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Interplay of Coulomb blockade and Aharonov-Bohm resonances in a Luttinger liquid
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We consider a ring of strongly interacting electrons connected to two external leads by tunnel junctions. By
studying the positions of conductance resonances as a function of gate voltage and magnetic flux, the interac-
tion parameterg can be determined experimentally. For a finite ring the minimum conductance is strongly
influenced by device geometry and electron-electron interactions. In particular, if the tunnel junctions are close
to one another, the interaction-related orthogonality catastrophe is suppressed and the valley current is unex-
pectedly large.@S0163-1829~98!06704-6#
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When the size of an electronic system is reduced, a
variety of new ‘‘mesoscopic’’ phenomena becomes exp
mentally observable. Some of the new phenomena are es
tially classical, owing their existence to the granularity of t
electric charge and the system size dependence of va
energy scales. The most widely studied example of this t
is Coulomb blockade. A different category of mesosco
phenomena is entirely quantum mechanical, and is due to
fact that the phase-coherence length at low temperature
comparable to the system size, giving rise to a numbe
interference effects. A particular example is the existence
a persistent current in the ground state of a mesoscopic
In this paper we study the interplay between two mesosco
phenomena, Coulomb blockade, and Aharonov-Bohm in
ference, using an exactly solvable model.

We consider a system consisting of a small ring of int
acting electrons connected to two noninteracting leads
tunnel junctions. The tunnel junctions are at positionsxL and
xR , respectively. The ring is capacitively coupled to an e
ternal gate electrode and may be pierced by a magnetic
We consider a small ac voltage applied to the right lead,
wish to evaluate the current at the left junction. A straig
forward application of Kubo formula1 yields the current

^I L~ t !&52 i
V~ t !

\V E
2`

t

dt8e2 iV~ t82t !Tr$r̂G@ Î R~ t8!, Î L~ t !#%,

whereV(t)5V0e2 iVt is the applied voltage andr̂G the equi-
librium density matrix. The quantity on the right-hand side
recognized as the retarded current-current correlation fu
tion. It is most readily evaluated in imaginary time.

The Hamiltonians for the leads and the connection
tween the leads and the ring are given by

HL5(
k

ekLcL
†~k!cL~k!, ~1!

HLT5tLcL
†~xL!c~xL!1tL* c†~xL!cL~xL!, ~2!

wherecL are operators on the left lead andc are operators
on the ring. The Hamiltonians for the right lead are defin
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analogously. Thus we take the leads to be noninteract
and couple them to the ring with tunnel junctions at positio
xL and xR . To calculate the current-current correlatio
function we define the generating functionalZ@JL ,JR#
5Tr exp„2bH2(1/\)*0

\bdt@JL(t)I L(t)1JR(t)I R(t)#…,
and integrate out the free fermions in the leads. That yie

Z@JL ,JR#5ZLZRTr expH 2bH ring2
1

\2E0

\b

dt

3E
0

\b

dt8F utLu2S 12
ie

\
JL~t! D S 11

ie

\
JL~t8! D

3c†~t,xL!GL~t2t8;xL ,xL!c~t8,xL!1utRu2

3S 11
ie

\
JR~t! D S 12

ie

\
JR~t8! Dc†~t,xR!

3GR~t2t8;xR ,xR!c~t8,xR!G J , ~3!

whereZL/R andGL/R(t;x,x8) are the partition functions and
free fermion propagators in the leads, andH ring is the Hamil-
tonian for an isolated ring. The imaginary time-ordered c
relation function x(t12t2)52^Tt@ I L(t1)I R(t2)#& is ob-
tained by differentiatingZ@JL ,JR# with respect toJL and
JR . To simplify the notation, we introduce the four-operat
expectation valueA(t1 ,t,t2 ,t8)5A(t12t2 ,t12t,t22t8)
5^Tt@c†(t,xL)c(t1 ,xL)c†(t2 ,xR)c(t8,xR)#& and its Fou-
rier transformA( ivn ,ivn

8 ,ivn
9). To the lowest nonzero orde

in the tunneling matrix elements,x is given by

x~ iVn!5
e2

\4
utLtRu2

1

~\b!2 (
ivn ,ivn8

$A~ iVn ,2 ivn ,2 ivn8!

