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Abstract
We study both static and dynamic properties of a weakly interacting Bose–Einstein condensate
(BEC) in a quasi one-dimensional gravito-optical surface trap, where the downward pull of gravity
is compensated by the exponentially decaying potential of an evanescent wave. First, we work out
approximate solutions of the Gross–Pitaevskii equation for both a small number of atoms using a
Gaussian ansatz and a larger number of atoms using the Thomas–Fermi limit. Then we confirm the
accuracy of these analytical solutions by comparing them to numerical results. From there, we
numerically analyze how the BEC cloud expands non-ballistically, when the confining evanescent
laser beam is shut off, showing agreement between our theoretical and previous experimental
results. Furthermore, we analyze how the BEC cloud expands non-ballistically due to gravity after
switching off the evanescent laser field in the presence of a hard-wall mirror which we model by
using a blue-detuned far-off-resonant sheet of light. There we find that the BEC shows significant
self-interference patterns for a large number of atoms, whereas for a small number of atoms, a
revival of the BEC wave packet with few matter-wave interference patterns is observed.

Keywords: Bose–Einstein condensate, matter-wave interference, guasi one-dimensional, gravito-
optical, surface trap

(Some figures may appear in colour only in the online journal)

1. Introduction

Bose–Einstein condensation (BEC) is impossible in a one- or a
two-dimensional homogeneous system [1, 2], but does occur in
atomic traps because the confining potential modifies the density
of states [3–5]. Experimentally, a highly elongated quasi-1D
regime can be reached by tightly confining the atoms in the
radial direction, which can be effectively achieved by letting the
radial frequency be much larger than the axial frequency [6–13].
However, when the radial length scales become as the order of
the atomic interaction length, the one-dimensional system can
only be described within the Tonks–Girardeau or within the
super-Tonks–Girardeau regime [14–16], which is experimen-
tally reachable near a confinement-induced resonance [17–19].

The interaction of lower dimensional ultra-cold atoms
with surfaces has attracted much attention in the past few
years as their enhanced quantum and thermal fluctuations
have turned out to play an important role for various tech-
nological applications [20–23]. Also under such circum-
stances, the influence of gravity must be taken into account.
For many years, atomic mirrors were constructed in the
presence of a gravitational field by using repulsive evanes-
cent waves, which reflect both atomic beams and cold atom
clouds [24–26]. The trapping of atoms in a gravitational
cavity, consisting of a single horizontal concave mirror
placed in a gravitational field, is discussed in detail in
[27, 28]. The inherent losses of atoms in a gravitational
cavity can be reduced by using a higher detuning between the
evanescent wave and the atomic resonance frequency in a
gravitational trap [29]. In 1996, Marzlin and Audretsch
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studied the trapping of three-level atoms in a gravito-optical
trap by using the trampolining technique without the tram-
poline [30]. Another approach proposed by Saif et al, uses a
spatially periodic modulated atomic mirror to yield either a
localization [31] or a coherent acceleration [32] of material
wave packets depending on the chosen initial conditions and
the respective system parameters. In 2002, Nesvizhevsky
et al reported the evidence of gravitational quantum bound
states of neutrons in a gravitational cavity [33]. Not only is a
good confinement geometry necessary for trapping and
observing the dynamics of atoms, but an experiment also
needs an efficient loading scheme loading scheme. The
experimental group of Rudi Grimm from Innsbruck demon-
strated both the loading of 133Cs atoms [34, 35] and the
subsequent creation of a BEC in a quasi-2D gravito-optical
surface trap (GOST) [36, 37]. More recently, Colombe et al
studied the scheme for loading a 87Rb BEC into a quasi-2D
evanescent light trap and observed the diffraction of a BEC
in the time domain [38, 39]. Later Perrin et at. studied the
diffuse reflection of a BEC from a rough evanescent wave
mirror [40].

Motivated by the crucial relevance of gravito-optical
surface traps in atomic waveguides [41–43] and atomic chips
[44–47], in this paper we study the special case of a quasi
one-dimensional Bose–Einstein condensate which is trapped
orthogonal to the prism surface along the vertical axis. In our
proposed model the downward pull of gravity is compensated
by an exponentially decaying evanescent wave (EW), which
can be thought of as a mirror as it repels the atoms upward
against gravity as shown in figure 1. In order to deal with the
hard-wall boundary condition, we apply the mirror solution

analogy to the BEC context, and obtain analytical results,
which agree with those from numerically solving the under-
lying one-dimensional Gross–Pitaevskii equation (1DGPE).
Later on, as an interesting application, we compare our num-
erical simulation results for a time-of-flight dynamics with the
Innsbruck experiment for a quasi-2D BEC in a GOST [37].
Surprisingly, our proposed quasi one-dimensional model
agrees even quantitatively with the Innsbruck experiment.
Although this Innsbruck experiment uses a 2D pancake-shaped
BEC, when performing the time-of-flight expansion vertically
the transversely confining beam is kept constant, so our quasi-
1D model for a BEC should apply in this case.

