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Abstract
Here we describe a weakly interacting Bose gas on a curved smooth manifold, which is embedded
in the three-dimensional Euclidean space. To this end we start by considering a harmonic trap in
the normal direction of the manifold, which confines the three-dimensional Bose gas in the
vicinity of its surface. Following the notion of dimensional reduction as outlined in [L Salasnich
et al, Phys. Rev. A 65, 043614 (2002)], we assume a large enough trap frequency so that the normal
degree of freedom of the condensate wave function can be approximately integrated out. In this
way we obtain an effective condensate wave function on the quasi-two-dimensional surface of the
curved manifold, where the thickness of the cloud is determined self-consistently. For the
particular case when the manifold is a sphere, our equilibrium results show how the chemical
potential and the thickness of the cloud increase with the interaction strength. Furthermore, we
determine within a linear stability analysis the low-lying collective excitations together with their
eigenfrequencies, which turn out to reveal an instability for attractive interactions.

1. Introduction

Bose–Einstein condensates (BECs) are today among the most explored many-body quantum systems.
Ranging from more simple thermodynamics [1, 2] to the more complex turbulent regime [3–5], BECs

represent an interesting workbench for a large variety of both experimental and theoretical phenomena. In
particular, there are many tuning knobs to change the respective system properties in a highly controllable

way, among them most importantly its dimensionality. Three-dimensional (3D) systems allow to investigate
many fundamental macroscopic quantum phenomena as, for instance, superfluidity [1, 2, 6]. The

two-dimensional (2D) case enables both the formation and the dynamics of vortices or the realization of
transitions such as the one of the Berezinskii–Kosterlitz–Thouless (BKT) type [7–9], which is characterized

by the binding or unbinding of vortex-antivortex pairs. But so far all experimental confinements of 2D Bose
gases took place only in flat space. However it was predicted that interesting topological effects on 2D

curved manifolds may occur due to the presence of vortices and their dynamics [10–12].
Some time ago it was proposed to use the coupling between the internal atomic structure and external

electrodynamic fields in order to produce a spherical shell [13, 14]. With this it is possible to imagine the
realization of a BEC on a curved manifold. Since then there have already been several attempts to confine a

Bose gas on the surface of a sphere, which leads to the so-called bubble trap [15–17]. However, due to the
gravitational sag, the gas tends to concentrate on the bottom of the sphere. How to realize a Bose gas to

occupy the whole sphere is currently an experimental challenge. One way to avoid the effects of gravity is to
perform experiments within microgravity settings [18–20]. The recent installation of the NASA cold atom

laboratory (CAL) at the international space station (ISS) nourishes the prospect to realize soon such a
bubble trap in microgravity, so that a BEC on a 2D curved manifold will become an experimental reality
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[21–23]. The planned experimental upgrade BECCAL at the ISS will even allow for a binary Bose mixture
of rubidium and potassium to be confined in such a bubble trap [24].

Inspired by this notion of a bubble trap, several theoretical predictions have already been obtained for
both static and dynamic properties of a Bose gas confined on a spherical geometry. For instance, the
collective modes of such a system were already investigated for different regimes [25]. Furthermore, a
crossover between 3D and 2D was considered, where the respective limits correspond to a completely filled
and a hollow sphere [26, 27]. Additional studies on a sphere deal with the critical temperature for the onset
of Bose–Einstein condensation [28] and superfluidity [29]. In both cases the limit of an infinitely large
radius of the sphere reproduces the corresponding 2D Euclidean results, i.e., in the former case the
Mermin–Wagner–Hohenberg theorem [30, 31] and in the latter case the BKT phase transition [7, 8].
Moreover, the impact of quantum fluctuations and the formation of clusters were studied [32]. Quite
recently, even the ground state and collective excitations were analysed for a dipolar Bose–Einstein
condensate in a bubble trap [33]. Furthermore, the free expansion of a hollow condensate was also
studied [34].

Obviously a sphere does not represent the only possible convenient geometry for confining a Bose gas,
therefore a more general consideration of a curved manifold is necessary. For instance, one can use as a
starting point a generic smooth manifold and proceed then with the modelling by taking into account the
influence of asymmetries and deformations on the static and thermodynamic properties. Following this
notion, we restrict ourselves in the present paper to the case of such a smooth manifold. To this end we start
in section 2 by defining the relevant basic mathematical objects such as the Gaussian normal coordinate
system to describe a manifold and the Laplace–Beltrami operator, which extends the Laplacian to a curved
manifold. Afterwards, we follow the notion of reference [35] to implement a dimensional reduction.
Starting from a 3D mean-field description, we introduce in section 3 a confining potential, which restricts
the condensate in the direction perpendicular to the manifold. Correspondingly, the 3D wave function
factorizes into a 2D part, representing the condensate on the manifold, and a one-dimensional Gaussian
function, which describes the confinement. With this we derive in section 4 from a 3D Gross–Pitaevskii
equation a self-consistent set of equations for both the 2D condensate wave function on the manifold and
its width. Then, section 5 discusses the equilibrium case for a sphere. In section 6 we formulate the
dynamical equations on a generic smooth manifold, while in section 7 we specialize this dynamics to a
sphere and perform subsequently a linear stability analysis. With this we calculate the low-lying frequencies,
which turn out to be stable for repulsive interactions. Finally, section 8 analyses the modes corresponding to
these frequencies. It turns out that oscillations with a higher frequency predominantly occur in the
direction of the confinement, whereas oscillations with lower frequencies are mainly restricted on the
sphere.

2. Differential geometrical preliminaries

Due to the fact that in this work we pursue a more general approach to the problem of Bose–Einstein
condensation in special geometries, it is necessary to introduce relevant aspects of differential geometry that
are used later on. To this end we consider M to be a smooth manifold [36] to which the Bose gas is
confined. The way to describe a manifold is not uniquely defined, i.e., there are a lot of coordinate systems
that could be used. Furthermore, it is often not possible to describe the whole manifold with only one
coordinate system. In those cases we would have a local coordinate system for each portion of the manifold
and we should put all these pieces together to have a global description. The way of choosing these portions
and their number depend on the respective manifold and on the chosen coordinate systems. Anyhow, we
can assure that this number can be chosen to be finite for compact manifolds, such as spheres and
ellipsoids. For not compact manifolds it could be that this number of portions is infinite, but it can always
be chosen to be countable. For simplicity, we suppose in the following that the manifold is described by
only one coordinate system. Even though it is not true for many examples, it will not affect our main result.
Furthermore, all the arguments presented here could be straightforwardly reproduced for the case of
needing to describe the manifold with more than one piece.

Here we choose to use a Gaussian normal coordinate system [37, 38]. It is always possible to do that: any
smooth manifold can be locally described by a Gaussian normal coordinate system. According to the
illustration in figure 1, these coordinates are defined as follows. Consider a small portion of M, where all
the points can be characterized by two real variables (x1, x2) belonging to an open subset of the real plane
IR2. So we can denote the points on this manifold by the vector p(x1, x2). Let v0(x1, x2) be a unit normal
vector to the manifold at the point p(x1, x2). Now, we describe the neighbouring points, which do not
belong necessarily to M, by

q(x0, x1, x2) = p(x1, x2) + x0v0(x1, x2). (1)
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Figure 1. Illustration of a portion of the manifold M. The Gaussian normal coordinate system defines the points belonging to
this portion via equation (1) by setting x0 = 0. The vectors v1 and v2 are two tangent vectors and v0(x1, x2) is a unit normal
vector to the manifold at the point p(x1, x2). The neighbouring point q(x0, x1, x2) does not necessarily belong to the manifold M,
and the Gaussian normal coordinate system defines this point via equation (1) by identifying x0 with the distance between q and
the manifold. In the illustration, p represents the point belonging to M, which is the nearest to q.

Note that the points belonging to M are described by x0 = 0 and that ones, which do not belong to M, are
described by x0 �= 0. Furthermore, fixing any constant value for x0, a locally parallel manifold to M is
defined, which we denote by M(x0). In particular, M(0) simply coincides with the manifold M.

One detail to be pointed out is that equation (1) only represents a local description, so, in principle, x0

cannot be arbitrarily large. We consider that the Gaussian normal coordinate system is well-defined in the
interval |x0| < R/2, where R is the minimum, over all points p belonging to M, of the smallest curvature
radius of each point p. In order to be more precise, for any fixed point p we denote by R1(p) and R2(p) the
two principal curvature radii of the manifold at that point. Choose as R(p) the minimum between these two
radii, i.e.,

R(p) = min {R1(p), R2(p)} . (2)

Then, define R as the minimum value of R(p) over the whole manifold M, i.e.,

R = min
p∈M

R(p). (3)

For the special case of a sphere, its radius coincides with R. Due to global properties, it could be for some
manifold that the Gaussian normal coordinate system describes twice the same point. We exclude such
manifolds in the following, restricting ourselves only to manifolds where this situation does not occur.

Now we present a heuristic recipe for deriving equation (1). To this end, we suppose to know the
manifold equation, which determines the points p belonging to a manifold portion as a function of x1 and
x2, that is p = p(x1, x2). In order to find the respective tangent vectors we evaluate

v1(x1, x2) =
∂p(x1, x2)

∂x1
, v2(x1, x2) =

∂p(x1, x2)

∂x2
. (4)

Then the unit normal vector to the manifold at p(x1, x2) is defined by the cross product between these
tangent vectors and a subsequent normalization, i.e.,

v0(x1, x2) =
v1(x1, x2) × v2(x1, x2)

|v1(x1, x2) × v2(x1, x2)| . (5)

With this, equation (1) is well-defined and |x0| = |(q − p) · v0| defines the distance of the point q from the
manifold.

