
Eur. Phys. J. D (2012) 66: 314
DOI: 10.1140/epjd/e2012-30258-2

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Bose-Einstein condensate in weak 3d isotropic speckle disorder

B. Abdullaev1,2 and A. Pelster3,4,a

1 Institute of Applied Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
2 Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
3 Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67633 Kaiserslautern,

Germany
4 Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany

Received 19 April 2012 / Received in final form 18 July 2012
Published online 21 December 2012 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

Abstract. The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various ther-
modynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the
derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of
Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed
in some recent papers, is inconsistent with the general background of laser speckle theory. In this context
we also point out that the concept of a quasi-three dimensional speckle, which appears due to an extension
of the autocorrelation function in the longitudinal direction of a transverse 2d speckle, is not applicable
for the true 3d speckle, since it requires an additional space dimension. Then we propose a possible exper-
imental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation
function. Using a Fourier transform of that function, we calculate both condensate depletion and sound
velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential
within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression
of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent
derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles
which is responsible for the normalfluid component.

1 Introduction

The study of interacting bosonic atoms in a disordered po-
tential landscape, called in the literature as “dirty boson
problem” [1], has originally been introduced in the con-
text of the motion of superfluid helium in porous Vycor
glass [2]. Due to the frozen environment, disorder ensem-
bles averages of physical observables have to be deter-
mined, which depend on many system parameters as, for
instance, the strength of a repulsive interaction between
two particles of the Bose gas as well as the strength and
the correlation length which characterize the disorder po-
tential. The main and intriguing part of the problem is the
competition between the repulsive two-particle interaction
and the localization property of disorder. From a theoreti-
cal point of view, the disorder potential was introduced by
investigating the Anderson localization phenomenon for
fermions [3]. Much attention has recently been paid for
the Anderson localization and the propagation of bosonic
matter waves in random external potentials [4]. Experi-
mentally, the bosonic matter waves have been studied in
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the random potential produced either by laser speckles [5]
or by an incommensurable optical lattice [6]. Whereas the
laser speckle disorder potential is created by a laser beam
scattered from a diffusive glass plate [7], the incommen-
surable optical lattice is produced through two interfer-
ing laser beams with incommensurable wavelengths. How-
ever, one needs to remark that such lattices exhibit certain
pathological features, which do not occur in genuinely ran-
dom lattices, such as a transition between localized and
delocalized states, even in one spatial dimension [8]. In
that sense the quasi-periodic lattices should be considered
as to be quasi-random ones. Recent progress in different
experimental realizations of laser speckle disorder is re-
ported in references [9,10].

According to the laser speckle theory described in the
seminal work of Goodman [7,11], the monochromatic light
reflected from a rough surface on the scale of an optical
wavelength yields many independent dephased but coher-
ent wavelets which interfere at a distance, which is essen-
tially larger than the wavelength. This results in a gran-
ular pattern of intensity that is called Gaussian speckle
as the real and imaginary parts of the field amplitude
form a circular complex Gaussian distribution at any fixed
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spatial point. Details of the speckle formation will be con-
sidered in the next section of the paper. Here, we note
that this distribution consists of the first-order statistics
of the speckle disorder, while the second-order statistics
of disorder is represented by its autocorrelation function.

In order to understand the underlying physics of laser
speckles, let us briefly describe their formation in 2d. Ob-
ject waves are fields, which are a result of the incident
polarized monochromatic field reflection from a rough sur-
face, and they are described in a plane α, β immediately
adjacent to the surface in terms of a complex function
a(α, β) [12]. The Huygens-Fresnel principle establishes in
the Fresnel approximation a relation between these object
waves a(α, β) and the complex waves A(x, y) in the ob-
servation plane x, y through an integral which resembles
a Fourier transformation. Hence, the wave A(x, y) is a re-
sult of the interference of all object waves in the x, y plane.
As in the Fresnel approximation one assumes the condi-
tion z � (α2 + β2)max/λ, where z denotes the distance
between the object wave α, β plane as well as the observa-
tion wave x, y plane and λ denotes the light wavelength,
the waves A(x, y) are called to be in far field [12].

