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Abstract
Using theAnyon–HubbardHamiltonian, we analyze the ground-state properties of anyons in a one-
dimensional lattice. To this endwemap the hopping dynamics of correlated anyons to an occupation-
dependent hopping Bose–Hubbardmodel using the fractional Jordan–Wigner transformation. In
particular, we calculate the quasi-momentumdistribution of anyons, which interpolates between
Bose–Einstein and Fermi–Dirac statistics. Analytically, we apply amodifiedGutzwillermean-field
approach, which goes beyond a classical one by including the influence of the fractional phase of
anyonswithin themany-bodywavefunction. Numerically, we use the density-matrix renormalization
group by relying on the ansatz ofmatrix product states. As a result it turns out that the anyonic quasi-
momentumdistribution reveals both a peak-shift and an asymmetry whichmainly originates from
the nonlocal string property. In addition, we determine the corresponding quasi-momentum
distribution of the Jordan–Wigner transformed bosons, where, in contrast to the hard-core case, we
also observe an asymmetry for the soft-core case, which strongly depends on the particle number
density.

1. Introduction

A fundamental principle of quantum statisticalmechanics in three dimensions is the existence of two types of
particles: bosons obeying Bose–Einstein statistics and fermions obeying Fermi–Dirac statistics. However, in a
two-dimensional electron liquid, quasi-particlesmade of electrons in the fractional quantumHall effect are
charged anyons obeying fractional statistics [1–5].While exchanging two anyons, themany-bodywavefunction
acquires a fractional phase qe ,i where the statistical parameter θ varies with the interval q p< <0 and
corresponds to a fractional statistics. As compared to bosons and fermions, anyons exhibit a wide range of
previously unexpected properties and the concept of anyons plays an important role in numerous studies of
condensedmatter physics and of topological quantum computation [6–13]. In order to generalize the Bose–
Einstein and Fermi–Dirac statistics by allowing amaximal finite integer particle number occupying the same
quantum state, Gentile supplied an intermediate statistics that had been proven to be also valid for a q-fermion
[14–19]. However, Shen et al pointed out that the anyon statistics was not a complete analogue of theGentile
statistics [20]. Based on a generalized Pauli exclusion principle, Haldane provided a useful concept of fractional
statistics in arbitrary dimensions [21]. Polychronakos also suggested another formof the fractional exclusion
statistics [22]. However, it was shown via the virial expansion that all these fractional statistics proposed in the
literature do not apply for anyons [20, 23].

In one-dimension (1D), anyonswere realized as low-energy elementary excitations of theHubbardmodel of
fermionswith correlated hopping processes [24]. Alternatively, it was suggested to create anyons by bosonswith
complex-valued occupation-dependent hopping amplitudes by photon-assisted tunneling in 1Doptical lattices
[25, 26]. Recently, Greschner and Santos proposed aRaman scheme to improve the proposal of Keilmann et al in
[25] and deduced a rich ground-state physics includingMott-insulators with attractive interactions, pair-
superfluids, dimer phases, andmulti-critical points [27]. An even simpler scheme for realizing the physics of 1D
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anyonswith ultracold bosons in an optical lattice has recently been proposed in [28]. It relies on lattice-shaking-
induced resonant tunneling against the energy off-sets created by the combination of both a potential tilt and
on-site repulsion. In contrast to the abovementioned former proposals based on internal atomic degrees of
freedom, no lasers additional to those already used for the creation of the optical lattice are required [28].

The physical properties of 1D anyons are intriguing and complicated. Theoretically, using the generalized
coordinate Bethe ansatzmethod, Kundu obtained the exact solution of a 1D anyon gaswith the delta-function
potential, which shows that the effective interaction among the anyons ismodified by the anyonic statistical
parameter [29]. Furthermore, the 1D anyon gaswith a special interaction potential has been investigated in
various 1D systems in order to get the ground-state properties of the 1D anyon gas [30–35]. For anyons in the 1D
lattice systems one investigated, for instance, the statistically induced phase transition [25], quantum scaling
properties [24], dynamics properties of hard-core anyons [36, 37], quantumwalks [38, 39], and anyonic Bloch
oscillations [40]. For the hard-core anyons in the 1Doptical lattice,Hao et al investigated how the fractional
statistics affected the ground-state properties bymapping the hard-core anyonicHamiltonian to a
noninteracting fermionic systemwith a generalized Jordan–Wigner transformation [41]. By calculating the one-
particle Greens function of the ground state, the reduced one-body densitymatrix and, thus, the quasi-
momentumdistributions can be obtained for different statistical parameters of anyons. The results showed that
themomentumdistributions in the Bose and Fermi limit turned out to be symmetric, but those of anyonswere
in general asymmetric and shifted due to the fractional statistics that anyons obey.

In this paperwe complement the previous studies of the ground-state properties of a 1Dquantumgas of
anyons confined in optical lattices. To this endwemap the Anyon–Hubbard (AH)model to an occupation-
dependent hopping Bose–Hubbardmodel with the help of a fractional version of the Jordan–Wigner
transformation. Thismapping has the consequence that theHilbert space of anyons can be constructed from
that of bosons, so that one has access to the two-point correlation function of either the original anyonic or the
Jordan–Wigner transformed bosonic creation and annihilation operators.With this we investigate the quasi-
momentumdistributions of either bosons or anyons, the latter interpolating betweenBose–Einstein statistics
and Fermi–Dirac statistics. Firstly, in the hard-core limit, we determine the quasi-momentumdistributions of
anyonswith density-matrix renormalization group (DMRG) calculations, which numerically reproduces the
results ofHao et al [41]. In addition, by suggesting amodifiedGutzwillermean-field approach to include the
influence of the fractional phase of anyonswithin themany-bodywavefunction, we obtain an approximative
analytic expression for the numerical results of [41] both for afinite system and in the thermodynamic limit. In
particular, we analyze in detail howpeak-shift and asymmetry of the quasi-momentumdistribution of anyons
depend on both the fractional phase θ and the particle number density n0. Furthermore, we extend thefindings
of [41] byworking out also themore general soft-core case. The quasi-momentumdistribution of anyons reveals
the pseudofermion property at the fractional phase q p= . Surprisingly, the quasi-momentumdistributions of
the Jordan–Wigner transformed bosons shows a density-dependent asymmetry which is not found for the hard-
core case.

