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Abstract

Using the Floquet formalism we study transport through an AC-driven impurity in a tight binding
chain. The results obtained are exact and valid for all frequencies and barrier amplitudes. At
frequencies comparable to the bulk bandwidth we observe a breakdown of the transmission 7' = 0
which is related to the phenomenon of Fano resonances associated to AC-driven bound states in the
continuum. We also demonstrate that the location and width of these resonances can be modified by
tuning the frequency and amplitude of the driving field. At high frequencies there is a close relation
between the resonances and the phenomenon of coherent destruction of tunneling. As the frequency
is lowered no more resonances are possible below a critical value and the results approach a simple
time average of the static transmission.

1. Introduction

In recent years there has been remarkable progress in experimental techniques, making possible the fabrication
of nanoscale quantum systems with a high degree of coherence and controllability. Systems containing just a few
molecules are of particular interest since they are promising candidates for the realization of electronic
components on the sub-silicon scale such as molecular electronics [1-10]. A fruitful line of research makes use of
simplified tight-binding models that are able to capture the essential physics, gaining qualitative understanding
of the transport mechanisms involved [7—10]. These models are also applicable when investigating other
interesting systems such as quantum dot arrays [11] or photonic materials [ 12—14]. Furthermore, in practical
applications time-dependent effects such as electromagnetic radiation or gate voltages can be used to manipulate
the transport properties of nanodevices [11, 15-17]. In fact, photon assisted tunneling has been observed
experimentally in a number of quantum resonant tunneling structures [ 11, 18] and high-speed switching devices
could be designed based on this phenomenon. Periodically driven tunneling has been studied before by several
authors [19-23]. Interestingly, recent works have highlighted the possibility of observing AC-driven bound
states in the continuum (BIC’s) in transport experiments [ 15, 24—26]. First proposed by von Neumann and
Wigner [27], BIC’s consist of spatially localized states embedded in the spectrum of scattering states. The
transmission and corresponding conductance of the device would show dynamical Fano resonances, revealing
the existence of these exotic states. Furthermore, the energy of the BIC’s can be changed by tuning the frequency
of the driving field.

In order to consider the effect of local driving on the transport along one direction, we study a tight binding
chain which is periodically driven at one site. In realistic systems there are of course many parallel transport
channels, but to describe the scattering from a local periodic potential it is possible to consider each channel
independently in form of a one-dimensional chain. This model also allows to modify the tunneling amplitude J’
into the driven impurity site as depicted in figure 1. Typical experimental systems we have in mind are driven
quantum dots, which are attached to leads or atomic quantum gases in tailored optical lattices with a time
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Figure 1. Schematic setup for transport through a periodically driven quantum dot.

dependent impurity site. Our results can be generalized to continuous systems by taking the lattice constant of
the tight binding model to zero. The continuum case is also interesting beyond impurity physics to describe the
effective two-body interaction between atoms in a one-dimensional gas, which is subject to an oscillating
Feshbach resonance [28]. We obtain the exact transmission probability through the impurity based on the
Floquet formalism [29-31], which allows for a treatment beyond the perturbative regime. Our results reveal an
array of phenomena that emerge for different tuning of the parameters. From previous works it is known that
the driven impurity problem shows remarkable features such as tunability to perfect transmission or to a
complete blockade at higher frequencies [20, 25, 32]. Such a quantum resonance catastrophe [25] can even occur
atinfinitesimally small driving amplitude, if the frequency wis slightly larger than the energy of the incoming
particle relative to the upper or lower band edge. It is also known that at very high frequencies a driven chemical
potential can generally be mapped to a static effective model involving Bessel functions [33, 34]. In this paper we
now focus also on the effect of modified tunneling amplitudes ]’ as well as lower frequencies, which have so far
received little attention since an analytical averaging is not possible in that limit. We can show exactly that no
resonances occur below a critical frequency and how the transmission probability approaches the static limit.

In the following section we explain the model and formalism used in our calculations. Later, we present the
results highlighting the main features found. In the last section we analyze our results and present some
conclusions.

