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Abstract. We reconsider the one-axis twisting Hamiltonian, which is commonly used for generating spin
squeezing, and treat its dynamics within the Heisenberg operator approach. To this end we solve the under-
lying Heisenberg equations of motion perturbatively and evaluate the expectation values of the resulting
time-dependent Heisenberg operators in order to determine approximately the dynamics of spin squeezing.
Comparing our results with those originating from exact numerics reveals that they are more accurate than
the commonly used frozen spin approximation.

1 Introduction

Atomic spin squeezing is a quantum effect of collec-
tive spin systems [1,2] with the potential to improve
the precision of measurements in experiments in gen-
eral [3–6] and to study particle correlations as well as
entanglement in particular [7–9]. The quantum mechani-
cal uncertainty of spin operators limits the measurement
accuracy of spectroscopic investigations and the perfor-
mance of atomic fountain clocks [3,4]. The standard
uncertainty relation of angular momentum operators pre-
dicts a spectroscopic sensitivity proportional to 1/

√
N ,

where N denotes the total number of atoms utilized in
the given spectroscopic investigation. It was suggested in
reference [10] to produce spin-squeezed states, which redis-
tribute the uncertainty unevenly between two components
of the total angular momentum, so that measurements,
which are sensitive to the component with reduced uncer-
tainty, become more precise. These states were applied
in atomic clocks for reducing quantum noise [3,4,11–13]
and for implementing quantum information processing
[7,14–16]. Spin-squeezed states can also be experimen-
tally realized in a BEC [17–20], which allows for instance
to detect weak forces [21]. In such systems, spin fluc-
tuations in one spin component perpendicular to the
mean spin direction turn out to be reduced below the
standard quantum limit (SQL). Quantum correlations
among individual spins are responsible for spin squeez-
ing provided that a nonlinear interaction between the
spins is present. In the original proposal by Kitagawa
and Ueda [10], two fundamental types of nonlinear spin
interactions were identified, which are called one-axis
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twisting and two-axis counter twisting. One-axis twist-
ing interaction is referred to a nonlinear term of the form
Ĵ2
α, α = x, y, z in the Hamiltonian, while if the twisting

is performed simultaneously clockwise and counterclock-
wise about two orthogonal axes in the plane normal to
the mean spin direction, it is referred to as two-axis
counter twisting. The Hamiltonian in the second case
then contains a term of the form ĴαĴβ + Ĵβ Ĵα with
α 6= β. Later on Law et al. [22] examined spin squeez-
ing in a collection of interacting spins in the presence
of an external field, which demonstrated a strong reduc-
tion of spin fluctuations that could be maintained for
a much longer period of time. So far, spin squeezing
was theoretically studied either exactly by using numer-
ical simulations [23–25] or analytically within the frozen
spin approximation [22,26]. The advantage of the frozen
spin approximation relies in the fact that it can straight-
forwardly be applied to study many different systems
which includes spin dynamics and entanglement in mixed
Hamiltonian model [27,28], Lipkin-Meshkov-Glick model
[29,30], generalized two-axis twisting model [31], and
dipolar condensates [32].

In this paper, we start with reconsidering the one-axis
twisting model of Law et al. [22] in Section 2. To this
end we analytically solve the underlying Heisenberg equa-
tions of motion for the atomic degrees of freedom by using
a perturbative technique and by treating its dynamics
within the Heisenberg operator approach. By evaluating
the expectation values of the respective operators in the
Heisenberg picture, the resulting dynamics of spin squeez-
ing is then determined in Section 3. Finally, comparing
our analytical results with exact numerical simulations in
Section 4 reveals that they are more accurate than the
frozen spin approximation.
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2 Model and perturbative solution

In this work, we describe the dynamics of the spin model
which is generated by the Hamiltonian (~ = 1) [22,33],

H = 2κĴ2
z +ΩĴx. (1)