Now, we can define the tangent vectors to the surface M(x0), which is locally parallel to M, using an
analogous procedure. From formula (1) we calculate the corresponding tangent vectors as
vi(x0, x1, x2) = ∂q(x0, x1, x2)/∂xi, for i = 1, 2. The normal vector to the manifold M(x0) at the point
q(x0, x1, x2) is then defined by

v0(x0, x1, x2) =
v1(x0, x1, x2) × v2(x0, x1, x2)

|v1(x0, x1, x2) × v2(x0, x1, x2)| (6)

and turns out to be v0(x0, x1, x2) = v0(x1, x2). The latter statement can be seen from the property
v0(x1, x2) · vi(x0, x1, x2) = 0, which follows due to

∂v0(x1, x2)

∂xi
· v0(x1, x2) =

1

2

∂[v0(x1, x2) · v0(x1, x2)]

∂xi
= 0, (7)
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for i = 1, 2. With that, a basis for the 3D space at each point q(x0, x1, x2) is given by the vectors v0(x0, x1, x2),
v1(x0, x1, x2), and v2(x0, x1, x2). This allows us to define a covariant metric of the 3D space in the
neighbourhood of the manifold M, since each component of the metric is defined by the scalar product
between two respective basis vectors, i.e.,

Gμν(x0, x1, x2) = vμ(x0, x1, x2) · vν(x0, x1, x2), (8)

where μ and ν range from 0 to 2. From the definition of the normal vector v0 in equation (5) and from the
above discussion, we conclude both G00(x0, x1, x2) = v0(x1, x2) · v0(x1, x2) = 1 and
G0i(x0, x1, x2) = Gi0(x0, x1, x2) = v0(x1, x2) · vi(x0, x1, x2) = 0, for i = 1, 2, for all x0, x1 and x2 where the
coordinate system is well-defined. With that and using the Gaussian normal coordinate system, we obtain
that the covariant metric for the 3D space in the surrounding of the manifold M can be represented by the
matrix

(9)

for μ and ν ranging from 0 to 2, while i and j range only from 1 to 2. For x0 fixed, gij(x0, x1, x2) denotes the
covariant metric of the manifold M(x0). Each entry of this metric represents the scalar product of the
respective tangent vectors v1(x0, x1, x2) and v2(x0, x1, x2). For the special case x0 = 0, gij(0, x1, x2) represents
the metric of the manifold M and we use the abbreviated notation gij(x1, x2).

Note that the metric gij(x0, x1, x2) can be Taylor expanded around the metric gij(x1, x2) and written in
terms of other local properties of the manifold M, as is summarized in appendix A. There, it is also shown
that calculating the square root of the determinant of this metric yields

√
det gij(x0, x1, x2) =

√
(det g) ·

[
1 +O
(

x0

R

)
+O
(

(x0)2

R2

)
+ . . .

]
, (10)

for |x0| < R/2, where we have introduced the notation det g = det gij(x1, x2). This result turns out to be
useful in the next sections. Note that we can assume in the following without loss of generality that singular
points, where detg vanishes, do not occur. One possibility would be the presence of a coordinate singularity,
which occurs, for instance, at the north and south poles of a sphere, when a spherical coordinate system is
used. But, as we comment explicitly below, such coordinate singularities at the poles of a sphere turn out to
have no physical consequence. Another possibility would be a non-coordinate system singularity, which
includes, for instance, regions similar to the edge of a cone. But such manifolds with a non-coordinate
system singularity are discarded from our approach as they would correspond to a not smooth manifold.
Basically, such a real singularity in the metric involves a drastic change of the geometry, which has to be
analysed case by case in more detail within another study.

We know that in many-body quantum theory the kinetic energy of a 3D BEC is given by the Laplacian
of the condensate wave function. A generalization of the Laplacian for the 3D space in a generalized
coordinate system is called Laplace–Beltrami operator [39]. It is expressed by

ΔLB =
1√

det G

∂

∂xη

(√
det G Gηκ ∂

∂xκ

)
, (11)

with η and κ ranging from 0 to 2 and detG denoting the determinant of the covariant metric. Note that we
use the Einstein notation in (11), so that a summation over the same co- and contravariant indices is
implicitly assumed. For a flat 3D space described by a Cartesian coordinate system, the metric is given by an
Euclidean metric with the Kronecker symbol as its respective components and the above formula recovers
the standard representation of the Laplacian. On the other side, still for the flat 3D space represented via the
Gaussian normal coordinate system, using the metric (9), the Laplace–Beltrami operator (11) reduces
to

Δ =
∂2

∂x02 +
∂

∂x0

(
ln
√

det g
) ∂

∂x0
+ΔM(x0), (12)

with the abbreviation

ΔM(x0) =
1√

det g

∂

∂xi

(√
det g gij ∂

∂xj

)
. (13)

Note that (13) denotes also a Laplace–Beltrami operator, but this time in the context of the manifold
M(x0) for each fixed value of x0, and the indices i, j range from 1 to 2. In particular, when x0 = 0, the

4
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operator (13) represents the Laplace–Beltrami operator of the manifold M, denoted in the following
simply by ΔM.

3. Normalization of condensate wave function

Now that we have our mathematical objects well-defined, we introduce two important physical quantities,
which we need to consider when dealing with a BEC on a manifold: the potential which confines the Bose
gas to the manifold and a particular ansatz for the condensate wave function.

We suppose that the Bose gas is confined in the immediate vicinity of the manifold. Such a confinement
could be realized, for instance, by a harmonic oscillator potential in the normal direction to the manifold,
which has its minimum on the manifold. In the Gaussian normal coordinate system introduced in the
previous section, this potential has the form

Vharm(x0) =
1

2
Mω2(x0)2. (14)

Here the particle mass M and the frequency ω define a length scale in terms of the oscillator length
σosc =
√
�/Mω, which represents the order of magnitude of the thickness of the Bose gas cloud

surrounding the manifold. In the following we assume that the frequency ω is so large that the oscillator
length σosc is much smaller than the minimum R of the respective local curvature radii on the manifold, i.e.,
σosc � R. This corresponds to the physical situation that the Bose gas forms a thin shell around the
manifold.

In addition to this harmonic potential, we also allow the Bose gas to be affected by a potential U
depending on the manifold coordinates x1 and x2. Thus, the total potential is given by

V(x0, x1, x2) = Vharm(x0) + U(x1, x2). (15)

Note that Vharm(x0) and U(x1, x2) are 3D potentials, even though each one does not depend on all three
variables.

Let us now compute as a physical quantity the number of particles. Denoting the condensate wave
function Ψ(x0, x1, x2), the number of particles is given by an integral over the whole 3D space of its squared
norm, i.e., N =

∫
dV|Ψ(x0, x1, x2)|2. But since the gas is confined in the vicinity of the manifold M, the

integral becomes naturally restricted to the manifold neighbourhood N (M), yelding
N=
∫
N (M)dV|Ψ(x0, x1, x2)|2. We consider that this neighbourhood is defined by the points q(x0, x1, x2) of

the 3D space described by the Gaussian coordinate system according to equation (1) with |x0| < R/2, with
R � σosc. Thus, the number of particles in the gas can be expressed as

N =

∫ R/2

−R/2
dx0

∫
dx1dx2

√
det g(x0, x1, x2)|Ψ(x0, x1, x2)|2. (16)

In order to describe the confinement of the Bose gas in a thin shell, one is tempted to follow the
arguments of the reference [35] and choose a trial wave function of the form

Ψ(x0, x1, x2) =
e

−(x0)2

2σ(x1,x2)2

4
√
π
√
σ(x1, x2)

· ψ(x1, x2). (17)

We plug this trial function into the above normalization integral (16) and expand the term√
det g(x0, x1, x2) in a power series using equation (10). After this expansion, we are able to approximately

perform the integrals in the limit of large R, which leads to an exponentially small error O(e−R2/σ2
) [40,

(8.25)]. The integral over x0 of each term of the power series times a Gaussian is given by

∫ ∞

−∞
dx0 (x0)ne−(x0)2/σ2

√
πσ

=
(n − 1)!!σn

2n/2
, (18)

for even non-negative integer values of n, while it vanishes for odd non-negative values of n. Therefore, only
the even order terms survive and provide results at least of the order of σ2/R2. Thus, the number of
particles can be calculated through the normalization of the 2D function ψ(x1, x2) apart from a polynomial
error, i.e.,

N =

∫
dx1dx2

√
det g(0, x1, x2)|ψ(x1, x2)|2 +O

(
σ2

R2

)
. (19)

5
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But now we argue that a better choice of the trial wave function is provided by

Ψ(x0, x1, x2) =
e

−(x0)2

2σ(x1,x2)2

4
√
π
√
σ(x1, x2)

· ψ(x0, x1, x2), (20)

where we have defined

ψ(x0, x1, x2) =
φ(x1, x2)

4
√

det g(x0, x1, x2)
. (21)

For x0 = 0 we have that ψ(0, x1, x2) represents the 2D wave function of the gas. In order to calculate the
number of particles, we can follow the same procedure as the one above, but now we do not need to
perform a Taylor series expansion, since the denominator of the term (21) matches with the one from the
volume element. To perform the integral it is only necessary to approximately take the limit of large R,
leading to an exponentially small error. Thus, the number of particles is given by the integral of the squared
norm of the 2D wave function apart from only an exponentially small error:

N =

∫
dx1dx2

√
det g(0, x1, x2)|ψ(0, x1, x2)|2 +O(e−R2/σ2

). (22)

We conclude that the ansatz (20) and (21) is a much better approximation than (17), as the normalization
of the wave function in (22) is more accurate than (19). Therefore, we investigate in the following the
consequences of (20) and (21) in view of reducing the original 3D problem to an effective 2D one.

