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We consider a periodic lattice loaded with pairs of bosonic atoms tightly bound to each other via strong
attractive on-site interaction that exceeds the intersite tunneling rate. An ensemble of such lattice dimers is
accurately described by an effective Hamiltonian of hard-core bosons with strong nearest-neighbor repulsion,
which is equivalent to the XXZ model with Ising-like anisotropy. We calculate the ground-state phase diagram
for a one-dimensional system, which exhibits incompressible phases, corresponding to an empty and a fully
filled lattice (ferromagnetic phases) and a half-filled alternating density crystal (antiferromagnetic phase),
separated from each other by compressible phases. In a finite lattice the compressible phases show character-
istic oscillatory modulations on top of the antiferromagnetic density profile and in density-density correlations.
We derive a kink model that provides simple quantitative explanation of these features. To describe the
long-range correlations of the system, we employ the Luttinger-liquid theory with the relevant Luttinger
parameter K obtained exactly using the Bethe-ansatz solution. We calculate the density-density as well as
first-order correlations and find excellent agreement with numerical results obtained with density-matrix

renormalization-group methods.
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I. INTRODUCTION

Various idealized models describing many-body quantum
systems on a lattice, such as the Heisenberg spin and the
Hubbard models, have been widely studied for decades in
condensed-matter physics [1,2]. With the recent progress in
cooling and trapping bosonic and fermionic atoms in optical
lattices [3], some of these models can now be realized in the
laboratory with unprecedented accuracy—the Hubbard
model being a case in point [4]. Implementing more general
models, e.g., extended Hubbard or asymmetric spin model,
with atoms in optical lattice potentials is, however, more
challenging but potentially very rewarding. The purpose of
the present paper is to study an experimentally relevant situ-
ation realizing the extended Hubbard model or, equivalently,
an antiferromagnetic (AFM) XXZ model in the Ising-like
phase with cold neutral atoms in a deep optical lattice poten-
tial.

We consider an optical lattice realization of the Bose-
Hubbard model with strong on-site attractive interaction be-
tween the atoms. Specifically, we study a situation when
each site of the lattice is loaded with either zero or two
atoms. Experimentally, this can be accomplished by adiabati-
cally dissociating a pure sample of Feshbach molecules in a
lattice with at most one molecule per site [5,6]. The on-site
attractive interaction then results in the formation of attrac-
tively bound atom pairs [7,8]—“dimers”—whose repulsive
analog was realized in a recent experiment [6].

For strong atom-atom interaction, either attraction or re-
pulsion, the dimer constituents are well colocalized [8], and
an ensemble of such dimers in a lattice can be accurately
described by an effective Hamiltonian, which has the form of
a spin-% XXZ model with Ising-like anisotropy. The deriva-
tion of the effective Hamiltonian is given in [9], where we
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have also discussed its properties for the case of repulsive
atom-atom interactions. Since the resulting nearest-neighbor
attraction of dimers dominates the kinetic energy, below a
critical temperature the dimers form minimal surface “drop-
lets” on a lattice. In the case of attractive atom-atom interac-
tion considered here, the interaction between the nearest-
neighbor dimers is a strong repulsion. We then find that the
ground state of the system of dimers in a grand canonical
ensemble exhibits incompressible phases, corresponding to
an empty and a fully filled lattice as well as a half-filled
alternating density “crystal.” These phases are separated
from each other by compressible phases.

We calculate numerically and analytically the ground-
state phase diagram for this system in one dimension. The
critical points can be obtained with the help of the Bethe-
ansatz, making use of the correspondence to the XXZ model
[10]. In a finite lattice and close to half filling, the compress-
ible phases show characteristic oscillatory modulations on
top of the antiferromagnetic density profile. A simple kink
model is derived, which explains the density profiles as well
as number-number correlations in the compressible phases.
The long-range correlations of the dimer system show a
Luttinger-liquid behavior. We calculate the amplitude and the
density correlations in a finite system from a field theoretical
model, which show excellent agreement with the numerical
data. The corresponding Luttinger parameter is obtained by
solving the Bethe integral equations. Finally, we briefly dis-
cuss the implications of tunable nearest-neighbor interac-
tions, which could be realized with dimers consisting of two
different atomic species.