3@GL~ ivn2 iVn ;xL ,xL!2GL~ ivn ;xL ,xL!#

3@GR~ ivn8;xR ,xR!2GR~ ivn81 iVn ;xR ,xR!#%.

~4!
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If we regard the leads as infinite~rather than semi-infinite!,
the propagators in the leads are easy to evaluate and
GL( ivn ;xL ,xL)52 i (\/2)DL(eF)sgn(vn) where DL(e) is
the density of states in the left lead.

To evaluate the four-operator productA( ivn ,ivn8,ivn
9),

we must specify the Hamiltonian for the ring. We choose
work with the simplest exactly solvable interacting mod
the spinless Luttinger model. In the bosonized form
Hamiltonian reads2

H ring5
p\

2L Fv
g

~N̂2N0!21gv~ Ĵ2J0!2G1 (
qÞ0

\vuqubq
†bq ,

where N̂ and Ĵ are zero modes associated with the to
charge and total current. Since the numbers of clockwise
counterclockwise moving electrons on the ring must both
integers, the quantum numbersN and J must satisfy
(21)N5(21)J. The gate voltage and magnetic flux dete
mine the parametersN05CVg /e andJ052F/F0, which in
turn determine the ground-state charge and current. The
rameterg is a measure of the interaction strength, and equ
1 for noninteracting electrons.3 For future use we also defin
the shorthand notationg5 1

2 (g1g21)21, which vanishes in
the noninteracting limit.

Due to time ordering the exact expression forA is quite
complicated, although in principle straightforward. Since
consider only the lowest order in the tunneling Hamiltonia
our analysis is valid only sufficiently far from the condu
tance resonances. Therefore, we can assume that the g
state is separated from the excited states by an energy gade
that is larger thankBT. This approximation is basically simi
lar to the one used by Ref. 4 for an interacting ring connec
to superconducting leads. We also neglect events with
four imaginary times approximately equal, since their con
bution is negligible. That allows us to evaluateA in an ap-
proximate fashion, and gives
d
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A~ iVn ,2 ivn ,2 ivn8!

'\b@dVn,0G~ ivn,0!G~ ivn8,0!

2dVn ,vn2vn8
G~ ivn ,xL2xR!G~ ivn2 iVn ,xR2xL!#

whereG(t,x)52^Tt@c(t,x)c†(0,0)#& is the Green’s func-
tion for interacting electrons on the ring andG( ivn ,x) is its
Fourier transform with respect to the imaginary time varia
t. For noninteracting electrons we can apply Wick’s the
rem, and find that this expression is exact. Substituting
into the expression~4! gives, after proper analytic continua
tions, the dc conductance

s'
e2

h

utLtRu2

\2
DL~eF!DR~eF!E

2`

`

dvS 2
]nF~v!

]v D
3Gret~v,xL2xR!Gadv~v,xR2xL!

'
e2

h

utLtRu2

\2
DL~eF!DR~eF!uGret~v50,xL2xR!u2, ~5!

where the last expression is valid if the system is further th
kBT from a resonance.

This expression can also be understood using a scatte
matrix approach regarding the ring as a~complicated! scat-
terer for the free electrons in the leads as discussed
specific case by Jagla and Balseiro.5 From that point of view
our basic approximation is that one scattering event is co
pleted before another one takes place—the approxima
breaks down near resonance, when the dwell time for e
electrons in the ring is large.

Now we turn to evaluating the retarded Green’s functi
for interacting electrons in a finite ring at a finite temper
ture. We use the low-energy expansionc(x)5c1(x)
1c2(x), wherec6(x) are clockwise and counterclockwis
moving fermions so thatG(t,x)5G11(t,x)1G22(t,x).
Following Haldane,2 the correlation functions can be evalu
ated exactly and we obtain (p561) ~Ref. 6!
^cp~x,t!cp
†~0!&

5
i

2L
e2 ippx/Le~p/L !~N0g21v1pJ0gv !t

3
q3~ ig21aN02xN ,e22g21a!q3~ igapJ02xJ ,e22ga!1q2~ ig21aN02xN ,e22g21a!q2~ igapJ02xJ ,e22ga!

q3~ ig21aN0 ,e22g21a!q3~ igapJ0 ,e22ga!1q2~ ig21aN0 ,e22g21a!q2~ igapJ0 ,e22ga!