The outline of this paper is as follows: in section 2 the AHmodel and themapping between anyons and
bosons are discussed. Both the classical and themodifiedGutzwillermean-field approach is introduced in
section 3. The ground-state properties of the 1DAHmodel are determined by studying the quasi-momentum
distribution of anyons and bosons in both the hard-core and the soft-core case in sections 4 and 5 respectively.
Conclusions are given in section 6.

2. AHmodel

The hopping dynamics of correlated anyons on a 1D lattice is described by the AHHamiltonian [25]

å å= - + + -
=

+
=

( ) ( )ˆ ˆ ˆ ˆ ˆ ( )†H J a a
U

n nh.c.
2

1 , 1a

j

L

j j
j

L

j j
1

1
1

where >J 0 denotes the tunneling amplitude connecting two neighboring sites,U stands for the on-site
interaction energy, =ˆ ˆ ˆ†n a aj j j represents the number operator at site j, and the operators ˆ†a ,j âj create or

annihilate an anyon on site j. For 1D anyons, the operators ˆ†aj and âj obey the generalized commutation relations
[25, 29]

d- =

- =

q

q

- -

-

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ( )

† ( ) †

( )

a a a a

a a a a

e ,

e 0, 2

j k
j k

k j jk

j k
j k

k j
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i sgn

where θ is the statistical exchange phase, the sign function - = - +( )j ksgn 1, 0, 1 for <j k, j=k, and >j k,
respectively. Note that, since the sign function - =( )j ksgn 0 for j=k, two particles on the same site behave as
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ordinary bosons irrespective of the statistical parameter θ.Moreover, anyonswith the statistical exchange phase
q p= are pseudofermions, i.e. while being bosons on-site, they are fermions off-site.

Here we use an exact Anyon–Bosonmapping in 1D in terms of a fractional version of the Jordan–Wigner
transformation [25]

⎛
⎝⎜

⎞
⎠⎟åq=

=

-

ˆ ˆ ˆ ( )a b nexp i , 3j j
i

j

i
1

1

where the number operator reads = =ˆ ˆ ˆ ˆ ˆ† †
n a a b bi i i i i and b̂ ,i ˆ†

bi are bosons operators following the commutation

relation d=[ ˆ ˆ ]
†

b b,i j ij and = =[ ˆ ˆ ] [ ˆ ˆ ]
† †

b b b b, 0 , .i j i j Inserting the Anyon–Bosonmapping (3) into equation (1),
theHamiltonian Ĥ

a
can be rewritten as [25]

å å= - + + -q
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j j
1

1
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where the conditional hopping of bosons from right to left, i.e. + j j1 , occurs with an occupation-
dependent amplitude q ˆJe .ni j If the target site j is unoccupied, the hopping amplitude is simply J. If it is occupied
by one boson, the amplitude becomes complex and reads qJe ,i and so on.We emphasize that the hard-core limit

of anyons in equation (1) coincides with that of bosons in equation (4) due to = =ˆ ˆ ˆ ˆ ˆ† †
n a a b b .i i i i i It is also clear

that themapped bosonicHamiltonian (4) describes local occupation numbers beyond the hard-core
limit >n 1.j

Using the nonlocal exactmapping (3) between anyons and bosons, theAHHamiltonian (1) leads to a
bosonicHamiltonian equation (4) that can be solved either analytically or numerically in order to determine the
ground-state properties of anyons in 1D lattice systems. Theoretically, since the reflection parity symmetry in
theHamiltonian is broken, we suggest below amodifiedGutzwillermean-field, which goes beyond the classical
one found in literature [42–45] in order to include the influence of the fractional phase of anyons on the hopping
dynamics. To get numerical results, we use theDMRG [46–50], whichwas already applied to the realmof
anyons, for instance, in [25]. To this end, we rely on the ansatz ofmatrix product states (MPSs)with the system
length L and open boundary conditions, which ismore efficient than periodic boundaries [51–55]. The code is
based on a variational ansatz usingMPSwith the restricted subspace of integer filling, where our simulations
admit amaximumoffive particles per site and themaximumbond dimension ofMPS equals to 1000 [56].
Moreover, [53, 54, 56] show the respective details how to calculate the expectation of the string operator in
equation (3) and the correlation functions inDMRGwithMPS ansatz.