In the Fourier mapping of object waves for the for-
mation of far fields both the form and the finite size of
the diffraction aperture A in the α, β plane plays a cen-
tral role. It determines the form of the autocorrelation
function as well as its correlation length, which charac-
terizes the average size of the speckle, i.e. a grain of the
above mentioned intensity pattern. Typically, the expres-
sion for the autocorrelation function consists of a constant
and a spatially varying part. The latter, which is of inter-
est for various speckle applications, has one central maxi-
mum and a set of side maxima of decaying height, which
are separated from each other by zeros. This analytical
structure is principal in the theory of laser speckles, since
it is the result of the Fourier transformation of the finite-
size diffraction aperture A. Due to the existence of zeros,
it can qualitatively not be approximated by a function of
a Gaussian form as was assumed and even numerically
derived in references [13–15]. It is interesting that the ex-
periment demonstrates an ambiguity in the following re-
spect: whereas the function with zeros is exploited in the
papers [5,16,17], the spatial autocorrelation function is fit-
ted by a Gaussian in references [9,10,18–21]. Calculating a
standard deviation of the second-order moment of the ran-
dom intensity, it was shown in reference [22] that for 1d
the autocorrelation function derived in references [7,11]
can be well approximated by a Gaussian form. However,
a Fourier transform of this autocorrelation function, the
power spectral density, which is essential for the theory of
a Bose-Einstein condensate (BEC) in an external disorder
potential, behaves, unlike the Gaussian function, as the
triangle function tri(x) = 1−|x| for |x| ≤ 1 and otherwise
zero for any dimensionality. For 1d and 2d this was shown
by Goodman in references [7,11], the corresponding 3d
case is dealt with below in the text. This triangle func-
tion makes the upper limit of the integration in momen-
tum space finite. For those reasons the recently proposed
Gaussian autocorrelation function for the laser speckle is

not suitable for a comprehensive description of a BEC in
laser speckle disorder.

The present paper is organized as follows. We start
with describing the basic principles of the laser speckle
theory in Section 2. Following a scheme described in ref-
erences [7,11], we will then derive in Section 3 the ex-
pressions for the autocorrelation function of laser speck-
les and their Fourier transforms ranging from 1d to 3d
with special emphasize on discussing both isotropic and
anisotropic cases. The scheme of the possible experimen-
tal realization of the 3d isotropic speckle will be outlined in
Section 4. Note, however, that we consider in our paper a
true 3d speckle pattern, not a quasi-three dimensional one
of a transverse 2d speckle with a longitudinal depth in the
autocorrelation function as described in reference [23] and
section 4.4.3 of the Goodman book [11], which has been
applied in many experiments (see, for instance, Ref. [22]).
This depth autocorrelation function concept assumes the
existence of an additional spatial direction for the rele-
vant speckle and can only be valid for 1d or 2d speck-
les. As is further discussed in references [11,23], the depth
size is essentially larger than ones in other dimensions.
Here we consider a 3d volume speckle with compatible
speckle grain sizes in all spatial directions, which was al-
ready simulated in references [13,14]. Since the existing
speckle patterns are experimentally produced mainly in
a 2d geometry, we will propose a special scheme for its
possible realization in a 3d volume. In the subsequent Sec-
tion 5 the effect of a weak 3d isotropic speckle on various
thermodynamic properties of a dilute Bose gas will be con-
sidered at zero temperature. To this end we calculate both
condensate depletion and sound velocity of a BEC within
a perturbative solution of the Gross-Pitaevskii equation.
Afterwards, in Section 6, we reproduce the expression of
the normalfluid density of a BEC in an external disorder
potential obtained earlier within the treatment of Landau.
From this rederivation we realize that condensate par-
ticles, which are scattered by a disorder potential, form
a gas of quasiparticles, which is responsible for the nor-
malfluid component. Finally, we summarize and analyze
the results obtained in the paper in Section 7.