The paper is organized as follows, the underlying funda-
mental model for such a quasi-1D BEC is reviewed in section 2.
Furthermore, we provide estimates for experimentally realistic
parameters, which we use in our quantitative analysis. After-
wards, we work out approximate solutions for the 1DGPE wave
function in the ground state of the system. To this end, section 3
performs a modified Gaussian variational ansatz for weak
interactions, which corresponds to a small number of atoms. For
a larger number of atoms, the interaction strength becomes so
strong that the Thomas–Fermi solution turns out to be valid, as
described in section 4. Then, in section 5, we outline our
numerical methods and compare them to the previous analytical
solutions. In section 6, we deal with the time-of-flight expansion
of the BEC when the EW is removed, showing quantitative
agreement with previous experimental results. In section 7 we
discuss further dynamical properties of the BEC in a GOST
after switching off the evanescent laser field in the presence of
the hard-wall mirror. Lastly, we summarize our findings and
end with brief concluding remarks.

2. Model

For our 1D model of the BEC in a GOST, we assume that we
have a dilute Bose gas and that the radial frequency is much
larger than the axial frequency, i.e. the BEC is cigar-shaped.
With this assumption, we arrive at the 1DGPE [48, 49]
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On the right-hand side of the equation, the first term
represents the kinetic energy of the atoms with mass mB,
while the last term describes the two-particle interaction,
where its strength N aG 2 rB B Bw= is related to the s-wave
scattering length aB, and the particle number NB, whereas rw
denotes the radial trapping frequency. The anharmonic
potential energy V z( ) in equation (1) is produced by both
gravity and the exponentially decaying evanescent wave as
shown in figure 1 [2]:

V z V m ze g . 2z
0 B( ) ( )= +k-

Figure 1. Anharmonic GOST potential (solid line) from equation (2)
in dimensionless units, which are explained at the end of the
section 2. It consists of a superposition of an exponentially decaying
optical potential (red circles) due to an evanescent light field above a
mirror and a linear gravitational potential (dashed-green circles).
When the atoms are cold enough, they stay in the vicinity of the
potential minimum.
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Here, g is the gravitational acceleration and the constant
V I c80 0

3
0

2
3( )l p d= G denotes the strength of the evanescent

field, where Γ is the natural linewidth of 133Cs atoms,
852 nm0l = is the wavelength of the optical transition, I0

stands for the peak intensity of the EW, and 3d corresponds to
the detuning frequency of the hyperfine sub-level F=3 of the
133Cs atom [34, 35, 37]. Furthermore, 1 2k = L =

n4 sin 12 2l p q - represents the decay length, where λ is
the wavelength of the EW, n stands for the refractive index of
the medium and θ is the angle of incidence. The potential
equation (2) has a minimum at z V m1 ln g0

min
0 B( ) ( )k k=

with the axial frequency gzw k= . Note that this potential
yields a hard-wall condition with V z 0( ) = ¥, because the
atoms cannot penetrate the prism, as it is a macroscopic object.

In order to have a concrete set-up in mind for our ana-
lysis, we adapt parameter values from the GOST experiments
[34, 37]. For the EW, we consider the inverse decay
length to be 2 1.43 10 m6 1k = L = ´ - , i.e. 1.4 mmL » .
Additionally, we assume an axial frequency of 2zw p» ´
600 Hz. For our atoms in the F=3 state, the strength of the
EW is given by V k100 KB0 m» ´ , where kB is the Boltz-
mann constant. This potential value is within an order of
magnitude of the Innsbruck experiments [34, 37]. In view of
the quasi-1D model, we must satisfy the condition z rw w ,
so we assume 2 3 kHzrw p= ´ , which corresponds to the
radial oscillator length l 0.892 mr m= . The experiment uses a
magnetic field for Feshbach resonance, such that the s-wave
scattering length amounts to a 440 aB 0= with the Bohr
radius a0. As both z rw w and l ar B> are fulfilled, we have,
indeed, a quasi one-dimensional setting.