II. EFFECTIVE DIMER MODEL

We consider attractively bound dimers on a d-dimensional
isotropic lattice. Because of the strong on-site atom-atom
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interaction U <0, it is energetically impossible to break the
dimers, which effectively play the role of hard-core bosons
on the lattice. Via a second-order process in the original atom
hopping J<|U|, the dimers can tunnel to neighboring sites

with the rate J=-2J%/U>0 and carry nearest-neighbor in-

teraction fixed at 4J. The effective Hamiltonian for the Sys-
tem has been derived in [9],

Hep= 2 e+ U= 2dT)ii; = T2 ¢1é;+ 472 iy, (1)

J G (i)
where éj- and ¢; are the creation and the annihilation opera-
tors and 71;=¢;¢; is the number operator for a dimer at site j.
In the first term of Eq. (1), the local potential energy 2¢; of
the pair of atoms is modified by an additional “internal en-

ergy” of the dimer (U-2dJ), which is negative for attractive
interactions, so that the effective local chemical potential

is given by ,u,j=|U|+2dj —2¢;. The kinetic energy of one
dimer described by the second term of Eq. (1) spans the

interval [-2dJ,2dJ] corresponding to a Bloch band of a
d-dimensional square lattice. In comparison, bringing a pair

of dimers to neighboring sites requires an energy of 8J due to
the strong repulsive interaction in the last term.

Since the dimers are effectively hard-core bosons, we can
map the above Hamiltonian onto a spin system using the
well-known Holstein Primakoff transformation

jzml—l/Z,
o+ At /—/\
Sj=ciNL—m;,
~_ 1 _ 24
Sj=\’1—ijj, (2)

which preserves the SU(2) commutation relations exactly.
Since double occupancy is forbidden, m;=0 or 1, the factor

N i f . . ity fi
V1-=m;1s zero for an occupied site and unity for an empty

site. Therefore, we simply have 3}':6} and 3']7=éj, so that the
equivalent Hamiltonian is given by

T P .
Hepn/20 =~ = 2 (787 - 48389 + 2 bS5, (3)
250 7 g

with an effective magnetic field 7;=(g;+U/2)/ J+3d. This is
the antiferromagnetic XXZ spin model with a fixed aniso-
tropy of 4, i.e., for h=0, the model is in the gapped Ising-like
phase. A given total number N of dimers in a lattice of N,
sites correspond, in the spin model, to a fixed total magneti-
zation M, =N- %Nx.

III. DIMER SYSTEM IN ONE DIMENSION

It is now clear that the behavior of the dimer system in
one dimension can be determined via isomorphic mapping of
Eq. (1) onto the one-dimensional (1D) integrable XXZ model
in a uniform field,
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FIG. 1. (Color online) Density of dimers in a 1D lattice and
weak harmonic potential obtained from DMRG simulation with
w;=18.57-2¢; (U/J=-16.5) and &;/J=j/4400. One clearly iden-
tifies the incompressible phase with homogeneous filling of (r;)
=1 in the trap center and two AFM phases, separated by compress-
ible intermediate regions.

Ng-1 Ny
Hyyy=— 2 (S8, + 8080, —ASSSE ) +h 2§55, (4)
J=1 j=1

where A is the anisotropy of the spin-spin interaction.

A. Ground-state phase diagram

An important general feature of the dimer model in Eq.
(1) is that the ratio of interaction to Kinetic energy has a fixed
value larger than 1. As a consequence, the ground state of the
system is dominated by interaction giving rise to interesting
correlation properties.

In a homogeneous system, the ground state of the system

depends only on a single parameter w/ J. The corresponding
phase diagram can be completely mapped out in an experi-
ment by adding a shallow external trapping potential with
sufficiently small confinement such that the local density ap-

proximation is valid and u;=|U|+2J-2¢; does not change
significantly over many lattice sites. Then different regions in
the trap would correspond to different chemical potentials .

In Fig. 1 we plot the density of dimers in a one-
dimensional lattice and an additional harmonic trapping
potential  obtained by  numerical  density-matrix
renormalization-group (DMRG) calculations [11]. One
clearly recognizes three types of regions: in the trap center,
where the local chemical potential is largest, there is a unit
filling of dimers. Separated by a spatial region of monoto-
nously decreasing average filling follows a region where the
average filling is exactly one half and the dimers form a
periodic pattern with period 2 and almost maximum modu-
lation depth. In this region, the dominant effect is the

nearest-neighbor repulsion 4J>0 of Eq. (1). Toward the
edge of the dimer cloud, the average density decreases again
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monotonously to zero. In terms of the equivalent spin sys-
tem, the central region corresponds to a gapped phase of full
spin polarization imposed by a large negative effective mag-
netic field. The region of exactly one half average filling
corresponds to another gapped phase with AFM order in-

duced by the strong Ising-like interaction 4SZSZ L1 of Eq. (3).
The intermediate regions are compressible.