3.Mean-field approximation

Atfirst wework out aGutzwillermean-field approach, which turns out to provide qualitative satisfactory results
for the quasi-momentumdistributions. In aGutzwiller (GW) approach for bosons, themany-particle state ñ∣G
is generically approximated by a product state of single lattice-site states Fñ∣ ,j which can be expressed as a
superposition of different number states on a lattice site [45]

⎛
⎝⎜

⎞
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∣ ∣ ( )( )G f n . 5
j

j
j n
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n
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Here nmax represents a truncation at some sufficiently largemaximal particle number and ( )f
n

j denotes the
Gutzwiller probability amplitude offinding n bosons on site j, which is normalized such that

å =
=

( )( )f 1. 6
n

n

n
j

0

2max

The total energy of the system

   = + +m ( )7tot int kin

then follows fromdetermining the ground-state expectation values of the respective operators according to the
appendix. As a consequence, the interaction energy (A.1), the chemical potential term (A.2), and the kinetic
energy (A.3) depend on theGutzwiller coefficients ( )f .

n
j Due to the polar decomposition = a( ) ( ) ( )

f F e ,
n

j
n

j i n
j
the total

energy (7) has to beminimizedwith respect to both the absolute values ( )Fn
j and the phases a( ).n

j

In the classical GWmean-field approach of a homogeneous system, towhichwe refer as cGW in the
following, one assumes that the ground state is a product of identical states on each of the L lattice sites [42–45],
i.e.
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F = Fñ =∣ ( )( )f f, . 8j n
j

n

This has the consequence

a a= = ( )( ) ( )F F , , 9n
j

n n
j

n

i.e. one has the identical wave function on each lattice site.
Due to the occupation-dependent amplitude q ˆJe ni j for nearest-neighbor hopping in the bosonic

Hamiltonian (4), the reflection parity symmetry is broken. Therefore, we suggest to drop the cGWconstraint of
having identical states on each site to amodifiedGWmean-field approach (mGW). To this end, we note that the
kinetic energy equation (A.5) in the appendix depends on the difference b a aº - +

( ) ( ) ( )
n
j

n
j

n
j

1of the phases of the

probability amplitudes ( )f
n

j and +
( )f
n

j
1offinding n and +n 1bosons on site j, respectively. If all phase differences

would be identical, wewould recover cGW.Therefore, we definemGWaccording to

b b b b= D = - º D+ ( )( ) ( ) ( ) ( )F F , . 10n
j

n n
j

n
j

n
j

n
1

In order tofix the values of the phase differences b ( ),n
j we complement (10) by the additional assumption

b b b+ º+ ( )( ) ( ) 2 . 11n
j

n
j

n
1

Thismeans that the absolute value ( )Fn
j of the probability amplitude ( )f

n
j is identical on each site and the non-

vanishing phase difference bD ( )
n
j between two nearest-neighbor sites is the same in thewhole chain.

The application of cGWandmGW is performed in the appendix for both the hard-core case in sectionA.1,
whichmeans =n 1,max and the soft-core case by assuming =n 2max in sectionA.2. Provided that Gutzwiller
amplitudes and phases have been determined, one can calculate the two-point correlation function of bosons,
which has the rather simple expression

d dá ñ = á ñ + - á ñá ñ( )ˆ ˆ ˆ ˆ ˆ ( )
† †

b b n b b1 . 12i j ij i ij i j

The correlation function of anyons can bewritten as
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i ii l

⎛
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⎞
⎠
⎟⎟á ñ  á ñ á ñq q> -

< <

-ˆ ˆ ˆ ˆ ( )† ˆ ˆ †
a a b b be e , 13i j

i j n
j

j l i

n
i

i ij l
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=ˆ ˆ ˆ ( )†a a n c, 13i j

i j
j

where the respective expectation values depend on theGutzwiller amplitudes ( )f
n

j according to equation (A.4a)
in the appendix.

Furthermore, in order to investigate the effect of the anyon statistical parameter θ, wewill focus on density
distributions of bosons and anyons in the quasi-momentum space, which are defined via the Fourier
transformation of the correlation function

åá ñ = á ñ-( )ˆ ˆ ˆ ( )( ) †
n

L
b b a

1
e , 14k

ij

k x x
i j

b i i j

åá ñ = á ñ-( )ˆ ˆ ˆ ( )( ) †n
L

a a b
1

e . 14k
ij

k x x
i j

a i i j

Provided that anyons are simulated by an occupation-dependent hopping of bosons according to the proposals
in [25–28], the bosonic correlation function (14a) should bemeasurable in time-of-flight experiments. In those
experiments it is unclear whether the corresponding anyonic correlation function (14b) is also observable,
however, for comparison, a deeper understanding, and possible future applications it is worthwhile to
determine the θ-dependence of á ñˆ ( )nk

a in the following.
Atfirst, we are going tofind the ground state of a homogeneous system for a given particle number density
>n 0,0 ratio J/U, and varying statistical parameter θ. Thus, combining the analytic approaches cGW,mGW

with numerical results fromDMRG,we determine the correlation functions and, thus, investigate the quasi-
momentumdistributions of the ground state.

4.Hard-core anyons

In order to illustrate the applicability of theGutzwillermean-field theory, we investigate atfirst the simplest case
of hard-core anyons. Thismeans thatwe assume  ¥U J , where bosons are impenetrable and each site
contains atmost one particle, i.e., =n 1.max In the following, we present only the calculations of the correlation
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function and the quasi-momentumdistribution, while themathematical details forminimizing the total energy
are relegated to sectionA.1 of the appendix.