When the atoms are close to the dielectric surface of the
prism, we would have to add an additional potential
contribution due to the van-der-Waals interaction. Here we
have to distinguish two special cases depending on the dis-
tance of the BEC from the surface. The regime, where the
BEC is close to the dielectric surface, i.e. z 2l p , is
called the Lennard–Jones regime [50, 51]. In the case where
the BEC is far away from the surface, i.e. z 2l p , the
regime is called Casimir–Polder regime. In the latter case
the Casimir–Polder potential can be described within a two-
level approximation of the Cesium atoms according to
V C zCP 4

4= - , where the Casimir–Polder coefficient is
C 1.78 10 Jm4

55 4= ´ - [52–54]. As the BEC does not pene-
trate very far into the repulsive EW, it is hardly influenced
by the van-der-Waals potential, which follows from the
above values of the GOST experiment. Indeed, for the
wavelength 839 nml = [37] and the distance being esti-
mated by the minimal distance of the BEC from the surface
z 4.761 m0

min m= , we are in the the Casimir–Polder regime.
Thus, the value of the Casimir–Polder potential is of the order
V 24.9 k pKBCP = ´ , which is negligible in comparison with
the EW potential V k100 KB0 m» ´ .

In view of the forthcoming discussion we use dimension-
less parameters as follows. First we introduce the

dimensionless spatial coordinate z z˜ k= . Further, we multiply
all terms in equation (1) by m gB( )k , yielding the dimension-
less GPE,
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where the dimensionless kinetic energy constant reads
k mg2 3

B
2( ) ( ) k= , the dimensionless time t t m gB˜ ( ) ( )k=

and the two-particle dimensionless interaction strength
N aG 2 rB B B

˜ ˜ ˜w= with a aB B˜ k= being a dimensionless s-wave
scattering length. Additionally, we measure energies in units
of the gravitational energy m gB k and get mgz z B˜ w kw= as
a dimensionless frequency, and V V mg0 0 B˜ k= as a dimen-
sionless strength of the evanescent field.

According to these chosen parameters, the dimensionless
quantities have the following values. The dimensionless
strength of the EW is V 905.70̃ = , the dimensionless kinetic
energy amounts to k 0.066˜ = , the dimensionless s-wave
scattering length is given by a 0.033B˜ = , the dimensionless
radial frequency yields 1.303rw̃ = , and, finally, the
resulting dimensionless two-particle interaction strength is

NG 0.086B B
˜ = . From here on, we will drop the tildes for
simplicity.

3. Variational solution

For the number of particles N 3000B < , the effective inter-
action strength is quite small. In this limit the BEC has only a
reduced extension, so the anharmonic confinement V z( )
approximately corresponds to a harmonic potential well
around its minimum z 6.8090

min » . Therefore, it is reasonable
to propose a Gaussian-like ansatz for the wave function in the
static case. In order to meet the hard-wall condition, however,
we modify the Gaussian function such that it has the form of a
so-called mirror solution [55, 56],
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where z0 is the mean position and A represents the width. In
this way it is guaranteed that the wave function meets the
hard-wall boundary condition 0 0( )y = . In order to find the
variational parameters z0 and A, we minimize the energy of
this ansatz following the idea of Perez et al [57, 58]. In order
to simplify the expression for the corresponding energy, we
introduce the parameter z A0g = and normalize the wave
function (4) to obtain
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From this ansatz, we obtain the Gross–Pitaevskii energy

where y x yErf e d 1 Erfc
y x2

0

2( ) ( )ò= = -
p

- denotes the
error function. Although, this expression cannot be minimized
analytically, we can use numerical techniques to extremize it
with respect to the parameters γ and A based on the values of
k, GB, and V0 given in section 2. We can see from figure 2
that our variational approach turns out to be valid only for
quite a small number of atoms. Indeed, the extremization
process fails when the condensate has more than around 3000
atoms, as then the mean position becomes zero as shown in
figure 2. Note that BEC experiments with such small particle
numbers are possible, see for instance [59, 60].