Note that in section 2 we have commented about singularities at the poles of a sphere when we use
spherical coordinates and this could make equation (21) not well-defined at these points. However, this
turns out not to be the case, since the term φ(x1, x2) would also vanish at the poles, thus compensating the
coordinate singularities.

4. Reducing dimensionality

In the previous sections we introduced the necessary differential geometrical notation and the physical ideas
on how to confine a weakly interacting Bose–Einstein condensate in the neighbourhood of a manifold. Now
we proceed with the description of this system by considering its grand-canonical energy

E =

∫
dVΨ∗
(
− �

2

2M
Δ+

Mω2

2
(x0)2 + U(x1, x2) +

1

2
gint|Ψ|2 − μ

)
Ψ, (23)

where gint = 4π�2as/M denotes the interaction strength, determined by the s-wave scattering length as, and
μ is the chemical potential of the system. Since the confinement frequency ω is supposed to be large
enough, we can follow the same procedure as in the last section and perform this integral only on the
manifold neighbourhood N (M). Then, the energy (23) is well approximated by

E =

∫
N (M)

dx1dx2dx0
√

det g Ψ∗ (24)

·
(
− �

2

2M
Δ+

Mω2

2
(x0)2 + U(x1, x2) +

1

2
gint|Ψ|2 − μ

)
Ψ.

Inserting the trial function (20) and (21) into the energy functional (24), we expand it into a Taylor series
with respect to x0 and perform the resulting integral with respect to x0 approximately in the limit of large R
as in section 3.

Note that the Laplacian (12) with the trial function (20) and (21) reads explicitly

ΔΨ =

⎧⎨
⎩
⎡
⎣( (x0)2

σ4
− 1

σ2

)
− 1

4

(
∂ ln
√

det g

∂x0

)2

− 1

2

∂2 ln
√

det g

∂x02

+
gij(∂iσ)(∂jσ)

2σ2

⎤
⎦ψ(x0, x1, x2) +ΔM(x0)ψ(x0, x1, x2)

⎫⎬
⎭ e

−(x0)2

2σ2

4
√
π
√
σ
. (25)

Approximately integrating the energy (24) with respect to x0, we obtain

6
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E =

∫
N (M)

dx1dx2
√

det g ψ∗

⎧⎨
⎩− �

2

2M
ΔM(x0) −

�
2gij

4M

(∂iσ)(∂jσ)

σ2
− μ

+
�

2

4M

⎡
⎣1

2

(
∂ ln
√

det g

∂x0

)2

+
∂2 ln
√

det g

∂x02

⎤
⎦+ �

2

4Mσ2
+

Mω2σ2

4
+ U +

gint|ψ|2
2
√

2π σ

⎫⎬
⎭ψ

∣∣∣∣∣∣
x0=0

. (26)

Based on the ideas of reference [35], we extremize the resulting energy (26) with respect to both ψ∗ and σ.
In the first case we obtain the time-independent 2D Gross–Pitaevskii equation

μψ =

(
− �

2

2M
ΔM − �

2gij

4M

(∂iσ)(∂jσ)

σ2
+ Veff + U +

�
2

4Mσ2
+

Mω2σ2

4
+ g2D|ψ|2

)
ψ, (27)

where ψ = ψ(x0 = 0, x1, x2) denotes the 2D wave function, while ΔM is given in equation (13) in the case
when x0 = 0, and

Veff(x1, x2) =
�

2

4M

⎡
⎣1

2

(
∂ ln
√

det g

∂x0

)2

+
∂2 ln
√

det g

∂x02

⎤
⎦
∣∣∣∣∣∣

x0=0

+ . . . (28)

represents an effective potential due to the non-trivial metric. Moreover, g2D = gint/(σ
√

2π) turns out to be
the 2D interaction parameter, which gets larger for smaller values of the width σ. It shows that a strong
confinement leads to stronger effective two-particle interactions on the manifold.

Extremizing instead the energy (26) with respect to the cloud width σ yields

�
2

2Mσ3
− Mω2σ

2
+

gint|ψ|2
2
√

2πσ2
+

�
2

2M

(ΔMσ)

σ2
− �

2

2M
gij (∂iσ)(∂jσ)

σ3
+

�
2

2M

gij(∂iσ)

σ2

(∂j|ψ|2)

|ψ|2 = 0. (29)

Thus, in equilibrium, one has to solve both equations (27) and (29) for ψ and σ by taking into account the
particle number in equation (22). Note that our results (27) and (29) for a general manifold contain the
corresponding ones for a plane, which were already treated in reference [35] for a constant width σ.

5. Equilibrium on a sphere

The simplest case to be studied is the ground state of a sphere with radius R. For simplicity, we suppose that
we do not have any external potential, i.e., U(x1, x2) = 0. Furthermore, from (28) we conclude that the
effective potential Veff vanishes for such a sphere. Due to the rotational symmetry of the sphere, the gas in
the ground state is described by a uniform distribution, thus the 2D wave function ψ0 satisfies ΔMψ0 = 0.
Moreover, from the normalization (22) we obtain

ψ2
0 =

N

4πR2
. (30)

With this the time-independent 2D Gross–Pitaevskii equation (27) reduces to an algebraic equation for the
chemical potential μ, i.e., the equation of state

μ

�ω
=

1

4

(
σ2

osc

σ2
0

+
σ2

0

σ2
osc

)
+ P

σosc

σ0
, (31)

where

P =
asσoscN√

2π R2
, (32)

represents the dimensionless interaction strength. Note that P can be tuned by changing the particle
number N, the s-wave scattering length as, as well as by changing the oscillator length σosc or the radius R.

Correspondingly, for a sphere also the ground state thickness σ0 is uniform, so (29) reduces to

σ4
0

σ4
osc

= 1 + P
σ0

σosc
. (33)

In figure 2 we plot the results for the dimensionless Gaussian width σ0/σosc and the dimensionless chemical
potential μ/�ω as functions of the dimensionless interaction strength P.
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Figure 2. Dimensionless width σ0/σosc and chemical potential μ/�ω as functions of dimensionless interaction strength P.

The width of the Gaussian is positive for any value of P. It coincides with the harmonic oscillator length
σosc for vanishing interactions and increases for repulsive interaction strengths (P > 0). For strong repulsive
interactions, its asymptotic behaviour is of the form σ0/σosc =

3
√

P. For attractive interaction strengths
(P < 0) it decreases as |P| increases, tending to zero with an asymptotic behaviour of the form
σ0/σosc = −1/P.

The dimensionless chemical potential coincides with 1/2 for vanishing interactions and increases for
positive values of P. Its asymptotic behaviour for large positive values of P is μ/�ω = (5/4)P2/3. It reaches
zero at about P ≈ −0.44 and turns to be negative for smaller values of P. Its asymptotic behaviour for large
negative values of P is given by μ/�ω = −3P2/4.

In order to have some intuitive notion of these dimensionless values, suppose that one is arranging to
perform a bubble trap experiment in microgravity with about N = 105 rubidium atoms on a sphere with a
radius about R = 10 μm and a harmonic trap such that the harmonic oscillator length is of the order of
σosc = 1 μm [41]. As the s-wave scattering length as is about 100 times the Bohr radius, we obtain a
dimensionless interaction of about P = 2.1. For later figures we always use those experimentally realistic
parameters.

Note that our equilibrium results recover the corresponding ones for an infinite plane in the limit of an
infinite curvature radius, i.e., R →∞. To this end we just have to redefine equations (30) and (32) as
ψ2

0 = ρ and P = 2
√

2πasσoscρ by introducing the particle density ρ of the plane.

6. Dynamics on a curved manifold

In the last section, we calculated equilibrium results for a gas confined on a sphere, finding that the cloud
has a positive width for all interactions strengths. In order to determine the stability of the system, we now
embark upon a linear stability analysis. To this end, we extend the equilibrium consideration of section 4
and treat the Bose gas dynamically.

We begin a dynamical analysis deriving the temporal evolution of the 2D wave function and of the cloud
width. To do that, instead of the energy, we use the corresponding action

S =

∫
dt

∫
dVΨ∗
(

i�∂t +
�

2

2M
Δ− Mω2

2
(x0)2 − U(x1, x2) − 1

2
gint|Ψ|2

)
Ψ, (34)

and a more general ansatz than that of equation (20), which includes an imaginary width term in the
Gaussian exponent, according to [42, 43]

Ψ(x0, x1, x2, t) =
exp
[
−(x0)2

2

(
1

σ(x1,x2,t)2 + iB(x1, x2, t)
)]

4
√
π
√
σ(x1, x2, t)

· ψ(x0, x1, x2, t), (35)

with

ψ(x0, x1, x2, t) =
φ(x1, x2, t)

4
√

det g(x0, x1, x2)
. (36)

Here B represents the variational parameter conjugated to the cloud width, which is necessary to be
included in order to properly describe the dynamics of the system.