For instance, H can be generated by a trapped spinor
Bose condensate with two populated hyperfine spin states
|a〉 and |b〉 interacting with an external radio-frequency or
microwave field. As a concrete example, the two hyper-
fine levels could be the levels |F = 2,mf = 1〉 and
|F = 1,mf = −1〉 of 87Rb atoms. Provided that â1 and
â2 denote the atomic annihilation operators correspond-
ing to the hyperfine levels |a〉 and |b〉, respectively, the

angular momentum operators Ĵ+ = (Ĵ−)† = â†2â1, Ĵz =

(â†2â2 − â†1â1)/2 obey the SU(2) Lie algebra. Further-
more, the Hamiltonian equation (1) commutes with the

particle number operator N̂ = â†2â2 + â†1â1, so that the
total particle number is conserved. Note that we neglect
in equation (1) an additional term proportional to Ĵz by
assuming equal intra-species interaction strength and the
same trapping potential for both spin states [34]. The fre-
quency Ω is controlled by the strength of the external
field and the parameter κ, which describes the strength of
the one-axis twisting, depends upon the inter- and intra-
species two-body s-wave scattering lengths [34]. It turns

out that the term 2κĴ2
z is essential for generating spin

squeezing.

2.1 Heisenberg initial value problem

We start with writing down the Heisenberg equations of
motion for the respective time-dependent operators Ĵx(t),

Ĵy(t) and Ĵz(t) in the Heisenberg picture:

˙̂
Jx(t) = −2κ[Ĵy(t)Ĵz(t) + Ĵz(t)Ĵy(t)], (2)

˙̂
Jy(t) = −ΩĴz(t) + 2κ[Ĵz(t)Ĵx(t) + Ĵx(t)Ĵz(t)], (3)

˙̂
Jz(t) = ΩĴy(t). (4)

In the following we aim at solving these Heisenberg
equations of motion for general initial operators Ĵi(0)
(i = x, y, z) at time t = 0. Later on, when expectation val-
ues are evaluated, we assume that the system is initially
prepared in the lowest eigenstate |J,mx = −J〉 of Ĵx(0),

i.e., we have Ĵx(0)|J,mx = −J〉 = −J |J,mx = −J〉. Thus,
the corresponding expectation values of the initial oper-
ators Ĵi(0) i = x, y, z read 〈Ĵx(0)〉 = −J and 〈Ĵy(0)〉 =

〈Ĵz(0)〉 = 0.
Combining equations (2) and (4), we find,

˙̂
Jx(t) = − κ

Ω

d

dt
Ĵ2
z (t), (5)

which has the following solution:

Ĵx(t) = Ĵx(0) +
κ

Ω

[
Ĵ2
z (0)− Ĵ2

z (t)
]
. (6)

Substituting this expression for Ĵx(t) into equation (3)
and using equation (4) yields

¨̂
Jz(t)− 2iκ

˙̂
Jz(t)

+
[
Ω2 − 4κΩĴx(0)

]
Ĵz(t) = 4κ2

[
Ĵ2
z (0)− Ĵ2

z (t)
]
Ĵz(t).

(7)

The second-order operator valued differential
equation (7) is not exactly solvable due to its non-
linearity so we have to resort to approximative solution.
Therefore we review in Section 2.2 the commonly used
frozen spin approximation, which was originally intro-
duced in reference [22]. Then we work out in detail our
strategy, where we treat both nonlinear terms on the
right-hand side up to first order in perturbation theory.
The zeroth-order solution Ĵ0

z (t) is found in Section 2.3
by putting the right-hand side of equation (7) to zero.

Inserting Ĵ0
z (t) then on the right-hand side yields two

inhomogeneities. Thus solving equation (7) in first order

yields the corresponding corrections ĴIz (t) and ĴIIz (t),
which are determined in Sections 2.4 and 2.5, respectively.

2.2 Frozen spin approximation

Provided that Ω � κ, the external field forces the total
spin to remain polarized in the direction of 〈Ĵx(0)〉 = −J
as it costs energy to change the spin vector. Consequently,
Ĵx remains approximately unchanged and one can replace
Ĵx by −J in the Heisenberg differential equations (2)–(4).
This so-called frozen spin approximation results in the
operator valued differential equation

¨̂
J fs
z (t) = −(Ω2 + 4κΩJ)Ĵ fs

z (t). (8)

It is solved by

Ĵ fs
z (t) = Ĵz(0) cosωfst+

ΩĴy(0)

ωfs
sinωfst, (9)

with the frozen spin frequency

ωfs =
√
Ω2 + 4κΩJ. (10)

This result of the frozen spin approximation will later on
be used as a reference to estimate the accuracy of our
Heisenberg operator approach.