According to equation (12), the correlation function of bosons reads

d dá ñ = + - - b b-( ) ( ) ( )ˆ ˆ ( )
† ( ) ( )

b b n n n1 1 e , 15i j ij ij0 0 0
i i j

0 0

which reduces to

dá ñ = + -( )ˆ ˆ ( )
†

b b n n n1 , 16i j ij 0
2

0 0

since b b b pD = - =+( ) ( ) m2j j
0 0 0

1 (see sectionA.1). Using equation (14a), the ground-state quasi-momentum
distribution of bosons can bewritten as

dá ñ = + -( )ˆ ( )( )n n n n L1 , 17k k
b

0
2

0 0 ,0

which is θ-independent and the number of particles in the condensate is = -( )N N n1 .0 0 Figure 1 shows the
resulting ground-state quasi-momentumdistribution in a hard-core system at density =n 0.5.0

Since á ñˆ ( )nk
b in equation (17) is θ-independent in theGWapproach, if one changes θ from0 toπ, all quasi-

momentumdistributions with different θ coincide as shown infigure 1(a). The quasi-momentumdistribution
of bosons á ñˆ ( )nk

b inDMRGas shown infigure 1(b) turns out to be also θ-independent because the phase factor
disappears in the bosonicHamiltonian (4) in the hard-core limit and the systems reduces to a hard-core Bose–
Hubbardmodel. As a consequence, bosons condense at zero quasi-momentum in both theGWapproach and
DMRG.However, the bosonic population -( )N n1 0 of k=0 in theGWapproach ismuch larger than that in
DMRGbecause themean-field approach does not contain quantum fluctuationswhich generally broaden the
quasi-momentumdistributions.

In the Bose limit q = 0,we have =ˆ ˆa bj j and á ñ = á ñˆ ˆ ˆ ˆ† †
a a b b ,i j i j thus

qá = ñ = á ñˆ ( ) ˆ ( )( ) ( )n n0 . 18k k
a b

which is shown infigures 1(a) and (b) for the density =n 0.5.0

According to equations (13) and (A.4d) in the appendix, the correlation function of anyons reduces to

⎡⎣ ⎤⎦á ñ  - - + q<

< <
( ) ( )ˆ ˆ ( )†a a n n n n a1 1 e , 19i j

i j

i l j
0 0 0 0

i

⎡⎣ ⎤⎦á ñ  - - + q>

< <

-( ) ( )ˆ ˆ ( )†a a n n n n b1 1 e . 19i j
i j

j l i
0 0 0 0

i

Using equation (14b), the ground-state quasi-momentumdistribution of anyons can bewritten in the θ-
dependent form for a finite open system

Figure 1.Quasi-momentumdistribution of the ground state in a hard-core system ( = =n N L 0.5,0 L=120). (a)Gutzwiller
approach and (b)DMRG for anyons and bosons.
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i thus r=1 if q = 0 or =n 1,0 otherwise <r 1. In the Fermi
limit q p= ,we obtain from (20)
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f a º - Î - +( )x n1 2 1, 10 if < <n0 1.0 In the thermodynamic limit, this
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For the system at =n 0.5,0 theGWapproach gives

⎜ ⎟⎛
⎝

⎞
⎠á ñ = + -

 á ñ= +
¥

ˆ ( )

ˆ ( ) ( )

( )

( )

n
L

k

n k

0.5 0.5 1
1

cos

0.5 0.5 cos , 23

k

L

k

f

f

which is shown as the black solid line infigure 1(a). However, infigure 1(b) fromDMRG, the quasi-momentum
distribution of anyons in the Fermi limit represents a step-like distribution, which is the characteristic feature of
free fermions. This shows thatDMRGcan grasp the fermion-like feature of anyonswith statistics q p= ,
whereas theGWapproach achieves this only approximately.

If ( )Kmax
a,b defines the quasi-momentum, where á ñˆ ( )nk

a,b has itsmaximum,we have q = =( )( )K 0 0max
a and

q p= =( )( )K 0,max
a i.e., both the quasi-momentumdistribution of the Bose and of the Fermi limit are symmetric

about zero quasi-momentum. Indeed this results from dk,0 in equations (17) and (18) in the Bose limit and from

calculating ¶á ñ ¶ =ˆ ( )n k 0k
f of equations (22) and (23) in the Fermi limit.

In the fractional phase interpolating between the Bose and Fermi limit q p< <0 ,wefind from (20)
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In the thermodynamic limit, this reduces to
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where = - + q∣ ∣r n n1 e0 0
i andj = - + q( )n narg 1 e .0 0

i Figure 1 clearly show that: (i) the respective peak of
the quasi-momentumdistribution is shifted to positivemomentum, (ii) the quasi-momentumdistribution is
asymmetric about its own peak, and (iii) the quasi-momentumdistributions broaden and flattenwith increasing

θ. Comparing figure 1(a)with (b) or á ñˆ ˆ†
b bi j in equation (16)with á ñˆ ˆ†a ai j in equation (19), we conclude that the

nonlocal string property of anyons, which is denoted by - + q
< <

[( ) ]n n1 e
i l j 0 0

i or

 - + q
< <

-[( ) ]n n1 e
j l i 0 0

i in equation (19), is the reasonwhy anyons prefer to appear on positive
momentum. This is explained numerically in [41].

In order tofind themaximum ( )Kmax
a of the quasi-momentumdistribution, we analytically evaluate

¶á ñ ¶ =ˆ ( )n k 0k
a for equation (25), which gives

⎪

⎪

⎧
⎨
⎩





  p J q J
=

- -( ) ( )( )K
n, 2 2 1 and ,

, Otherwise,
26max

a 0 1 2

wherewe have introduced the abbreviations

⎛
⎝⎜

⎞
⎠⎟J

p
J

p
J= +

-
= - ( )n

n4
arcsin

2

2
,

3

2
, 271

0

0
2 1


q q q

q q
=

- +

- - + +

( )
( )( ) ( )

