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Chiral spin currents and quantum Hall effect in nanotubes
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Nanotubes in strong perpendicular magnetic fields are considered and predicted to exhibit chiral spin cur-
rents. At a certain filling the current flows only at the sides of the tube, giving rise to the integer quantum Hall
effect and magnetoconductance oscillations with a period corresponding to the Aharonov-Bohm flux through
the longitudinal cross section of the tube.
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I. INTRODUCTION

Of the many remarkable properties of nanotubes,1 a some-
what overlooked feature is the possibility to exert immen
gradients of magnetic field on the electrons, by subject
the tube to a perpendicular homogeneous field; since
electrons on a two-dimensional cylinder are coupled only
the component of the field normal to the surface, the~effec-
tive! magnetic field acting on the electron changes sign at
sides of the tube, which may result in very strong gradie
We show here that in sufficiently strong fields@R. l , where
R is the tube radius andl 5(\/ueBu)1/2 is the magnetic
length# electrons with an opposite direction of propagati
are localized in opposite sides of the circumference, form
chiral spin currents, and at a certain energy filling, a H
quantization.

Spatial control of spin currents was demonstrated pre
ously using a material with a spatially varyingg factor.2

Here, it is the circumferentially varying effective field whic
is found to generate spin currents along the tube axis.

It was first found numerically in Ref. 3 that a cylindrica
two-dimensional electron gas~2DEG! in a perpendicular
magnetic field forms Landau-like levels at the top and b
tom and chiral states at the sides. Regarding carbon n
tubes, thek•p approximation was used to study their ma
netoconductance; this approximation, which linearizes
vicinity of the K points of the graphite first Brillouin zone
may be valid at small fields; in strong magnetic fields, ho
ever, theK points as well as the graphite first Brillouin zon
are ill defined. Even at low fields, thek•p theory, did not
fare well when compared to experiments.4,5A proper account
of the specific band structure~i.e., the specificn,m indices of
the chiral vector! requires the diagonalization of the ma
netic Hamiltonian containing thecompletecarbon-nanotube
unit cell, as exposed in Ref. 1. A new class of nanotube6,7

forms single inversion layers composed of silic
germanium,7 indium gallium, and indium arsenic;6 with con-
trolled ~and fairly large! radii, these nanotubes can be ma
clean and without the problems of unknown chirality a
intershell coupling that are present in multiwall carbon na
tubes~MWCNT!.

II. THE ENERGY SPECTRUM

Since the effects we are to discuss resulting from the c
vature are geometric rather than band-structure effects,
0163-1829/2003/67~15!/155311~5!/$20.00 67 1553
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since the quantum Hall effect is formed in an inversion lay
we take as a model the above-mentioned inversion la
nanotubes. Ifx,y are the longitudinal and circumferentia
coordinates of the tube, respectively, the magnetic fieldB is
perpendicular to the surface at the linesy50 andy5pR,
hereafter called the north and south ‘‘poles .’’ The ‘‘equ
tors’’ are then aty5pR/2 andy53pR/2, and states located
anywhere above or below the equators are denoted ‘‘no
or ‘‘‘south’’ states. The effective vector potential on the su
face of the tube has only thex component Ax
5RBsin(y/R). The Hamiltonian of a cylindrical 2DEG is
then

H52
\2]y

2

2m
1

\2

2m S 2 i ]x1
eRB

\
sin

y

RD 2

1mgs•B, ~1!

whereg is the gyromagnetic factor~taken here at the value 2!
ands is the spin operator. The longitudinal wave vector a
spin are conserved since the Hamiltonian~1! does not con-
tain they coordinate nor other spin operators, thus the ope
tors are replaced by their corresponding eigenvaluesKx and
6gmB/2. In units of ER[\2/2mR2 ~which will be used
throughout this work!, Eq. ~1! becomes the following one
dimensional Hamiltonian,

H52R2]y
21S KxR1h sin

y

RD 2

6h, ~2!

where, in additionh[(R/ l )2@1 throughout this work. The
Hamiltonian ~2! is a variant of Hill’s equation and can b
easily diagonalized numerically.3 The typical energy spec
trum and probability distribution in this regime are shown
Fig. 1; the eigenfunctions are centered around their poten
minima, depending on their longitudinal wave vector,Kx ;
these minima are atymin

n 52R sin21a andymin
s 5pR2ymin

n ,
where then and s subscripts stand for the ‘‘north’’ and
‘‘south’’ potential wells, anda is defined in the following
way:

a55
KxR

h
if 2

h

R
,Kx,

h

R
,

1 Kx>
h

R
,

21 Kx<2
h

R
.