The critical values of the chemical potential for the tran-
sitions between compressible and incompressible phases in
one dimension are known from the work of Yang and Yang
[10] on the XXZ model of Eq. (4). For the parameters of the
present system, we have

wll==2, (52)

o

parn /T =8 = 2315

n=—o0

="
cosh[n arccosh(4)]

~3.68361 ..., (5b)

o]

~ — (GRN
/J=8 +2V15
MAFM+ \ ngw cosh[n arccosh(4)]

~12.31638..., (5¢)

wild = 18. (5d)

These values agree very well with those obtained from exact
diagonalization on a small homogeneous lattice with N,
=10 sites and periodic boundary conditions, as well as
DMRG simulation with up to N;=300 and open boundary
conditions. They also match the different regions of Fig. 1 as
indicated by the vertical dashed lines in the lower part of the
figure.

B. Mott-insulating phases

In the language of spin Hamiltonian, phases with zero
(N=0) or full (N=N;,) filling correspond to ferromagnetic
phases with a simple form of the ground state

[ =11.1.1,.... 1), (6)
[ =11.1.1, ... 1) (7)

Particle-hole excitations are not possible in the insulating
state (7), while inserting a particle into Eq. (6) or removing
one from Eq. (7), corresponding to flipping a spin, carries
finite energy cost given by Egs. (5a) and (5d). Hence these
phases are incompressible.

For half filling (N= %NS) the situation corresponds most
closely to an AFM phase. However, in this case the simple
Néel state

W) = |
AFM .

SLLLTLLTLLT) (8)

is not an exact eigenstate of the full Hamiltonian I:Ieff in Eq.

(1). Rather, is an eigenstate of Hamiltonian H')
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= Aeff—lflhop without the hopping term I:Ihop=—72 j(é;léj
+cA;cA +1). Due to I:I}10p a dimer can tunnel from an occupied
site to a neighboring empty site, which in terms of the Néel
state (8), corresponds to flipping two neighboring spins, re-
sulting in a state of the form

[ =1 L L L T T LT ©)

If we assume periodic boundary conditions and an even
number of lattice sites N, there are j=1,...,N, different
states (9), one for each link where two neighboring spins can
be flipped. Each of those states |¢;])) has a larger repulsive

(Ising) interaction energy E'", which is increased by 87 rela-
tive to energy EES%M of state |1,/f§£1):M). It is tempting to treat the

smaller hopping f]hop as perturbation with respect to f]é(f)f), but
unfortunately already the first-order correction carries a con-
tribution from all N; possible states in Eq. (9). In higher-
order perturbation theory the number of contributing states
increases with higher powers in Ny, so that the perturbation
series diverges in the thermodynamic limit.

However, if we are interested in local observables, such as
the density in Fig. 1, we can restrict the perturbation to only
those hopping terms that affect the density at a given point.
In particular, in order to calculate the expectation value
(armlS;|¥apm), We make the following ansatz for the
ground state | harm):

¢<”><¢“HO N
e = 0 + 2 S i
=it + (Iw D+ ), (10)

which can be normalized by a factor of 1/y1+1/32. This
state is in general a poor approximation to the ground state,
but it describes very well which terms in the Hamiltonian
affect the local density at site j, since higher-order hopping
contributes only 1/64 or less. Accordingly, the local density
is given by

<¢AFM|S|¢AFM>~( l) 66(1_32) ( 1) 66 ° (11)

which corresponds to a deviation of about 0.03 from perfect
alternating order. Our numerical results for homogeneous
systems show a deviation of about 0.032, which is in very
good agreement with the prediction. Even though the half-
filling state always implicitly contains excitations of type (9),
the removal or the addition of a particle still costs relatively
large energy given by Eq. (5b) or Eq. (5¢), which makes the
AFM phase incompressible.