2. The model

We consider excitations traveling along an infinite one-dimensional tight-binding chain with nearest neighbor
hopping amplitude J. The central site is connected to the left and right sides of the chain by a modified coupling
J' and is periodically driven with angular frequency wand amplitude y as depicted in figure 1. The Hamiltonian
of the system reads

H=-] Z (c;cjﬂ + C]T_ch) —J Z (c;ch + c;‘ch) - u cos(wt)cgco, (D

j=—1,0 j=-10

where the operator c]T creates a particle on site j. This model captures the essential physics of an oscillating barrier
connected to leads according to the possible experimental realizations mentioned above. Since only independent
particles in separate channels are considered, the following results apply equally to bosonic or fermionic
particles, so a simple integration over occupied states can be performed depending on the experimental

situation.

In this paper we calculate the transmission probability T for incoming particles with momentum k, and
corresponding energy € = —2J cos ky. To do this we will find steady-state solutions to the Schrodinger equation
(using 7z = 1)

(H(t) — i0)[¥(t)) = 0. (@)

Due to the periodicity of the Hamiltonian H () = H (¢ + 27 /w), we can apply the Floquet formalism [29-31]
to find steady-state solutions in terms of the so-called Floquet states |¥ (¢)) = e~'?|®(¢)), where
[D(2)) = |P(t + 27/w)) are the Floquet modes and € its quasienergy corresponding to the eigenvalue equation

(H(t) —i0)|2(1)) = €|®(1)). 3)
Using a spectral decomposition for the Floquet modes
|D(1) = Y e ™D, 4)
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Figure 2. Left: sketch of the model mapped onto a set of static coupled chains. The n = 0 chain islocally connected to two side-
coupled systems of chains with a corresponding chemical potential nw. Right: dispersion relation for the n = 0 chain. For frequencies
below the critical value w,; = 2] + |¢| there will be at least one second unbound channel.

we can obtain the eigenvalue equation for a Hamiltonian of the form H (t) = Hy + 2H cos(wt):

H0|®n> + Iil(lq)n+l> + I(I)n71>) = (E+ nw)|q)n>- (5)
Now consider the general form of one of the time independent components of the spectral decomposition
@) = 3°6,¢]10), (©)
i

where |0) is the vacuum state. Inserting (6) into the eigenvalue equation (3) results in the following recursive
relations for the amplitudes ¢, ,,

- ](¢j71,n + ¢j+1,n) =(c+ ”W)¢j,n for |j| > 1
- ]¢i2,n - ]/¢O,n =(e+ nw)¢i1,n
]/(¢,1,n + ¢1,n) - %(¢o,n+1 + ¢o,n71) =(e+ ”W)¢o,n- 7

These may be interpreted as a mapping of our original time-periodic problem into a time independent one with
an infinite number of tight-binding chains labeled by 1, each with overall chemical potential nw. Each chain is
associated with a Fourier mode and is coupled to its nearest neighbors by a hopping term p1/2 at the central site
j = O(seefigure2).

3. Transmission coefficient

We now proceed to calculate the exact transmission coefficient T for an incoming wave with wavenumber k; and
energy € = —2J cos ko, corresponding to n = 0. Notice from equation (7) that the bulk of each chain supports
solutions of the form e/ with wavenumbers given by —2J cosk, = € + nw. When |e + nw| < 2], k,, is real
and the corresponding plane wave solutions are delocalized over the entire chain (unbound channels). We will
assume thatn = 0is an unbound channel and contains the incoming wave of unit amplitude, a reflected part of
amplitude ry and a transmitted wave with amplitude #,. For all unbound channels plane waves with
wavenumbers k, can emerge from the impurity as additional transmitted and reflected parts. For chains with
|e + nw| > 2], k, is imaginary and the solutions decay exponentially around the impurity (bound channels).
Bound channels with negative (positive) energy have k,, = ix,, (k, = ik, + 7)where x, isreal. The
corresponding energies are € + nw = F2J cosh s,

Thus, for our setup with one incoming wave the solutions for all channels n can be written as

