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1.  Introduction

The ability to manipulate and trap atoms with laser light has 
had a tremendous development in many fields of physics. 
The very first experimental success of trapping 500 sodium 
atoms for several seconds in the tight focus of a Gaussian red-
detuned laser beam occurred in 1986 [1]. The physical mech
anism behind such an optical dipole trap is the electric dipole 
interaction of the trapped polarized atoms with the intense 
laser light, which is far detuned from the nearest optical trans
ition of the atoms. They are hence largely independent from 
magnetic sublevels of the confined atoms, in contrast to a 
magneto-optical trap (MOT) which can only trap atoms with 
a certain internal state [2, 3]. The so called dimple trap (dT) 

is nothing but a small tight optical dipole trap [4–6]. Cooling 
and trapping of atoms with these dT’s has a strong impact on 
the study of the Bose–Einstein condensates [7, 8], the obser-
vation of long decay times for atoms in their ground state [9], 
and the research of trapping other atomic species or molecules 
[10].

A straightforward method for realizing a dT is to rely on 
the potential created by a freely propagating laser beam. The 
detuning of the laser frequency versus the atomic resonances 
determines whether the laser is red/blue-detuned, i.e. the laser 
frequency is below/above the atomic resonance frequency, 
respectively [2]. The red-detuned dT was particularly used for 
realizing matter wave traps [11–13] in the focus of a Gaussian 
laser beam. On the other hand, the blue-detuned Gaussian 
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laser beam was used in optical waveguides [14–19], where 
the creation of repulsive potentials was demonstrated by using 
Laguerre–Gaussian laser beam [20–25]. A focused or well-
collimated Gaussian laser beam with a large red-detuning 
[26] or a dark hollow laser beam with a large blue-detuning 
[27] were used to form 3D optical dipole trap’s, which can be 
widely applied to the accurate, non-contact manipulation and 
control of cold atoms [28–30].

In this paper, we will focus on studying neutral Rb87  atoms 
within a quasi one-dimensional harmonic trap with an addi-
tional dimple trap. Experimentally, a highly elongated quasi-
1D regime can be reached by tightly confining the atoms in the 
radial direction, effectively freezing-out the transverse dynam-
ics [31–38]. It is worth mentioning that, when the transverse 
length scales are of the order of or less than the atomic interac-
tion length, the one-dimensional system can only be described 
within the Tonks–Girardeau or within the super-Tonks–
Girardeau regime [39–41], which is experimentally realiz-
able near a confinement-induced resonance [42–44]. On the 
other hand, when the transverse confinement is larger than the 
atomic interaction strength, the underlying three-dimensional 
Gross–Pitaevskii equation (GPE) can be reduced to an effec-
tive quasi 1D model [45]. In one spatial dimension (1D) this 
equation is well-known, for instance, to feature bright and dark 
solitons for attractive and repulsive s-wave scattering lengths, 
respectively [46–50]. Many experiments investigate the col
lision of two Bose–Einstein condensates where the celebrated 
matter-wave interference pattern appears [51] or shock-waves 
are generated [52]. For lower collisional energies, the repul-
sive interaction energy becomes significant, and the interfer-
ence pattern evolves into an array of gray solitons [53–59]. 
Furthermore, dark solitons can be created by manipulating the 
condensate density using external potentials [60–62].

This work is organized as follows: in section  2, we start 
with the model which describes the dynamical evolution of 
a quasi-1D Bose–Einstein condensate (BEC) in a magneto-
optical trap with an additional red/blue-detuned dimple trap in 
the center. Afterwards in section 3, we justify a Thomas–Fermi 
approximation for the condensate wave function and com-
pare it with numerical results. With this we show that the dT 
induces a bump or a dip upon the condensate wave function 
depending on whether dT laser beam is red- or blue-detuned. 
Subsequently, in section 4, we discuss the dynamics of the dT 
induced bump/dip-imprint upon the condensate wave function 
for two quench scenarios. After having released the trap, the 
resulting time-of-flight expansion shows that the dT induced 
imprint remains conserved for a red-detuned dT but decreases 
for a blue-detuned dT. Furthermore, when the initial red/blue-
detuned dT is switched off, we observe the emergence of bright 
shock-waves or gray/dark bi-soliton trains. Finally, in the sec-
tion 5 we summarize our findings for the proposed quasi-1D 
harmonically confined BEC with an additional dimple trap in 
the center in view of a possible experimental realization.