The corresponding expression for Ĵ fs
y (t) is found by

substituting (9) in (4) as

Ĵ fs
y (t) = −ωfsĴz(0)

Ω
sinωfst+ Ĵy(0) cosωfst. (11)

https://epjd.epj.org/
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This result will be utilized to determine the spin squeezing
along the y-axis.

2.3 Zeroth-order solution

Now we turn to our solution strategy and determine at

first the zeroth-order solution Ĵ
(0)
z (t) of the homogeneous

equation

¨̂
J (0)
z (t)− 2iκ

˙̂
J (0)
z (t) + ˆ̃ω2Ĵ (0)

z (t) = 0, (12)

where we have introduced the abbreviation ˆ̃ω =√
Ω2 − 4κΩĴx(0). To this end we make the ansatz

Ĵ
(0)
z (t) = eK̂tÔ, where the auxiliary operators K̂ and

Ô are determined as follows. Inserting this ansatz in
equation (12) yields

K̂2 − 2iκK̂ + ˆ̃ω2K̂ = 0, (13)

which has the roots K̂1 = i(κ + ω̂) and K̂2 = i(κ − ω̂),

with ω̂ =
√
κ2 + ˆ̃ω2. As equation (12) is linear, the

superposition principle yields the homogeneous solution

Ĵ (0)
z (t) = eK̂1tÔ1 + eK̂2tÔ2, (14)

whereas from equation (4) we read off

Ĵ (0)
y (t) =

K̂1

Ω
eK̂1tÔ1 +

K̂2

Ω
eK̂2tÔ2. (15)

By invoking the initial condition Ĵ
(0)
y (0) = Ĵy(0),

Ĵ
(0)
z (0) = Ĵz(0), the operators Ô1, Ô2 are determined by

the expressions

Ô1 =
Ωi

2ω̂

[
i(κ− ω̂)

Ω
Ĵz(0)− Ĵy(0)

]
, (16)

Ô2 =
Ωi

2ω̂

[
− i(κ+ ω̂)

Ω
Ĵz(0) + Ĵy(0)

]
. (17)

Thus, the zeroth-order expression for Ĵz(t) turns out to
be

Ĵ (0)
z (t) = eiκt

[(
cos ω̂t− κi

ω̂
sin ω̂t

)
Ĵz(0)

+
Ω

ω̂
sin ω̂tĴy(0)

]
. (18)

Equation (18) represents the exact zeroth-order oper-

ator solution for Ĵz(t), which can then be used with
equation (6) to evaluate the zeroth-order expression of the

expectation value 〈Ĵx(t)〉, yielding

〈Ĵ (0)
x (t)〉 = −J +

κJ

2Ω

−κJ
2Ω

[(
Ω

ω
− κ

ω

)2

sin2 ωt+ cos2 ωt

]
. (19)

Note that the resulting frequency

ω =
√
κ2 +Ω2 + 4κΩ(J − 1), (20)

differs from the one of the frozen spin approximation
equation (10) but in the limit Ω � κ, J � 1 we read off

from equation (19) that we get 〈Ĵ (0)
x (t)〉 = −J = 〈Ĵ fs

x (t)〉
and ω = ωfs i.e the frozen spin approximation follows from
our zeroth order result as a special case.