D,) = D (o™ + ne ) cfl0) + D t,ehicf|0) + Enllc(ﬂO). (8)
j<0 >0 J
Using equation (7) it is easy to check that
E,=ty= 14+ Onos 9
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capturing the inversion symmetry of the lattice with respect to j = 0. We can then derive the amplitudes at each
site for the Floquet modes:

T J .. . .
¢j)n = E,eiklil 4 0j,0En (7 — 1) + 64,021 sin (ko) O (—7). (10)
Inserting this result back into equation (7) we obtain a recursive relation for the coefficients E,;:
Byor+ Evot = L{E, (Bels — isink,) + i6,0(1 — B)sink,], (1
I

where we have defined 3 = 1 — (J//])? to parametrize the inhomogeneity in hopping. As explained in detail
below, this recursive relation will be central to all of our calculations of the transmission coefficient.

The total transmission probability consists of the ratio between the transmitted and incoming current. In the
present model all unbound channels contribute with their individual transmission, resulting in

T= Y7, = Ve 2k (12)

. b
sin kg

n

where the sum is over all the extended states. On the other hand, current conservation requires that the incoming
current is equal to the outgoing current:

sinkg = > (Il + |t*)sink,. (13)

Now, we can combine equations (9), (12) and (13) to obtain (see appendix A):

uko(l - ,6)
o - E(E )

where uy, = 2] sin k is the velocity of the incoming particle. Thus, to calculate Twe need to determine the
ratios E1/Ey, which are completely fixed by requiring convergence of the above recurrence relations in
equation (11)as n — Fo00. For a given set of physical parameters, these ratios can be obtained numerically in a
very fast and efficient manner.

Itis important to consider the zero transmission resonances that occur when Re Ey = 0. By imposing this
condition upon our recursive relations we can derive an approximation for small i« which indicates the location
of the resonances (see appendix B):

12 AF( = B (e £2w) — 47 = Be £ 2w][FA = Ay(e £ w)* — 4 = Blew)]. (1)

For J' > J (8 < 0) this equation has a solution for u — 0, if the frequency w, at which the resonances appear in
the limit of vanishing barrier amplitude are given by

)
J1 - 283
In the opposite case, when there is a weaker coupling to the impurity (0 < § < 1), equation (15) does nothave a

solution for 4 = 0. Here the resonances emerge at frequencies w, = 2] F ¢ independent of 3, but at finite
barrier amplitudes given by

pr. =801 — BV F ) — 47 + B F o). (17)

According to equation (12) the condition for resonance T' = 0 also requires that t,, = 0 for all unbound
channels, since sin k,, > 0 within the band. This has an interesting consequence if w < wy = 2] + €],
i.e. when there are atleast two unbound channels (see figure 2). For example assuming ¢ > 0, then for
resonance the two unbound channels,atn = 0 and n = — 1 mustobey ¢y = ¢_; = 0 and according to
equation (11) for n = 0, thisimplies

T = ReEy = Re

(14)

e (16)

El =Hh = —lﬂ(l - ,B)Sinko. (18)
M

Therefore, ¢, cannot be zero, except for trivial cases, such as kg = 0 or J' = 0. Butsince t,, = 0 for all unbound
channels, this implies that the channel for n = 1 must lie outside the band in case of resonance,
i.e. g = € + w > 2].The same reasoning applies for ¢ < 0 and unbound channelsforn = 0and n = 1, giving
the condition ¢_; = ¢ — w < —2J, so that there can never be more than two unbound channelsif T = 0.In
summary, the condition for zero transmission therefore requires that w > w,; = 2J — |¢|, which provides a
lower cutoff for the observation of possible resonances.

In the following section we will present the exact transmission values for our system and indicate
approximations for various regimes.
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Figure 3. Exact results for transmission probability T. Top: for an incoming wave of energy € = —0.5] as a function of amplitude p
and frequency w. The dashed green line corresponds to high frequency approximation according to equation (23), while the dashed
red line corresponds to equation (20). Bottom: as a function of energy e of the incoming particle for w = 0.5] and different values of
the barrier amplitude p.