2.  Quasi 1D model

We consider here a BEC, which is confined by a harmonic 
trap with an additional dT potential in the center and is 

described by the corresponding one-dimensional Gross–
Pitaevskii equation
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Here the two-particle interaction strength reads 
ω= �G N a2B B B r, where NB denotes the number of bosonic 

atoms and ωr is the transversal trap frequency. In case of 
Rb87  atoms, for instance, the s-wave scattering length is 

 =a 94.7 aB 0 with the Bohr radius a0. In the following, 
we consider the experimentally realistic trap frequencies 
ω π ω π= × = ×�2 160 Hz 2 6.8 Hzr z  [3], so we have a 
cigar-shaped condensate, where the oscillator lengths amount 
to the values µ µ= =�l l0.84 m 4.12 mr z . Thus, the MOT 
provides, indeed, a quasi one-dimensional setting due to 
� �a l lB r z. The Gaussian potential in equation (1) stems from 

the dT and has a depth ( )π= +U U P W W l2 / 20 0z 0x
2

r
2  [63–65], 

which depends on the power P of the Gaussian laser beam as 
well as its widths along the x-axis µ=W 1.1 m0x  and along the 
z-axis µ=W 3.2 m0z , which are about ten times smaller than 
the corresponding ones used in [3]. Furthermore, the detuning 

ω ω∆ = − A not only changes the absolute value of the dT 
depth but also its sign. For red detuning, i.e. when the laser 
frequency ω is smaller than the atomic frequency ωA, the dT 
is negative and the atoms are sucked into the dT potential. In 
the opposite case of blue detuning the atoms are repelled from 
the dT potential. Thus, the dT induces an imprint on the BEC 
wave function, which can be either a bump for red detuning or 
a dip for blue detuning. In order to make equation (1) dimen-
sionless, we introduce the dimensionless time as ˜ ω=t tz , the 
dimensionless coordinate ˜ /=z z lz, and the dimensionless 
wave function ˜ /ψ ψ= lz. With this equation (1) can be writ-
ten in the form
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where we have ˜ /( )ω ω=G N a l2B B r B z z  and ˜ /( )ω= �U U z . For the 
above mentioned experimental parameters and = ×N 20 10B

4 
atoms of Rb87 , we obtain the dimensionless couplings con-
stant ˜ =G 11435.9B . Furthermore, the typical dT depth 

/ =U k 210 nKB  yields the dimensionless value =U 643.83, 

and α = =W l/ 2 0.5480z z˜ ( )  represents the ratio of the width 
of the dT potential along the z-axis and the longitudinal har-
monic oscillator length. From here on, we will drop all tildes 
for simplicity.

3.  dT induced bump/dip-imprint upon stationary 
condensate wave function

In order to determine the dT induced imprint on the conden-
sate wave function in equilibrium, we solve the 1DGPE (2) 
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in imaginary time numerically by using the split-operator 
method [66, 67]. In this way we find that the dT-imprint leads 
to a bump/hole in the BEC density at the trap center for nega-
tive/positive values of U as shown in figure 1. For stronger 
red-detuned dT depth values the bump increases further, but 
for stronger blue-detuned dT the dip in the BEC density gets 
deeper and deeper until no more BEC atoms remain in the 
trap center. After this qualitative overview on the numerical 
results, we now work out an analytic approach for describ-
ing this red/blue-detuned dT induced bump/dip on the BEC 
density in a more quantitative way. To this end we present 
two arguments why the seminal Thomas–Fermi (TF) approx
imation is also applicable in our context.