C. Properties of compressible phases

In the remainder of this section, we examine the com-
pressible phases, mainly in the vicinity of the antiferromag-
netic phase, using two different approaches. The first is per-
turbative in nature and relies on the fact that the nearest-
neighbor interaction energy between the dimers exceeds the
dimer hopping energy by a large factor of 8. We show that
the system can approximately be treated as a noninteracting
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FIG. 2. (Color online) Particle density profile in a homogeneous
lattice with N;=99 sites and hard-wall boundaries, for different par-
ticle numbers N. For half filling, N=50, the ground state has nearly
perfect AFM order. Adding one, two, and three particles leads to the
density-wave modulations with the number of nodes equal twice the
number of additional particles.

gas of kinks that behave like hard-core bosons. The second
approach aims to describe long-range correlations employing
the Luttinger-liquid theory. The relevant Luttinger parameter
can be obtained by Bethe-ansatz solution of the equivalent
XXZ spin model.

1. Noninteracting kink approximation

In Fig. 2 we plot the density distribution of dimers in a
homogeneous lattice of N;=99 sites obtained from DMRG
simulations with different numbers of dimers N. An infinite
(hard-wall) confining potential £5=&,o,— + has been used,
which imposes on Hamiltonian (1) open boundary conditions
with my=m;3p=0. Due to the asymmetric coupling at the
boundaries, the end sites j=1 and j=99 prefer to be occupied
with a particle. To accommodate an oscillating density wave,
we therefore take odd number of lattice sites N,. Note that
the open boundary condition for the particles in Eq. (1) cor-
responds to an additional effective edge field i =hgg=-2 for
the spins in the XXZ model of Eq. (3), which has the analo-
gous effect of polarizing both end spins up.

As seen in Fig. 2, the ground state for N=50 exhibits
density oscillations corresponding to the AFM Néel order, up
to the small correction discussed in Sec. III B. Adding par-
ticles leads to modulated density distribution, with the enve-
lope of modulation having regularly spaced nodes whose
number is equal to twice the number of additional particles.
In the following we will provide a simple theoretical under-
standing for this effect.

Without the small hopping term I:Ihop, the ground state of
Hamiltonian (1) for half filling is the AFM state |\0,) of
Eq. (8), which is twofold degenerate. The AFM order with
period 2 effectively doubles the size of the unit cell. Adding

then a particle to |43, costs exactly an energy of (h+8)J,
resulting in state

|"'?Til»Tj»Tj+1sT7lvTal’T5--->a

which is energy degenerate with any state of the form
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FIG. 3. (Color online) Top: 1D chain with one particle added to
the AFM state creating a pair of odd (red; site 5) and even (blue;
site 10) kinks. The hopping Hamiltonian I:Ihop leads to a motion of
the odd and the even kinks on odd or even site, respectively. Inter-
change of odd- and even-site kinks is not possible. Bottom: map-
ping onto an effective lattice with a lattice constant of 2.

|¢{SIZM+1 = |""T7J/’Tj’T’l’ ’l’Tj”T’l"">' (12)

Hence, the additional particle causes effective domain walls,
which can be placed anywhere in the system and play the
role of mobile kinks at positions j and j' between AFM
regions with different orientations. Note that without hop-
ping any number of particles above half filling can be created
at the critical field hg_)=—8 and placed in an arbitrary ar-
rangement as long as no two neighboring lattice sites are
empty. In other words, at hﬁ_—) we have a huge degeneracy of
states with any magnetization M, =0, corresponding to arbi-
trary arrangement of antiferromagnetic regions and spin-up
ferromagnetic regions. The analogous statement is also true
at the upper critical field hE.J' )=8, where the degenerate sub-
space is defined as states with M, =0 where no two neigh-
boring spins may point up. This degeneracy implies that
without hopping the transition from the antiferromagnetic
incompressible phase to the ferromagnetic incompressible
phases is infinitely sharp at the effective critical magnetic
fields hgi). As we will see below, however, the hopping lifts
this degeneracy and is therefore crucial for the stability of
compressible phases over finite ranges of field / as observed
in Fig. 1.

The hopping 1’:1h(,p is also responsible for the modulated
wave patterns seen in Fig. 2. Starting from the AFM state in
Eq. (8), we now insert more and more particles, each pro-
ducing a pair of kinks. The states in Eq. (12) can be consid-
ered as AFM states with a pair of kinks, one at even sites and
one at odd sites, e.g., state ||, 12,13, TasTs>Te>17> TgsLos-r2)
has kinks at sites 4 and 5, while state
|l1,Tz,l3,T4,T5,L6,T7,T8,l9,...) has kinks at sites 4 and 7.