2.4 Particular and homogeneous solution I

After having found the zeroth-order solution of
equation (7), we now turn our attention toward the
first-order correction. The right-hand side of equation

(7) has two nonlinear terms, i.e. 4κ2Ĵ2
z (0)Ĵ

(0)
z (t) and

−4κ2Ĵ
(0)3
z (t), which we treat now separately. At first, we

determine the particular and the homogeneous solution
of the differential equation

¨̂
JIz (t)− 2iκ

˙̂
JIz (t)

+
[
Ω2 − 4κΩĴx(0)

]
ĴIz (t) = 4κ2Ĵ2

z (0)Ĵ0
z (t). (21)

Due to Section 2.3 we recognize that the inhomogene-
ity of equation (21) oscillates with the same frequency
ω̂ as its homogeneous part. Therefore, we perform for
the particular solution an ansatz which contains secular
terms:

ĴIz,p(t) = eiκt
[
Ĵ2
z (0)

(
ât sin ω̂t+ b̂t cos ω̂t

)
Ĵz(0)

+Ĵ2
z (0)

(
ĉt sin ω̂t+ d̂t cos ω̂t

)
Ĵy(0)

]
. (22)

Here â, b̂, ĉ, d̂ denote operators, which can be straight-
forwardly determined by substituting equation (22) into
equation (21) and by comparing the operator coefficients
of the oscillating terms cos ω̂t and sin ω̂t on both sides of
the resulting equation. This yields the particular solution

ĴIz,p(t) = eiκt
[
Ĵ2
z (0)

(
2κ2

ω̂
t sin ω̂t+

2iκ3

ω̂2
t cos ω̂t

)
Ĵz(0)

−Ĵ2
z (0)

2κ2Ω

ω̂2
t cos ω̂tĴy(0)

]
. (23)

Afterwards, we obtain the homogeneous solution of
equation (21) which has the form

ĴIz,h(t) = eK̂1tÔ3 + eK̂2tÔ4. (24)

https://epjd.epj.org/
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Here Ô3 and Ô4 are unknown operators, which are deter-
mined from the initial conditions ĴIz,h(0) = −ĴIz,p(0) = 0,
˙̂
JIz,h(0) = − ˙̂

JIz,p(0), yielding

ĴIz,h(t) =
(
eK̂1t − eK̂2t

) Ĵ2
z (0)κ2

iω̂3

×
[
iκĴz(0)−ΩĴy(0)

]
. (25)

The secular terms t sin ω̂t and t cos ω̂t in equation (23)

seem to indicate that the solution Ĵz(t) grows unlimited in
time. This finding contradicts, however, an exact numer-
ical solution of the time-dependent Schrödinger equation
governed by the Hamiltonian equation (1). Therefore, we

follow references [35–40] and introduce in the sum Ĵ0
z (t) +

ĴIz,h(t) + ĴIz,p(t) an effective frequency via ω̂ = ω̂eff +κ2ω̂1,
where ω̂1 is determined by eliminating the secular terms
up to first order in κ2. This yields ω̂1 = Ĵ2

z (0) 2
ω̂eff

and the
resulting bounded solution reads

Ĵ (0)
z (t) + ĴIz,h(t) + ĴIz,p(t) = eiκt

[
cos ω̂efft−

iκ

ω̂eff
sin ω̂efft

+2iκ3Ĵ2
z (0)

sin ω̂efft

ω̂3
eff

]
Ĵz(0)

+eiκt
[
Ω

ω̂eff
sin ω̂efft

−2Ĵ2
z (0)Ωκ2 sin ω̂efft

ω̂3
eff

]
Ĵy(0).

(26)

Here the effective frequency reads up to first order in κ2

as follows:

ω̂eff =

√
κ2 +Ω2 − 4κΩĴx(0)

− 2κ2√
κ2 +Ω2 − 4κΩĴx(0)

Ĵ2
z (0). (27)

2.5 Particular and homogeneous solution II

Now it remains to solve the differential equation

¨̂
JIIz (t)− 2iκ

˙̂
JIIz (t)

+
[
Ω2 − 4κΩĴx(0)

]
ĴIIz (t) = −4κ2Ĵ (0)3

z , (28)

where Ĵ
(0)
z (t) follows from (26) by neglecting the κ2 and

κ3 terms. In order to determine the particular solution of
(28), we perform the ansatz

ĴIIz,p(t) = ei3κtF̂ , (29)

with the abbreviation

F̂ (t) = f̂(t)Ĵz(0)f̂(t)Ĵz(0)f̂(t)Ĵz(0)

+ĝ(t)Ĵy(0)ĝ(t)Ĵy(0)ĝ(t)Ĵy(0)