( )
n n n

n
arcsin

sin 2 sin cos

1 cos 1 1 cos
. 28

0 0
2

0
2

0
2

Figure 2(a) shows the resulting fractional phase θ-dependence of anyonic ( )Kmax
a at density =n 0.75,0 0.5,

and 0.25. TheDMRG results (L= 120) clearly show that the peaks of the quasi-momentumdistributions
increase linearly from q = =( )( )K 0 0max

a (bosons) and come back to q p= =( )( )K 0max
a (fermions)while
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increasing θ. TheGWapproach shows the same linearly increasing property at small θ, i.e. near bosons. This can
be quantitatively understood by taking the limit q  0 in equations (26) and (28):

q q q  ( )( ) ( )( )K n n0 arcsin . 29a
max 0 0

At the Fermi side q p ,we have correspondingly

q p
p q p q


-

-
-

-
 ( ) ( ) ( ) ( )( )K

n

n

n

n
arcsin

1 1
, 30max

a 0

0

0

0

where the slope of ( )Kmax
a fromGWis smaller than that fromDMRG. In general, theGWapproach always yields a

smaller shift of positivemomentum in comparisonwith theDMRG results for any statistical parameter of
anyons between the Fermi and the Bose case.Moreover, wefind that bothDMRGandGWgive a larger peak
shift for a bigger particle number density n0.

In order to determine the thermodynamic limit of the quasi-momentumdistribution, figures 2(b) and (c)
show the system size dependence of ( )Kmax

a and ¥n nL L
max max at density =n 0.750 in theGWapproach, where

n L
max is themaximumvalue of the quasi-momentumdistributionwith the finite system size L and ¥n L

max

corresponds to the thermodynamic limit. Considering the uncertainty of the quasi-momentum in the finite
system pD =k L2 , ( )Kmax

a turns out to be independent of the system size. According tofigure 1, the bosons
condense at zeromomentumwith a sharp distribution and the fermions have aflat distribution. Infigure 2(c),
with θ increasing from the Bose to the Fermi case, we find that the condensate population near the Bose side
slightly depends on the system size, but themaximumparticle number near the Fermi side is almost
independent on the system size, since the behavior of anyonswith q p~ looksmuchmore like fermions
without condensation. Note thatwe do not showhere the case of bosons q = 0 because bosons condense at zero
momentum.

5. Soft-core anyons

Before going to the soft-core case, we remind that within theGutzwiller theory á ñˆ ˆ†
b bi j and á ñˆ ( )nk

b in
equations (16) and (17) turn out to be independent of the fractional phase θ of hard-core anyons because
b pD = m20 and the local state ñ∣2 is not occupied, i.e. =F 0.2 Considering the occupation-dependent hopping

in the soft-core case, we are going to discuss the influence of bD 1 and non-vanishing F2 in the following. The
respective details ofminimizing the total energy are given in sectionA.2 of the appendix.

Figure 2. (a)Maximum ( )Kmax
a of quasi-momentum á ñˆ ( )nk

a plotted against the fractional phase θ of anyons at density n0 resulting from
DMRG (L = 120) andGW in the thermodynamic limit  ¥L . (b) ( )Kmax

a plotted against the inverse system size at density =n 0.750

resulting fromGW. (c)Maximum á ñˆ ( )nk
a of the finite system size L divided by that of the infinite system size  ¥L plotted against

the inverse system size at density =n 0.750 resulting fromGW.
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5.1. Boson quasi-momentumdistribution
According to equation (12) and supposing =n 2,max the correlation function of bosons is

⎡⎣ ⎤⎦d dá ñ = + - + q-( )ˆ ˆ ( )
† ( )b b n A B1 e , 31i j ij ij

i j
0

i

where º +( )A F F F F2 ,1
2

0
2

0 2 º +( )B F F F F2 21
2

0 2 2
2 and + =A B C.Using equation (14a), the quasi-

momentumdistribution of bosons can bewritten as

d
q
q

á ñ = - + +
- +

- +
ˆ [( ) ]

[ ( )]
( )( )n n C AL B

k L

L k

1 cos

1 cos
32k k

b
0 ,0

and yields in the thermodynamic limit

d d qá ñ  - + + +
¥ˆ ( ) ( ) ( )( )n n C A k B k . 33k

Lb
0

Here, comparedwith the θ-independent á ñˆ ( )nk
b of the hard-core case in equation (17), the quasi-momentum

distribution of bosons frommGWhas a background distribution -n C0 and twopeaks at k=0 and q= -k
with the intensitiesA andB, respectively.

Noticeably, if comparing the intensity = +( )A F F F F21
2

0
2

0 2 of the k=0 peakwith the intensity
= +( )B F F F F2 21

2
0 2 2

2 of the q= -k peak, wefind that the discrepancy between the intensitiesA andB is
determined by the occupation F0

2 of ñ∣0 and F2
2 of ñ∣2 .As these occupations F0

2 and F2
2 changewith the density

n0, the resulting quasi-momentumdistribution of bosons reveals a characteristic density dependency.
Therefore, we discuss nowdifferent density regimes.

In the dilute limit n 1,0 the positiveHubbardU depresses the state ñ∣2 and ~F 0,2
2 thus the properties of

á ñˆ ( )nk
b are similar to that of the hard-core case. Figure 3(a) shows the quasi-momentumdistribution of bosons at

density n0=0.25 and =J U 0.1 in themGWapproach. For q = 0,wehave dá ñ = - +ˆ ( )( )n n C C k ,k
b

0 which
demonstrates that there exists only one peak of the intensity = +C A B at k=0 and the quasi-momentum
distribution is symmetric. For the case of q p<0 ,we have (33), which demonstrates that there exists one
much lower peak of the intensityB at the negativemomentum q= -k than that of the intensityA at k=0 due
to F F .2

2
0
2 Here, we should note that q pá = ñˆ ( )( )n ,k

b which is plotted for slightly asymmetric interval

p p- <k infigure 3(a), is also a symmetric distribution since á ñˆ ( )nk
b has period p2 .