Hyop has nonvanishing matrix elements within the subspace
of energy degenerate states with fixed number of additional
particles. Within this manifold of states, hopping of the ad-
ditional particle corresponds to free motion of kinks, wherein
an even-site kink moves only on even sites and an odd-site
kink on odd sites, as illustrated in the top part of Fig. 3.
Furthermore, the even- and odd-site chain kinks cannot ex-
change their relative order. Note that hopping of a particle
surrounded by two empty sites is energetically suppressed.
Given a fixed number of additional particles or holes, the
motion of the corresponding kinks is equivalent to the mo-
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tion of hard-core bosons in an effective lattice with lattice
constant 2. To see this, consider the case of g additional
particles on top of the half-filled lattice; the opposite case of
holes follows from the particle-hole symmetry. Let the posi-
tions of the kinks be j; <j,<...<jp,. If j; is even (odd)
then j3,/s,/j7,... are also even (odd) and j;,j4, /... are odd
(even). We now perform a mapping onto a new lattice which
we call the kink lattice. The quasiposition k,, of the nth kink
is then

jn+n_l . ..
T if j; is even

k= (13)
J”T if j, is odd.

This mapping is illustrated in the lower part of Fig. 3.
Evaluating the matrix elements of the hopping Hamil-

tonian flhop in the subspace of states with constant number of
kinks, we find that the latter can be treated as hard-core
bosons or noninteracting fermions on the kink lattice. The
corresponding hopping strength on the period-2 lattice is

again J. The exchange symmetry cannot be determined
straightforwardly, and therefore we employ this approxima-
tion only to determine the density distribution of dimers. For
simplicity, we choose the fermionic exchange symmetry.

Assuming a large lattice, we consider particle filling close
to the antiferromagnetic case. In this limit, the kinks can be
regarded as moving on a continuum. This means that the
dynamics of the kinks can now be determined by solving the
Schrodinger equation for noninteracting fermions. For N
= %Ns+ 1, i.e., one additional particle, we have a pair of kinks
whose ground-state wave function is

V2
W,(xy,x,) = —| sin—sin
2(x1,x5) I I3

(14)

where L=%NS+1 is the length of the kink lattice. The left-
most kink shall move on the odd sites. A particle is sitting on
an even site j if and only if one chain kink is to the left of j.
Thus the density of particles on the even sites is

X L
(m(x)) = zf dylf dy, ‘Ifi(yl,yz)‘l’z(yl,yz)- (15)
0 X

The prefactor of 2 emerges here because the integral occurs
twice with interchanging the roles of y, and y,. Although
straightforward, we do not give the analytical expression of
Eq. (15) since it is rather cumbersome. At the odd sites we
get accordingly

PHYSICAL REVIEW A 79, 063634 (2009)
X X
1 = (ri(x)) =f d)ﬂf dy, V3(y1,y2) Wa(y1,y2)
0 0
L L
+ f dylf dy, V3(y1,y2) Wa(y1,2).
(16)

With ¢ additional particles, the fermionic ground-state wave
function for 2¢ kinks is

sgn(P) 2
Wy, oxag) = 20— bpiu(x,).  (17)
P V2! =i

where the sum is over all permutations P of numbers
{1,2,3,...,2¢} and

() \/E . nmx
X)=1/— sin—,
n L L

with L=%Ny+q. This results in the density distribution

g-1
o sgn(P)sgn(Q)
(m(0))=2 2 [(2k+ 1) ! (2q—2k=1)!

k=0 P.Q
2k+1 2
x [T 10.x.P(n).0(m) II 1(x.L.P(n).0(m)) |,
n=1 n=2k+2
(18)
where Q denotes the permutations of {1,2,3,...,2¢}, and

b
I(G,b,n,m)=j dx ,(x) (%),

with n,me{1,2,3,...,2¢}. In Eq. (18) we have taken into
account that there are (2q—2k—1)!!(2k 711 possibilities of choosing
2k+1 kinks to the left of j.

The dashed red lines in Fig. 2 show the analytical results
for the particle density in a box potential with the lattice
filling slightly above one half obtained from the kink ap-
proximation. The agreement with the numerical DMRG data
is rather good. The kink model also explains in a very intui-
tive way the pairwise appearance of nodes with adding every
particle to the lattice.

Particle number correlations can be derived in the same
manner. For two even sites at positions j; and j,, the con-
figurations contributing to the correlations correspond to an
odd number of particles to the left of j;, an even number of
particles between j; and j,, and an even number of particles
to the right of j,. The particle density-density correlations are
then given by

063634-5



SCHMIDT et al.