+f̂(t)Ĵz(0)f̂(t)Ĵz(0)ĝ(t)Ĵy(0)

+f̂(t)Ĵz(0)ĝ(t)Ĵy(0)f̂(t)Ĵz(0)

+f̂(t)Ĵz(0)ĝ(t)Ĵy(0)ĝ(t)Ĵy(0)

+ĝ(t)Ĵy(0)f̂(t)Ĵz(0)f̂(t)Ĵz(0)

+ĝ(t)Ĵy(0)f̂(t)Ĵz(0)ĝ(t)Ĵy(0)

+ĝ(t)Ĵy(0)ĝ(t)Ĵy(0)f̂(t)Ĵz(0), (30)

and the functions

f̂(t) = α̂1 cos ω̂efft+ β̂1 sin ω̂efft,

ĝ(t) = α̂2 cos ω̂efft+ β̂2 sin ω̂efft. (31)

Substituting equations (29)–(31) in (28) yields for the
respective coefficients the result

α̂1 =
28κ2

25κ2 − 4ω̂2
eff

, α̂2 =
i8Ωκ

25κ2 − 4ω̂2
eff

,

β̂1 =
−4iκ(5κ2 + 2ω̂2

eff)

ω̂eff(25κ2 − 4ω̂2
eff)

, β̂2 =
20κ2Ω

ω̂eff(25κ2 − 4ω̂2
eff)

. (32)

The corresponding homogeneous solution of
equation (28) has the form

ĴIIz,h(t) = eK̂1tÔ5 + eK̂2tÔ6. (33)

The initial conditions ĴIIz,h(0) = −ĴIIz,p(0) = 0,
˙̂
JIIz,h(0) =

− ˙̂
JIIz,p(0) yield Ô5 + Ô6 = −F̂0, K̂1Ô5 + K̂2Ô6 = −Ĝ0,

where F̂0 = F̂ (t = 0) and Ĝ0 = i3κF̂0 +
˙̂
F (t = 0). Thus,

the homogeneous solution reads

ĴIIz,h(t) =
ei(κ+ω̂eff)t

2iω̂eff
[i(κ− ω̂eff)F̂0 − Ĝ0]

+
ei(κ−ω̂eff)t

2iω̂eff
[−i(κ+ ω̂eff)F̂0 + Ĝ0]. (34)

3 Spin squeezing

The final expression for Ĵz(t) is the sum of the previously
determined solutions (26), (29)–(32), (34), i.e.

Ĵz(t) = Ĵ (0)
z (t) + ĴIz,h(t) + ĴIz,p(t)

+ĴIIz,h(t) + ĴIIz,p(t). (35)

https://epjd.epj.org/
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The expression equation (35) for Ĵz(t) is substituted into

equation (4) to evaluate the expression for Ĵy(t)

Ĵy(t) = eiκt
[

(κ2 − ω̂2
eff)

Ωω̂eff
sin ω̂efft+ 2iκ3Ĵ2

z (0)
cos ω̂efft

Ωω̂2
eff

−2κ4Ĵ2
z (0)

sin ω̂efft

Ωω̂3
eff

]
Ĵz(0) + eiκt

[
cos ω̂efft

+
iκ

ω̂eff
sin ω̂efft− 2Ĵ2

z (0)κ2 cos ω̂efft

ω̂2
eff

−2iĴ2
z (0)κ3 sin ω̂efft

ω̂3
eff

]
Ĵy(0)

+
iei(κ+ω̂eff)t(κ+ ω̂eff)

2iΩω̂eff
[i(κ− ω̂eff)F̂0 − Ĝ0]

+
iei(κ−ω̂eff)t(κ− ω̂eff)

2iΩω̂eff
[−i(κ+ ω̂eff)F̂0 + Ĝ0]

+
i3κei3κt

Ω
F̂ +

ei3κt

Ω
˙̂
F. (36)

Note that 〈Ĵr(t)〉 = 0. In a similar manner, the final

expression (35) for Ĵz(t) is now substituted back into
equation (6) to evaluate the expectation value

〈Ĵx(t)〉 = −J +
κ

Ω

[
J

2
− J1(t)− J2(t)− J3(t)

]
. (37)

