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Chiral spin currents and quantum Hall effect in nanotubes
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Nanotubes in strong perpendicular magnetic fields are considered and predicted to exhibit chiral spin cur-
rents. At a certain filling the current flows only at the sides of the tube, giving rise to the integer quantum Hall
effect and magnetoconductance oscillations with a period corresponding to the Aharonov-Bohm flux through
the longitudinal cross section of the tube.
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[. INTRODUCTION since the quantum Hall effect is formed in an inversion layer,
we take as a model the above-mentioned inversion layer
Of the many remarkable properties of nanotubasome-  nanotubes. Ifx,y are the longitudinal and circumferential
what overlooked feature is the possibility to exert immensecoordinates of the tube, respectively, the magnetic feld
gradients of magnetic field on the electrons, by subjectingerpendicular to the surface at the lines0 andy= =R,
the tube to a perpendicular homogeneous field; since thbeereafter called the north and south “poles .” The “equa-
electrons on a two-dimensional cylinder are coupled only tdors” are then ay= wR/2 andy=37R/2, and states located
the component of the field normal to the surface, (#ffec- anywhere above or below the equators are denoted “north”
tive) magnetic field acting on the electron changes sign at ther “south” states. The effective vector potential on the sur-
sides of the tube, which may result in very strong gradientsface of the tube has only thex component A,
We show here that in sufficiently strong field8>1, where  =RBsin(y/R). The Hamiltonian of a cylindrical 2DEG is
R is the tube radius and=(%/|eB|)*? is the magnetic then
length] electrons with an opposite direction of propagation

are localized in opposite sides of the circumference, forming ﬁ2a§ h? eRB

y 2
H= + (—i&x+—sin—

chiral spin currents, and at a certain energy filling, a Hall T om T 2m A R +ugsB, (1)

guantization.
Spatial control of spin currents was demonstrated previwhereg is the gyromagnetic factdtaken here at the valug 2
ously using a material with a spatially varying factor? ~ andsis the spin operator. The longitudinal wave vector and
Here, it is the circumferentially varying effective field which SPin are conserved since the Hamiltoni@h does not con-
is found to generate spin currents along the tube axis. tain they coordinate nor other spin operators, thus the opera-
It was first found numerically in Ref. 3 that a cylindrical tors are replaced by their corresponding eigenvakieand
two-dimensional electron ga€@DEG) in a perpendicular =9uB/2. In units of Ex=A%2mR (which will be used
magnetic field forms Landau-like levels at the top and botthroughout this work Eq. (1) becomes the following one-
tom and chiral states at the sides. Regarding carbon nan@imensional Hamiltonian,
tubes, thek-p approximation was used to study their mag-
netoconductance; this approximation, which linearizes the H=—R252+
vicinity of the K points of the graphite first Brillouin zone, y
may be valid at small fields; in strong magnetic fields, how-
ever, theK points as well as the graphite first Brillouin zone
are ill defined. Even at low fields, the-p theory, did not
fare well when compared to experimefifsA proper account
of the specific band structufee., the specific, m indices of
the chiral vector requires the diagonalization of the mag-
netic Hamiltonian containing theompletecarbon-nanotube
unit cell, as exposed in Ref. 1. A new class of nanotfibes
forms single inversion layers composed of silicon
germaniun, indium gallium, and indium arsenfewith con- :
trolled (and fairly largé radii, these nanotubes can be madeV&:
clean and without the problems of unknown chirality and