4. Thomas–Fermi limit solution

For a large enough number of atoms, the effective interaction
term and the potential term are much larger than the kinetic
term. In such a case, an approximate Thomas–Fermi (TF)
solution is found by neglecting the much smaller kinetic term.
Thus, the time-independent GPE reduces to

z V ze G . 7z
0 B

2∣ ( )∣ ( )m y» + +-

In order to determine the chemical potential, we use the
normalization condition, which reads in the dimensionless

scheme as zd 12∣ ∣ò y = . Thus, we get
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where z1 and z2 denote the zeros of the integrand. For larger z
the decaying exponential vanishes, and so we have z2 m» .
Examining the smaller root, we see that for small values of z
and moderate values of z,m m is quite small, thus a
reasonable approximation for this root is z Vlog1 0( )m» .
This motivates us to divide the TF solution into two parts:
first, the soft-wall TF solution, where V0 m> , so that z1 is
larger than zero. Second, the hard-wall TF solution in the case
V0 m< , where the lower integration limit z1 would be less
than zero, so the soft-wall TF wave function would fail. The
latter case necessitates to use the mirror principle in order to
guarantee the hard-wall boundary condition.

4.1. Soft-wall TF solution

With the integration boundaries z Vlog1 0( )m» and z2 m»
known to be a good approximation, we carry out the inte-
gration in equation (8), yielding

V
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2
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where we have neglected the small terms V e0( )m m- and
Vlog 20

2( ) ( )m m . Thus, to leading order, we have
2GBm » with a subsequent logarithmic correction. For

small changes of the chemical potential, the natural log term

Figure 3. Energy of the BEC as a function of imaginary time for a
decreasing number of particles from the top to the bottom.

Figure 2. Width A (triangles) and mean position z0 (circles) as a
function of the number of atoms NB. Note that the mean position
gives meaningless values for N 3000B > . Thus, the variational
ansatz is only successful for quite a small number of particles.
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in equation (9) does not change significantly. Therefore in
equation (9) we can substitute 2GB for μ in the natural log.
Using the quadratic equation and neglecting small terms in
the square root, we obtain the improved approximation

V2G 1 log 2G . 10B 0 B( ) ( )m » + +

Thus, assuming that V 2G0 B> , we obtain the follow-
ing soft-wall TF solution for z z z1 2< < .

z
z V

G
1 e , 11z

B

0( ) ( )
⎛
⎝⎜

⎞
⎠⎟y

m
m m

= - - -

where μ is given by equation (10). The function is set to zero
for z z V Glog 21 0( )< » and z z2 m> » , because the
probability density cannot be less than zero.

4.2. Hard-wall TF solution

For particle numbers N 2.35 10B
5> ´ the soft-wall TF

solution is not valid anymore as z Vlog 2G1 0 B( )» becomes
negative. In order to extend this approximate solution to the
case where V0 m< , we must work out the corresponding
hard-wall TF solution. With the help of the mirror analogy
[55, 56], we obtain the approximate TF wave function

Here, M denotes the normalization constant which is
determined from zd 12∣ ∣ò y = . Note that an analytical

derivation of M is not possible, therefore, we performed the
respective integration numerically.

5. Numerical methods and results

In order to demonstrate the validity of the proposed analytical
results, we numerically find the ground state of the wave func-
tion by propagating the GPE in imaginary time, with the help of
the split operator technique [61–65]. For the above mentioned
experimental parameters and with the value of NB ranging from
106 to 106 atoms, the ground-state energy of the BEC in a GOST
does, indeed, quickly converge as shown in figure 3.

With this technique in mind, we compare our analytical
results from sections 3 and 4 to numerical results and show
how the BEC wave function in a GOST changes with
increasing the number of atoms. For a smaller number of
atoms, the variational Gaussian ansatz is more suitable as
shown in figure 4, whereas for a larger number of atoms the
TF approximation turns out to be quite accurate as shown in
figure 5. The variational Gaussian ansatz roughly reproduces
the mean, but it is rather symmetrical, unlike the numerical
results as the number of atoms approach 2400, see figure 4.
Qualitatively, the BEC width is proportional to the number of

atoms in a GOST. However, due to the EW decaying expo-
nential potential, the BEC cannot expand in the negative z-

Figure 4. Probability density plots from (a) Gaussian ansatz (5) and (b) numerical calculations for an increasing number of atoms from the top
to the bottom.
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direction, so the BEC wave function takes up a triangular
shape for NB larger than 106 as shown in figure 5. The
agreement between numerical and analytical TF results is
much better for larger number of atoms. Note that the BEC
wave function is quite wide for 108 atoms in figure 5.