The resulting expressions for J1(t), J2(t), J3(t) turn out to
oscillate with the frequency

ωeff =
√
κ2 +Ω2 + 4κΩ(J − 1)

− κ2J√
κ2 +Ω2 + 4κΩ(J − 1)

, (38)

and are explicitly given in Appendix A.
Following the criteria of for spin squeezing of Kitagawa

and Ueda in reference [10], we introduce the squeezing
parameter

ξs,n =

√
2〈(∆Ĵn)min〉√

J
, (39)

where 〈(∆Ĵn)min〉 is the smallest uncertainty of spin com-

ponent Ĵn = Ĵ.n perpendicular to the mean spin 〈Ĵ〉. A
state is said to be a squeezed-spin state provided that the
inequality ξs,n < 1 holds. Since the mean spin points along
the x-direction, the reduced spin fluctuations occur in the
yz-plane. The spin component normal to the mean spin is
Ĵn = Ĵy sin θ + Ĵz cos θ [23]. By minimizing the variance

(∆Ĵn)min with respect to θ, we find the squeezing angle as

θmin =
1

2
tan−1

(
B

A

)
, (40)

and the squeezing parameter

ξs,n =

√
C −

√
A2 +B2

√
J

. (41)

Here A = 〈Ĵ2
z − Ĵ2

y 〉 = L1(t)+L2(t)+L3(t)−J1(t)−J2(t)

− J3(t), B = 〈ĴzĴy + ĴyĴz〉 = J [(α′1(t) − β′2(t))F ′(t) −
(α′2(t)− β′1(t)) cosωefft+ γ′1(t)G′(t)(2J − 1)(3J + 3)] and

C = 〈Ĵ2
z + Ĵ2

y 〉 = L1(t) + L2(t) + L3(t) + J1(t) + J2(t) +
J3(t).

The explicit expressions for L1(t), L2(t), L3(t),α′1(t),
α′2(t), β′1(t), β′2(t),γ′1(t),F ′(t) and G′(t) are given in

Appendix A. We have used 〈Ĵz(t)〉 = 0, 〈Ĵ2
z (0)〉 = J/2,

〈Ĵy(t)〉 = 0, 〈Ĵ2
y (0)〉 = J/2 in determining ξs,n.

Note that the corresponding expression for the squeez-
ing parameter under the frozen spin approximation is
found from equations (9), (11) and (39) as

ξfs
s,n =

√
Cfs −

√
A2

fs +B2
fs√

J
, (42)

where

Afs =
J

2

[(
ω2

fs

Ω2
− Ω2

ω2
fs

)]
sin2 ωfst, (43)

Bfs =
J(Ω2 − ω2

fs)

Ωωfs
sinωfst cosωfst, (44)

Cfs =
J

2

[(
ω2

fs

Ω2
+
Ω2

ω2
fs

)
sin2 ωfst+ 2 cos2 ωfst

]
. (45)

The expression of θmin for the frozen spin approximation
is the same as (40) with A and B replaced by Afs and Bfs

respectively. In analogy to Section 2.3, ξfs
s,n in (42) follows

in the limit Ω � κ and J � 1 from ξs,n in (41).

4 Numerical solution and results

After having determined a perturbative solution in the
previous section, we now describe the exact numerical
solution of the time-dependent Schrödinger equation gov-
erned by the Hamiltonian equation (1). In our work
we assume positive Ω and κ, the latter corresponding
to a repulsive inter- and intra-species interaction. The
state vector at any time t can be expanded as |ψ(t)〉 =∑+J
m=−J cm(t)|J,m〉. The corresponding amplitudes cm(t)

obey the time-dependent Schrödinger equation

i
dcm(t)

dt
= 2κm2cm(t) + ζmcm−1(t) + ζ−mcm+1(t), (46)

where we have introduced ζm = Ω
2

√
(J +m)(J −m+ 1)

with ζ−J = 0 and ζ±m = ζ∓m+1. We consider that the
spin system starts from the lowest eigenstate |J,mx = −J〉

https://epjd.epj.org/
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Fig. 1. Expectation value 〈Ĵx(t)〉 (a) for J = 1 and (b) J = 10 with Ω/κ = 25 as a function of time in units of κ. Thick blue
line depicts the numerics and thin red line represents the perturbative result (37).