R

y\2
KR+ nsin—) * 7, (2

where, in addition=(R/I)?>1 throughout this work. The
Hamiltonian (2) is a variant of Hill's equation and can be
easily diagonalized numericaffyThe typical energy spec-
trum and probability distribution in this regime are shown in
Fig. 1; the eigenfunctions are centered around their potential
minima, depending on their longitudinal wave vectk,;
these minima are at},,= —Rsin e andy:,,= 7R—yn.
where then and s subscripts stand for the “north” and
“south” potential wells, andea is defined in the following

p
intershell coupling that are present in multiwall carbon nano- KR if — 7 KX<Z,
tubes(MWCNT). Ui R R
7
=<{ 1 K,.=—, 3
Il. THE ENERGY SPECTRUM = R ®
Since the effects we are to discuss resulting from the cur- 1 Ko<_1
vature are geometric rather than band-structure effects, and L R
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FIG. 1. Top: Energy spectrum of E(R), cal-
culated numerically forp=20. The lowest band
is compared with the variational resuf*™, of
Eq. (4). Bottom: Spatial probability distribution
along the circumferential coordinate of the states
at the lowest subband. Here the electrons are well
confined to the proximity of their potential
minima. At K,=0 the potential in Eq(2) is a
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Since the Hamiltoniari2) is symmetric under a simulta- by *%. The spectrum of Eq(4) approximates the exact
neous sign inversion gfandK, , states with oppositE, are  solution in a satisfactory way apart from the vicinity of
centered at opposite sides of the circumference, and statgs,|~ »/R, as shown in Fig. 1.
with K,=0 are thus centered at the poles.|Kt| < /R the Simplified expressions can be obtained from &g if | «|
potential has two deep and isolated potential wells in thas not too close to 1. For states not centered on the equator
north and south, giving rise to the twofold degeneracy of thg*bulk” states), E~npcosa while E*~(|K|R—17)?
spectrum. Only a$K,|— 7/R are the two potential wells at +D*|K,|R for equator states, wher®*=(ex1)/[2(e
sufficient proximity across one of the equators for their cor-=1)]~0.23 and 1.08, respectively.
responding states to mix and remove the degeneracy. The energy of higher subbands can be similarly obtained

We can find an analytic approximation to the spectrum ofanalytically; here we need, however, only the energy of the
the lowest band, by making an ansatz on the variational wavpole states at those subbands; these are easily obtained by
function, in accordance with the discussion above. Up to @&xpanding the potential in E¢2) aroundK,=0, giving the
normalization factor, let the circumferential eigenfunctions(spinles$ Landau-like levels at the poles,
of a stateK, be i (y)=xp*xp. Where xi,x; are the
single-well harmonic solutions of the north and south poten-

tial wells, respectively. At the lowest band, we therefore

_ _ Nis 21502 .
guessyls=Ae 7V Ymint A 2R \whereyS is the north

or south coordinate of the potential minima. A&, where the first term is the usual Landau levels, and the sec-
—(75/R)_, the north-south splitting evolves into the two ond term is the anharmonic correction due to the curvature.
eigenstates of a single, highly anharmonic, potential well, af he velocity associated with a statg can be found from
the equator. The variational paramekgy accounts for that the dispersion relatioi); the average velocity of the two
by keeping the two eigenfunctions slightly apart; the best fisubbands is given by,=—(#/2mR)« for the bulk states
was found at ,s=0 if |yS—y"|>1 and ¥ 1/2 otherwise; the ~andvy=(A/mR)(KR—») for the equator states.
minus sign corresponds to the north for negatieand to In the flat 2DEG, the energy of a timth Landau level of
the south for positive,,. spin down, is degenerate with the—1 level of spin up.
The energy of the symmetricH) and antisymmetric ~ Here, however, for the Landau-like levels at the poles, 'ghis
(—) subbands is then found byE*=(yl|HyJ)  degeneracy is removed due to the second term on the right-
+(x"|HxS). The result gives the following spectrum: hagd side of Eqés). By fixing the Fermi energy in this gap
(E1 — n<Eg<Eg+ ), only spin-up states would cross the
E*C*=(K,R—an)?+ n(1—a?) + iK,Ra Fermi energy at the poles; using E®) this gives 2p— 3
<Eg<2p—1, this energy window is due to our arbitrary
+e MR (K, |R- 7)2—1|KJR], (4) choice ofg=2 for theg factor in Eq.(1); in general, forg
R o - =2c with ¢ a constant, the corresponding filling energy is
where C*=(yy | )=(1xe "A7R) and A=R[(w/4) p(3—c)—S<Er<n(l+c)—1. In this window of width 1
—3sin Ya|+|\|/R]. The spin term wasmittedfrom Eq.(4)  (=Eg) we get the typical spin distribution of Fig. @op).
and the subsequent equations to avoid confusion withtthe There are two counterpropagating spin-up currents at the
sign of the symmetric and antisymmetric subbands. It is unpoles; each current is the sum of two states, with a velocity
derstood, however, that the spin further splits the spectrum- (A/2mR)«, as calculated above.