Using the same procedure as in the last section, we insert this ansatz into equation (34) and integrate
approximately the variable x0. With this we get the following expression for the action:
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S =

∫
N (M)

dtdx1dx2√gψ∗
[

i�∂tψ +
�

2

2M
(ΔM(x0)ψ) +

�σ2

4
(∂tB)ψ − �

2

4M
σ2B2ψ

− �
2

2M
gij

(
(∂iσ)(∂jσ)

2σ2
ψ +

3σ4

16
(∂iB)(∂jB)ψ +

iσ

2
(∂iσ)(∂jB)ψ +

iσ2

2
(∂iB)(∂jψ)

)

− i�2σ2

8M
(ΔMB)ψ − Veffψ − �

2

4Mσ2
ψ − Mω2σ2

4
ψ − gint|ψ|2

2
√

2πσ
ψ

]∣∣∣∣
x0=0

. (37)

Following the standard approach, we extremize the action (37) with respect to ψ∗, σ and B. In this way, we
obtain at first the evolution equation for ψ

i�∂tψ = − �
2

2M
(ΔMψ) − �σ2

4
(∂tB)ψ +

�
2

4M
σ2B2ψ +

i�2σ2

8M
(ΔMB)ψ

+
�

2

2M
gij

(
(∂iσ)(∂jσ)

2σ2
ψ +

3σ4

16
(∂iB)(∂jB)ψ +

iσ

2
(∂iσ)(∂jB)ψ +

iσ2

2
(∂iB)(∂jψ)

)

+ Veffψ +
�

2

4Mσ2
ψ +

Mω2σ2

4
ψ +

gint|ψ|2√
2πσ

ψ, (38)

as well as the corresponding equation for σ

M2ω2

�2
σ4 = 1 +

gintMσ|ψ|2
�2
√

2π
+ σΔMσ +

Mσ4

�
∂tB

− σ4B2 − gij(∂iσ)(∂jσ) + gijσ(∂iσ)
∂j|ψ|2
|ψ|2

− 3

4
σ6gij(∂iB)(∂jB) +

i

2
σ4gij(∂iB)(ψ∂jψ

∗ − ψ∗∂jψ). (39)

A subsequent extremization of the action with respect to B yields

B = −M

�

∂tσ

σ
− M

2�

∂t |ψ|2
|ψ|2 +

3σ2

8
ΔMB +

i

4

(
ΔMψ

ψ
− ΔMψ∗

ψ∗

)

+
i

2
gij ∂iσ

σ

(
∂jψ

ψ
− ∂jψ

∗

ψ∗

)
+

3σ2

8
gij(∂iB)

∂j|ψ|2
|ψ|2 +

3σ2

2
gij ∂iσ

σ
∂jB. (40)

We remark that in the above three equations (38)–(40), the value of the first variable is fixed x0 = 0, such
that ψ stands for ψ(0, x1, x2, t). These equations describe the dynamics of a Bose gas on a curved manifold
by determining the evolution of the 2D wave function, as well as the real and imaginary cloud width
self-consistently.

7. Collective modes of BEC on a sphere

Collective modes of a condensate are of great value for experimental studies, since they allow a quantitative
characterization of the underlying system, even when an optical absorption projection is made in the data
collection. In addition, collective modes are associated with the equilibrium state around which they occur.
Being able to analyse the collective modes of a confined condensate creates the possibility of understanding
the influence of various system parameters on the hydrodynamics of the system.

In order to determine the low-lying collective modes, we now study small perturbations of the ground
state for a Bose gas confined on the surface of a sphere of radius R. To this end, we perform a linear stability
analysis of the evolution equations derived in the previous section. Note that the effective potential
Veff (x1, x2) in equation (38) vanishes for the case of a sphere. We suppose a small perturbation of the
ground state in the form

ψ = (ψ0 + δψ)e−iμt/� (41)

σ = σ0 + δσ (42)

B = δB, (43)

where ψ0 is given in equation (30), the chemical potential μ follows from equation (31), and σ0 is defined
via equation (33).

9
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Inserting the perturbed quantities (41)–(43) into equations (38)–(40) and considering only the first
order terms of δψ, δσ and δB, we obtain

i�(∂tδψ) +
�σ2

0

4
(∂tδB) =

1

2MR2
(L2δψ) + g2Dψ

2
0(δψ + δψ∗) − iσ2

0

8�MR2
(L2δB)

+

(
− �

2

2Mσ3
0

+
Mω2σ0

2
− g2Dψ

2
0

σ0

)
ψ0δσ, (44)

Mσ4
0

�
∂tδB = − g2DMσ2

0ψ0

�2
(δψ + δψ∗) +

(
σ0

�2R2
L2 +

4Mω2σ3
0

�2
− g2DMσ0ψ

2
0

�2

)
δσ, (45)

M

2�

∂t(δψ + δψ∗)

ψ0
+

M

�

∂tδσ

σ0
= − i

4�2R2ψ0
L2(δψ − δψ∗) −

(
3σ2

0

8�2R2
L2 + 1

)
δB. (46)

Here we have used that for a sphere the Laplace–Beltrami operator is proportional to the square of the
angular momentum operator L2 via

ΔM = − L2

�2R2
. (47)

Note that the eigenvalues of L2 are given by �
2l(l + 1), for l = 0, 1, 2, . . . .being the angular momentum

quantum numbers and its eigenfunctions are proportional to the spherical harmonics Ylm, with
m = 0,±1, . . . ,±l.

The technical details on how to solve equations (44)–(46) are relegated to appendix B. There it is shown
that these equations can be straight-forwardly solved by decomposing the functions δψ, δσ, δB for all
l = 0, 1, 2, . . . .in terms of Ȳlm = Ylm + Y∗

lm for m = 0, . . . , l and proportional to Ȳlm = −i(Ylm − Y∗
lm) for

m = −l, . . . ,−1. Here we restrict ourselves to summarize and discuss the respective results.
For l = 0, the collective oscillation mode frequency is given by

Ω0 = ω

√
3 +

σ4
osc

σ4
0

, (48)

which is of the order of the transversal confinement frequency ω. It coincides with the formula obtained in
reference [25], where the mode associated to this frequency was called accordion mode.

For l � 1, irrespective of the sign of the dimensionless interaction strength P we find two branches of
collective oscillation mode frequencies, a larger one and a lower one, but degenerate with respect to the
magnetic quantum number m. The branch with larger oscillation frequencies is approximately given by

Ωl = Ω0 +
ω4

Ω3
0

(
11σ2

0

8σ2
osc

+
7σ2

osc

4σ2
0

+
7σ6

osc

8σ6
0

)
δl, (49)

while the branch with smaller oscillation frequencies reads approximately

Λl =
ω2

Ω0

[
Pσosc

2σ0

(
5 +

3σ4
osc

σ4
0

)
δl

+
ω4

Ω4
0

(
− 5σ4

0

4σ4
osc

+
45

4
+

11σ4
osc

4σ4
0

+
7σ8

osc

4σ8
0

+
3σ12

osc

2σ12
0

)
δ2

l

]1/2

. (50)

Here

δl =
σ2

osc

R2
l(l + 1) (51)

represent smallness parameters, since the width σosc is supposed to be much smaller than the radius R of
the sphere. As discussed at the end of section 5, we consider σ2

osc/R2 = 0.01 to be realistic for a bubble trap
in microgravity.

Note that also our dynamical results recover the corresponding ones for an infinite plane in the limit of
an infinite curvature radius, i.e. R →∞. To this end the smallness parameter (51) has just to be redefined
via σ2

osc(k2
x + k2

y), where kx, ky denote the components of a 2D wave vector. This means that the collective
frequencies (49) and (50) still hold but represent each a continuous spectrum above a ground frequency.
The latter is given in case of the upper branch (49) by the minimal value Ω0 given in equation (48), whereas
it vanishes for the lower branch (50).

A plot of the frequencies Ωl and Λl as functions of the dimensionless interaction strength P for the
lowest values of l can be found in figure 3. These graphics are made for the realistic range of P values,
according to the parameters given at the end of section 5.
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Figure 3. Frequencies (48)–(50) as functions of dimensionless interaction strength P. (a) Higher branch frequency Ωl/ω for
l = 0, 1, 2, 3. (b) The same graphic as in (a), but plotted for an enlarged scale. (c) Lower branch frequency Λl/ω for l = 1, 2, 3.
(d) The same graphic as in (c), but plotted around P = 0.

From equations (33) and (48) we read off that Ω0/ω equals to 2 for vanishing interaction and
approaches asymptotically to

√
3 for a large dimensionless interaction strength P, as can be seen in panels

3(a) and (b). For l = 1, 2, 3, the frequencies Ωl/ω have a similar behaviour as Ω0/ω, but they turn out to be
larger than Ω0/ω. From the plots we can also see that frequencies Ωl/ω increase with the angular
momentum quantum number l.