PHYSICAL REVIEW A 79, 063634 (2009)

ky+hy+ks
=(¢-1) 2+l 2k 42kyt1
o sgn(P)sgn(Q)
(m(x)rm(y)) = kl’gézo gQ [ 2k + 1)1 (2ky) | (2ka 1! g 1(0,x,P(n),Q(n)) n=£[l+z I(x,y,P(n),Q(n))
2q
x |1 1(y,L,P(n),0(n)) for x <y. (19)
n=2k+2ky+2

In Fig. 4 we plot the density-density correlations obtained
from DMRG calculations (blue solid line) and the kink
model (dashed red lines), displaying very good agreement.
We finally note that within the approximation of non inter-
acting kinks, first-order correlations exist only between
neighboring sites. This perturbative model therefore cannot
accurately describe such correlations.

2. Field theoretical approach

The spin chain equivalent to the dimer Hamiltonian (1) in
one dimension is given by Eq. (4) with A=4 and open
boundary conditions. At zero magnetization M,=0, the XXZ
model (4) is gapped since A>1. However, as described in
Sec. III A, the ga(p can be closed by a field between the two
critical values, hc_)<h<h£+). In other words, the system is
critical for any nonzero magnetization away from the fully
magnetized case. In this regime, the leading low-energy ef-
fective theory is a Luttinger liquid with two parameters: the
spin velocity v and the Luttinger parameter K. These are
functions of the magnetization per site s°=M /N, and aniso-
tropy A [12] (which for the particular dimer model here is
fixed, A=4). The Luttinger liquid is a free bosonic theory,
which captures linear gapless low-energy scattering pro-
cesses in momentum space above the ground state. Note that
this free field theory is different from the noninteracting kink
approximation of Sec. III C 1, where new quasiparticles—

0.2
0 N =50
_02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-50 -40 -30 -20 -10 0 10 20 30 40 49
__o02r
=4 — ~,
£ o A N =51
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FIG. 4. (Color online) Particle density-density correlations in a
homogeneous lattice with N;=99 sites and hard-wall boundaries,
for different particle numbers N. The blue solid lines correspond to
numerical DMRG results, while the red dashed lines correspond to
the predictions of the kink approximation.

which are approximately free in the dilute limit—were de-
fined in direct space above the gapped ground state.

In order to calculate correlation functions, we first derive
the Luttinger parameter K(s°) from the exact solution [13].
We write

K=&(), (20)
where the function &(x) is determined by the integral equa-
tion

b
) =1+ f K(x = y)&(y)dy, (21)
b

with the kernel

1 inh 2
o)=L sinh 27

——————, A=coshp>1.
7 cos 2x — cosh 27

The parameter b in Egs. (20) and (21) is implicitly defined
through

(22a)

0.9 J

<0.5F ,
0.4r b
0.3 1
0.2r b

0.1r 1

8.5 0.6 0.7 0.8 0.9 1
Filling

FIG. 5. (Color online) Dependence of the Luttinger parameter K
on the mean lattice filling N/Nj, for A=4.
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b

k(x—y)p(y)dy, (22b)

p(x) =d(x) + f

-b
where

sinh 7
d(x )——

——  , A=coshyp>1.
acos 2x — cosh 7

Equations (20), (21), (22a), and (22b) are solved numerically
by discretizing the integral and inverting the resulting matrix
equation. Figure 5 shows the function K(s%) for A=4.

Within the Luttinger-liquid approach, one- and two-point
correlation functions can be calculated using the standard
mode expansion of bosonic fields [14] for open boundary
conditions [15,16]. Then the spin-spin correlation function in
the ground state reads

(F0S () =(s)-B

K ( 1 1 )
2 2 w(x—y) + o 7(x+y)
8(N +1) LY sin 2(N~+1)

cos[(2kg+ O/N)x + ¢, ]

1 . ax \K
(smNJ_“)
cos[(2kg+ O/N,)y + ¢, ]
. (sinﬁ)K
(x+ 2K
Dcos[(ZkF+ OIN,)x+ 8] | singors
K . a(x—y) ’
(SmN +1 N+1) 51n2(Nx+yl)
(23)

with the Fermi wave vector k= 7(1—-2s5°/2. Here the am-
plitudes B,C, ,,D, the shift #, and the phases ¢, result
from the bosonization of operators on the lattice. We con-

PHYSICAL REVIEW A 79, 063634 (2009)