At first we provide a rough estimate in the case of an 
absent dT, i.e. U  =  0, so the BEC density is characterized by 

the TF profile ( ) ( / )/ ( / )ψ µ µ= − Θ −z z G z2 22
B

2 , where the 
Heaviside function Θ prevents the density to become negative. 
Thus, the Tomas–Fermi radius µ2  follows from the dimen-
sionless chemical potential μ, which is determined by nor-

malization to be ( ) ( )
/ /µ = G1

2

3

2

2 3
B

2 3. As the red/blue-detuned 

dT is supposed to be inserted at the trap center, we then cal-
culate the dimensionless BEC coherence length ξ at the trap 
center. It is defined by comparing the kinetic energy / ξ1 2 2 with 
the interaction energy in the trap center, which is given by μ. 
For the above mentioned experimental parameters this yields 
the dimensionless BEC coherence length ξ = 0.038, which is 
about 14.4 times smaller than the dT width α = 0.548. This 
indicates that the dT induced imprint upon the BEC wave-
function occurs on a length scale which is much larger than its 
coherence length, so the TF approximation seems to be rea-
sonable even in the presence of the red/blue-detuned dT.

In view of a more quantitative justification for the applica-
bility of the Thomas–Fermi approximation, figure 2 presents 
the numerical result how the interaction energy Eint, the poten-
tial energy Epot, and the kinetic energy Ekin of the conden-
sate wave function change with increasing or decreasing the 

red/blue-detuned dT depth U. We read off that the inequality 
( )/+ �E E E 1pot int kin  holds within the whole region of interest 
for U, so the TF approximation seems to be, indeed, valid. 
Note that the maximal value of this energy ratio occurs for 
U  =  0 and amounts to ×7.5 104, which is of the order of the 
number of particles.

These results motivate to investigate in the following 
the TF approximation in more detail for non-zero red/blue-
detuned dT depth U. To this end we use for the condensate 
wave function the ansatz ( ) ( )ψ ψ= µ−z t z, e ti , insert it into the 
1DGPE (2), and neglect the kinetic energy term, which yields 
the density profile
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In view of the normalization ∥ ( )∥∫ ψ =
−∞

+∞
z zd 12 , which 

fixes the chemical potential μ, we have to determine the 

Figure 1.  Numerical density profile of BEC for the experimental coupling constant value =G 11435.9B  and for the dT depth U which 
increases from top to bottom according to the inlets. For (a) negative values of U, the bump in the condensate wave function decreases, 
whereas for (b) positive values the corresponding dip increases.

Figure 2.  Here, we plotted Eint (blue-line circles), Epot (red dashed 
line) and Ekin (black circles) versus U from solving 1DGPE (2).
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Thomas–Fermi radii RTF from the condition that the conden-
sate wave function vanishes:

µ = + α
−R

U
2

e .
R

TF
2 TF

2

2� (4)

As can be read off from figure 1(b) the number of solutions 
of equation (4) changes for increasing dT depth at a critical 
value Uc which we determine as follows. We put µ = Uc c and 

utilize the normalization condition ∥ ( )∥∫ ψ =z z2 d 1
R

0
2TF

 with 

assuming one TF radius µ≈R 2TF . This yields the implicit 
equation
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which results in ≈U 339.5c  for the experimental coupling 
constant =G 11435.9B , which compares well with the value 
≈U 342c  determined from solving 1DGPE (2). In the case that 

U is smaller than Uc equation (4) defines only the cloud radius 
RTF1. But for the case >U Uc the dT drills a hole in the cen-
ter of the Rb87  condensate, so it divides into two parts. Thus, 
we have then apart from the outer cloud radius RTF1 also an 
inner cloud radius RTF2. With this the normalization condition 
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where ( ) ∫=
π