The dimensionless frequencies Λl/ω are positive for vanishing interaction, even though they are much
smaller than 1. The frequencies Λl/ω reach zero for some negative value of P and monotonically increase
with P, see figures 3(c) and (d). From equation (50) we see that these frequencies decrease for a smaller
value of the parameter δl. On the other hand, for some negative value of the dimensionless interaction
strength P the lower frequencies could become imaginary, such that the corresponding solution exhibit an
exponential behaviour. We stress that only for quite small negative values of P we still have a stable solution,
as can be seen in figure 3(d), and they turn out to be unstable as soon as P is decreased even to relatively
moderate values. Note that for l = 0, the lower frequency is not defined due to the conservation of the
particle number, as is discussed in more details in appendix B.

8. Analysis of modes

Within a linear stability analysis of small perturbations on a sphere, we have derived analytic expressions for
two types of collective oscillation mode frequencies Ωl and Λl, as well as understood their dependences on
the angular momentum quantum number l and on the dimensionless interaction strength P. Now, we
analyse the respective density profiles of these oscillations on the sphere, whose calculations are relegated to
appendix B. We first discuss the accordion mode, which occurs for the angular momentum quantum
number l = 0, and afterwards we analyse the modes for larger angular momentum quantum numbers l, and
also illustrate some examples. Finally, we discuss in detail the direction of the oscillations, which can be in
the confinement direction, along the surface of the sphere, or even have a mixed behaviour.

For l = 0 only the mode with frequency (48) appears. In this case, the temporal evolution of each
component of the wave function associated with the frequency Ω0 turns out to be

δψ00(t) = iC00
ψ0ω

Ω0

(
Pσ2

osc

4σ2
0

+
σ0

σosc

)
sin(Ω0t)Ȳ00,

δσ00(t) = C00σosc cos(Ω0t)Ȳ00,

δB00(t) = C00
Ω0

σoscσ0ω
sin(Ω0t)Ȳ00,

(52)
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Figure 4. Accordion mode oscillation: density profile |Ψ(r, θ,ϕ, t)|2 at (a) t = 0, (b) t = π/2Ω0 and (c) t = π/Ω0, in x–z plane.
(d) Radial density profiles of (a) (in orange dashed), (b) (in blue continuous), and (c) (in green dotted), for fixed ϕ = 0 and
θ = 0. Here r, θ and ϕ denote the spatial variables in terms of the spherical coordinates.

where C00 is a proportionality constant defined by the intensity of the perturbation, which has to be small.
Note that we have Re δψ00 = 0 in order to satisfy the conservation of the particle number, see appendix B
for further details.

To illustrate the accordion mode, the evolution of its density profile given by the squared norm
|Ψ00(r, θ,ϕ, t)|2 of the 3D wave function (35) is pictured in figures 4(a)–(c) at different times in x–z plane,
for the chosen parameters at the end of section 5. The proportionality constant is chosen to be C00 = 0.1.
The Gaussian width of the state in (b) coincides with the one of the equilibrium state, while the width of
the states in (a) and in (c) are, respectively, larger and smaller than the one of the equilibrium state. From
the initial state in (a) which has the largest width, the system evolves to the state shown in (b) and finally
reaches the state with the smallest width in (c). Then it returns to the state in (b), to the state in (a), and so
on. This oscillation happens with frequency Ω0. The radial density profile of these three stages for fixed
ϕ = 0 and θ = 0 are plotted in figure 4(d). The thinnest stage in green shows a higher peak and the thickest
in orange shows a smaller one. This happens since the number of particles N is conserved.

For the cases where l � 1, there are two types of oscillation frequencies Ωl and Λl, given in
equations (49) and (50), respectively. For Ωl, the temporal evolution of the associated components of the
wave function are given by

δψlm(t′) = C1
lmψ0

{
−Pσ2

oscω
2

4σ2
0Ω

2
0

δl cos(Ωlt)

+
iω

Ω0

[
σ0

σosc
+

Pσ2
osc

4σ2
0

+
Pω4

32Ω4
0

(
5 − 82σ4

osc

σ4
0

− 35σ8
osc

σ8
0

)
δl

]
sin(Ωlt)

}
Ȳlm,

δσlm(t′) = C1
lmσosc cos(Ωlt)Ȳlm, (53)

δBlm(t′) = C1
lm

Ω0

σoscσ0ω

[
1 − Pω4

Ω4
0

(
7σ2

osc

σ2
0

+
5σ6

osc

σ6
0

)
δl

]
sin(Ωlt)Ȳlm.

where C1
lm is a proportionality constant. For Λl the solutions are

δψlm(t) = C2
lmψ0

(
1

2
cos(Λlt) − i

Λl

ωδl

(
1 − Pσoscω

2

4σ0Ω
2
0

δl

)
sin(Λlt)

)
Ȳlm,

δσlm(t) = C2
lm

Pσ3
oscω

2

σ2
0Ω

2
0

{
1 +

[
−σ2

oscω
2

σ2
0Ω

2
0

+
Pσoscω

4

2σ0Ω
4
0

(
5 +

3σ4
osc

σ4
0

)]
δl

}
cos(Λlt)Ȳlm,

δBlm(t′) = C2
lm

PσoscΛlω

σ3
0Ω

2
0

{
1 +

[
−σ2

oscω
2

σ2
0Ω

2
0

+
Pσoscω

4

2σ0Ω
4
0

(
5 +

3σ4
osc

σ4
0

)]
δl

}
sin(Λlt)Ȳlm,

(54)

with C2
lm also being a proportionality constant.

We illustrate the density profiles of these modes in figure 5 for l = 1 and l = 2, with m = 0. Figures 5(a)
and (c) show the density profile |Ψ(r, θ,ϕ, t)|2 in the x–z plane. Figures 5(b) and (d) show the condensate
density on the surface of the sphere, i.e., |Ψ(R, θ,ϕ, t)|2. The proportionality constants are chosen to be
C1

10 = C1
20 = 0.1. In these cases, both the width σlm(t) = σ0 + δσlm(t) and the density of the 2D wave

function |ψlm(t)|2 = |ψ0|2 + 2|ψ0|Re δψlm(t) turn out to oscillate in time.
From panels 5(a) and (c) we read off that the regions on the sphere where the density maxima are

located have the minimal width. The oscillations of δσ change the shape of the Gaussian, similarly to what
happens in figure 4(d). The difference is that for the accordion mode this happens in a spherically
symmetric way, while for larger values of l there is an angular dependence, as is illustrated in figures 5(a)
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Figure 5. Illustration of condensate density |Ψ(r, θ,ϕ, t)|2 for l = 1 and l = 2, with m = 0, at t = 0 (top row) and t = π/Ωl

(bottom row). (a) Density profile for l = 1 in x–z plane. (b) Density on surface of the sphere for l = 1, i.e, |Ψ(R, θ,ϕ, t)|2. (c)
Profile for l = 2 in x–z plane. (d) Density on surface of the sphere for l = 2.

and (c). Oscillations of Re δψ do not change the width of the Gaussian nor its shape, and only the
amplitude of the wave function is changed. For l = 0 such oscillations do not occur, because they would
change the number of particles in the system. For l � 1 these oscillations change the distribution of
particles along the sphere according to the spherical harmonics, and figures 5(b) and (d) illustrate this
change of the density on the surface of the sphere.

For the modes with frequencies Ωl given in equation (53), the amplitude of δσlm is much larger than the
amplitude of the real part of δψlm, since the latter one is proportional to δl, which is small. In this sense, we
say that the density oscillations predominantly occur in the direction perpendicular to the sphere. For the
modes corresponding to Λl given in equation (54), we see that the oscillations of Re δψlm have a fixed
amplitude, while the amplitude oscillations of δσlm depend on the interaction strength P. This dependence
occurs explicitly and implicitly, since both σ0 and Ω0 depend on P according to (33) and (48). If P is zero,
the amplitude oscillations of δσlm vanish, so we can say that the mode is in a parallel direction to the sphere.
If P increases, the amplitude oscillations of δσlm increase and it can even be comparable to the amplitude
oscillations of Re δψlm. In this sense, we say that the direction of oscillations turns out to have a mixed
behaviour with both the parallel and perpendicular components, which we call a diagonal oscillation.

In order to illustrate the above statements, in figure 6 we plot the normalized vectors in the direction of
the vectors (|Re δψlm|/ψ0, δσlm/σosc) for various values of l and P in order to illustrate the difference in the
contributions of Re δψlm and δσlm in the modes associated to the frequencies Ωl and Λl, respectively. Note
that the amplitude of the collective modes have a degeneracy on the values of m for l fixed. Moreover, the
directions of these vectors coincide with the notion given above, of oscillations being in a direction
perpendicular, parallel or diagonal to the sphere.

In panel 6(a) the angular momentum quantum number l = 1 is fixed and we vary the dimensionless
interaction strength P from 0 to 5. We see that the amplitude oscillations for the modes with larger
frequency almost do not change, while the amplitude oscillations for the modes corresponding to the
smaller frequency are quite sensitive to the values of P. The amplitude oscillation that is parallel to the
sphere for P = 0 turns to be diagonal as P increases.

In panel 6(b) the dimensionless interaction strength P = 2.1 is fixed and we vary the angular
momentum quantum number l. For the modes corresponding to Ωl, l is varied from 0 to 10, while for the
modes corresponding to Λl, l is varied from 1 to 10, since there is no such mode for l = 0. We see that for
both branches the vectors increase their angle with the vertical for increasing l, but this is more pronounced
for the modes associated with the frequencies Λl.