1
n’+n+ =, (5)

5 1
Ef=n(2n+1)- 5 5
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FIG. 2. The probability distribution of states
at the Fermi energy. Top: The sum of all spin-up
and spin-down states at the Fermi eneirgy
=<7 (line “s”in Fig. 1). There are a total of 20
states(ten channels The arrows show the direc-
tion of propagation of these circumferentially lo-
calized states. BottonEr=0 (line “h” in Fig.

1). At this energy there are only two equator
states along each direction of propagation. The

P-4
0.1F a plotted probabilities correspond tp=30 and»n
o =50 for the top and bottom figures, respectively
=l (e.g., if 25 nm=R=<100 nm, =30 is achieved
0.05+ . by the field 31.6 EB=1.9 T, where the lower
/ \\ field corresponds to the larger radius
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[l. LONGITUDINAL CONDUCTANCE The magnetoconductance experiments conducted on large
nanotubesMWCNT),*° were inconclusive and the subject
6f some debatdsee Ref. 1L Since the total longitudinal

: L . conductance comes from all the subbands crossing the Fermi
Appendix that the transmission of a staj¢y) in a tube energy, it is clear that as the field varies, the number of open

located between two barriers, 1 and 2, [Eq. (A2)] : S

i o B channels may abruptly change, adding an aperiodic, band-
T1o=[dy[¢(y)|*(T1T>) /{l+Rl+R2 2R, R, C0$265(y) structure-dependent element to the magnetoconductance, as
+ 6]}, where 6g(y)=(7/R)x sin(y/R), 6 is a constant, and suggested in Ref. 5
R, T are the reflection and transmission probabilities of each T
barrier.

Using Eq.(A2) we can find the conductance of the Hall IV. HALL CONDUCTANCE

state, where the filling corresponds to line “h”in Fig. 1,i.e.  \we focus below on the small window of energy filling
where only the two equator channels are gapless. In thafine «h” in Fig. 1) where the conductance is carried solely

case, the total conductance of the two channels is found to b@y the equator states, as shown in Figbattom): the reason

(see the Appendix is its topological equivalence to the Hall bar in the integer
quantum Hall effect? Here the Hall voltage can be defined
as the potential drop between the equators.

Having found the longitudinal conductanggqg. (6)], we
; wish to establish the quantization of Hall conductance and its
n(1-e 1 range of validity, by applying some results from the exten-
(6) sive studies of the quantum Hall effect in the framework of
the Landauer formalisth!3®17In the simplest case, when
wherelL is the tube lengthf=(7L/R)mod(27), and T,  scattering is absent, the current s=(Ne/h)(u;—uy),

=(T,Ty)/[1+R;+R,—2R;R, cos(2)L/R+6)]. The first whereu,u, are the chemical potentials of contacts 1 and 2,

term, 2T4, gives the transmission of twyplocalized states respectively, andN is the number of channeléwo in our

at the equator, i.e., fop(y) = 6(y—Yeg), it gives Aharonov-  casg. Since the equatdedge currents are chiral, each equa-