Fig. 2. Squeezing parameter (a) for J = 1 and (b) J = 10 with Ω/κ = 25 as a function of time in units of κ. Thin line denotes the
numerics, thin dashed line stands for the perturbative corrected result (41), and thick line is the frozen spin approximation (42).

of Ĵx, i.e., Ĵx|J,mx = −J〉 = −J |J,mx = −J〉. The
resulting amplitudes of the initial state read

cm(0) =
(−1)J+m

2J

√
(2J)!

(J −m)!(J +m)!
, (47)

and satisfy c−m(0) = cm(0) for total number of atoms,
i.e. N = 2J and c−m(0) = −cm(0) for odd total num-
ber of particles. This yields initially the expectation value
〈Ĵz(0)〉 = 0 and the variance 〈Ĵ2

z (0)〉 = J/2. The symme-
try properties of ζ±m and cm(0) lead to c−m(t) = ±cm(t)

and to the time dependent expectation values 〈Ĵy(t)〉 =

〈Ĵz(t)〉 = 0 as well as 〈Ĵx(t)〉 6= 0. This implies that the
mean spin always points along the x-axis.

In Figure 1, we compare the expression for 〈Ĵx(t)〉 as
a function of dimensionless time obtained from our per-
turbative result of equation (37) with that obtained from
exact numerics. We observe that the numerics and the
perturbative corrected result turn out to agree better for
smaller J .

In Figure 2, we compare the results for the squeez-
ing parameter along the direction perpendicular to the
mean spin direction obtained from the Heisenberg opera-
tor method (41), exact numerics and that obtained from

Fig. 3. Plot of θmin for J = 1 with Ω/κ = 25 as a function of
time in units of κ. Thin line denotes the numerics, thin dashed
line stands for the perturbative corrected result, and thick line
is the frozen spin approximation.

frozen spin approximation (42) for the two values of
J = 1 and J = 10. Notably, the operator method result
matches very well with the numerical data. For J = 1, the
frozen spin approximation result differs significantly from
both the numerics and the Heisenberg operator method
results, while for J = 10 the match is much better. Thus,

https://epjd.epj.org/
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Fig. 4. Frequency of 〈Ĵx(t)〉 in the units of κ as a function of Ω/κ for J = 1 (Plot a) and J = 10 (Plot b). Thick line is the
frozen spin approximation (10), long-dashed purple line is the zeroth order result equation (20), thin blue line is the perturbative
corrected result equation (37) and short-dashed blue line is the numerics.

the perturbative result matches almost exactly with the
numerics for both small and large J . For large J , the
frozen spin approximation result approaches the numer-
ical result. The results obtained in Figure 2 illustrate the
accuracy and effectiveness of our analytical perturbative
operator method.

Figure 3 displays the comparative plot of θmin as a
function of time obtained from the Heisenberg operator
method, exact numerics and that obtained from frozen
spin approximation for J = 1. As before, the perturba-
tive result matches better with the numerical result. The
value of θmin when the squeezing parameter is unity is
±0.78 while its value is 0 when the squeezing parameter
is minimal.

In order to compare further the various results, we
have plotted the frequency of 〈Ĵx(t)〉 as a function of
Ω/κ in Figure 4. As evident from Figure 4, the perturba-
tive corrected result (37) is closest to the numerics while
the frozen spin approximation (10) deviates much from
the numerical result. For large Ω it turns out that the
zeroth order (20) and the perturbative corrected result
(37) match, while for low Ω, the perturbative result (37)
matches better with the numerics.