The results of DMRGwith the same parameters are shown infigure 3(d), where the symmetric quasi-
momentumdistribution of q = 0 is a little sharper than that of q p= .But for the case of q p< <0 , there
exists an asymmetric quasi-momentumdistribution andmore bosons have negativemomentum according to
the inset offigure 3(d). In general, quantumfluctuations broaden á ñˆ ( )nk

b frommGW.Taking this into account, if
wewould add the effect of quantum fluctuations on themGWquasi-momentumdistribution, the peak at k=0
and q= -k would broaden. Since the peak at q= -k frommGWis pretty low, a broadening would bemerged
into the background of the quasi-momentumdistribution. Therefore, at small particle densities, themGW
approach gives qualitatively the same quasi-momentumdistribution asDMRG, i.e. the peaks locate at k=0 and
more bosons have negativemomentum.

For the high density =n 1.250 infigures 3(b) and (e), there existsmore than one particle per site on average.
Thus the vacuum state ñ∣0 is almost unoccupied in the ground state, i.e. F F .0

2
2
2 For q p<0 , figure 3(b)

clearly shows that the high peaks of the quasi-momentumdistribution exactly appear at q= -k in comparison
with that at k=0. The results ofmGWqualitatively coincide with that ofDMRG infigure 3(d) although the
momentumvalue k of theDMRGpeaks is a little larger than q- because the peaks at q= -k competewith the
peaks at k=0 under the influence of quantumfluctuation.Of course, q = 0 and q p= still give the symmetric
quasi-momentumdistribution of bosonic operators.

Figures 3(c) and (f) show the quasi-momentumdistribution at the density =n 0.750 in themiddle of
=n 0.250 and =n 1.25.0 The competition between the k=0 peak of the intensityA and the q= -k of the

intensityB of the quasi-momentumdistribution leads tofinal peak shifts from k=0 to the negativemomentum
but comes back to k=0while increasing θ from0 toπ as shown infigure 3(f). Note that this peculiar behavior is
not reproduced bymGW infigure 3(c).

If we think about the occupation-dependent factor q ˆe ni j in (4) again, we recognize infigure 3 a clear physical
picture of the ground state: (i) for a small density <n 1,0 the states ñ∣0 and ñ∣1 are preferred and b pD = m20 is
the leading term,which gives a quasi-momentumpeak of bosons at ~k 0; (ii) for a density < <n1 2,0 the
states ñ∣1 and ñ∣2 are preferred and b p qD = -l21 is the leading term,which gives a quasi-momentumpeak of
bosons at q~ -k . In order to deal with the density < n2 ,0 we should truncate themGWapproach at

= n 3, 4, .max For example assuming =n 3,max the quasi-momentumdistribution of bosons shows an
additional peak of q= -k 2 . For the density < <n2 3,0 the leading peak of the quasi-momentumdistribution
of bosons appears at themomentum q~ -k 2 .
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5.2. Anyon quasi-momentumdistribution
According to the equations (13) and (A.4) in the appendix, the anyonic correlation function is written as

⎡⎣ ⎤⎦ á ñ  + q< - +

< <

ˆ ˆ ( )† ( )a a A B w ae , 34i j
i j i j

i l j

i 1

⎡⎣ ⎤⎦ *á ñ  + q> - -

< <

ˆ ˆ ( )† ( )a a A B w be . 34i j
i j i j

j l i

i 1

where = + + ºq q cw F F F We e e .0
2

1
2 i

2
2 i2 i If q = 0,wehave = + + =w F F F 1,0

2
1
2

2
2 otherwise the absolute

value is <W 1. In the Bose limit q = 0, the correlation function of anyons is

d dá ñ = + -( )ˆ ˆ ( )†a a n C1 . 35i j ij ij0

Using equation (14b), the ground-state quasi-momentumdistribution of anyons can bewritten as

dá ñ = - +ˆ ( )( )n n C CL . 36k k
a

0 ,0

If q ¹ 0 and then <∣ ∣w 1, the quasi-momentumdistribution of anyons is written as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

á ñ = +
- - +

-
+

+
- - +

-
+

-

-

ˆ ( )
( )

( )
( )

( )

( )n n
A

L

L Lu u

u

B

L

L Lv v

v

e
1

1
c.c.

e
1

1
c.c. , 37

k
k

L

k
L

a
0

i
2

i
2

Figure 3.Quasi-momentumdistribution of bosonswith different statistical phase θ ( =J U 0.1, L=120). (a)–(c) frommGWat
density =n 0.25,0 =n 1.25,0 and =n 0.75.0 (d)–(f) fromDMRGat density =n 0.25,0 =n 1.25,0 and =n 0.75.0
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where = -u we ki and = q- +( )v we .ki In the thermodynamic limit, this reduces to

c
c

q c
q c

á ñ  +
-

- - +

+
- -

- + - +

<

¥ˆ
( )

( )
[( ) ]

( )

( )
∣ ∣

n n A
k W

W k W

B
k W

W k W

2 cos 2 cos

1 2 cos

2 cos 2 cos

1 2 cos
, 38

k w

La

1
0 2

2

where = ∣ ∣W w and c = ( )warg .
In the hard-core limit =F 0,2

2 sowe havew=z, c j= , = -( )A n n1 ,0 0 andB=0, thus equation (38)
reduces to equation (25). For small densities n 1,0 which implies ~F 0,2