Bohm-like oscillations due to the flux enclosed by the equadtor is fed by a different contact, so that, ., are the chemi-

tors, with a period of oscillations &B=h/(2eRL). Similar  cal potentials of equators 1 and 2, respectively, resulting in

oscillations were predictéand observeld in a disk under a  the quantized Hall conductance af,, = Ne?/h (where N

strong magnetic field; there, chiral edge states formed at the2 in our example, with the filling at line “h” in Fig. 1

circumference oscillate with the enclosed flux. The second Let us now relate the number of equator channels to the

term in Eq.(6) contains the difference, since here, the lateralactual electron density. The maximum density of “bulk”
width of the wave function was not neglected, allowing for states, i.e., states with potential minima not at the equators, is
contribution from paths which are slightly off the equator, the number ofK, states satisfyinda|<1, divided by the
enclosing different fluxes; in the limit of infinite field7{ area, giving maxty,) = (L/27)(2%9/R)/(27wRL) per

— ), this correction reduces to zero, as it should, since thesubband. Defining the tube filling as the filling fraction

the wave function becomeg(y) — (Y —VYeq)- of the available “bulk” states, vype=nNpy/Maxpu

We wish to see next how the conductance is altered by th
spatial redistribution of the wave functions. We show in the

L

= Tup= 2Tor | 8
e2 XX 12 eq -|—1-|—2
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=27?R2npy/ 7. Whenny,—n (see Ref. 1#and substitut-  its quantized value, which i€,,= 2e?/h around a filling
ing R?/ =12 we get Viube= 2 -

Vtube™ T Vhars (7) ACKNOWLEDGMENT

relating our filling to the conventional Hall bag,,,. In the | am indebted to Sebastian Eggert for numerous helpful
case of a valley degeneracy, maxg,) is multiplied by the — discussions.

number of valleys so that the actual,. in Eq. (7) must be

divided by their number. In our example, however, with a APPENDIX: DERIVATION OF EQ. (6)

. O —
single valley, the quantum Hall f'”'r.]g IS aI‘“.be'“.z' . Below we derive a general expression for the conductance
Several problems may hinder this quantization, which we

address next. First, it was shown experimentally that in nar9f a nanotube under a perpendicular field, and apply it to

row Hall bars the quantum Hall effect is quench&dhe obtain explicitly the conductance of the lowest two equator

X channels. We assume a tube of lengtlying between two
guenching occurs whenever the lateral energy becomes coni-

parable to the Landau level. This problem is avoided here, byarrlers, 1 and 2, whosematrices are given by

definition, since we work in they>1 regime. A second R

problem is the effect of scattering. It was shotfitowever, 51:( to )

that the Hall conductance remains quantized even when scat-

tering is included, given that a local equilibrium is estab-

lished at the potential probdke., the probes are at least an

inelastic length away from the scatterperts the absence of (rz t )
Sy= .

*
ty ry

and

such an equilibrium@G,, is not quantized and depends on
G,x- In the case of a two-terminal setup this dependence
takes on a particularly elegant fotmby the sum rule
(Gt T Gx,) 1=(e¥/h)Tr(tt™), wheret is the scattering
matrix. The oscillations we found i, [Eq. (6)] translate
in this case to small oscillations @,, around its quantized
value?®