2 Fundamentals of laser speckle theory

According to references [7,11,12] the circular Gaussian
probability density function

p(AR, AI) =
1

2πη2
exp

(
−A

2
R +A2

I

2η2

)
, (1)

for the real AR and imaginary AI parts of a far-field
A(x, y) at each point x, y with the variance η =

√〈|A|2〉
represents the background of the theory of laser speckles.
Another basis of the theory is the M -fold joint Gaussian
probability density function

p([A]) =
1

(2π)M |CA| exp
(
− [A∗][A]

[CA]

)
(2)

http://www.epj.org


Eur. Phys. J. D (2012) 66: 314 Page 3 of 11

for far-fields A(x, y) at different points x, y. Here
[CA] is a Hermitian symmetric matrix with de-
terminant |CA|, whose elements are given by
(CA)i,j = 〈A∗(xi, yi)A(xj , yj)〉 for a set of far-fields
[A] ≡ {A(x1, y1), A(x2, y2), . . . A(xM , yM )} at M points
of the x, y plane. Note that the notation 〈· · · 〉 in the ex-
pressions for η2 and (CA)i,j and throughout below in the
text means the disorder ensemble average. Furthermore,
one assumes that the indices i, j at (CA)i,j are taken for
adjacent spatial positions.

Expressions (1) and (2) are the result of the central
limit theorem of probability theory [24], which claims
the following: if complex random variables are the sum
of other independent complex random variables then, at
the increase of the number of second ones, the first ones
are distributed according to the Gaussian law. Applying
the theorem for our case we have far fields A(x, y) as result
of the interference of independent object waves at all posi-
tions of x, y plane. As we will see below, there are mainly
two physical conditions for the validity of the central limit
theorem. They are related to the physics of providing in-
dependence of the object waves and to the method of their
summation within the interference process. We will now
describe both of them in more detail.

A requirement for the object wave a(α, β) to be in-
dependent leads to some limitations for its statistical
properties [12]. First of all, formed after the reflection of
monochromatic light from the rough surface, the individ-
ual wavelet a(α, β) should be completely polarized. Sec-
ond, the first-order probability density of its phase should
be uniform in the interval −π to π. And at last, the object
wave a(α, β) should be quasi-homogeneous, which means
that its autocorrelation function Ca consists of a slowly-
varying intensity Ia envelope and a short-range normalized
correlation function C′

a:

Ca(α1, β1;α2, β2) ≡ 〈a∗(α1, β1)a(α2, β2)〉

= Ia

(
α1 + α2

2
,
β1 + β2

2

)
C′

a(α2 − α1, β2 − β1) . (3)

If we increase in this expression the range of variation of
the correlation part, i.e. the correlation length of the ob-
ject wave, the changing range of the intensity becomes
smaller. However, in order to entirely satisfy the inde-
pendence condition of the object waves, their correlation
length in equation (3) should be as short as possible, which
means that C′

a(α,β) has to be delta correlated. The lat-
ter introduces some demands upon the properties of the
random light scatterer, which is called in the literature
as the diffusor. Typically, a diffusor is an optically homo-
geneous transparent glass plate with no reflection centers
for light in the volume and a geometrically inhomogeneous
distribution of reflection centers with random heights on
its surface. As mentioned in the introductory section of
the paper, the scattering rough surface generates object
waves in a plane α, β, which is closely situated at the
surface, when the monochromatic polarized incident light
transmits through the plate. Another realization of ob-
ject waves is considered in references [7,11], where the
lateral monochromatic light was directly incident on the

rough surface. For our purpose to calculate the normal-
ized speckle autocorrelation function, the optical property
of the medium, from which light falls on the rough sur-
face, is merely dropped from the consideration. Assum-
ing a Gaussian probability density of the surface height
h(α, β) with the autocorrelation function Ch(α, β) and a
variance η2

h and assuming also a Gaussian probability den-
sity of object wave phases with a variance η2

φ, Goodman
derived the relation [7,11]

C′
a(α,β) = exp

(−η2
φ [1 − Ch(α, β)]

)
, (4)

where ηφ = 2πηh/λ. This function can be approximated
by a delta function δ(α,β) when ηφ > 1 and thus ηh >
λ/2 and the mean distance between two inhomogeneous
h(α, β) is larger than λ. The delta functional autocorre-
lation of object waves provides their independence from
each other. On the other hand, the Gaussian probability
density of phases reduces to a uniform one for ηφ > 1 sup-
porting the second requirement for the object waves out-
lined above. Therefore, the requirements for object waves
described in the previous paragraph can be experimentally
realized if the size of the surface inhomogeneities and the
distance between them are larger than the wave length of
the light. As a next implication of the presented analysis
we can suppose that for the outlined system parameters
the object wave probability density itself may have a circu-
lar Gaussian form for the real and imaginary components
of the wavelet a(α, β).