−y xErf e d
y x2

0

2
 denotes the error function. In 

case of ⩽U Uc the inner cloud radius RTF2 vanishes and the 
cloud radius is approximated via µ≈R 2TF1  due to equa-
tion (4) as it is much larger than the dimple trap width α. Thus, 
by using the approximation ( / )α ≈RErf 1TF1  for /α�R 0TF1 , 
the chemical potential is determined explicitly from
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Provided that ⩾U Uc, the inner cloud radius RTF2 has to be 
taken into account according to figure 1 and, due to the fact 
that �R UTF2

2 , we get from equation  (4) the approximation 

µ≈ −
αUe
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Thus, we conclude that RTF2 vanishes, indeed, at Uc according 
to equations (5) and (7). With this we obtain from equation (6) 
that the chemical potential follows from solving

⩾

πα αµ
µ

πα

µ
α

µ
µ

+ + ≈

× + +

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟

U G
U

U

U U
U U

3 2 log 3

Erf log log 4 2 , .

B

3 3
2 3/2

c

� (9)
Figure 3 shows the resulting outer and inner Thomas–Fermi 
radius as a function of the dT depth U. We read off that 

µ≈R 2TF1  remains approximately constant for ⩾U Uc, so we 
conclude that the chemical potential μ is locked to its criti-
cal value µ ≈ =U 339.5c c . Furthermore, we note that the inner 
Thomas–Fermi radius RTF2 increases up to about α5.4  for the 
considered range of U.

Figure 4 compares the resulting TF condensate wave 
function (3) with a numerical solution of the 1DGPE (2) 
in imaginary time at U  =  1000 and we read off that both 
agree quite well. Thus, our TF approximation describes the 
equilibrium properties of the condensate wave function in 
the presence of the red/blue-detuned dT even quantitatively 
correct. In view of a more detailed comparison, we char-
acterize the red/blue-detuned dT induced imprint upon the 
condensate wave function ( )ψ z  by the following two quanti-
ties. The first one is the hight/depth (HD) of the dT induced 
imprint

Figure 3.  Outer Thomas–Fermi radius RTF1 (red solid) and inner 
Thomas–Fermi radius RTF2 (blue dashed) versus dimple trap depth 
U. BEC divides into two parts above ≈U 339.5c .

Figure 4.  Condensate density for U  =  1000 from solving 1DGPE 
(2) in imaginary time numerically (red) and from TF approximation 
(3) (blue-circles).
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and the second one is the red/blue-detuned dT induced imprint 
width W, which we define as follows. For ⩽U 0 we use the full 
width half maximum
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whereas for U  >  0 we define the equivalent width [68]:
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where we have (∥ ( )∥ )ψ=I zMax U0
2 . Figure 5(a) shows the red/

blue-detuned dT induced imprint height/depth as a function of 
U. At first, we read off that for U  =  0, i.e. when we have not 
switched on the dT, bump/dip vanishes. Furthermore, in the 
range ⩽U Uc we observe that height/depth of the dT induced 
imprint bump/dip changes linearly with U according to

≈
| |U

G
HD .

B
� (13)

In case of >U Uc height/depth of the dT induced imprint has 
approximately the constant value /= ≈U GHDc 0.029c B  as 
follows from the TF wave function (3) and the above men-
tioned locking of the chemical potential to its critical value. 
Note that this constant value only slightly deviates from the 
corresponding numerical value =HDc 0.03.

Correspondingly, figure  5(b) depicts the dimple trap 
induced width W as a function of U. From our TF approx
imation we obtain for the width transcendental formulas, 
which read in case of ⩽U 0
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As shown in figure 5(b), for a red-detuned dT depth, the width 
remains approximately constant and is determined by the 
FWHM of the dimple Gaussian. Just before U  =  0 the width 
W starts to decrease to zero. For a blue-detuned dT the width 
of the dip continuously increases with an intermediate pla-
teau at Uc with the value ≈Wc 1.91, which agrees well with 
the numerically obtained one ≈Wc 1.99. After the critical  
blue-detuned laser beam strength Uc the width of the imprint 
of the dT on the condensate increases drastically according to 
figure 5(b), as more and more BEC atoms move away from 
the center of the condensate.