From figure 6 we see that the modes corresponding to the Ωl branch predominantly oscillate in the
perpendicular direction, with a negligible dependence on P and a small dependence on l. On the other
hand, the modes from the branch corresponding to Λl depend on both P and l, but have a dominant
parallel component. With this, we conclude that the oscillations with higher frequencies are in the direction
of the confinement trap, while the oscillations with smaller frequencies occur along the sphere, i.e., in the
not confined direction.
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Figure 6. Normalized vectors in the direction of (|Reδψlm|/ψ0, δσlm/σosc) for various values of l and P, for the modes
corresponding to the frequencies Ωl (in black) and Λl (in blue). (a) Fixed l = 1 and P = 0, . . . , 5. Note that all black arrows
practically lie on y axis, and that the blue arrow corresponding to P = 0 lies on the x axis. The blue vectors increase their angle
with the horizontal for increasing P. (b) Fixed P = 2.1, and l = 0, . . . , 10 for the larger frequencies Ωl and l = 1, . . . , 10 for the
lower frequencies Λl. Both black and blue vectors increase their angle with the vertical for increasing l.

9. Conclusions

Motivated by recent experimental advances in the field, we have studied both the static and the dynamic
properties of a Bose–Einstein condensate confined on the surface of a curved manifold. To this end, we
provided a general formulation of the problem and derived a self-consistent set of equations for the 2D
condensate wave function on the manifold and its width. In particular, we found an effective potential in
the resulting 2D Gross–Pitaevskii equation, which depends on the metric of the manifold in a non-trivial
way but vanishes for a sphere. For the latter special case we determined in equilibrium how both the width
of the condensate and its chemical potential increase with the repulsive interaction strength. Moreover, we
found via a linear stability analysis two branches of collective excitations, with distinctly different
frequencies. The larger branch frequencies turned out to be of the order of the harmonic confinement
frequency and, thus, correspond to oscillations predominantly in the direction of the confinement, i.e, in
the perpendicular direction to the sphere. The lower branch frequencies are much smaller and represent
oscillations predominantly on the sphere. Our results represent concrete predictions, which presumably
could be confirmed in upcoming bubble trap experiments in the NASA cold atom laboratory at the
international space station [24]. But in order to become experimentally more realistic it would be necessary
to deal with a Bose gas confined on an ellipsoid as it represents a better approximation to the bubble trap,
than the sphere [17, 23].

Note that the collective modes analysed in this paper differ from the ones identified in reference [33].
This is due to the fact that our ansatz (35) and (36) for the wave function neglects the possibility that the
condensate levitates below or above the minimum of the confinement potential.
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Appendix A. The fundamental forms of a manifold and the Gaussian normal
coordinate system

There are two fundamental forms [44] which are used to characterize a 2D manifold M embedded in the
3D space. The first fundamental form is simply the metric gij of the manifold M, as discussed in section 2.
This is a natural instrument constructed to treat lengths of curves, areas of regions as well as other metric
quantities, and its expression is given by

gij = vi · vj, (A.1)

where v1 and v2 are defined in equation (4). Note that this is a symmetric form.
The second fundamental form is constructed to deal with changes of the normal vector along a path on

the surface, providing information about its curvature, and is defined by

sij = vi · ∂jv0, (A.2)

where v0 is the normal vector given by equation (5). Note that sij is also a symmetric form, meaning that
sij = sji. In order to see that, we start from the orthogonality relations vi · v0 = 0 and vj · v0 = 0, i.e.,
∂ ip · v0 = 0 and ∂ jp · v0 = 0, for i, j = 1, 2. Differentiating the first expression with respect to xj and the
second with respect to xi we obtain

∂ijp · v0 + vi · ∂jv0 = 0, (A.3)

∂jip · v0 + vj · ∂iv0 = 0. (A.4)

From the symmetry of the second derivatives and (A.3) and (A.4), we then conclude that
vi · ∂ jv0 = vj · ∂ iv0. Thus, equation (A.2) can be rewritten as sij =

1
2 (vi · ∂jv0 + vj · ∂iv0), proving the above

statement that sij is symmetric.
Now, consider the operator s · g−1, which is known in the literature as the Gauss map. The directions of

its eigenvectors e1 and e2 are called principal directions, and these directions correspond to the minimal and
maximal curvatures. The matrix representing s · g−1 is given in this basis by

s · g−1 =

(
κ1 0

0 κ2

)
, (A.5)

where κ1 and κ2 denote the curvatures of the manifold in the direction of e1 and e2, respectively. The mean
and the Gaussian curvatures of this manifold are defined by

H =
Tr(s · g−1)

2
=

κ1 + κ2

2
, K = det(s · g−1) = κ1κ2. (A.6)

Furthermore, there is a third fundamental form [45] defined as

hij = ∂iv0 · ∂jv0. (A.7)

It can be shown that this form turns out to be a combination of the previous two, via the relation [45]

hij = −Kgij + 2Hsij, (A.8)

and the matrix which represents h · g−1 in the principal directions is given by

h · g−1 =

(
κ2

1 0
0 κ2

2

)
. (A.9)

Now, let us consider a manifold M(x0) parallel to the manifold M, as explained in section 2. The metric,
i.e., the first fundamental form of this manifold M(x0), for |x0| < R/2, is defined by

gij(x0, x1, x2) = ∂iq · ∂jq (A.10)

and from expression (1) we conclude

gij(x0, x1, x2) = (vi + x0∂iv0) · (vj + x0∂jv0). (A.11)

Combining this equation with the definitions (A.1), (A.2), and (A.7), and taking into account that the
fundamental forms are symmetric, we read off that this metric of the manifold M(x0) can be expressed in
terms of the three fundamental forms of the manifold M as follows:

gij(x0, x1, x2) = gij + 2x0sij + (x0)2hij. (A.12)
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From the corresponding matrix forms (A.5) and (A.9), it is then possible to deduce

det g(x0) = det g
[
1 + 4x0H + (x0)2(4H2 + 2K) + 4(x0)3HK + (x0)4K2

]
. (A.13)

Thus, we obtain

det g(x0) � det g

[
1 +

4x0

R
+

6(x0)2

R2
+

4(x0)3

R3
+

(x0)4

R4

]
, (A.14)

where R is defined as the minimum mean radius over all points p belonging to M according to
equation (3). The square root of this formula can be expanded in a Taylor series, yielding equation (10)
from the main text.

Appendix B. Determining the collective modes

In this section we present the detailed calculations for the respective results of sections 7 and 8. For the sake
of simplicity, we will use a dimensionless form for our equations. To this end, we define the following
dimensionless variables

σ′ =
σ

σosc
, B′ = σ2

oscB , ψ′ =
ψ

ψ0
, t′ = ωt, (B.1)

and the dimensionless derivative operators

∂t′ =
∂t

ω
, L′2 =

L2

�2
. (B.2)

With that, the dimensionless form of the linearized equations (44)–(46) reads

i∂t′δψ
′ +

σ′2
0

4
∂t′δB′ =

σ2
osc

2R2
L′2δψ′ +

(
σ′2

0 − 1

σ′2
0

)
(δψ′ + δψ′∗) (B.3)

+
1

2

(
1

σ′3
0

− σ′
0

)
δσ′ − iσ′2

0

8

σ2
osc

R2
L′2δB′,

∂t′δB′ =

(
1

σ′4
0

− 1

)
(δψ′ + δψ′∗) +

(
3 +

1

σ′4
0

)
δσ′

σ′
0

+
1

σ′3
0

σ2
osc

R2
L′2δσ′, (B.4)

1

2
∂t′(δψ

′ + δψ′∗) +
∂t′δσ

′

σ′
0

= − i

4

σ2
osc

R2
L′2(δψ′ − δψ′∗) − δB′ − 3σ′2

0

8

σ2
osc

R2
L′2δB′. (B.5)

The solution of these coupled equations can be written in terms of the decompositions

δψ′ =

∞∑
l=0

l∑
m=−l

δψ′
lm , δσ′ =

∞∑
l=0

l∑
m=−l

δσ′
lm , δB′ =

∞∑
l=0

l∑
m=−l

δB′
lm. (B.6)

At this point we could have chosen the fundamental solutions δψ′
lm, δσ′

lm and δB′
lm to be proportional to

Ylm. But if we had done that, the respective expansion coefficients would be coupled. Instead, we define for
all l = 0, 1, 2, .. the function Ȳlm = Ylm + Y∗

lm for m = 0, . . . , l, and Ȳlm = −i(Ylm − Y∗
lm) for m = −1, . . . ,−l

and choose the following fundamental solutions

δψ′
lm =

klm(t′) + ihlm(t′)

2
Ȳlm , δσ′

lm = slm(t′)Ȳlm , δB′
lm = blm(t′)Ȳlm , (B.7)

where the coefficients klm, hlm, slm and blm are real functions of t′ for all l = 0, 1, 2, . . . .and
m = 0,±1, . . . ,±l. With this, it is possible to decouple the equations of different indices l and m, since
Ȳ∗

lm = Ȳlm. Thus, the following equations turn out to be much simpler than they would have been with the
standard decomposition.