2 we expect the quasi-momentum
distribution of anyons in the soft-core case to be similar to that in the hard-core case. This can be shown by
comparing figures 4 (a) and (b) fromDMRGor (a′) and (b′) frommGWat the density =n 0.25.0 However, for
the fractional phase q p= in the soft-case, we also note that there exists a quite small area with the property
á ñ >ˆ ( )n 1k

a that is shown as the shaded (yellow in color) zone in the insets offigures 4 (b) and (b′). The shaded area
increases while increasing the density, for example =n 0.750 is shown infigures 4 (d) and (d′). This result
reveals that anyonswith the statistical phase q p= are pseudofermions, i.e. possiblymore than one identical
anyon exist in one state but they behave like a fermionwhile exchanging two anyons on different sites.
Comparing the results fromDMRGandmGW infigure 4, we demonstrate again that themGWapproach grasps
themain features of the quasi-momentumdistribution of anyons. Finally, we should note that the hard-core
case ismore suitable to describe the step-like behavior of anyons (q p= ) than the soft-core case.

Figure 5 shows the fractional phase θ-dependence of anyonic ( )Kmax
a at the densities =n 0.25,0 0.5, 1.25, and

1.5. In general, for the density < <n0 10 and q p< <0 , ( )Kmax
a at density =n 0.50 is larger than that at

=n 0.25,0 which coincides with thefinding of the hard-core case.Moreover, for < <n1 2,0 theDMRG results
show that the peak position ( )Kmax

a of the quasi-momentumdistribution at density =n 1.250 coincides with that
at density =n 0.250 within uncertainty. This is also shownby theDMRG results at density =n 1.50 and

=n 0.5.0 However, themGWapproach in the thermodynamic limit shows that ( )Kmax
a at density +n 10 is a little

larger than that at density n0, especially for the zone q p~ .

6. Conclusions

In summary, we have studied the ground-state property of the 1DAHmodel.With the help of a fractional
version of the Jordan–Wigner transformation, the AHmodel ismapped to the occupation-dependent hopping
Bose–Hubbardmodel and, thus, theHilbert space of anyons can be constructed from that of bosons. By
calculating the two-point correlation function of creation and annihilation operators of bosons and anyons, we
investigate the quasi-momentumdistributions interpolating between Bose–Einstein statistics and Fermi–Dirac
statistics. Theoretically, in order to include the influence of the fractional phase of anyons on themany-body
wavefunction, wemodify the classical Gutzwillermean-field approach and get an analytic expression for the
quasi-momentumdistributions of anyons and bosons. In order to test the accuracy of themGWmean-field
approach, we useDMRG for numerical calculations.

In the hard-core case, the results show that the bosons condensate at zeromomentum and have a symmetric
quasi-momentumdistribution around zeromomentum.Due to the nonlocal string property,more anyons are
shifted to a positivemomentum and have an asymmetric quasi-momentumdistribution, where the peak
position depends on both the fractional phase and the particle number density. For the fractional phase

p q p<2 , theGWapproach yields an obvious smaller shift of positivemomentum in comparisonwith the
DMRG results.

In the soft-core case, the results show that the quasi-momentumpeaks of bosons strongly depend on the
particle number density. At density <n 1,0 b pD = m20 leads to a quasi-momentumpeak of bosons at ~k 0.
However,mGW fails to reproduce the quasi-momentumdistribution of bosons fromDMRGat density

=n 0.75.0 At density < <n1 2,0 b p qD = -l21 leads a quasi-momentumpeak of bosons at q~ -k .Again,
the quasi-momentumdistribution of anyons shownonlocal string behavior and yield similar features as in the
hard-core case. Furthermore, anyonswith q p= are pseudofermions, i.e., there existsmore than one identical
anyon in one state in the soft-core case. However, in the hard-core case, the quasi-momentumdistribution of
anyons is a typical step-like function.
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Appendix. Gutzwillermean-field approach

Based on theGutzwiller wave function (5), the interaction energy turns out to be

 å

åå

= F - F

= -
=

( )ˆ ˆ

( ) ( )( )

U
n n

U
f n n

2
1

2
1 , A.1

j
j j j j

j n

n

n
j

int

0

2max

Figure 4.Quasi-momentumdistribution of anyonswith different statistical phase θ ( =J U 0.1). (a)–(d) fromDMRG (L = 120) at
density n0=0.25 and =n 0.75.0 (a′)–(d′) frommGWin the thermal dynamic limit at density n0=0.25 and =n 0.75.0 The left
column (a), (c), (a′), (c′) and the right column (b), (d), (b′), (d′) refer to the hard-core case and the soft-core case, respectively.
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whereas the chemical potential termwithin a grand-canonical description reads

 å ååm m= F - F = -m
=

( ) ˆ ( )( )n f n. A.2
j

j j j
j n

n

n
j

0

2max

In the sameway, the expectation value of the kinetic energy term can be expressed as

 å

å

=- F F F F +

=- +

q

q

+ + +

+

( )
( )

ˆ ˆ

ˆ ˆ ( )

† ˆ

† ˆ

J b b

J b b

e c.c.