3
1

q1S p~ ivt2px!

L
,e2aDU ~a/L !

2q1S p~ ivt2px!

L
,e2aDU

g

uq18~0,e2a!ug11,

~6!
y
c-

ted
where g5 1
2 (g1g21)21 and we introduced the shorthan

notation a5pv\b/L, xN5(p/L)( ig21vt2px), and xJ

5(p/L)( igvt2px). Herea is a short distance cutoff for th
interaction, and is of the order of the lattice spacing. T
Jacobi theta functions7 q3 and q2 arise from theq50
e

modes, withN andJ both even or odd, respectively, andq1

arises from the bosons withqÞ0. The appearance of doubl
periodic elliptic functions is natural, since the Green’s fun
tion must be periodic inx and antiperiodic int. The Jacobi
functions also appear in the partition function of an isola
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ring ~essentially thex- andt-independent parts of the abov
expression! and therefore in most equilibrium properties
mesoscopic rings like persistent currents.8

The parameters that are most readily accessible in an
periment are the gate voltage and the magnetic flux. T
enter only theq50 part of the Hamiltonian which we ca
rewrite asH05 1

2 Ec(N̂2N0)21(p\vF/2L)( Ĵ2J0)2, where
vF5gv is the Fermi velocity of a noninteracting system wi
the same density, andEc5p\vF /g2L is the charging en-
ergy. The conductance resonances correspond to value
the gate voltage and magnetic flux at which the ground-s
quantum numbersN andJ change~degenerate ground state!.
Hence the positions of conductance resonances can be d
mined from a simple charging energy model with a sing
particle Aharonov-Bohm term—note, however, thatEc is not
simply given by the geometric capacitance~it is nonzero
even for noninteracting electrons!. In the (Vg ,F) plane the
resonance positions form a network, the shape of which
pends on the interaction parameterg. We suggest therefore
that the interaction parameter can be experimentally m
sured by studying the trajectories of conductance maxim
a function of the gate voltage and magnetic flux. For non
teracting systems the resonance positions form a lattic
diamond-shaped parallelograms, whereas for repulsive in
actions (g,1) there are some values of the gate volta
such that a resonance condition is not met for anyF, as
indicated in Fig. 1. For attractive interactions, there a
ranges ofF such that the total current in the ring,J, is
independent ofVg . In that case electrons can tunnel into a
out of the ring only as pairs of clockwise and countercloc
wise movers, which is reminiscent of Cooper pair tunnel
through a superconducting grain.9 From now on we only
consider repulsive interactions.

We use expressions~5! and~6! to analyze the dependenc
of the conductance on the external parameters. The de
dences onVg andF are qualitatively similar, and in Fig. 2

FIG. 1. Positions of conductance resonances in the (Vg ,F)
plane for interacting electrons~repulsive interactions,g51/A2).
The labelsN andJ denote the ground-state charge and current a
function of the external parameters, and the shaded area indi
the domain of validity of our analysis. The line segments with d
ferent slopes correspond to fluctuations in the numbers of clockw
and counterclockwise moving electrons, respectively. Inset: de
geometry.
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we show the conductance as a function ofVg . Near a reso-
nance we obtain the limiting behavioruGret(0,x)u2

;C/(de)2, where de is the energy cost of changing th
number of electrons in the ring by one~we still assumede
.kBT). In a generic case a resonance corresponds to a
generacy for the addition or removal of either a clockwise
counterclockwise moving particle, and the prefactorC is in-
dependent of device geometry. However, since we h
two control parametersVg andF, we can use them to bring
both clockwise and counterclockwise modes to resona
simultaneously. These special parameter values corresp
to slope changes in the trajectories of conducta
resonances in Fig. 1. Since at these double resonance
Green’s function receives significant contributions fro
wave vectorskF1 and 2kF2 , its absolute square ha
components with wave vectorkF12(2kF2)52pN/L.
Thus we find that near a double resonance the amplit
of the conductance maximum varies periodica
with the separation between the tunnel junctions
„11cos@(2Np/L)(xL2xR)#…. Away from a double resonanc
one channel dominates, and the amplitude of these osc
tions is exponentially small. Since the wave vector of the
oscillations is essentially 2kF , they can be observed only i
low-density systems or using local probes like scanning t
neling microscopy. The interference effects are smeared
by temperature which leads to a different temperature dep
dence of the conductance for different device geomet
near a double resonance: ifNuxL2xRu'nL, wheren is an
integer, the conductance decreases with temperature du
reduced interference, whereas forNuxL2xRu'(n1 1

2 )L
the conductance increases withT.