The next important step of the theory of Gaussian
laser speckles is the formation of far fields for a given
set of object waves. It is based on the Huygens-Fresnel
principle of optics, which preserves the individual wavelet
picture, i.e., works in the limit of optics, where deviations
from geometrical optics are small. The interference of the
object waves yields an amplitude A(x, y), which reads in
the above mentioned far field Fresnel approximation as
follows

A(x, y) =
∫
A
a(α, β) exp

[
−2πi
λz

(xα + yβ)
]
dαdβ , (5)

where we have omitted unimportant multipliers in front
and inside of the integral. This expression resembles, in-
deed, a Fourier transformation and, thus, conserves the
principle that each object wave contributes individually
to the interference.

Using equations (3) and (5) it is straight-forward to
derive the expression for the autocorrelation function

CA(x1, y1;x2, y2) = 〈A∗(x1, y1)A(x2, y2)〉 . (6)

It turns out to be given by

CA(x1, y1;x2, y2) = IA

(
x1 + x2

2
,
y1 + y2

2

)
C′

A(Δx,Δy)

(7)
for Δx = x2 − x1 and Δy = y2 − y1 with

IA(x, y) =
∫
A
C′

a(α′′, β′′) exp
[
−2πi
λz

(xα′′ + yβ′′)
]
dα′′dβ′′

(8)
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and

C′
A(x, y) =

∫
A
Ia(α′, β′) exp

[
−2πi
λz

(xα′ + yβ′)
]
dα′dβ′

(9)
for the novel variables α′ = (α1 +α2)/2, β′ = (β1 + β2)/2
and α′′ = α2 − α1, β′′ = β2 − β1. Equation (7) shows
that the far fields A(x, y) are quasi-homogeneous like the
object waves a(α, β). This is a direct result of the Fourier
transformation (5). Another important result of this lin-
ear transformation is the implicit proof of the above made
supposition that object waves are circularly Gaussian dis-
tributed. Indeed, only Gaussian distributed object waves
can contribute through the linear mapping to Gaussian
far fields. As we will see below the role of the so far
uninvestigated parameter, the aperture A, will lead to
the formation of a correlation length of the correlation
function C′

A(x, y).
The autocorrelation function CI(x, y) of the far-field

intensity I(x, y) = |A(x, y)|2 can be calculated using the
Wick theorem for variables distributed according to the
Gaussian law. A simple calculation gives the expression

CI(x, y) = 〈I〉2 [
1 + |C′

A(x, y)|2] , (10)

where the normalized autocorrelation function for the
far-field C′

A(x, y) is defined as C′
A(x, y)/C′

A(0, 0), where
C′

A(0, 0) = 〈I〉.
As already mentioned above, if in equation (3) the au-

tocorrelation function of object waves C′
a(α,β) is delta

correlated, then the intensity function of these waves
Ia(α, β) can be approximated as a constant. Assuming
that the α, β plane is close to the rough surface, one can
write |a(α, β)| = κ|P (α, β)|, where P (α, β) is the incident
to the glass plate light wave and κ is the average reflec-
tivity of surface, for each position α, β. Then the intensity
of the object waves at α, β is determined by the relation
Ia(α, β) = κ2|P (α, β)|2. Therefore, the expression for the
normalized far-field autocorrelation function reads

C′
A(x, y) =

∫
A |P (α, β)|2 exp

[
−2πi
λz

(xα+ yβ)
]
dαdβ

∫
A |P (α, β)|2dαdβ .

(11)

3 Speckle autocorrelation function
for apertures in 1d to 3d dimensions

As already mentioned in the introductory section, the in-
vestigation of a BEC in the laser speckle disorder has
found much attention from both a theoretical and an
experimental point of view. In particular, a variety of
isotropic and anisotropic speckles have been the subject of
these works. Motivated by this interest, we will describe in
the present section the derivation of the speckle autocor-
relation function for different apertures ranging from one
to three dimensions by generalizing the appropriate ex-
pressions from the previous section to these dimensions.