*
t, 15

Recall that the transmission amplitude of a single mode on a
line between barriers 1 and 2 ifhe=tot1+toriroty
Ftor roriroty+ - =(tity)/(1—riry). The transmission
probability is then given byTjine=|tiine| 2= (T1T2)/[1+ Ry
+R,—2yR;R, cosb)] where 6=2¢+phase(T)
+phase(}), where¢ is the “optical” phase. Here, in con-
V. DISCUSSION trast to a line, both the amplitude and the phase are functions
The currents discussed in this work are due to the high of the Iater'al coordinatg. The correct transmission ampli-
field, which both localizes a state along the circumferencelude of a single mode is then
n he strong gradien nds the ener in : : : :
2pg£:eCi,u§C?0:d?ngS;ttg tgflweg rae(::lll-asrthc':{czelo(iZttio(ne (e)f isg)éigﬁgtatet(y) = (Y) €' BVt + g (y)tye rg el felr el sty
Accordingly, any curved 2DEG should generate spin cur-
rents, giveny>1 (where » of a general curved surface can o= (y)etfe) — =%
be defined locally, if the radius of curvaturg, is constant l—r’{rze'Z[’B(y)
over an arc lengtk-1). A hemicylinder, for example, has the . . .
same physics as a cylinder in all but one feature: there is ngyherez,//k(y) is the appropriate solution of qu)’_ andfg(y)
north-south degeneracy nor is there north-south mixing, anff e phase factor alonx due to the field, fg(y)
hence, no subband splitting as in our spectrum; that point,. (&/2)Ax=(eRBA)xsin(y/R)=(7/R)xsin(y/R); note that
however, had negligible effect on the spin-current distribu-S'"¢€ right and left mover§ are Iocat(_ed at opp03|_te sides of
tion. The apparent advantage of a curved 2DEG over a nand€ Circumferencefs doesn't change sign as a particle back-
tube is the possibility to attach the contacts lithographicallySCatters at a barrier, since both- —x andy— —y. Now the
to only a small region along the curved surface: this mayCt@l transmission is
allow to harness the spin currents for spintronics applications
in an integrated solid-state device. _ _ _ lezf dy t(y)t*(y)
In conclusion, we showed that in strong fields, chiral spin
currents propagate along the tube at different spatial loca-

t,t
1l2 (A1)

tions with different velocities. We suggest the observation of :J dy|w(y)|? TiT, .
this effect with a spin-polarized scanning-tunneling 1+R;+R,—2VR1R, c0§205(y) + 6]

microscopé: the possibility to harness the spin currents for (A2)
spintronics applications with a general curved 2DEG has al-

ready been pointed out. In a fully spin-polarized filling, the Equation(A2) gives the general expression for the transmis-
magnetoconductand8,, has a periodic component, with a sion of a channel whose lateral state is given/y).

period of the flux enclosed by the equators. The Hall con- As an application of Eq(A2), let us calculate the trans-
ductance is quantized if local equilibrium is established aimission of the first two equator channels. The phase factor
the voltage probes; otherwise, it has small oscillations abouiccumulated after propagating a distahci the proximity
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of an equator is gy, x=L)~(yL/R{1-[(y yr=112(1xe 8]yl wR?
Yeq)/2R°]} where y., is the coordinate of one - -
of the equators. Consequently, the cosine in the integrand X[ e 7MY~ Yeq RIM 2R 1 @= 1Y =Yeqt RIvm“2RT

in  Eg. (A2) reads cdR6g(yx=L)+0]~cog27n(L/

R)+6]—Bsin27(L/R)+ 0[(y—Yeg/RI>, where B=(7L/  where+ refers to the symmetric and antisymmetric states.
R)mod (2m). Then, to second order ity(-Yeq)/R, EQ.(A2)  The integral in Eq(A3) then yieldsR%/[47(1=e~Y8)]. The
becomes combined conduction of the two equator channels,
=T+ T1,, given by Eq.(A3) is then

_ L
2728 Rlesm( 295 +0

T1o=Teq— fd 2 L
Sl (T1T,R)? Yl ZB\/Rlesin(2n§+0
_ _ €q
X(Y=Yeq?, (A3) T12=2Teq (Tsz) T (A4)

where  Te=(T1T2)/[{1+R;+R,—2VR R, cog27(L/R)
+6]}. We estimated/(y) in connection with the variational where the factor +e™** comes from the choice of the
calculation of the spectrum in E¢4). The lowest two equa- variational wave functiofisee Fig. 1 and Ed4)], so it is of

1/4

tor states are given by course only an approximate numerical factor.
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