Now we insert the ansatz (B.7) into equations (B.3)–(B.5), by taking into account that
L′2Ylm = l(l + 1)Ylm. With this, we obtain that the real part of equation (B.3) is given by

− ∂t′hlm

2
+

σ′2
0

4
∂t′blm =

(
σ′2

0 − 1

σ′2
0

+
δl

4

)
klm +

1

2

(
1

σ′3
0

− σ′
0

)
slm, (B.8)

while its imaginary part becomes
∂t′klm

2
=

δl

4
hlm − σ′2

0

8
δlblm. (B.9)
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Correspondingly, equation (B.4) reduces to

∂t′blm =

(
1

σ′4
0

− 1

)
klm +

(
1

σ′5
0

+
3

σ′
0

+
δl

σ′3
0

)
slm, (B.10)

whereas equation (B.5) becomes

∂t′klm

2
+

∂t′slm

σ′
0

=
δl

4
hlm −
(

1 +
3σ′2

0

8
δl

)
blm. (B.11)

Rearranging these equations they turn out to be of the form of a system of linear differential equations:

∂t′Xlm(t′) = QlXlm(t′), (B.12)

where we introduce the vector

Xlm(t′)T = (klm(t′), hlm(t′), slm(t′), blm(t′)), (B.13)

and the matrix Ql = Q0 + δQl with

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

−5σ′2
0

2
+

5

2σ′2
0

0 − 1

2σ′3
0

+
5σ′

0

2
0

0 0 0 −σ′
0

1

σ′4
0

− 1 0
1

σ′5
0

+
3

σ′
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.14)

and

δQl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
δl

2
0 −σ′2

0

4
δl

−δl

2
0

δl

2σ′
0

0

0 0 0 −σ′3
0

4
δl

0 0
δl

σ′3
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.15)

The general solution of this system is given by eQlt
′
Xlm(0), where Xlm(0) denotes the initial condition.

The problem of computing the exponential matrix eQlt
′

applied to some vector is standard when the
matrix Ql has four different eigenvectors. Let Xi, for i = 1, 2, 3, 4, be the eigenvectors associated to the
eigenvalues λi, and Xlm(0) to be written in the eigenbasis, i.e., Xlm(0) =

∑4
i=1 viXi. Then the solution of

(B.12) with initial condition Xlm(0) is given by Xlm(t′) =
∑4

i=1 vieλit
′
Xi. This procedure is going to be used

for solving equation (B.12) when l � 1 in appendix B.2 and when l = 0 and P = 0 in the next subsection.
But when l = 0 and P �= 0, it turns out that the matrix Q0 has only three eigenvectors, meaning that the

eigenbasis is incomplete. In this case one has to consider generalized eigenvectors, as is shown in detail in
the following subsection.

B.1. Solving differential equation for l = 0
To find the solution of (B.12) when l = 0, we have to compute eQ0t′X00(0). The eigenvalues of Q0 are
λ1±

0 = ±iΩ′
0 with multiplicity one and λ2

0 = 0 with multiplicity two. Here, Ω′
0 = Ω0/ω and Ω0 is given in

equation (48) of the main text. We discuss now separately the cases P = 0 and P �= 0.
When P = 0 the respective eigenvectors are

X1±
0 =

⎛
⎜⎜⎝

0
∓i
1

∓2i

⎞
⎟⎟⎠ , X2+

0 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , X2−

0 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , (B.16)

where X1±
0 are associated to the eigenvalues ±iΩ′

0 and X2±
0 correspond to the eigenvalue 0. Then the initial

condition is decomposed according to

X00(0) = v1X1+
0 + v2X1−

0 + v3X2+
0 + v4X2−

0 , (B.17)

17



New J. Phys. 22 (2020) 063059 N S Móller et al

where vi, for i = 1, 2, 3, 4 are constants, so the exponential matrix X00(t′) = eQ0t′X00(0) yields the solution

X00(t′) = v1eiΩ′
0t′X1+

0 + v2e−iΩ′
0t′X1−

0 + v3X2+
0 + v4X2−

0 . (B.18)

Let us consider now P �= 0. In this case it turns out that the matrix Q0 has only three eigenvectors. In order
to have a basis of the four-dimensional vectorial space, we choose the vectors

X1±
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

∓ i

Ω′
0

(
P

2σ′2
0

+ 2σ′
0

)
1

∓ iΩ′
0

σ′
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, X2+
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, X̄2
0 = − σ′2

0

P

(
5 + 3

σ′40

)
⎛
⎜⎜⎜⎜⎜⎜⎝

Ω′2
0

σ′
0

0
P

σ′3
0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B.19)

where X1±
0 are the eigenvectors associated to the eigenvalues ±iΩ′

0, X2+
0 is the eigenvector associated to the

eigenvalue 0 and X̄2
0 is a generalized eigenvector with the property Q0X̄2

0 = X2+
0 . Remember that σ′

0 = 1
and Ω′

0 = 2 when P = 0, meaning that the vectors X1±
0 of equation (B.19) reduce to the vectors X1±

0 of
equation (B.16), when P tends to 0. Because of this relation, we treat formally the two different regimes,
P �= 0 and P = 0, from now on as the same case when we study the solutions associated to the vectors X1±

0 .
The Jordan normal form of the matrix Q0 in the basis (B.19) is represented by the matrix

QJ
0 =

⎛
⎜⎜⎝

iΩ′
0 0 0 0

0 −iΩ′
0 0 0

0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , (B.20)

while Q0 = TQJ
0 T−1, where the matrix T = (X1+

0 X1−
0 X2+

0 X̄2
0) consists of the vectors (B.19) as column

vectors. With that the exponential of Q0t′ is given by

eQ0t′ = T

⎛
⎜⎜⎜⎝

eiΩ′
0t′ 0 0 0

0 e−iΩ′
0t′ 0 0

0 0 1 t′

0 0 0 1

⎞
⎟⎟⎟⎠T−1. (B.21)

With this, for an initial condition given by the vector

X00(0) = v1X1+
0 + v2X1−

0 + v3X2+
0 + v4X̄2

0, (B.22)

the solution of (B.12) reads

X00(t′) = v1eiΩ0t′X1+
0 + v2e−iΩ0t′X1−

0 + v3X2+
0 + v4(X̄2

0 + t′X2+
0 ). (B.23)

Thus, there is a secular term in the last term of the right-hand side, which leads to linear growth in time. In
the following we show that this solution is eliminated due to the conservation of the number of particles,
which is described by

N =

∫
|ψ0|2dA =

∫
|ψ(t)|2dA. (B.24)

The last integral in (B.24) can be computed with the decomposition (41)–(43) by considering only the first
order of the perturbation: ∫

|ψ(t)|2dA =

∫
[ |ψ0|2 + |ψ0|(δψ′ + δψ′∗)]dA. (B.25)

Comparing equations (B.24) and (B.25), we then conclude that∫
(δψ′ + δψ′∗)dA = 0. (B.26)

Using the decomposition (B.6) for δψ′ we obtain at first

4πR2(δψ′
00 + δψ′∗

00) +
∞∑

l=1

l∑
m=−l

∫
(δψ′

lm + δψ′∗lm)dA = 0. (B.27)
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Due to the orthogonality relations of the spherical harmonics, for all l � 1 and m = −l, . . . , l, we have that∫
δψ′

lmdA =

∫
δψ′∗lm dA = 0. (B.28)

With this, equation (B.27) reduces to
δψ′

00 + δψ′∗
00 = 0, (B.29)

which means that δψ00(t′) is a purely imaginary number. Thus, from equation (B.7) we conclude that
k00(t′) = 0. Due to (B.13), (B.16), (B.17), (B.19) and (B.22), this fixes the coefficient v4 = 0 in solutions
(B.18) and (B.23) for P = 0 and P �= 0, respectively. This is important for the case of equation (B.23),
because it removes the secular term.

Moreover, note that the solutions in (B.18) and (B.23) associated to the eigenvector X2+
0 are temporally

constants. With this, we find that only the eigenvectors X1±
0 describe oscillating solutions in time. However,

we can see that the vectors X1±
0 are complex, so the physical meaning is not evident here. On the other

hand, we remark that the first and third entries of both vectors in (B.16) and (B.19) are real numbers, while
the second and fourth entries are purely imaginary numbers. Then the linear combinations

X1+
0 + X1−

0

2
and i

(X1+
0 − X1−

0 )

2
(B.30)

are real vectors. With this we obtain

X00(t′) = eQ0t′ X1+
0 + X1−

0

2
=

eλ
1+
0 t′X1+

0 + e−λ1+
0 t′X1−

0

2

= cos(Ω′
0t′)

X1+
0 + X1−

0

2
+ i sin(Ω′

0t′)
(X1+

0 − X1−
0 )

2
, (B.31)

which is a real solution. Analogously, we could compute the solution eQ0t′ i
X2+

0 −X2−
0

2 , but it turns out to lead
to the same dynamics as above apart from a phase. So, we will consider only the solution (B.31) which can
be written as

X00(t′)T =

[
0 ,

C00

Ω′
0

(
P

2σ′2
0

+ 2σ′
0

)
sin
(
Ω′

0t′
)

, C00 cos
(
Ω′

0t′
)

,
C00Ω

′
0

σ′
0

sin
(
Ω′

0t′
)]

(B.32)

with the initial condition
X0(0)T = (0, 0, C00, 0), (B.33)

where C00 is a proportionality constant. This solution means that, when one performs at t = 0 a small
perturbation of the ground state given by

δσ′
00(0) = C00Ȳ00, (B.34)

then the temporal evolution of this perturbation is given by

δψ′
00(t′) = i

C00

Ω′
0

(
P

4σ′2
0

+ σ′
0

)
sin(Ω′

0t′)Ȳ00,

δσ′
00(t′) = C00 cos(Ω′

0t′)Ȳ00, (B.35)

δB′
00(t′) =

C00Ω
′
0

σ′
0

sin(Ω′
0t′)Ȳ00.