5 Conclusions

The expression for the spin squeezing parameter is
evaluated by solving the one-axis twisting Hamiltonian
equation (1) using the quantum mechanical perturbative
operator method. We have demonstrated that the results
obtained from the Heisenberg operator method coincide
much better with that obtained from numerical results as
compared to the frozen spin approximation results [22].
This finding nourishes the prospect that the Heisenberg
operator method might turn out to be useful for analyzing
also other spin squeezing dynamics.
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Appendix A

Here we list the expressions, which appear in the expecta-
tion value equation (36) and the squeezing parameter in
equation (41):

J1(t) =
J

2

{
cos2 ωefft+

[
(Ω − κ)2

ω2
eff

(
1− (3J − 1)κ2

ω2
eff

)2

+
(2J − 1)(3J + 3)(Ω − κ)2κ4

ω6
eff

]
sin2 ωefft

}
, (A.1)

J2(t) =
J

8
{
[
−f3

1 (3J − 1) + g3
1(J − 1)− f1g

2
1(3J − 1)

]2
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+
[
(f3

1 − g3
1 − 3f1g

2
1)2
]

(2J − 1)(3J + 3)

+ f4
1 g

2
1

[
(7J − 3)2 + 9(2J − 1)(3J + 3)

]
}, (A.2)

J3(t) = F1 cos2 ωefft+G1 sin2 ωefft, (A.3)

L1(t) =
J

2

{[
1 + (

κ6

Ω2
+ κ4)

15J2 − 3J − 2

ω4
eff

]
cos2 ωefft

}
+
J

2

{[
(κ2 − ω2

eff)2

ω2
effΩ

2
+
κ2

Ω2

+κ6 (15J2 − 3J − 2)

ω6
eff

]
sin2 ωefft

}
, (A.4)

L2(t) =
9κ2

Ω2
J2(t), (A.5)

L3(t) =

[
(ω2

eff − κ2)2

ω2
effΩ

2
F1 +

9κ4

ω2
effΩ

2
F1 +

ω2
eff

Ω2
G1

]
sin2 ωefft

+

[
9κ2

Ω2
F1 +

κ2

Ω2
G1

]
cos2 ωefft, (A.6)

α′1(t) =

[
1− κ2(3J − 1)

ω2
eff

]
cosωefft, (A.7)

α′2(t) =

[
κ

Ω
− κ3(3J − 1)

ω3
eff

]
sinωefft, (A.8)

β′1(t) =

[
(κ2 − ω2

eff)

Ωωeff
− κ4(3J − 1)

Ωω3
eff

]
sinωefft, (A.9)

β′2(t) =
κ3(3J − 1)

Ωω2
eff

cosωefft, (A.10)

γ′1 =
κ2

ω2
eff

(
1 +

κ

Ω

)
cosωefft, (A.11)

F ′(t) =

[
Ω − κ
ωeff

+
κ2(3J − 1)(κ−Ω)

ω3
eff

]
sinωefft, (A.12)

G′(t) =
κ2(κ−Ω)

ω3
eff

sinωefft. (A.13)

The respective abbreviations in (A.1), (A.2), (A.3), (A.5)
and (A.6) are given by

f1 =

√
α2

1 cos2 ωefft+ β2
1 sin2 ωefft, (A.14)

g1 =

√
α2

2 cos2 ωefft+ β2
2 sin2 ωefft, (A.15)

F1 =
J

8

[
−α3

1(3J − 1) + α3
2(J − 1)− α1α

2
2(3J − 1)

]2
+(α3

1 − α3
2 − 3α1α

2
2)2(2J − 1)(3J + 3)

+
J

8
α4

1α
2
2

[
(7J − 3)2 + 9(2J − 1)(3J + 3)

]
, (A.16)

G1 =
J

8
(4α3

1β1α
2
2 + 2α4

1α2β2)
[
(7J − 3)2

−9(2J − 1)(3J + 3)] +
J

8

[
−3α2

1β1(3J − 1)

+3α2
2β2(J − 1)− (β1α

2
2 + 2α1α2β2)(3J − 1)

]2
+(3α2

1β1 − 3α2
2β2 − 3β1α

2
2

−6α1α2β2)2(2J − 1)(3J + 3), (A.17)

where we have

α1 =
28κ2

25κ2 − 4ω2
eff

, α2 =
8Ωκ

25κ2 − 4ω2
eff

,

β1 =
−4κ(5κ2 + 2ω2

eff)

ωeff(25κ2 − 4ω2
eff)

, β2 =
20Ωκ2

ωeff(25κ2 − 4ω2
eff)

. (A.18)
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