4. Results and analysis

4.1. Homogeneous chains J' = |

The homogeneous chain has been explored before, but only in the high frequency region [25]. Resonances occur
even for small values of 1 if the frequency is tuned just above the critical frequencies w;; /. In particular, for small
the location of zero transmission can be approximated as [25]

it
A2+ 19
B OV Py P V) )

as derived in equation (15) (see also appendix B). This behavior is illustrated in figure 3 (top) for ¢ = —0.5] asa
function of ;s and wby red dashed lines. Comparison with the blue line marking the exact location of the
resonance shows that this is a good approximation up to x & 3]. As the amplitude is increased these zero
transmission resonances become wider and move to higher frequencies.

Turning our attention to lower frequencies in figure 3 (top), below w,, = 2] — € = 1.5] there are no zero-
transmission resonances as predicted, but it is remarkable that their remnants are still visible in the form of
oscillating structures as a function of pr and win the low frequency range. Fixing the frequency to a relatively
small value w = 0.5] theresonance near ¢ = +(2J — w) is robust for small values of 1« as shown in figure 3
(bottom). The location of this resonance can again be approximated for small ;¢ using equation (15) for § = 0

4
6 i(Z] — w4 “—) (20)
64jw (4] + w)

which implies that with increasing 1 the energy of the resonance is moved towards the band edge for small
frequencies w < 2] while it moves towards the center of the band for w > 2J. Accordingly, no resonance can be
found for 4 = 3] and w = 0.5] in figure 3 (bottom), since it has been pushed outside the band.

Itis interesting to note that the observed resonances can be directly related to the phenomenon of Fano
interference, which is known to affect the transmission of waves in discrete arrays [35]. This interference effect
occurs in systems where one or more discrete energy levels interact with the continuum spectrum, leading to
resonances located precisely at the energy of these states. As pointed out above, our model of a discrete chain
with an AC-barrier can be mapped onto a set of coupled chains. Thus, in this case the continuum spectrum
corresponds to the n = 0 chain, whereas the discrete states are the bound states of the ‘side-attached’ system
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Figure 4. Transmission coefficient in the limit of vanishing lattice spacing for ¢/ = 1in units of 1/2m, i.e. for a quadratic dispersion
relation with alocal driving in form of a delta-function.

composed by the virtual chains associated to higher frequency modes (n = 0, see figure 2). These states can also
be interpreted as the AC-driven BIC’s explained above. We have performed an independent numerical
calculation to obtain the values of the aforementioned discrete energies and confirmed that they indeed coincide
with the location of the transmission resonances calculated before. For larger amplitude y additional bound
states of the side coupled system can also be pushed into the band, which show up as higher order resonances as
canbeseeninfigure3e.g. for w > w,and v 2 7.5]. Notice that the eigenenergies of the upper and lower ‘side-
system’ only differ by their sign, which is consistent with the fact that our recursive relations already were
invariant under inversion of the incoming particle energy € <= —e.

4.2. Continuum limit

One advantage of the tight-binding model is that it can readily be generalized to a continuum system by taking
the lattice spacing to zero. The effective mass of the dispersion relation is then determined by the second order
expansion of the cosine dispersion relation ¢’ = 2] — 2] coska — Ja*k? = k?/2m, i.e. the hoppingJis taken
to be infinite at the same time, so that Ja? = 1/2m is finite. Here we have shifted ¢/ = ¢ + 2J,sothate’ > 0
corresponds to unbound channels and ¢/ < 0 are bound channels. Using the analogous approach as used for
equation (11) above we now obtain for the recursive relation

En+1 + En—l = *likn(En - 6;1,0)) (21)
mi

where k, = \/2m (e + nw). The resulting transmission coefficient is plotted in figure 4 for an incoming energy
of ¢/ = 1inunits of 1/2m. Note, that the continuum problem has become scale invariant, so that a rescaling of
€' by afactor cleads to the same results as a function of cw and /¢ 1, since there is no longer a finite bandwidth to
dictate an intrinsic energy scale. Accordingly, figure 4 contains the complete information about the energy
dependence as well. The lower critical frequency is now given by w., = ¢’ and the higher critical frequency wy is
pushed beyond bounds since there is no upper band edge. Resonances appear only for frequencies w > ¢/,
which show qualitatively a similar structure as for the tight-binding model. However, as we will see below an
analytical high-frequency approximation in terms of Bessel functions exists for the tight binding model, which is
not possible for the continuous system.