Note that the Thomas–Fermi approximation would break 
down when the dimensionless healing length /ξ lz in the trap 
center would be larger than the dimensionless dimple trap 
width α. This is the case for several previous studies treating 
experimentally relevant localized dimples, which can well be 
modeled by Dirac delta potentials [69, 70].

4.  Dimple trap induced imprint upon condensate 
dynamics

To this end we investigate two quench scenarios numerically 
in more detail. The first one is the standard time-of-flight 
(TOF) expansion after having switched off the harmonic trap 
when the amplitude of the red/blue-detuned dT is still present. 
In the second case we consider the inverted situation that the 
red/blue-detuned dT is suddenly switched off within a remain-
ing harmonic confinement. This turns out to give rise to the 
emergence of bright shock-waves or bi-solitons trains, i.e. two 
trains of more than one soliton each, respectively.

Figure 5.  (a) Height/depth and (b) width of the dT induced bump/dip according to equations (10)–(12), versus the red/blue-detuned dT 
depth U for the experimental BEC coupling constant =G 11435.9B  calculated numerically by solving 1DGPE (2) in imaginary time (blue 
circles) and analytically (black stars) from the TF condensate wave function (3).
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4.1. Time-of-flight expansion

Time-of-flight (TOF) absorption pictures represent an impor-
tant diagnostic tool to analyze dilute quantum gases since the 
field’s inception. By suddenly turning off the magnetic trap, 
the atom cloud expands in the presence of the dimple trap 
with a dynamics which is determined by both the momentum 
distribution of the atoms at the instance, when the confining 
potential is switched off, and by inter-atomic interactions 
[71, 72]. We have investigated the time-of-flight expansion 
dynamics of the BEC with the dT by solving numerically the 
1DGPE (2) and analyzing the resulting evolution of the con-
densate wave function. It turns out that, despite the continuous 
broadening of the condensate density, its dT induced imprint 
remains qualitatively preserved both for red and blue-detuned 
dT. Therefore, we focus a more quantitative discussion upon 
the dynamics of the corresponding dT induced imprint height/
depth and width.

For a red-detuned dT, it turns out that the bump height 
even remains constant in time. This is shown explicitly in 
figure 6(a), which roughly preserves its initial value at t  =  0. 
This is due to the fact that a fraction of atoms remains trapped 
in the dimple trap while the rest of the cloud expands. This 
physical picture also explains the bump width, we even find 
that no significant changes do occur neither in time nor for 
varying U, therefore we do not present a corresponding figure. 
Note that the latter finding originates from figure 5(b), where 
the width is shown to be roughly constant for all dT depths.

Instead, in case of a blue-detuned dT, the dip decays after a 
characteristic time scale as shown in figure 6(b). Defining that 
relaxation time trel according to ( ) ( )/=tHD HD 0 2rel , the inlet 
reveals that the dip relaxes with a shorter time scale for increas-
ing blue-detuned dT depth U. These results are explained by 
the fact that an increasing blue-detuned dT potential pushes 
the expanding cloud even faster apart. This physical picture 
is confirmed by the dynamics of the dT induced imprint 
width shown in figure 7. At the beginning of TOF it remains 
at first constant and then increases gradually. This change of 
W occurs on the scale of the relaxation time of HD, which is 
depicted in figure 6(b).

4.2.  Wave packets versus solitons

Due to their quantum coherence, BECs exhibit rich and 
complex dynamic patterns, which range from the celebrated 
matter-wave interference of two colliding condensates [51, 
52] over Faraday waves [73, 74] to the particle-like excita-
tions of solitons [53–56, 59, 62, 75]. For our 1D model of 
a BEC with a harmonic and a dimple trap in the center, we 
investigated the dynamics of the condensate wave function 
which emerges after having switched off the dT. To this end, 
figure 8 depicts the resulting profile of density ψ= | |n 2 and 
phase ( / )φ ψ ψ= −tan 1

Re Im  of the condensate wave function ψ 
at different instants of time. Both for an initial red- and blue-
detuned dT, we observe that two excitations of the conden-
sate are created at the dT position, which travel in opposite 
direction with the same center-of-mass speed, are reflected 
at the trap boundaries and then collide at the dT position. 
Furthermore, we find that these excitations qualitatively pre-
serve their shape despite the collision and that the BEC wave 

Figure 6.  Height/depth of the dT induced imprint after having released the harmonic trap versus time for (a) increasing negative and  
(b) decreasing positive values of dT depth U from top to bottom. Inlet: relaxation time trel decreases with increasing U.