3.1 Real space

Due to the analytic form of equation (11), we can take the
intensity of the incident wave |P (α, β)|2 to be unity over
the whole aperture region of the α, β plane. Writing the
function |P |2 in the form |P |2d,A, where d is the space of
dimensionality and A is the form of the aperture, we have
the following expressions:

|P (α, β)|22d,rct = rect
(
α

Lα

)
rect

(
β

Lβ

)
(12)

for the 2d anisotropic rectangular aperture with sizes Lα

and Lβ , where the function rect(x) = 1 for |x| ≤ 1/2
and zero otherwise; retaining in equation (12) only the
first rect(x) function and equating Lα = L one obtains
the expression of |P (α)|21d,inv for the 1d interval aper-
ture of the size L; the analytic form of |P (α, β)|22d,qdt for
the 2d quadratic aperture of the size L is obtained from
equation (12) if we specialize this equation according to
Lα = Lβ = L;

|P (α, β)|22d,crc = circ
(

2r
D

)
(13)

for the 2d isotropic circular aperture with the diameter
D and r =

√
α2 + β2, where the function circ(x) = 1 for

|x| ≤ 1 and zero otherwise;

|P (α, β, γ)|23d,rcpl = rect
(
α

Lα

)
rect

(
β

Lβ

)
rect

(
γ

Lγ

)

(14)
for the 3d anisotropic rectangular parallelepiped aperture
of sizes Lα, Lβ and Lγ ; the expression |P (α, β, γ)|23d,cub
of the 3d cubic aperture of the size L is obtained from
equation (14) by setting Lα = Lβ = Lγ = L;

|P (α, β, γ)|23d,sph = circ
(

2r
D

)
(15)

for the 3d isotropic sphere aperture with the diameter D
and r =

√
α2 + β2 + γ2;

|P (r, γ)|23d,cyl = circ
(

2r
D

)
rect

(
γ

Lγ

)
(16)

for the 3d anisotropic cylinder aperture with the diame-
ter of circle D, r =

√
α2 + β2 and size Lγ along the γ

axis. Substituting the expressions (12)−(16) of the |P |2d,A
function in equation (11) and calculating the respective
integrals, we obtain the corresponding expressions for the
correlation function |C′

A|2:

|C′
A(Δx,Δy)|22d,rct = sinc2

(
LαΔx

λz

)
sinc2

(
LβΔy

λz

)

(17)
where sinc(y) = sin(πy)/(πy), for the 2d anisotropic rect-
angular aperture with z being the distance between ob-
ject wave and far field planes; retaining in this equation

http://www.epj.org


Eur. Phys. J. D (2012) 66: 314 Page 5 of 11

only first sinc2(y) function, the dependence on Δx and as-
suming Lα = L one obtains the expression |C′

A(Δx)|21d,inv
for the 1d interval aperture with z being the distance be-
tween object wave and far field intervals; the expression
|C′

A(Δx,Δy)|22d,qdt for the 2d quadratic aperture one can
derive from equation (17) for Lα = Lβ = L;

|C′
A(r)|22d,crc =

∣∣∣∣∣∣∣∣
2
J1

(
πDr

λz

)

πDr

λz

∣∣∣∣∣∣∣∣

2

, (18)

where J1(x) is a Bessel function of the first kind and of
the first order, for the 2d isotropic circular aperture with
r =

√
(Δx)2 + (Δy)2;

|C′
A(Δx,Δy,Δz)|23d,rcpl = sinc2

(
LαΔx

λz

)
sinc2

(
LβΔy

λz

)

× sinc2

(
LγΔz

λz

)
(19)

for the 3d anisotropic rectangular parallelepiped aperture
with z as the distance between the object wave and the
far field volumes; the expression |C′

A(Δx,Δy,Δz)|23d,cub

for the 3d cubic aperture is obtained from equation (19)
by assuming Lα = Lβ = Lγ = L;

|C′
A(r)|23d,sph

=

∣∣∣∣∣3
(
λz

πDr

)3 [
sin

(
πDr

λz

)
−

(
πDr

λz

)
cos

(
πDr

λz

)]∣∣∣∣∣
2

(20)

for the 3d isotropic sphere aperture with
r =

√
(Δx)2 + (Δy)2 + (Δz)2;

|C′
A(r,Δz)|23d,cyl =

∣∣∣∣∣∣∣∣
2
J1

(
πDr

λz

)

πDr

λz

∣∣∣∣∣∣∣∣

2

sinc2

(
LγΔz

λz

)
(21)

for the 3d anisotropic cylinder aperture with
r =

√
(Δx)2 + (Δy)2.