~3!
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FIG. 1. Top: Energy spectrum of Eq.~2!, cal-
culated numerically forh520. The lowest band
is compared with the variational result,E6, of
Eq. ~4!. Bottom: Spatial probability distribution
along the circumferential coordinate of the stat
at the lowest subband. Here the electrons are w
confined to the proximity of their potentia
minima. At Kx50 the potential in Eq.~2! is a
double well, one at each pole. AsuKxu increases,
the two wells move closer towards one of th
equators, and whenuKxu>h/R they merge to one
well, at the equator.
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Since the Hamiltonian~2! is symmetric under a simulta
neous sign inversion ofy andKx , states with oppositeKx are
centered at opposite sides of the circumference, and s
with Kx50 are thus centered at the poles. AtuKxu!h/R the
potential has two deep and isolated potential wells in
north and south, giving rise to the twofold degeneracy of
spectrum. Only asuKxu→h/R are the two potential wells a
sufficient proximity across one of the equators for their c
responding states to mix and remove the degeneracy.

We can find an analytic approximation to the spectrum
the lowest band, by making an ansatz on the variational w
function, in accordance with the discussion above. Up t
normalization factor, let the circumferential eigenfunctio
of a stateKx be ck

6(y)5xk
n6xk

s , where xk
n ,xk

s are the
single-well harmonic solutions of the north and south pot
tial wells, respectively. At the lowest band, we therefo

guessxk
n/s5Ae2h(y2ymin

n/s
1ln/s)

2/2R2
, whereymin

n/s is the north
or south coordinate of the potential minima. AsuKxu
→(h/R)2 , the north-south splitting evolves into the tw
eigenstates of a single, highly anharmonic, potential well
the equator. The variational parameterln/s accounts for that
by keeping the two eigenfunctions slightly apart; the bes
was found atln/s50 if uys2ynu. l and7 l /2 otherwise; the
minus sign corresponds to the north for negativeKx and to
the south for positiveKx .

The energy of the symmetric (1) and antisymmetric
(2) subbands is then found byE65^xk

nuHxk
n&

6^xk
nuHxk

s&. The result gives the following spectrum:

E6C65~KxR2ah!21h~12a2!1 1
2 KxRa

6e2hD2/R2
@~ uKxuR2h!22 1

2 uKxuR#, ~4!

where C65^ck
6uck

6&5(16e2hD2/R2
) and D5R@(p/4)

2 1
2 sin21uau1ulu/R#. The spin term wasomittedfrom Eq. ~4!

and the subsequent equations to avoid confusion with th6
sign of the symmetric and antisymmetric subbands. It is
derstood, however, that the spin further splits the spect
15531
tes

e
e

-

f
ve
a

-

t

t

-
m

by 6h. The spectrum of Eq.~4! approximates the exac
solution in a satisfactory way apart from the vicinity o
uKxu'h/R, as shown in Fig. 1.

Simplified expressions can be obtained from Eq.~4! if uau
is not too close to 1. For states not centered on the equ
~‘‘bulk’’ states!, E'h cosa while E6'(uKxuR2h)2

1D6uKxuR for equator states, whereD65(e71)/@2(e
61)#'0.23 and 1.08, respectively.

The energy of higher subbands can be similarly obtain
analytically; here we need, however, only the energy of
pole states at those subbands; these are easily obtaine
expanding the potential in Eq.~2! aroundKx50, giving the
~spinless! Landau-like levels at the poles,

En
P5h~2n11!2

1

2 S n21n1
1

2D , ~5!

where the first term is the usual Landau levels, and the s
ond term is the anharmonic correction due to the curvatu
The velocity associated with a stateKx can be found from
the dispersion relation~4!; the average velocity of the two
subbands is given byvk52(\/2mR)a for the bulk states
andvk5(\/mR)(KxR2h) for the equator states.