Figure 7.  Width of the dT induced imprint after having released the 
trap versus time for decreasing positive values of dT depth U from 
top to bottom.
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function reveals characteristic phase slips between /π− 2 
and /π 2. All these findings are not yet conclusive to decide 
whether these excitations represent wave packets in the 
absence of dispersion or solitons. Therefore, we investigate 
their dynamics in more detail, by determining their center-of-
mass motion via

¯ ( )
(∥ ( )∥ ∥ ( )∥ )

(∥ ( )∥ ∥ ( )∥ )

∫

∫

ψ ψ

ψ ψ
=

−

−

−∞

∞
=

−∞

∞
=

z t
z z t z t z

z t z t z

, , d

, , d
,

U U

U U

L,R
,0

0, 2
0

2

,0

0, 2
0

2
� (16)

which are plotted in figure 9. Note that the mean positions z̄L 
and z̄R of the excitations are uncertain in the region where they 
collide. Nevertheless figure 9 demonstrates that the excitations 
oscillate with the frequency  πΩ = ×2 4.87 Hz irrespective of 
sign and size of U. As we have assumed the trap frequency 

 ω π= ×2 6.8 Hzz , we obtain the ratio /ωΩ ≈ 0.72z , which is 
quite close to / /ωΩ = ≈1 2 0.707z .

Despite these similarities of the cases of an initial red 
and blue-detuned dT, we observe one significant differ-
ence. Whereas the oscillation amplitudes of the excitations 
do not depend on the value of the initial U  <  0 according to 

Figure 8.  Density (phase) profile of BEC after having switched off the red/blue-detuned dT: in blue-dashed line at t  =  0, and in  
red-solid line at t  =  0.45 (1st column), t  =  0.75 (2nd column), t  =  1.1 (3rd column), t  =  3.6 (4th column), and t  =  5.2 (5th column)  
for (a) U  =  −100 and (b) U  =  100.

Figure 9.  Center of mass positions of excitations z̄L (filled circles) and z̄R (empty circles) according to equation (16) versus time after 
having switched off the dT with increasing absolute value of the depth | |U  from top to bottom, for (a) red-detuning and (b) blue-detuning. 
Black filled circles represent the region of colliding excitations, where mean positions are not perfectly detectable.
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figure 9(a), we find decreasing oscillation amplitudes of the 
excitations with increasing the initial U  >  0 in figure 9(b). The 
latter amplitude dependence on the initial condition is charac-
teristic for gray/dark solitons according to [55]. Indeed, for 
an increasing dT potential the gray soliton acquires a larger 
depth, which corresponds to a smaller velocity, so its oscil-
lation amplitude is reduced. This particle-like interpretation 
of the excitations is also confirmed by the other theoretical 
prediction of [55] that gray/dark solitons oscillate in a har-
monic confinement with the frequency / /ωΩ = 1 2z , which 
was already confirmed in Hamburg experiment [62] and in 
Heidelberg experiment [76] and is also seen in figure 9(b).

Conversely, for an initial red-detuned dT the excitations can 
not be identified with bright solitons as the dynamics is gov-
erned by a GPE with a repulsive two-particle interaction. Here 
the excitations have to be interpreted as wave packets which 
move without any dispersion as follows from a Bogoliubov 
dispersion relation and the smallness of the coherence length. 
Thus, for U  <  0 the excitations propagate like sound waves in 
the BEC [51] and, within a TF approximation, their center-of-
mass motion is described by the evolution equation [77]

( ) ( )
µ= −

z t

t

z td

d 2
.