e c.c. , A.3

j
j j

n
j j j j

j
j

n
j

kin
i

1 1 1

i
1

j

j

where the expectation values á ñ º áF Fñˆ ∣ ˆ ∣O Oj j j j yield

* *åá ñ = + = á ñ
=

+
ˆ ˆ ( )( ) ( ) †
b f f n b a1 , A.4j

n

n

n
j

n
j

j
0

1

max

* *åá ñ= + = á ñq q q

=
+

-ˆ ˆ ( )
† ˆ ( ) ( ) ˆb f f n b be 1 e e , A.4j

n

n

n

n
j

n
j n n

j
i

0
1

i ij j

max

å=
=

ˆ ( )( )n f n c, A.4j
n

n

n
j

0

2max

å=q q

=

 ( )ˆ ( )f de e . A.4n

n

n

n
j ni

0

2 ij

max

Using equation (A.4), theGutzwiller kinetic energy reduces to

⎡⎣ ⎤⎦* * åå= - + + +q
+

+
+
+( )( ) ( )( ) ( ) ( ) ( )J n m f f f f1 1 e c.c. . A.5

j m n

n

n
j

n
j

m
j

m
j n

kin
,

1
1

1
1 i

max

Using the polar decomposition = a( ) ( ) ( )
f F e ,

n
j

n
j i n

j
wehave

⎡⎣ ⎤⎦* * = b b
+

+
+
+

+
+

+
+ - + ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

f f f f F F F F e , A.6
n

j
n

j
m

j
m

j
n

j
n

j
m

j
m

j
1

1
1
1

1
1

1
1 i n

j
m
j 1

where b a aº - +
( ) ( ) ( )
n
j

n
j

n
j

1denotes the difference between the phase of the probability amplitude ( )f
n

j offinding n

bosons and +
( )f
n

j
1offinding +n 1bosons on site j.

The ground state of the systemwith given parameters is determined from varying the coefficients ( )f
n

j and
minimizing the total energy. This can either be done for a given chemical potentialμ, or for a givenmean particle
number å= á ñ = =

ˆn n nF
n

n
n0 0
2max according to equation (A.4c). In this paper, we assume that n0 is given, so the

chemical potential  m= -m n L0 resulting from (A.2) does not depend on ( )f .
n

j Thus, after having determined

theGutzwiller coefficients ( )f ,
n

j the chemical potentialμ is fixed by

Figure 5.Quasi-momentum ( )Kmax
a plotted against the fractional phase θ of anyons resulting fromDMRG (L = 120) andmGW (in the

thermodynamic limit  ¥L )with parameters =J U 0.1, density =n 0.25, 0.5, 1.25,0 and 1.5, respectively. The uncertainty of
the quasi-momentum is of the order pD =k L2 .
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 
m =

¶ +

¶

( )
( )

L n

1
. A.7

int kin

0

A.1.Hard-core case
In the hard-core limit, bosons are impenetrable and each site contains atmost one particle, i.e., =n 1.max In the
GWapproach, the normalization condition (6) reduces to + =F F 1.0

2
1
2 For a given particle numberN, the

mean density of particle number is given by = =n N L F0 1
2 according to the equation (A.4c). Thus the

absolute values of bothGutzwiller amplitudes are determined according to

= - = ( )F n F n1 , . A.80
2

0 1
2

0

The expectation value of the energy per lattice site =E Ltot tot is then given by

m

m b

=- - -

=- - - D

( )
( ) ( )

E n Jn n

E n Jn n

2 1 ,

2 1 cos , A.9

tot
cGW

0 0 0

tot
mGW

0 0 0 0

where Etot
cGW and Etot

mGW refer to the cGWandmGWapproach, respectively. The ground state is determined by
minimizing the energy Etot

cGW and E .tot
mGW This leads to

b pD = ( )m2 , A.100

where =   m 0, 1, 2, .This expression shows that themGWapproach reduces to the cGWapproach for
hard-core anyons.

A.2. Soft-core case
Using the normalization condition (6) and equation (A.4c) in theGWapproach, we have

+ + =

+ = ( )
F F F

F F n

1,

2 , A.11
0
2

1
2

2
2

1
2

2
2

0

wherewe suppose =n 2max as an approximation. The expectation value of the energy per lattice site reads now

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

m b b q

b b q
b b

q

=- + - D + D +

+
D +D +

- -

{ ( ) ( )
( )

E n UF JF F F

F F

2 cos 2 cos

2 2 cos
2

cos
2

. A.12

tot
mGW

0 2
2

1
2

0
2

0 2
2

1

0 2
0 1

0 1

In order tominimize (A.12), wemust choose for the respective phases

b p b q p

b b
q

p

D = D + =

- - = +( ) ( )

m l

m l

2 , 2 ,

2
, A.13

0 1

0 1

where =   m l, 0, 1, 2, .This demonstrates that the non-vanishing θ influences the phase of themany-
bodywavefunction. Taking into account equation (A.11), the ground state can be found by varying the
Gutzwiller coefficients F F F, ,0 1 2 andminimizing the energy

m= - + - ( )E n UF JC2 , A.14tot
mGW

0 2
2

where º + +( )C F F F F F2 2 2 .1
2

0
2

0 2 2
2 Note that the resulting occupations F ,0

2 F ,1
2 and F2

2 of the states ñ∣0 , ñ∣1 ,
and ñ∣2 are not affected by θ. Obviously, in the hard-core limit J U 0, we reproduce F 0.2 Thus, in that
case equation (A.11) goes over to (A.8), so the calculation reproduces the hard-core case of the last section.

Furthermore, if we set b pD = m20 and b pD = l21 in equation (A.12), themGWapproach reduces to the
cGWapproach, for which the energy is

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

m q

q
b b

q

=- + - +

+ - -

{ ( )
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E n UF JF F F

F F

2 2 cos

2 2 cos
2

cos
2

. A.15

tot
cGW

0 2
2

1
2

0
2

2
2

0 2 0 1

Comparing equations (A.14)with (A.15), it is straightforward to conclude that E E ,tot
mGW

tot
cGW which shows

that themGWapproach is superior to the cGWapproach. Therefore, we restrict ourselves to evaluate themGW
approach for the soft-core case.
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