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Interplay of Coulomb blockade and Aharonov-Bohm resonances in a Luttinger liquid
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We consider a ring of strongly interacting electrons connected to two external leads by tunnel junctions. By
studying the positions of conductance resonances as a function of gate voltage and magnetic flux, the interac-
tion parameteg can be determined experimentally. For a finite ring the minimum conductance is strongly
influenced by device geometry and electron-electron interactions. In particular, if the tunnel junctions are close
to one another, the interaction-related orthogonality catastrophe is suppressed and the valley current is unex-
pectedly large[S0163-182808)06704-9

When the size of an electronic system is reduced, a riclanalogously. Thus we take the leads to be noninteracting,
variety of new “mesoscopic” phenomena becomes experi-and couple them to the ring with tunnel junctions at positions
mentally observable. Some of the new phenomena are essexj- and xg. To calculate the current-current correlation
tially classical, owing their existence to the granularity of thefunction we define the generating functionZ]J, ,Jg]
electric charge and the system size dependence of variousTr exp(— 8H — (1/4) [Pd I (D)1 (7) + Ir(DIr(D ],
energy scales. The most widely studied example of this typand integrate out the free fermions in the leads. That yields
is Coulomb blockade. A different category of mesoscopic
phenomena is entirely quantum mechanical, and is due to the 1 (h
fact that the phase-coherence length at low temperatures ig[J, J]=Z, ZxTr exp{ —BHing— — dr
comparable to the system size, giving rise to a number of n2Jo
interference effects. A particular example is the existence of 18
a persistent current in the ground state of a mesoscopic ring. % J' dr'
In this paper we study the interplay between two mesoscopic 0
phenomena, Coulomb blockade, and Aharonov-Bohm inter-

1 a1 o

ference, using an exactly solvable model.

We consider a system consisting of a small ring of inter-
acting electrons connected to two noninteracting leads by
tunnel junctions. The tunnel junctions are at positimpsnd
Xg, respectively. The ring is capacitively coupled to an ex-

ternal gate electrode and may be pierced by a magnetic flux.

We consider a small ac voltage applied to the right lead, and
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wish to evaluate the current at the left junction. A straight-

forward application of Kubo formufayields the current whereZ, g andGr(7;%,x") are the partition functions and

free fermion propagators in the leads, atg, is the Hamil-
tonian for an isolated ring. The imaginary time-ordered cor-
relation function y(7,— )= —(T [l (7)Ir(72)]) is ob-
tained by differentiatingZ[J, ,Jg] with respect toJ, and
whereV(t)=V,e ' is the applied voltage arﬁﬁG the equi- Jr. To s!mplify the notation, )/ve introduce the four—op(?rator
librium density matrix. The quantity on the right-hand side isexpectailon valué\(ry, 7, 2.7 ):A(Tl,_ T2, 11T T, T T)
recognized as the retarded current-current correlation func={T-A¥' (7.X)¥(71.X) ¥ (72,xr) ¥(7" Xg)]) and its Fou-
tion. It is most readily evaluated in imaginary time. rier transformA(i wy, ,i wp,,iw,). To the lowest nonzero order
The Hamiltonians for the leads and the connection bein the tunneling matrix elementg, is given by
tween the leads and the ring are given by

V(t) [t — A -
(V)= ~i ﬁ(—Q) wadt’e*'““ T pelir(t). LD}

eZ
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‘ .t @ X[GL(lwn=1Qn;%,X) = GL(lwn ;XL ,X) ]
H =t c (X Xy )+t Xp)CL(Xp), 2
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wherec, are operators on the left lead agdare operators
on the ring. The Hamiltonians for the right lead are defined (4)
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If we regard the leads as infiniteather than semi-infinite  A(iQ,,~iw,,—iw)

the propagators in the leads are easy to evaluate and yield

G (iwn;x, X )=—i(#/2)D (er)sgn(w,) where D (¢€) is ~hB[Sq oG(iw,,0G(iw},0)

the density of states in the left lead. !
To evaluate the four-operator produﬁ(iwn,iw,’],iw;),

we must specify the Hamiltonian for the ring. We choose toyhereG(7,x)= — (T [ #(7,x)7(0,0)]) is the Green’s func-

work with the simplest exactly solvable interacting model,tjon for interacting electrons on the ring a@d{i w,,X) is its

the spinless Luttinger model. In the bosonized form theFourier transform with respect to the imaginary time variable

