logarithmic scaling at lo
T . The nonuniversal deviations of some of the curves
higherTyTK are due to the fact that in those casesTK was
so large that regions above the cutoff have been includ

In principle, a similar logarithmic scaling should be ob
servable for the impurity specific heatCimpyT . However,
we find that the critical scaling of the specific heat occu
at lower T and insteadCimp shows a more complex be
havior in the intermediate range. Moreover, the numeric
method is known to produce larger errors forC at low T
[7], which may be due to the second derivative involve
Therefore, we could not fully reproduce the correspon
ing data collapse ofCimpyT , but our data is nonethe-
less consistent with a crossover to logarithmic scaling
T ! 0. Just as in the 2CK effect we also find that afinite
magnetic field (local or global) will change the logarith
mic non-Fermi-liquid behavior and produce a crossov
to a constant susceptibility below some temperatureTFL
as shown in the inset of Fig. 1. The different renorma
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log(T/TK)
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FIG. 2. The scaled impurity susceptibilityTK ximp for an
appropriate choice ofTK as a function ofJ 0 ­ 0.1J, . . . , 0.95J
(inset).
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ization behavior can be traced to the broken spin-flip sy
metry, which allows the relevant operator cos

p
2p f with

d ­ 1y2 at the periodic chain fixed point. This will re
sult in a quadratic field dependenceTFL ~ B2

0, which has
already been demonstrated in Ref. [3]. In experimen
however, fields are expected to be small compared tJ
and TK , so that in most cases only the non-Fermi-liqu
behavior will be observed. The effect of a finiteB0 is
analogous to violating the symmetry condition in the res
nant tunneling scenario for electrons [10].

Finally, we consider the local susceptibilities (th
Knight shift) of the individual spin sites in a region aroun
the impurity as a function of site indexx

xlocalsxd ­
dkSzsxdlB

dB

Ç
B­0

. (8)

In Ref. [11] the most dramatic effect of an open bounda
condition on the Knight shifts was found to be astaggered
componentxopen ­ xlocal 2 x in response to auniform
magnetic fieldB, which increaseswith site indexx:

xopensxd ~ s21dx x
p

T
p

sinh4xT
, (9)

whereT is measured in units ofJ.
The staggered part in Eq. (9) arises due to open bou

ary conditions and hence it will be diminished as th
system renormalizes to the periodic chain fixed poi
However, there will be a whole new effect due to the lea
ing irrelevant operator≠x sin

p
2p f at the periodic chain

fixed point. This operator also induces a staggered p
xperiodic, but with opposite sign; i.e., the induced respon
at the first site$S1 is negative. The alternating response a
a function of site indexx is now

xperiodicsxd ­ s21dx 1
T

Z
dy kSz

altsxdSz
unisydl

~ s21dx 1
T

Z
dy

Z 1yT

dt gsx, y, td , (10)

whereSz
alt and Sz

uni refer to the leading operators whic
describe the alternating (cos

p
2p f) and uniform (≠xf)

parts of the spinz component, respectively. The correla
tion functiongsx, y, td is therefore given by

gsx, y, td ~ kcos
p

2p fsxd ≠xfsyd ≠x sin
p

2p fs0, tdl

~
T

sinT spt 2 i2xd
T2

sin2 T spt 2 i2yd
, (11)

where we have used standard field theory techniques (e
the boson mode expansion [12]). The integral of t
second factor over the spatial coordinatey is the same that
determines the unperturbed susceptibility per site [13] a
simply gives at-independent contribution proportional t
T . The integral of the first factor overt gives

xperiodicsxd ~ s21dx logftanhsxT dg . (12)
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FIG. 3. (a) The local susceptibilities as a function of sit
index for T ­ 0.05J and J 0 ­ 0.7J. (b) The corresponding
typical NMR spectrum with a distinct feature (kink). (c) The
fit of the alternating amplitude to Eq. (13) (solid line) with the
appropriate coefficients (inset).

This expression shows the logarithmic divergence withT
explicitly for smallx at the impurity, and the response the
drops off with exps22xT d asxT ! ` [i.e., with the same
exponential as in Eq. (9)].

As J 0 is increased, the alternating part changes fro
the behavior of Eq. (9) to the behavior of the stable fixe
point in Eq. (12), which is always logarithmically domi-
nant asT ! 0. However, even very close to the periodi
chain fixed point we observe an interesting and compl
competition ofbothcontributions [see Fig. 3(a)], which is
nonetheless completely understood. In particular, belo
TK the total amplitude of the staggered part ofxlocal al-
ways fits very well to a superposition

xtotalsxd ­ c1 logftanhsxT dg 1 c2
x
p

T
p

sinh4xT
. (13)

This formula gave excellent results as can be seen
a typical fit in Fig. 3(c), and the coefficients have bee
determined for all values ofJ 0 $ 0.2J andT (inset). The
coefficientc1 is T independent, whilec2 renormalizes to
zero asT ! 0.

To see these effects experimentally, it will be nece
sary to induce site-symmetric bond defects into qua
one-dimensional spin-1y2 compounds as, e.g.,Sr2CuO3,
KCuF3, or copper pyrazine nitrate. A simple doping with
another effective spin-1y2 ion for Cu21 may be possible,
but more likely the surrounding nonmagnetic ions can
doped in order to create a suitable lattice deformation. T
effect of open boundaries has already been seen in NM
experiments [14], by observing a unique feature that broa
ened with1y

p
T and had the predicted shape derived fro

Eq. (9). For site-symmetric perturbations we can now pr
dict a broadening with logT of the NMR spectrum. In ad-
dition, there will be a feature (kink) at smaller Knight shift
e
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which comes from the relative maximum in the alterna
ing response [see Fig. 3(b)]. This feature has a distincti
shape and temperature dependence which can be calcul
from the constantsc1 andc2 with the help of Eq. (13) for
any coupling strengthJ 0. Ordinary susceptibility measure-
ments should be able to identify the impurity contributio
as predicted by the crossover function in Fig. 2. In a mo
exotic twist we can even imagine muon spin rotation ex
periments, where the muon itself may play the role of a
impurity; i.e., depending on the preferred muon location i
the lattice, the muon could feasibly induce a site-symmetr
lattice distortion and at the same time measure the logari
mically divergent response at the impurity site.

In summary, we have shown the crossover of a two
channel Kondo impurity explicitly, which confirmed the
renormalization picture and demonstrated the expect
data collapse explicitly. Moreover, we were able t
predict the response to a uniform magnetic field o
individual spin sites in a large region around the impurity
which led to quantitative predictions for Knight-shift
experiments on doped spin-1y2 compounds.
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