From expression~6! we see that the conductance is r
duced due to interactions by a factor (a/L)2g which can be
attributed to an orthogonality catastrophe that was previou
studied in the context of quantum dots in the fraction
quantum Hall regime.10 The exponent governing th
resonance line shape for smallde, s;1/(de)2, is inde-
pendent of the interaction parameterg, which is a conse-
quence of a finite minimum energy of the bosonic mod
The resonant contribution dominates forde&dec
5(2p\v/L)usin@p(xL2xR)/L#ug ~up to logarithmic correc-

FIG. 2. Conductance vsVg for xL2xR50.02L, xL2xR

50.05L andxL2xR50.5L ~from top to bottom!. The temperature
is T50.1(\v/L), and the interaction parameter isg5 12.
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3780 57BRIEF REPORTS
tions!; for de@dec , the valley conductance levels off to
constant value proportional to (a/uxL2xRu)2g, as seen in Fig.
3. For large separationsDx5uxL2xRu, the crossover poin
dec exceeds half of the resonance spacing, and the cross
is not observed. The two limiting behaviors can be combin
to give the approximate line shape

s~de!;GLGRF 1

~de!2SA2
a

L D 2g

1S L

2p\v D 2U L

A2a
sinS pDx

L DU22g

3S 12eg lnusin~pDx/L !u

g D 2G , ~7!

whereg5 1
2 (g1g21)21 andGL/R5utL/Ru2DL/R(eF) are the

linewidths for a noninteracting system. The last factor giv
rise to a logarithmic dependence onDx in the noninteracting
limit.

At T50 the smallestde that we can consider is dete
mined by when terms that are higher order in the tunne
Hamiltonian become significant, due to the orthogonality
tastrophe that happens when the first term in Eq.~7! is of

FIG. 3. Conductance vsuxL2xRu near a conductance minimum
for interaction parametersg50.9, 0.7, and 0.5. The temperature
T50.1(\v//L).
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order unity. Therefore, we expect that atT50 the height of
the resonance peak is independent ofg, and the peak width is
given by de such that GLGR@A2(a/L)#2g(de)22'1. A
simple Breit-Wigner formulas;G2/(de)21G2 gives a
peak-to-valley ratio 2(G/D)2, whereD is the separation be
tween adjacent resonances andG is the resonance width. In
the present case this simple connection does not hold:
line width atT50 is reduced by a factor (a/L)g, whereas the
valley current~for small Dx) is only suppressed by facto
(a/Dx)2g. The former suppression factor can be identified
the lifetime of a charged excitation of the ring while th
second one is the off-resonance probability of transmiss
through the ring. The valley current is therefore anomalou
large for smallDx, since effectively the system size is re
placed byDx and the orthogonality catastrophe is less
vere. Since atT50 the peakwidthsare reduced by interac
tions, the resonance peakheightsat a finite temperature ar
suppressed due to thermal broadening. Thus the main e
of interactions is to change the peak-to-valley ratio in a w
that depends on device geometry and temperature.

The experimental possibilities for the study of nanostru
tures like the one we consider are developing rapidly. N
techniques like conducting organic molecules and car
compounds are emerging to complement the conventio
semiconductor structures. In particular, it was recen
demonstrated11 that carbon nanotubes exhibit coherent ele
tron transport, and can be used to fabricate nanoscale
structures. We believe these devices can be used to stud
system we have analyzed experimentally.

In conclusion, we have considered tunneling through
finite strongly interacting system within the framework of a
exactly solvable model. We find that the positions of cond
tance resonances in the (Vg ,F) plane can be used to dete
mine the interaction parameterg. We conclude that atT
50 the heights of resonance peaks are unaffected by in
actions, but, due to the narrowness ofT50 resonances, the
peak conductance at a finite temperature is reduced by in
actions. The valley current depends on both interactions
the device geometry. Near a double resonance we find
the heights of resonance peaks depend on device geom
due to interference between different current carrying p
cesses.
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