Hamiltonian reads 7. For noninteracting electrons we can apply Wick’s theo-

rem, and find that this expression is exact. Substituting this

into the expressiof) gives, after proper analytic continua-
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where N and J are zero modes associated with the total h — @

charge and total current. Since the numbers of clockwise and
counterclockwise moving electrons on the ring must both be
integers, the quantum numbefd and J must satisfy e? |t, tgl?
(—1)N=(—1)". The gate voltage and magnetic flux deter- ~ N 2
mine the parametemy=CV,/e andJy=2®/P,, which in h
turn determine the ground-state charge and current. The pathere the last expression is valid if the system is further than
rameterg is a measure of the interaction strength, and equal&gT from a resonance.
1 for noninteracting electronsFor future use we also define  This expression can also be understood using a scattering
the shorthand notatiop=3(g+g~)—1, which vanishes in matrix approach regarding the ring ag@mplicated scat-
the noninteracting limit. terer for the free electrons in the leads as discussed in a
Due to time ordering the exact expression foiis quite  specific case by Jagla and Balseierom that point of view
complicated, although in principle straightforward. Since weour basic approximation is that one scattering event is com-
consider only the lowest order in the tunneling Hamiltonian,pleted before another one takes place—the approximation
our analysis is valid only sufficiently far from the conduc- breaks down near resonance, when the dwell time for extra
tance resonances. Therefore, we can assume that the grougldctrons in the ring is large.
state is separated from the excited states by an energ§egap  Now we turn to evaluating the retarded Green’s function
that is larger thaikgT. This approximation is basically simi- for interacting electrons in a finite ring at a finite tempera-
lar to the one used by Ref. 4 for an interacting ring connectedure. We use the low-energy expansiof(X)= i (X)
to superconducting leads. We also neglect events with al-_(x), wherey . (x) are clockwise and counterclockwise
four imaginary times approximately equal, since their contri-moving fermions so thaG(7,x)=G, . (7,X)+G__(7,X).
bution is negligible. That allows us to evaluaiein an ap-  Following Haldané, the correlation functions can be evalu-
proximate fashion, and gives ated exactly and we obtaip& = 1) (Ref. 6
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where y=1%(g+g !)—1 and we introduced the shorthand modes, withN andJ both even or odd, respectively, arq
notation a=mvhBIL, xy=(m/L)(ig tvr—px), and x; arises from the bosons witli= 0. The appearance of doubly
=(w/L)(igv7—px). Herea is a short distance cutoff for the periodic elliptic functions is natural, since the Green'’s func-
interaction, and is of the order of the lattice spacing. Thetion must be periodic ix and antiperiodic inr. The Jacobi
Jacobi theta functiodsd; and 9, arise from theq=0  functions also appear in the partition function of an isolated



57 BRIEF REPORTS 3779

L
XL XRr

J =20/,

0 1 2 3 4
N, =CV,

N0= CVg

FIG. 2. Conductance vsVy for x —xg=0.04, x_ —Xg

FIG. 1._ Positiqns of conductanc_e resonances in tg,P) =0.05. andx_—xg=0.5_ (from top to bottom. The temperature
plane for interacting electron@epulsive interactionsg=1/y2). is T=0.1(fiv/L), and the interaction parametergs- 12.
The labelsN andJ denote the ground-state charge and current as a '