0.25
0.2}
0.15}
0.1f l
§ 0.05 A ’
@ ot ¥R
=
@ -0.05f ¢
~0.1} |
-0.15}
02 * N =81, DMRG
- o N =68, DMRG
e N =54 DMRG
~0.25 * * * *
0 10 20 30 40 50
x — 50

FIG. 6. (Color online) (Sz(x) %(50)) correlations obtained from
the DMRG (dots) and the Luttinger-liquid approximation (solid
lines).

sider them as parameters in Eq. (23) that are fixed numeri-
cally by fitting to the DMRG data. The exponents, however,
are obtained from the Luttinger-liquid parameter K, which is
given by the Bethe ansatz. Figure 6 shows the remarkable
agreement between the two approaches. Note the shift in the
wave vectors of the oscillations by a constant 6 that depends
on the boundary conditions, the interaction, and the magne-
tization. It has also been observed in the context of density
oscillations in the open Hubbard model [17,18].

The corresponding result for the first-order correlation
function in the ground state is

1/(2K) a(ey) | 2K
e A lsmN H cos[(2kF+ O/N)(x —y) + 8]| Sinsy) cos[ (2kg+ O/N)x + ¢ ]
(TS = = w(X+y) . mx-y) B )K mx—y) +G K
SISy Sy (v ) ( SlnN +1 SISV ( N+1)

cos[(2kp+ O/N,)y + (,02]>

2
_my
(smN +1)

Similarly to Eq. (23), the quantities B,C\,,D,6,¢,,,0 are
considered as fitting parameters. The resulting curves are
shown in Fig. 7.

IV. ROLE OF ANISOTROPY A

The effective Hamiltonian (1) has a fixed ratio of the
nearest-neighbor interaction to hopping, which results in a
fixed Ising-like anisotropy A=4 in Eq. (3). It is interesting to
also consider the more general case of tunable anisotropy.
Such a scenario could, for example, be implemented with
dimers consisting of two different atomic species with tun-

(24)

able interspecies interactions [19,20], as described below.
We thus consider two kinds of bosonic atoms, 1 and 2, in
a tight-binding lattice realizing a two-species Hubbard
model. Let J; and J, be the hopping rates and U;; and U,, be
the on-site interaction strengths of the atoms of species 1 and
2, respectively, while U,, denote the interspecies on-site in-
teraction. When |U ,|>J, ,, a pair of atoms 1 and 2 localized
on the same lattice site will form a tightly bound dimer [21].
We assume that each lattice site is initially populated with at
most one dimer. In order to ensure that the dimers are stable,
i.e., they will not dissociate upon collisions with each other,
we impose additional conditions |U,;|>J; and |U,,|>J,.
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FIG. 7. (Color online) (S*(x)S~(50)) correlations obtained from
the DMRG (dots) and the Luttinger-liquid approximation (solid
lines).

Following the procedure of Ref. [9], we use the second-order
perturbation theory to adiabatically eliminate all the nonreso-
nant states corresponding to unpaired atoms on neighboring
lattice sites. The resulting effective Hamiltonian for the
dimers is given by

[A{effz - .72 C"\;CAZ + VE l’?ljﬁli - 2 ,U/jrf’lj, (25)
Gt (ot J
where
- 2JJ
J=-=2
Ui,

22 272 P+
_<_1+_2+¥ ’
Ull U22 UIZ

are, respectively, the dimer hopping rate, the nearest-
neighbor interaction, and the effective local chemical poten-
tial with ,.; (e,.;) being the potential energy of atom 1 (2) at
site j. It is important to note that the dimers described by the
above Hamiltonian behave as hard-core bosons, provided

|U11+U22+2U12|>7. Yet, the dimer hopping rate J and the
nearest-neighbor interaction V can be independently tuned by
varying Uy, U,,, and/or U, in the vicinity of Feshbach reso-
nances [19,20]. One can thus tune the anisotropy parameter
A=-V/J.

As the anisotropy becomes smaller, the perturbative
analysis used in the previous sections becomes unreliable. It
is known that the 1D model of Eq. (4) is critical for —1
=A=1. Therefore, the perturbation treatment breaks down
exactly at the point where the hopping becomes equal to or
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FIG. 8. (Color online) Top: ground-state density profile in a
homogeneous lattice with N;=99 sites and hard-wall boundaries,
for N=50 particles, but with hopping strength equal to the nearest-
neighbor repulsion, A=1 (compare to Fig. 2, top panel). Bottom:
the same, but without the effective edge fields in the spin chain
model.

larger than the nearest-neighbor dimer-dimer interaction.
However, it is still possible to use the field theoretical meth-
ods of Sec. III C 2 to calculate the correlation functions and
the expectation values.