4.3. Inhomogeneous coupling to the impurity site J' = J

Let us now go back to the tight binding model in order to explore what happens when we consider a different
coupling to the impurity site (J' = J) corresponding to physical realizations where the coupling to the driven
impurity may also differ from the ones along the chain.

In figure 5 we show results for the transmission for a weaker hopping amplitude J’ = 0.9]. While there are
similarities to the homogeneous case discussed above, the resonances now start at a finite value of 11 > 0
according to equation (17). As can clearly be seen in the bottom part of figure 5 for w = 3] accordingly thereisa
dip but no resonance for ;1 = J, while the resonance at ;4 = 3] is relatively sharp.

As shown in figure 6 (top) for larger hopping amplitude ]/ = 2] we observe a general increase in
transmission across the parameter space and the resonances move to higher frequencies for a given energy of the
incoming wave following equation (16). Correspondingly, the resonances are also displaced in energy at fixed
frequency w = 3] as shown in figure 6 (bottom).

These features can be interpreted nicely by using the Fano resonances due to the ‘side-attached’ systems
explained above and depicted in figure 2. It turns out that the two resonances we observe in figures 5 and 6 are

6
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Figure 5. Transmission coefficient for modified coupling J = 0.9]. Top: for a fixed energy ¢ = —0.5] as a function of yrand w. The
dashed lines depict the analytic approximations for the location of the resonances at high frequencies (green), and close to where they
emerge (red) from equation (15). Bottom: for fixed frequency w = 3J.
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Figure 6. Transmission coefficient for modified coupling J’ = 2J. Top: for a fixed energy ¢ = —0.5] asa function of yzand w. The red
dashed lines depict the analytic approximations for the location of the resonances close to where they emerge from equation (15).
Bottom: for fixed frequency w = 3J.
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associated with a bound state of the upper (lower) side system which is strongly localized onthen = 1 (n = —1)
chain. Let us consider |J — J| < 1such that each side system can be thought of as a set of coupled
homogeneous chains (J' = J) plus a small perturbation. A simple first order calculation for the corresponding
energy shift of the relevant bound states gives

bep, = I)ZR (Po5 ol + doaro’ ), (22)

20

where B, (B_) denotes the bound state corresponding to the upper (lower) side system It turns out that for the
n > 0 (n < 0)side the amplitudes gbl ,and qSB have the same (opposite) sign as ¢O . Thus, as J/ becomes
larger than J the resonance correspondlng to the —|— side (‘—’ side) tends to decrease (increase) its energy and
viceversa. We emphasize that for certain parameter combinations the BIC’s energy shift may push it back into
the continuum of states of the side system or away from energy band of the incoming particle. In either case this
makes the resonance disappear.

It should be mentioned that the same formalism can be applied for an asymmetric tunneling junction with
unequal tunneling amplitudes to the impurity site J'je. # J'5igh. In this case possible location of the resonances

are again given by equations (15)—(17) with § = 1 — (J2 right T Jit) / 2J2.

5. High frequency

In the high frequency regime (w > J) itis interesting to note that, as the amplitude of the barrier is increased for
fixed frequency w, the transmission undergoes oscillations that reach T = 0 for certain values of ;s as shown in
figures 3, 5 and 6. Moreover, the density plots suggest that for higher frequencies the transmission probability
depends only on the ratio p1/w.