function of the external parameters, and the shaded area indicates
the domain of validity of our analysis. The line segments with dif-
ferent slopes correspond to fluctuations in the numbers of clockwiswe show the conductance as a functiorvgf. Near a reso-
and counterclockwise moving electrons, respectively. Inset: deviceance we obtain the limiting behavio G™{(0x)|?
geometry. ~C/(8€)?, where 8¢ is the energy cost of changing the
number of electrons in the ring by oree still assumese
>kgT). In a generic case a resonance corresponds to a de-
ring (essentially thes- and 7-independent parts of the above generacy for the addition or removal of either a clockwise or
expressiopand therefore in most equilibrium properties of counterclockwise moving particle, and the prefadois in-
mesoscopic rings like persistent currehts. dependent of device geometry. However, since we have
The parameters that are most readily accessible in an exyo control parameter; and®, we can use them to bring
periment are the gate voltage and the magnetic flux. Thepoth clockwise and counterclockwise modes to resonance
enter only theq=0 part of the Hamiltonian which we can simultaneously. These special parameter values correspond
rewrite asHqy=3E.(N—Ng)2+ (mhve/2L)(I—Jo)?, where to slope changes in the trajectories of conductance
ve=gv is the Fermi velocity of a noninteracting system with resonances in Fig. 1. Since at these double resonances the
the same density, anB.= w#v/g%L is the charging en- Green’s function receives significant contributions from
ergy. The conductance resonances correspond to values whve vectorskg, and —kg_, its absolute square has
the gate voltage and magnetic flux at which the ground-stateomponents with wave vectokg, —(—kg_)=2wN/L.
quantum numbersl andJ change(degenerate ground state Thus we find that near a double resonance the amplitude
Hence the positions of conductance resonances can be detef- the conductance maximum varies periodically
mined from a simple charging energy model with a single-with the separation between the tunnel junctions as
particle Aharonov-Bohm term—note, however, tEatis not  (1+cog(2N#/L)(x_—xg)]). Away from a double resonance
simply given by the geometric capacitanéie is nonzero one channel dominates, and the amplitude of these oscilla-
even for noninteracting electrondn the (V4,®) plane the tions is exponentially small. Since the wave vector of these
resonance positions form a network, the shape of which desscillations is essentiallyk? , they can be observed only in
pends on the interaction parameterWe suggest therefore low-density systems or using local probes like scanning tun-
that the interaction parameter can be experimentally meadeling microscopy. The interference effects are smeared out
sured by studying the trajectories of conductance maxima agy temperature which leads to a different temperature depen-
a function of the gate voltage and magnetic flux. For nonindence of the conductance for different device geometries
teracting systems the resonance positions form a lattice afear a double resonance:Nfjx, —Xg|~nL, wheren is an
diamond-shaped parallelograms, whereas for repulsive inteiateger, the conductance decreases with temperature due to
actions g<1) there are some values of the gate voltagereduced interference, whereas fd|x, —xg|~(n+3)L
such that a resonance condition is not met for dnyas the conductance increases with
indicated in Fig. 1. For attractive interactions, there are From expressior(6) we see that the conductance is re-
ranges of® such that the total current in the ring, is  duced due to interactions by a fact@/[()?” which can be
independent o¥/, . In that case electrons can tunnel into andattributed to an orthogonality catastrophe that was previously
out of the ring only as pairs of clockwise and counterclock-studied in the context of quantum dots in the fractional
wise movers, which is reminiscent of Cooper pair tunnelingguantum Hall regimé® The exponent governing the
through a superconducting grairErom now on we only resonance line shape for smafk, o~1/(5€)?, is inde-
consider repulsive interactions. pendent of the interaction parametgr which is a conse-
We use expressior(s) and(6) to analyze the dependence quence of a finite minimum energy of the bosonic modes.
of the conductance on the external parameters. The depefihe resonant contribution dominates folde< de.
dences orVy and® are qualitatively similar, and in Fig. 2 =(2mhv/L)|sinm(x_—xx)/L]]” (up to logarithmic correc-
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order unity. Therefore, we expect that®at 0 the height of
the resonance peak is independeng odnd the peak width is
o 9=08 given by Se such thatl' Ig[v2(a/L)]?"(8e) 2~1. A
. 3;0:9 simple Breit-Wigner formulac~12/(5€)?+I'? gives a
peak-to-valley ratio 2[[/A)?, whereA is the separation be-
tween adjacent resonances dnds the resonance width. In
the present case this simple connection does not hold: the
line width atT=0 is reduced by a factora(L)?, whereas the
valley current(for small Ax) is only suppressed by factor
(a/Ax)?”. The former suppression factor can be identified as
| the lifetime of a charged excitation of the ring while the
%00 0.05 010 second one is the off-resonance probability of transmission
Ax/L through the ring. The valley current is therefore anomalously

o large for smallAx, since effectively the system size is re-
FIG. 3. Conductance v, —xg| near a conductance minimum 004 v Ax and the orthogonality catastrophe is less se-
for interaction parameterg=0.9, 0.7, and 0.5. The temperature is . . . .
T=0.1(v/IL). vere. Since aT =0 the pea_lwldthsarg r_educed by interac-
tions, the resonance pehkightsat a finite temperature are
suppressed due to thermal broadening. Thus the main effect
of interactions is to change the peak-to-valley ratio in a way

tions); for de> de., the valley conductance levels off to a
constant value proportional ta/{|x, —xg|)?”, as seen in Fig. )
3. For large separationsx=|x, —xg|, the crossover point tha_h(]depends_ on ole?/lce g_ei)qlr_?etr); arlﬂ tertnp:jerat;lre. .

Se. exceeds half of the resonance spacing, and the crossover € experimental possibiiities Tor the Study ot nanostruc-

is not observed. The two limiting behaviors can be combinem%ures .I'ke thg one we co_nS|der are developing rapidly. New
to give the approximate line shape echniques like conducting organic molecules and carbon

compounds are emerging to complement the conventional
2y semiconductor structures. In particular, it was recently

1 a -
o(6e)~T' gl — NP demonstrated that carbon nanotubes exhibit coherent elec-
(de) L tron transport, and can be used to fabricate nanoscale ring
) “2y structures. We believe these devices can be used to study the
n L L TAX system we have analyzed experimentally.
SIN L . .
2mhv] | \2a L In conclusion, we have considered tunneling through a

finite strongly interacting system within the framework of an

1-e” '”'S"‘(”AX"—)) 21 exactly solvable model. We find that the positions of conduc-
X| ] |,

y (7) " tance resonances in th¥ {,®) plane can be used to deter-
mine the interaction parametgr. We conclude that af

wherey=3(g+g 1) —1 andl'| r=|t,jr|?’Dr(€r) are the =0 the heights of resonance peaks are unaffected by inter-
linewidths for a noninteracting system. The last factor givesactions, but, due to the narrownessTof O resonances, the
rise to a logarithmic dependence Ax in the noninteracting peak conductance at a finite temperature is reduced by inter-
limit. actions. The valley current depends on both interactions and

At T=0 the smallestde that we can consider is deter- the device geometry. Near a double resonance we find that
mined by when terms that are higher order in the tunnelinghe heights of resonance peaks depend on device geometry
Hamiltonian become significant, due to the orthogonality ca-due to interference between different current carrying pro-
tastrophe that happens when the first term in &9.is of  cesses.
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