In the critical region excitations are gapless in the ther-
modynamic limit, so that there is no incompressible phase at
half filling. The crossover between the completely filled and
the completely empty regions in Fig. 1 is therefore continu-
ous as a function of the effective field and there is no ex-
tended half-filled phase. The strength of hopping is therefore
crucial for the behavior of the system: weak hopping enables
the presence of a compressible phase between the incom-
pressible ferromagnetic and antiferromagnetic phases. With
increasing the hopping strength, the incompressible antifer-
romagnetic phase shrinks and completely vanishes when the
hopping reaches the value of the nearest-neighbor interac-
tion, A=1.

Equally interesting is the effect of hopping on the density
of dimers along the chain. As discussed in Sec. I C,
density-wave modulations appear in Fig. 2 because of the
effective motion of kinks. The complex interplay between
the kinetic and the interaction terms in the critical region
now leads to further modification of the density pattern along
the chain [22-24]. In particular, the amplitude of the ground-
state density oscillations is now significantly reduced toward
the middle of the chain with a characteristic dropoff as
shown in Fig. 8. Excited states with larger N would then
exhibit modulations on top of this ground-state pattern, simi-
lar to Fig. 2.

Interestingly, the exact form of the boundary conditions
plays now a much more important role. Namely, the effective
edge field of the spin chain model discussed in Sec III C 1
accounts for a large part of the ground-state density oscilla-
tions. For comparison, in Fig. 8 we also show the density for
the spin chain model without any edge field. The density
amplitude is now smaller near the boundary. At A=1, this
amplitude has been predicted to follow approximately a
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vsin(7mx/N;) behavior [22], which however is strongly af-
fected by temperature [23,24] due to the gapless modes.

V. SUMMARY

In this paper, we have studied the many-body dynamics of
attractively bound pairs of atoms in the Bose-Hubbard
model. When the on-site interaction between the atoms ex-
ceeds by a sufficient amount the bandwidth of the lowest
single-particle Bloch band, the pairs are well colocalized and
can be treated as composite dimer particles. Then the effec-
tive model for dimers on a lattice is equivalent to an asym-
metric spin-% XXZ model in an external magnetic field: the
nearest-neighbor interaction between the dimers translates
into an Ising-like spin-spin interaction and the dimer tunnel-
ing to a spin-spin coupling in the x-y plane.

The case of repulsively bound pairs studied in [9] corre-
sponds to a ferromagnetic Ising coupling. In contrast, for
attractively bound pairs analyzed here, the Ising coupling is
antiferromagnetic leading to a much richer phase diagram.
The asymmetry parameter A of the XXZ model is equal to 4;
as a result, the system is gapped for both zero and full mag-
netizations. The zero magnetization state, corresponding to
exactly half filling of dimers, exhibits antiferromagnetic or-
der, while the full magnetization (ferromagnetic) states cor-
respond to vanishing or full filling of dimers. When the ef-
fective magnetic field, or for that matter the chemical
potential for the dimers, exceeds critical values, the gap is
closed and the dimer system becomes critical with finite
compressibility.

PHYSICAL REVIEW A 79, 063634 (2009)

We have derived the critical values of the chemical poten-
tial for the transition points from the gapped ferromagnetic
and antiferromagnetic phases to the compressible phases in
one dimension, employing the known exact solutions of the
XXZ model. Close to half filling, the system can be well
described by kinklike domain walls that separate antiferro-
magnetic strings of opposite phase and can propagate
through the lattice almost freely. A simple approximate de-
scription in terms of noninteracting kinks gives rather accu-
rate predictions for the dimer density as well as nonlocal
density-density correlations.

In order to explain the first-order correlations, we em-
ployed a field theoretical approach based on the Luttinger-
liquid theory. The corresponding Luttinger parameter was
obtained by solving the Bethe-ansatz equations for the
equivalent XXZ model in the regime of critical magnetic
fields. The expressions for the first-order and the density-
density correlations showed remarkably good agreement
with the numerical data obtained by DMRG simulations. Fi-
nally we discussed the consequences of changing the aniso-
tropy parameter of the XXZ model, which could be realized
with dimers consisting of two different atomic species. Our
studies attest that interaction-bound pairs of atoms in deep
optical lattices can provide a versatile tool to simulate and
explore quantum spin models.
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