These equations are the dimensionless form of equation (52) in the main text.

B.2. Solving differential equations for l � 1
In this section we solve equation (B.12) for l � 1. The solution of this system is given by

Xlm(t′) = eQlt
′
Xlm(0), (B.36)

where Xlm(0) denotes the initial state. In order to evaluate the matrix exponential eQlt
′

we have to determine
at first the eigenvalues of the matrix Ql. They turn out to be the roots of the polynomial

λ4 + (Ω′2
0 + al)λ

2 + cl = 0, (B.37)
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where we consider for the coefficients

al =

(
7σ′2

0

4
+

1

4σ′2
0

)
δl +

δ2
l

2
(B.38)

and

cl =
P

2σ′
0

(
5 +

3

σ′4
0

)
δl +

(
3

2
+

5σ′4
0

8
− 9

8σ′4
0

)
δ2

l . (B.39)

Both first and second orders of the smallness parameters δl defined in equation (51), even though for the
final result of the frequencies we restrict ourselves to the first order corrections.

The roots of equation (B.37) are given by

λl = ±

√√√√−Ω′2
0 − al ±

√
(Ω′2

0 + al)2 − 4cl

2
, (B.40)

which can be expanded by taking into account only first and second orders of al and cl, yielding

λ1±
l = ±iΩ′

0

(
1 +

al

2Ω′2
0

− cl

2Ω′4
0

)
, λ2±

l = ±i

√
cl

Ω′2
0

+
c2

l

Ω′6
0

− alcl

Ω′4
0

. (B.41)

The roots λ1±
l are always imaginary, so they correspond to oscillating solutions. Instead, the roots λ2±

l are
imaginary for positive values of the radicand, leading also to oscillating solutions, but they are real when the
radicand is negative, leading to exponentially increasing and decreasing solutions. The radicand is positive
for positive and small negative values P, but it turns out to be negative for most negative values of P. Thus,
we can conclude that the system is stable for positive interactions and small enough negative interaction
strengths, while it becomes unstable for most negative interaction strengths.

The frequencies of oscillation are given by Ω′
l = Ωl/ω = |Re(iλ1±

l )| and Λ′
l = Λl/ω = |Re(iλ2±

l )|, and
read up to the first order of δl

Ω′
l = Ω′

0 +
1

Ω′3
0

(
11σ′2

0

8
+

7

4σ′2
0

+
7

8σ′6
0

)
δl (B.42)

and

Λ′
l =

1

Ω′
0

√
P

2σ′
0

(
5 +

3

σ′4
0

)
δl +

1

Ω′4
0

(
−5σ′4

0

4
+

45

4
+

11

4σ′4
0

+
7

4σ′8
0

+
3

2σ′12
0

)
δ2

l . (B.43)

These equations are the dimensionless counterpart of equations (49) and (50) from the main text. The
matrix Ql has 4 different eigenvalues λ1±

l = ±iΩ′
l,λ

2±
l = ±iΛ′

l, where Ω′
l and Λ′

l are positive real numbers
if P is positive or for small negative values of it. The associated eigenvectors read

X1±
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− P

2σ′2
0 Ω

′2
0

δl

∓ i

Ω′
0

(
2σ′

0 +
P

2σ′2
0

+
P

16Ω′4
0

[5σ′8
0 − 82σ′4

0 − 35]

σ′8
0

δl

)
1

∓ iΩ′
0

σ′
0

(
1 − P

Ω′4
0

[7σ′4 + 5]

σ′6 δl

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.44)

and

X2±
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

±2i
Λ′

l

δl

(
1 − P

4σ′
0Ω

′2
0

δl

)
P

σ′2
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}

∓i
PΛ′

l

σ′3
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.45)

The solution of the system (B.12) is thus given by (B.36), so we have the following time dependences

eQlt
′
X1±

l = eλ
1±
l

t′X1±
l , eQlt

′
X2±

l = eλ
2±
l

t′X2±
l , (B.46)
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Note that the eigenvectors (B.44) and (B.45) are not pure real vectors, thus in principle, these vectors and
the solution (B.46) have no physical meaning. But the first and third entries of both vectors (B.44) and
(B.45) are real numbers, while the second and fourth entries are purely imaginary numbers. Then the
vectors

X1+
l + X1−

l

2
,

i(X1+
l − X1−

l )

2
,

X2+
l + X2−

l

2
and i

(X2+
l − X2−

l )

2
(B.47)

are real vectors. We point out that the dynamics obtained with the combinations i(Xn+
l − Xn−

l )/2, for
n = 1, 2, turn out to be the same of that obtained with (Xn+

l + Xn−
l )/2, for n = 1, 2, apart from a phase.

Therefore, we consider from now only the latter ones.
With this we obtain

X1
l (t′) = eQt′ X1+

l + X1−
l

2
=

eλ
1
l t′X1+

l + e−λ1
l t′X1−

l

2
(B.48)

= cos(Ω′
l t
′)

X1+
l + X1−

l

2
+ i sin(Ω′

l t
′)

(X1+
l − X1−

l )

2
,

which reads explicitly

X1
l (t′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− P

2σ′2
0 Ω

′2
0

δl cos(Ω′
l t
′)

1

Ω′
0

(
2σ′

0 +
P

2σ′2
0

+
P

16Ω′4
0

[5σ′8
0 − 82σ′4

0 − 35]

σ′8
0

δl

)
sin(Ω′

l t
′)

cos(Ω′
lt
′)

Ω′
0

σ′
0

(
1 − P

Ω′4
0

[7σ′4 + 5]

σ′6 δl

)
sin(Ω′

l t
′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.49)

with the initial condition

X1
l (0) =

⎛
⎜⎜⎜⎜⎜⎝
− P

2σ′2
0 Ω

′2
0

δl

0

1

0

⎞
⎟⎟⎟⎟⎟⎠ . (B.50)

Analogously, we also obtain

X2
l (t′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(Λ′
l t
′)

−2
Λ′

l

δl

(
1 − P

4σ′
0Ω

′2
0

δl

)
sin(Λ′

l t
′)

P

σ′2
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
cos(Λ′

lt
′)

PΛ′
l

σ′3
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
sin(Λ′

l t
′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.51)

with the corresponding initial condition

X2
l (0) =

⎛
⎜⎜⎜⎜⎜⎝

1

0

P

σ′2
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
0

⎞
⎟⎟⎟⎟⎟⎠ . (B.52)

Thus, performing at t′ = 0 a small perturbation given by

δψ′
lm(0) = −C1

lm

P

4σ′2
0 Ω

′2
0

δlȲlm, δσ′
lm(0) = C1

lmȲlm, (B.53)

where C1
lm is a proportionality constant, the evolution of this system is given by
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δψ′
lm(t′) = C1

lm

{
− P

4σ′2
0 Ω

′2
0

δl cos(Ω′
l t
′)

+
i

Ω′
0

(
σ′

0 +
P

4σ′2
0

+
P

32Ω′4
0

[5σ′8
0 − 82σ′4

0 − 35]

σ′8
0

δl

)
sin(Ω′

l t
′)

}
Ȳlm,

δσ′
lm(t′) = C1

lm cos(Ω′
l t
′)Ȳlm, (B.54)

δB′
lm(t′) = C1

lm

Ω′
0

σ′
0

(
1 − P

Ω′4
0

[7σ′4 + 5]

σ′6 δl

)
sin(Ω′

l t
′)Ȳlm.

These equations are the dimensionless form of equation (53) in the main text. But a small perturbation at
t′ = 0 given by

δψ′
lm(0) =

C2
lm

2
Ȳlm,

δσ′
lm(0) = C2

lm
P

σ′2
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
Ȳlm,

(B.55)

where C2
lm is also a proportionality constant, leads to the solution

δψ′
lm(t′) = C2

lm

(
1

2
cos(Λ′

l t
′) − i

Λ′
l

δl

(
1 − P

4σ′
0Ω

′2
0

δl

)
sin(Λ′

l t
′)

)
Ȳlm,

δσ′
lm(t′) = C2

lm

P

σ′2
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
cos(Λ′

l t
′)Ȳlm,

δB′
lm(t′) = C2

lm

PΛ′
l

σ′3
0 Ω

′2
0

{
1 +

[
− 1

σ′2
0 Ω

′2
0

+
P

2σ′
0Ω

′4
0

(
5 +

3

σ′4
0

)]
δl

}
sin(Λ′

l t
′)Ȳlm,

(B.56)

which are the dimensionless form of equation (54) in the main text.
A small perturbation of δσ′

lm and of the real part of δψ′
lm which is not proportional to (B.53) or to

(B.55) is a linear combination of them, thus the corresponding evolution of the state is given by a linear
combination of (B.54) and (B.56).
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