2
� (17)

Solving (17) with the initial condition z(0)  =  0 yields the 
result ( ) /µ=z t t2 sin 2. Thus, we read off that the oscil-
lation amplitude coincides with the TF radius and that the 
dimensionless oscillation frequency turns out to be /1 2 in 
agreement with figure 9(a).

Thus, we conclude that switching off the red/blue-detuned 
dT leads to physically different situations. For an initial red-
detuned dT, we generate wave packets which correspond to 
white shock waves [78], whereas for the corresponding blue-
detuned case bi-soliton trains emerge [53, 58, 79], due to the 
collision of the two divided parts of the condensate. Note that 
it can be shown in our system that gray bi-solitons trains are 
generated for a partially divided BEC, i.e. <U Uc. On the 
other hand the dark bi-solitons trains turn out to be only gener-
ated for ⩾U Uc, where the BEC is well divided into two parts 
equilibrium.

5.  Summary and conclusion

In the present work we studied within a quasi 1D model both 
analytically and numerically how a dimple trap in the center 
of a harmonically trapped BEC affects the condensate wave 
function. At first, we showed for the equilibrium properties 
of the system that the Thomas–Fermi approximation agrees 
quantitatively with numerical solutions of the underlying 1D 
Gross–Pitaevskii equation. For an increasing red-detuned 
dT depth, it turns out for the induced bump that the height 
decreases linearly, whereas the width remains approximately 
constant. In contrast to that we found for an increasing blue-
detuned dT that depth and width of the induced dip initially 
increase. Beyond a critical value Uc, the BEC even divided 
into two parts and, if U is increased beyond Uc, the dT induced 
imprint yields a condensate wave function whose width 

increases further, although the dip height/depth remains con-
stant. Afterwards, we investigated the dT induced bump/dip 
upon the condensate dynamics for two quench scenarios.

At first, we considered the release of the harmonic confine-
ment, which leads to a time-of-flight expansion and found that 
the dT induced imprint remains conserved for a red-detuned 
dT but decreases in the blue-detuned case. This result suggests 
that it might be experimentally easier to observe the bump 
for a red-detuned dT. On the other hand, in an experiment 
one has to take into account that inelastic collisions lead to 
two- and three-body losses of the condensate atoms [80, 81]. 
As such inelastic collisions are enhanced for a higher BEC 
density, they play a vital role for a red-detuned dT, when the 
condensate density has a bump at the dT position, but are 
negligible for the blue-detuned dT with the dip in the BEC 
wave-function. Thus, a more realistic description of the exper-
iment needs to consider the loss of condensate atoms by add-
ing damping terms to the 1DGPE (2), which are of the form 

∥ ˜ ( ˜)∥ϒ Ψ zi 2
2 and ∥ ˜ ( ˜)∥ϒ Ψ zi 3

4, where the positive constants ϒ2 and 
ϒ3 denote two- and three-body loss rates, respectively. We note 
that these additional terms may have nontrivial effects on the 
dT properties [82].

In addition, we analyzed the condensate dynamics after hav-
ing switching off the red/blue-detuned dT. This case turned out 
to be an interesting laboratory in order to study the physical 
similarities and differences of bright shock-waves and gray/
dark bi-soliton trains, which emerge for an initial red- and blue-
detuned dT, respectively. The astonishing observation, that 
the oscillation frequencies of both the bright shock-waves and 
the bi-soliton trains coincide, is presumably an artifact of the 
harmonic confinement. Thus, it might be rewarding to further 
investigate these different dynamical features also in anhar-
monic confinements [83–85]. Additionally, we have also found 
that the generation of gray/dark bi-soliton trains is a generic 
phenomenon on collisions of partially/fully divided BEC, 
respectively, and the partially/fully divided BEC is strongly 
depending upon the equilibrium values of the dimple trap depth.
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