The van der Waal forces with the surface can demolish
the BEC, so it is necessary to have a larger EW potential.
Therefore, keeping in mind recent developments in the laser
field technology, it is possible to increase the EW strength V0

by increasing the laser power [66]. Thus, we explore now the
parameter space of our model. Irrespective of the number of
atoms, the mean position of the BEC in GOST increases only
moderately with V0. For the soft-wall caseV0 m> as shown in
figure 6, the maximum of the wave function occurs at Vlog 0( ),
but for the hard-wall case V0 m< the maximum of the BEC

Figure 5. Comparison of numerical results from GPE (solid lines) with TF approximation (circles), (a) N N10 , 10B
3

B
4= = , and N 10B

5= .
(b) N N10 , 10B

6
B

7= = , and N 10B
8= from top to bottom, respectively.

Figure 6. Mean position of the BEC versus EW strength V0 for
decreasing number of atoms from the top to the bottom.

Figure 7. Standard deviation σ of BEC wave function increases with
inter-particle interaction strength GB for EW strength V 9060 = .

Figure 8. Fraction of remaining atoms during time-of-flight during a
vertical expansion for V 4530 = . Initially, total number of atoms is
N 2400B = . Here the circles stem from the Innsbruck experiment,
whereas the solid line shows our numerical results. Figure
reproduced from [37] with permission.
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wave function exists at Vlog 2G0 B∣ ( )∣. Thus, due to the
interaction term, for a large number of atoms, the maximum
of the wave function no longer remains within the minimum
of the trapping potential z Vlog0

min
0( )» .

The BEC wave function in a GOST becomes asymmetric
for larger interaction strengths. Therefore we quantify the BEC
width based on the standard deviation z z2 2s = á ñ - á ñ ,

where z z• • d2∣ ( )∣ò yá ñ = denotes the expectation value. As
shown in figure 7, the BEC standard deviation grows extre-
mely rapidly with increasing number of atoms NB. However,
on the other hand, changing V0 only slightly affects the stan-
dard deviation σ.

6. Time-of-flight (TOF) expansion

The standard observation of a BEC is based on suddenly
turning off the trapping potential and allowing the atoms to
expand non-ballistically. The resulting time-of-flight (TOF)
measurements are performed either by acquiring the absorp-
tion signal of the probe laser beam through the falling and
expanding BEC cloud, or by measuring the fluorescence of
the atoms which are excited by a resonant probe light [40].

In the Innsbruck experiment, the remaining number of
atoms is measured after allowing atoms from the GOST to
expand vertically by suddenly turning off the EW [37]. Note
that some particles are lost due to thermalization processes
which occur when the particles hit the prism or due to the van
der Waal forces with the surface. Although this Innsbruck
experiment uses a 2D pancake-shaped BEC, when performing
this vertical expansion the transversally confining beam is
kept constant, so our quasi-1D model for BEC should apply
in this case. Using the experimental parameters in [37], we
numerically reproduce their vertical expansion curve (their
figure 2), as shown in figure 8. To this end, we use NB = 2400

atoms and V 4530 = , yielding an initial condensate wave
function with dimensionless standard deviation 0.86s = and
the dimensionless mean position z 6.400 = . We propagate this
wave function without the hard-wall boundary condition. Then
we approximate the fraction of remaining atoms by

z t z, d
0

2∣ ( )∣ò y
¥

, as atoms in the BEC wave function extending

past z=0 are lost by sticking to the surface. As the interaction
term is quite small in the Innsbruck experiment, the standard
deviation of the BEC is small and remains roughly constant
during the TOF, so the loss of atoms does not affect TOF
expansion significantly for t 0.7 ms< as shown in figure 8.

We also simulated the TOF expansion without the prism
at z=0 for different particle numbers NB. We see that the
mean position of the BEC drops due to gravity as shown in
figure 9 with different rates, which strongly depend upon the
number of confined atoms. At the same time the BEC width,
which is proportional to the standard deviation, increases
according to figure 9.

Figure 10.Dynamics of BEC in presence of gravity with hard wall at
z=0 for N 1800B = number of atoms. Here the color scale
represents the density of the BEC.