Expressions of the autocorrelation function for a 2d
quadratic aperture |C′

A(Δx,Δy)|22d,qdt and for a 2d cir-
cular aperture in equation (18) are derived by Goodman
in references [7,11]. As can be seen from the formulas for
other cases of the aperture, they are closely related to
both of these Goodman cases of the aperture. However,
the derivation of the 3d isotropic sphere autocorrelation
function (20), which is a result of the present paper, re-
quired some additional effort.

The analytical forms of the autocorrelation func-
tions |C′

A|2 are similar in every spatial direction. They
have one central maximum and a set of side maxima of
decaying height, which are separated from each other by
zeros. As was pointed out in the introductory section, it is
obvious that these forms can not be fitted by a Gaussian.

The argument of the autocorrelation function, which cor-
responds to its first zero, provides the correlation length
of the disorder, i.e. the average size of the speckle grain,
for the appropriate spatial direction. Denoting it by δx we
have, for instance, for 1d speckle

δx =
λz

L
. (22)

The main interest of the present paper is the 3d spher-
ical aperture of equation (20) since we will carry out
the calculation of BEC properties for this particular
case of laser speckles. Numerically solving the equation
sin(x) − x cos(x) = 0 we find first its solution to be at
xc = 4.493, thus the disorder correlation length is given
by rc = 1.4302 λz/D.

In order to establish a physical meaning of δx we in-
troduce the “wave number” keff , which is related to the
vector α, β in the above Fourier transform formulas, by
the relation keff = 2πx/(λz). If we substitute in it δx
from equation (22) then we obtain keff = 2π/L. For a
circular and a spherical aperture the “wave number” is
keff = 2π/D. However, the sense of keff is in an uncer-
tainty of the wave vector when the problem of wave prop-
agation is solved in the restricted area. It is well known
that in this area the wave vector is determined within the
resolution keff . Therefore, we can say that the origin of a
speckle grain with a correlation length δx as its size rep-
resents the spatial uncertainty in the determination of far
fields, which is introduced by the finite size of the aperture.

3.2 Fourier space

For many applications the Fourier transform of the far-
field intensity autocorrelation function, or the power spec-
tral density, of the speckle is of considerable interest. In
the literature on laser speckle theory [7,11] it is defined
according to

CI(k) =
∫
CI(x)e−i2πkxddx . (23)

Substituting in it equation (10) for CI(x) one obtains

CI(k) = 〈I〉2 [
δ(k) + |C′

A(k)|2] . (24)

In the perturbative considerations of BEC in the speckle
potential the Fourier transform |C′

A(k)|2 plays the central
role. It has the following expressions for the real space
autocorrelation functions taken from equations (17)−(21):

|C′
A(k)|22d,rct =

(λz)2

LαLβ
tri

(
kxλz

Lα

)
tri

(
kyλz

Lβ

)
(25)

where the triangle function is defined as tri(x) = 1 − |x|
for |x| ≤ 1 and zero otherwise, for the 2d anisotropic rect-
angular aperture; the expression |C′

A(k)|21d,inv for the 1d
interval aperture one can get from equation (25) by as-
suming Lα = Lβ = L, kx = ky = k and taking the square

http://www.epj.org


Page 6 of 11 Eur. Phys. J. D (2012) 66: 314

root of its right-hand side; the expression |C′
A(k)|22d,qdt for

the 2d quadratic aperture is obtained from equation (25)
with the assumption Lα = Lβ = L;

|C′
A(k)|22d,crc = 2

(
2λz
πD

)2

×
⎡
⎣cos−1

(
kλz

D

)
− kλz

D

√
1 −

(
kλz

D

)2
⎤
⎦

(26)

for the 2d isotropic circular aperture with k =
√
k2

x + k2
y;

|C′
A(k)|23d,rcpl =

(λz)3

LαLβLγ

× tri
(
kxλz

Lα

)
tri

(
kyλz

Lβ

)
tri

(
kzλz

Lγ

)