In the flat 2DEG, the energy of a thenth Landau level of
spin down, is degenerate with then21 level of spin up.
Here, however, for the Landau-like levels at the poles, t
degeneracy is removed due to the second term on the r
hand side of Eq.~5!. By fixing the Fermi energy in this gap
(E1

P2h,EF,E0
P1h), only spin-up states would cross th

Fermi energy at the poles; using Eq.~5! this gives 2h2 5
4

,EF,2h2 1
4 ; this energy window is due to our arbitrar

choice ofg52 for theg factor in Eq.~1!; in general, forg
52c with c a constant, the corresponding filling energy
h(32c)2 5

4 ,EF,h(11c)2 1
4 . In this window of width 1

(5ER) we get the typical spin distribution of Fig. 2~top!.
There are two counterpropagating spin-up currents at
poles; each current is the sum of two states, with a velo
2(\/2mR)a, as calculated above.
1-2
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FIG. 2. The probability distribution of state
at the Fermi energy. Top: The sum of all spin-u
and spin-down states at the Fermi energyEF

&h ~line ‘‘s’’ in Fig. 1 !. There are a total of 20
states~ten channels!. The arrows show the direc
tion of propagation of these circumferentially lo
calized states. Bottom:EF*0 ~line ‘‘h’’ in Fig.
1!. At this energy there are only two equato
states along each direction of propagation. T
plotted probabilities correspond toh530 andh
550 for the top and bottom figures, respective
~e.g., if 25 nm<R<100 nm, h530 is achieved
by the field 31.6 T>B>1.9 T, where the lower
field corresponds to the larger radius!.
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III. LONGITUDINAL CONDUCTANCE

We wish to see next how the conductance is altered by
spatial redistribution of the wave functions. We show in t
Appendix that the transmission of a statec(y) in a tube
located between two barriers, 1 and 2, is@Eq. ~A2!#
T125*dy uc(y)u2(T1T2) /$11R11R222AR1R2 cos@2uB(y)
1u#%, whereuB(y)5(h/R)x sin(y/R), u is a constant, and
R,T are the reflection and transmission probabilities of e
barrier.

Using Eq.~A2! we can find the conductance of the Ha
state, where the filling corresponds to line ‘‘h’’ in Fig. 1, i.
where only the two equator channels are gapless. In
case, the total conductance of the two channels is found t
~see the Appendix!

\

e2
Gxx5T1252Teq2S Teq

T1T2
D 2 bAR1R2sinS 2h

L

R
1u D

h~12e21/4!
,

~6!

whereL is the tube length,b[(hL/R)mod(2p), and Teq

[(T1T2)/@11R11R222AR1R2 cos(2hL/R1u)#. The first
term, 2Teq , gives the transmission of twoy-localized states
at the equator, i.e., forc(y)5d(y2yeq), it gives Aharonov-
Bohm-like oscillations due to the flux enclosed by the eq
tors, with a period of oscillations ofDB5h/(2eRL). Similar
oscillations were predicted9 and observed10 in a disk under a
strong magnetic field; there, chiral edge states formed at
circumference oscillate with the enclosed flux. The seco
term in Eq.~6! contains the difference, since here, the late
width of the wave function was not neglected, allowing f
contribution from paths which are slightly off the equato
enclosing different fluxes; in the limit of infinite field (h
→`), this correction reduces to zero, as it should, since t
the wave function becomesc(y)→d(y2yeq).
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The magnetoconductance experiments conducted on l
nanotubes~MWCNT!,4,5 were inconclusive and the subje
of some debate~see Ref. 11!. Since the total longitudina
conductance comes from all the subbands crossing the F
energy, it is clear that as the field varies, the number of o
channels may abruptly change, adding an aperiodic, ba
structure-dependent element to the magnetoconductanc
suggested in Ref. 5.