Figure 9. (a) Mean position z0 and (b) standard deviation σ of BEC density in the time-of-flight expansion for decreasing number of atoms
from the top to the bottom for V 9060 = .
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7. Dynamics of BEC on a hard-wall mirror

Concerning the dynamics of the BEC in a GOST, we consider
two cases. First we describe the dynamics of the BEC with
N 1800B = after switching off the evanescent potential and
letting the BEC atoms fall on a hard-wall mirror. The latter
could be experimentally realized by a blue-detuned far-off-
resonant sheet of light, and is modeled theoretically via the
boundary condition V 0( )  ¥ at t 0> . Thus, the BEC of
N 1800B = atoms has the dimensionless mean position
z 10.70 = and the dimensionless standard deviation 4.28s =
at time t=0. We observe the matter-wave interference pat-
tern formed upon releasing the condensate from GOST as
shown in figure 10, as atoms impinging on the ‘hard-wall’ at
the origin ‘bounce’ back. For short times the atoms remain
near the hard-wall surface, so the BEC dynamics is char-
acterized by the reflection of atoms from the hard-wall mirror.
But for larger times those atoms, which are far away from the
hard-wall mirror, are reflected above the hard-wall mirror due
to collisions among themselves as shown in figure 10. The
number of atoms N 1800B = is so large that the BEC is
staying quite close to the mirror, so we have not seen any total
reflection of the BEC wave packet.

In order to see the latter scenario, we need a small
number of N 30B = particles far away from the hard-wall
mirror. This is realized by the EW potential V e z

0
20( )- - , which

could be implemented by trapping atoms in a MOT above the
surface, so that, once the EW trap is switched off, the atoms
have enough momenta when they hit the hard-wall mirror as
shown in figure 11. Similar to experiments of photonic
bouncing balls [67] and plasmonic paddle balls [68], the BEC
shows significant self-interference patterns, for example in the
time intervals t = 24–34 and 83–91 as shown in figure 11,
which originate from the interference of incoming and
reflecting BEC wave packets. It is worth mentioning that a
smaller initial width of the BEC wave packet would lead to

finer revivals and a larger initial width of the BEC would lead
to larger interference regions. The evolution of a BEC falling
under gravity and bouncing off a hard-wall mirror formed by
a far-detuned sheet of light was already observed experi-
mentally by Bongs et al in both the soft-wall and the hard-
wall regime [69]. In the soft-wall regime, they have recorded
that the BEC is reflected up to three times off the optical
mirror in the lossy environment. Due to a large two-particle
coupling strength, which in turn results in a condensate with a
larger width, this group also observed a splitting of the BEC
into two parts close to the upper turning point of the BEC.
This effect is heuristically modeled by a GPE dynamics with
assuming that the two-particle interaction strength decreases
exponentially in time. In our case we restricted ourselves to
the evolution of the BEC with a constant coupling constant,
so we did not observe any splitting of the BEC in our
simulation, but we do observe the BEC for longer time
intervals as shown in figure 11. In our simulation, we
observed more than three reflections of the atomic cloud in a
lossless environment. The center-of-mass of the BEC wave
packet shows periodic revivals with the dimensionless time
period t 58.2» as shown in figure 11. Quantitatively, the
classical revival time can be determined in dimensionless
units as t z k2 2 56.90= = , where z0 represents the mean
position of the BEC and the dimensionless energy constant k
is defined below equation (3).

8. Conclusion

In summary, we studied the behavior of a Cs BEC in a quasi-
1D optical surface trap. We have developed approximate
solutions to the GP equation for both small and large numbers
of atoms. In the former, we have used the variational ansatz
technique, while in the latter we have used the TF approx-
imation. Later on, we compared the analytical approach with
numerical results, which agreed quite well for a wide range of
atom numbers NB.

Furthermore, we have numerically reproduced the
experimental result of [37], where a 2D BEC is confined in
the radial direction, but is allowed to expand in the vertical
direction freely. This indicates that our analysis could be
extended beyond the 1D case. Our model suggests that for a
small particle number NB the BEC retains its Gaussian shape
in the expansion and falls due to gravity. As suggested by
figure 9, for larger number of atoms, the standard deviation
does not expand as fast as compared to small number of
particles, therefore we conclude that the initial number of the
particles plays a significant role in the expansion of the BEC
cloud. Afterwards, we investigated the dynamics of the BEC
in the presence of gravity and a hard-wall boundary condition,
where we observed self-interferences and revivals of the wave
packet. The observation of the bouncing of the BEC can be
used to characterize and determine mirror properties such as
roughness and steepness. All our results can be applied to
develop atomic interferometers for a BEC.

Figure 11. Numerical results for the BEC density z t, 2∣ ( )∣y with
initial dimensionless mean position z 27.20 = and dimensionless
standard deviation 0.99s = for N 30B = number of atoms. BEC
experiences full periodic revivals, however incoming and reflecting
BEC wave packets lead to larger matter-wave interference regions at
time intervals t = 24–34 and 83–91. Here the color scale represents
the density of the BEC.
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