How these features are related to our calculation can be explained in detail if we notice that the coefficient at
the left of equation (11) becomes linear in # and independent of S when w >> J [25]. Thus, for high frequencies
the recursive relation (11) is satisfied by Bessel functions of the first kind, i.e. E,<o ~ Ju5¢/0(ft/w). Inserting
this relation in equation (14) it is then possible to obtain an approximate analytical expression for this regime

ukzu (1 B ﬂ)z
) 2°
ukzo(l - 6)2 + l:ﬂf + %(jl*f/w(ﬂ/w) — ‘7l+(,w(l‘-/“])>:|

T-erw(pp/w) Jewpn/w)

T(e) ~

(23)

The points of total reflection are clearly identified by the zeros of the Bessel functions 7. . /,,(1t/w) and are
marked by green dashed lines in figures 3 and 5. It has been shown before that the exact transmission compares
well with the high frequency approximation for w 2 10J [25].
For even higher frequencies we can get a good approximation by expanding the denominator in
equation (23) to lowest order in € /w. Both resonances merge on the zeros of Jy(1+/w) and the transmission
probability becomes
2
u
T~ ko —. (24)
2| 1=0" T/ @) /1)
Uiy T € [ T o /@) /12 ]

This result is directly related to the phenomenon of coherent destruction if tunneling (CDT) which states that at
high frequencies the effect of the oscillating impurity is averaged out, resulting in an effective tunneling to the
impurity site given by Jo = J Jo(1t/w) [33]. Thus, in this regime the situation can be viewed as a time
independent double barrier problem, where the middle region is the impurity site and there is an associated
resonant tunneling (T = 1) for € = 0. In fact, the transmission for this effective static model can be calculated
exactly, giving the result obtained in equation (24). In other words, in this context we can view the phenomenon
of CDT asa destructive Fano interference process in the regime where the width of the associated T = 0
resonance diverges, blocking the whole energy spectrum. Note, however, that the averaging used to derive the
CDT is a further simplification compared to our analytical description in terms of Bessel functions with
fractional index in equation (23).

6. Low frequency

Atverylow frequencies w < w,, when the changein ¢, = € + nw becomes negligible in each recursive
iteration it is reasonable to use approximately the same particle velocity in equation (11), i.e.

Uy, = uy, = 2J sin ko. In this limit we can derive an approximate analytic expression for the transmission. Let us
consider a product ansatz for the coefficients of the type E, = Eg X*" for n = 0. We find from equation (11) that

8
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Figure 7. Transmission probability as a function of y for different frequenciesand ¢ = —0.5and J = J'.
XN — = (Be™0 — isinkg) A\ + 1 =0, (25)
1
which is solved by
2] 2J ’
Ay = Z(Beto — isinkg) £ (—(66}“‘0 — isin ko)) -1, (26)
It It

where Ay = 1/A_. Choosing Asuch that |\] < 1and taking into account the finite norm condition that
requires E, — 0when n — 00, in good approximation for low frequencies we have

2
E ~ £ ~ g(ﬂeiko — isinkg) £+ (Z—I(ﬁeiko - isinko)) — 1. 27)
E() Eo 1% M

Finally, inserting these results into equation (14) we obtain an analytic result for low frequencies

u 1 1
ko + . (28)

2 o 2 y e > )
(o) g o)) e

We now want to compare our result for w — 0 with the one obtained from averaging a static barrier of
oscillating amplitude. Let us consider then the Hamiltonian

Hyaic = —] Y. (cfeimi+cle) =T >0 (cfcimn+ cliie) — pegeo (29)
i=—1,0 i=—1,0

Tw>0 ~

~

where 11 is the constant magnitude of the barrier. Using the general ansatz equation (8) for only one conducting
channel n = 0 we get

2By = By (Beibo — isinkg) — i(1 + B)sinkol. (30)
i

Thus, the equation for the static case looks just as the one for the dynamic situation, however since there are no
neighbor chains to couple to, it couples with itself. Simple algebra yields

i
Titatic = |t|2 = |E0|2 = NN (3D
ukz + (u — %5)

Now, if we consider a very slow oscillating barrier (w — 0) we need to average the result for the static
transmission over a whole period 27 /w:

w 27/ w ukz

27 Jo uf + (ucoswt — g2/J'H?*

Lo = (32)

This definite integral can be calculated exactly, reproducing the result obtained above in equation (28).
Figure 7 illustrates how the low frequency limit is approached for the case of ¢ = —0.5.