IV. HALL CONDUCTANCE

We focus below on the small window of energy fillin
~line ‘‘h’’ in Fig. 1 ! where the conductance is carried sole
by the equator states, as shown in Fig. 2~bottom!; the reason
is its topological equivalence to the Hall bar in the integ
quantum Hall effect.12 Here the Hall voltage can be define
as the potential drop between the equators.

Having found the longitudinal conductance@Eq. ~6!#, we
wish to establish the quantization of Hall conductance and
range of validity, by applying some results from the exte
sive studies of the quantum Hall effect in the framework
the Landauer formalism.9,13,16,17In the simplest case, whe
scattering is absent, the current isI 5(Ne/h)(m12m2),
wherem1 ,m2 are the chemical potentials of contacts 1 and
respectively, andN is the number of channels~two in our
case!. Since the equator~edge! currents are chiral, each equa
tor is fed by a different contact, so thatm1 ,m2 are the chemi-
cal potentials of equators 1 and 2, respectively, resulting
the quantized Hall conductance ofGxy5Ne2/h ~where N
52 in our example, with the filling at line ‘‘h’’ in Fig. 1!.

Let us now relate the number of equator channels to
actual electron density. The maximum density of ‘‘bulk
states, i.e., states with potential minima not at the equator
the number ofKx states satisfyinguau,1, divided by the
area, giving max(nbulk)5(L/2p)(2h/R)/(2pRL) per
subband. Defining the tube filling as the filling fractio
of the available ‘‘bulk’’ states, n tube[nbulk /max(nbulk)
1-3
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ALEX KLEINER PHYSICAL REVIEW B 67, 155311 ~2003!
52p2R2nbulk /h. Whennbulk→n ~see Ref. 14! and substitut-
ing R2/h5 l 2 we get

n tube5pnbar, ~7!

relating our filling to the conventional Hall barnbar. In the
case of a valley degeneracy, max(nbulk) is multiplied by the
number of valleys so that the actualn tube in Eq. ~7! must be
divided by their number. In our example, however, with
single valley, the quantum Hall filling is atn tube*2.

Several problems may hinder this quantization, which
address next. First, it was shown experimentally that in n
row Hall bars the quantum Hall effect is quenched.15 The
quenching occurs whenever the lateral energy becomes c
parable to the Landau level. This problem is avoided here
definition, since we work in theh@1 regime. A second
problem is the effect of scattering. It was shown,16 however,
that the Hall conductance remains quantized even when s
tering is included, given that a local equilibrium is esta
lished at the potential probes~i.e., the probes are at least a
inelastic length away from the scatterers!. In the absence o
such an equilibrium,Gxy is not quantized and depends o
Gxx . In the case of a two-terminal setup this depende
takes on a particularly elegant form17 by the sum rule
(Gxx

211Gxy
21)215(e2/h)Tr(tt1), where t is the scattering

matrix. The oscillations we found inGxx @Eq. ~6!# translate
in this case to small oscillations ofGxy around its quantized
value.9

V. DISCUSSION

The currents discussed in this work are due to the high
field, which both localizes a state along the circumferen
and, due to the strong gradients, bends the energy bandk
space, according to the real-space location of its eigens
Accordingly, any curved 2DEG should generate spin c
rents, givenh@1 ~whereh of a general curved surface ca
be defined locally, if the radius of curvature,R, is constant
over an arc length@ l ). A hemicylinder, for example, has th
same physics as a cylinder in all but one feature: there is
north-south degeneracy nor is there north-south mixing,
hence, no subband splitting as in our spectrum; that po
however, had negligible effect on the spin-current distrib
tion. The apparent advantage of a curved 2DEG over a na
tube is the possibility to attach the contacts lithographica
to only a small region along the curved surface; this m
allow to harness the spin currents for spintronics applicati
in an integrated solid-state device.

In conclusion, we showed that in strong fields, chiral s
currents propagate along the tube at different spatial lo
tions with different velocities. We suggest the observation
this effect with a spin-polarized scanning-tunneli
microscope;8 the possibility to harness the spin currents
spintronics applications with a general curved 2DEG has
ready been pointed out. In a fully spin-polarized filling, t
magnetoconductanceGxx has a periodic component, with
period of the flux enclosed by the equators. The Hall c
ductance is quantized if local equilibrium is established
the voltage probes; otherwise, it has small oscillations ab
15531
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its quantized value, which isGxy52e2/h around a filling
n tube*2.
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APPENDIX: DERIVATION OF EQ. „6…

Below we derive a general expression for the conducta
of a nanotube under a perpendicular field, and apply it
obtain explicitly the conductance of the lowest two equa
channels. We assume a tube of lengthL lying between two
barriers, 1 and 2, whoses matrices are given by

s15S r 1 t1*

t1 r 1*
D

and

s25S r 2 t2*

t2 r 2*
D .

Recall that the transmission amplitude of a single mode o
line between barriers 1 and 2 ist l ine5t2t11t2r 1* r 2t1

1t2r 1* r 2r 1* r 2t11•••5(t1t2)/(12r 1* r 2). The transmission
probability is then given byTline5ut l ineu25(T1T2)/@11R1

1R222AR1R2 cosu# where u52f1phase(r 1* )
1phase(r 2* ), wheref is the ‘‘optical’’ phase. Here, in con-
trast to a line, both the amplitude and the phase are funct
of the lateral coordinatey. The correct transmission ampl
tude of a single mode is then

t~y!5ck~y!t1eiuB(y)t21ck~y!t1eiuB(y)r 2* eiuB(y)r 1eiuB(y)t2

1•••5ck~y!eiuB(y)
t1t2

12r 1* r 2ei2uB(y)
, ~A1!

whereck(y) is the appropriate solution of Eq.~2!, anduB(y)
is the phase factor alongx due to the field, uB(y)
5(e/\)Axx5(eRB/\)x sin(y/R)5(h/R)xsin(y/R); note that
since right and left movers are located at opposite side
the circumference,uB doesn’t change sign as a particle bac
scatters at a barrier, since bothx→2x andy→2y. Now the
total transmission is

T125E dy t~y!t* ~y!

5E dyuc~y!u2
T1T2

11R11R222AR1R2 cos@2uB~y!1u#
.

~A2!

Equation~A2! gives the general expression for the transm
sion of a channel whose lateral state is given byc(y).

As an application of Eq.~A2!, let us calculate the trans
mission of the first two equator channels. The phase fa
accumulated after propagating a distanceL in the proximity
1-4
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of an equator is uB(y,x5L)'(hL/R)$12@(y
2yeq)

2/2R2#% where yeq is the coordinate of one
of the equators. Consequently, the cosine in the integr
in Eq. ~A2! reads cos@2uB(y,x5L)1u#'cos@2h(L/
R)1u#2b sin@2h(L/R)1u#@(y2yeq)/R#2, where b[(hL/
R)mod (2p). Then, to second order in (y2yeq)/R, Eq.~A2!
becomes

T125Teq2

2Teq
2 bAR1R2sinS 2h

L

R
1u D

~T1T2R!2 E dy uc~y!u2

3~y2yeq!
2, ~A3!

where Teq[(T1T2)/$11R11R222AR1R2 cos@2h(L/R)
1u#%. We estimatedc(y) in connection with the variationa
calculation of the spectrum in Eq.~4!. The lowest two equa-
tor states are given by
nd

L

.

y,
a,

. G
.

15531
d

c651/@2~16e21/8!#Ah/pR2

3@e2h(y2yeq2R/Ah)2/2R2
6e2h(y2yeq1R/Ah)2/2R2

#,

where6 refers to the symmetric and antisymmetric stat
The integral in Eq.~A3! then yieldsR2/@4h(16e21/8)#. The
combined conduction of the two equator channels,T12

5T12
1 1T12

2 , given by Eq.~A3! is then

T1252Teq2S Teq

T1T2
D 2bAR1R2sinS 2h

L

R
1u D

h~12e21/4!
, ~A4!

where the factor 12e21/4 comes from the choice of the
variational wave function@see Fig. 1 and Eq.~4!#, so it is of
course only an approximate numerical factor.
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