9
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7. Conclusions

Based on the Floquet formalism we have developed a framework to study the transmission probability across a
time dependent impurity. We have included in our analysis the possibility of links to the impurity that are
different from those in the bulk, as this may be the case in potential experimental setups. The transmission
profile is strongly influenced by the appearance of resonances that result in zero transmission for well defined
energies of the incoming wave. Analysis for the inhomogeneous chain shows the important effects thata
different coupling J’ = J to the impurity site may have. In particular, we observe how this parameter modifies
thelocation of the aforementioned resonances, making them disappear for small barrier amplitudes when

J' < J.Wealso showed that our calculation can be used to study the continuum limit where the results naturally
become scale invariant. In general, our results reveal a wide range of tuning possibilities for the location and
shape of the resonances that can be modified by changing the amplitude and frequency of the perturbation.

In the regimes of low and high frequency wwe derived closed analytical formulas for the transmission that are
very good approximations to the exact results. A phenomenon closely related to CDT is present for very fast driving,
where the impurity completely blocks the transmission for all energies at specific values of w/ 1. On the other hand,
for driving much slower than J our formalism reproduces the expected time average of the static case.

We demonstrate that the observed phenomena related to zero transmission resonances have a clear
interpretation in terms of destructive Fano interference that appears when a linear chain is locally coupled to a
system with a discrete set of states [35]. In the present case, although there is no real structure attached to the
chain, due to the periodic perturbation the problem can be mapped into one where the conduction channel is
coupled at the impurity site to an infinite set of ‘virtual’ chains (see equation (7)).
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Appendix A. Transmission
We will show here the derivation leading to the transmission equation (14). First, consider the current operator
on each lattice site defined by

I = = (Cheme1 — i rCm)- (A1)

We calculate the expectation value of the current on the negative (P_| }'ml ®_)as well as the positive side
(®,17,|®,) of the chain, with

1B.) = o5 (M + ryekii)cllo) (A.2)
j<0 n
and
D) = D> taeic]]0), (A3)
j>0n

where n labels the conducting (unbound) channels. The total current of each side then reads

Jo= (@[], |0) = 2J [sintko) — DIl sin(k,)] (A.4)
j<0 n
and
Jr =Y (@47, ®0) = 21> |t sin(k,) (A.5)
j>0 n

respectively. We now normalize the currents such that the incoming current is one and obtain for the total
transmission

T= ZT—Zm”mk (A6)

sin k

Finally, imposing current conservation (J_ = J;)and considering relation (9) we obtain
, sin (k,,)

sin(ko) A7)

T = ReEy = Y |E,|

n
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Appendix B. Location of the T = 0 resonance

For very small barrier amplitude . the resonances are located almost exactly at wy = 2] £ ¢, just before the
n = F1chain enters the continuum. Therefore, we consider no additional unbound channel (besides the
n = 0) on the corresponding side of the ladder. Remember that the recurrence relations is given by

YuEn = Ey_1+ Enta (B.1)
with

= i[:m — B)N(e+ nw)? — 477 — Bl + nw)] (B.2)

for positive/negative n. For € > 0and w > w, (w > w_),all coefficients +, _ jarerealforn < 0 (n > 0).Inthe
case of a zero transmission resonance we have ReEy = 0 which implies ImE, = 0 as well. Thus, at the resonance
we have Ey = 0 such thatall coefficients are determined by E. ;:

Ei =y Esy (B.3)

Eis =B — Exp = (a2 — DE+y, (B.4)

Eiy =3B — Exp = (3 (12 — D) — ) Exys (B.5)

Eis = 4By — Exs = (3734 — D1z — D — 14z Ex (B.6)

and so on. This series must converge, which in general gives a nonlinear highly non-trivial condition on y, wand
€. However, note that all coefficients E,, for larger n contain terms that are proportional to 7, , or (7,7, — D).
All other factorslike (y,;y,, — 1) areverylarge, so the only way that this series converges quickly is that

Y — 1 <1 K 1 (B.7)
whichyields v, , ~ ,},E (E+3 = 0). Therefore

E[JF(1 — DL w)? —4* - Blet w]~ %[?(1 — DN (e £ 2w)* —4]* — Be £ 2w)]7', (B.8)
I

which is precisely equation (15).
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