(27)

for the 3d anisotropic rectangular parallelepiped aperture;
the expression |C′

A(k)|23d,cub for the 3d cubic aperture is
obtained from equation (27) by specializing Lα = Lβ =
Lγ = L;

|C′
A(k)|23d,sph =

3
π

(
2λz
4D

)3

(b3 − 12b+ 16) (28)

for the 3d isotropic sphere aperture with b = 2kλz/D and
k =

√
k2

x + k2
y + k2

z ;

|C′
A(k)|23d,cyl =

(
λz

Lγ

)
tri

(
kzλz

Lγ

)
2

(
2λz
πD

)2

×
⎡
⎣cos−1

(
kλz

D

)
− kλz

D

√
1 −

(
kλz

D

)2
⎤
⎦

(29)

for the 3d anisotropic cylinder aperture with
k =

√
k2

x + k2
y.

The equation for the quadratic aperture |C′
A(k)|22d,qdt

and equation (26) have been derived by Goodman in ref-
erences [7,11]. Other expressions of |C′

A(k)|2, except for
the 3d isotropic sphere aperture case, can be obtained by
using these formulas. Equation (28) is a result of this pa-
per. In all our formulas for the anisotropic aperture we
have assumed that the size deviation of the aperture with
respect to its average isotropic size is essentially less than
the distance z.

As is seen from the formulas of |C′
A(k)|2 expressed

through the triangle function their value becomes zero
when their argument is unity. For the 2d circle and the 3d
sphere apertures |C′

A(k)|2 is zero for kλz/D = 1. Hence,
the wave vector of the Fourier transform autocorrelation
function only varies in a finite interval from zero, in con-
trast to the case for a Gaussian function. This fact is an-
other reason why the speckle autocorrelation function can
not be approximated by a Gaussian form.

It is worth to discuss the expression |C′
A(r)|2 =

sinc2(kLr) with kL = D/λz for the autocorrelation func-
tion used in reference [25] for the 3d isotropic aperture. It
is similar to our correlation function |C′

A(Δx)|21d,inv for
the 1d interval aperture. The authors of reference [25]
claim that this expression is valid for z ∼ (α2 +β2)max/λ,
which is outside of the far-field limit. However, that limit
destroys the fundamentals of the Gaussian speckle theory
as they are described in Section 2. Therefore, it is un-
clear whether |C′

A(r)|2 of reference [25] is related to laser
speckles or not.

Furthermore, we discuss the definition of the speckle
correlation length to be the width at the half value of
the maximum of |C′

A(r)|2 for r = 0, when the last
one is approximated by a Gaussian function. Probably,
this definition was introduced first by Modugno in refer-
ence [26], when he considered |C′

A(Δx)|21d,inv. It was found
in reference [26] that the correlation length is given by
δx = 0.88λz/L, while from equation (22) the exact value
turns out to be δx = λz/L. It is interesting that the
Gaussian |C′

A(r)|2 has been obtained in the numerical sim-
ulation of the 3d isotropic laser speckle in references [13,14]
which should be compared with the exact |C′

A(r)|23d,sph in
equation (20), with the correlation length rc = 1.1λz/D,
however, the exact one is rc = 1.4302λz/D, see the discus-
sion after equation (22). It seems that we can explain the
reason why the authors of references [13,14] obtained the
Gaussian form of |C′

A(r)|2. They used the speckle simula-
tion method proposed by Huntley in reference [27] which
we briefly review for the 2d case. Let us consider to this
end two square planes α, β and x, y with the same size L.
According to the Huntley method one uses equation (5)
in order to perform a double Fourier transformation. In
the first inverse Fourier transformation the complex ob-
ject waves a(α, β) on the mesh points in the α, β plane are
simulated through the given Gaussian distributed complex
random wavesA(x, y) on the mesh points in the x, y plane.
Afterwards, one cuts by a circle with radius D/2 the α, β
region of the obtained a(α, β) such that it vanishes out-
side of this region. In the second direct Fourier transfor-
mation the derived complex waves a(α, β) form the final
complex far-fields A(x, y). Huntley has investigated in ref-
erence [27] only the first-order statistical property of the
simulated pattern, i.e. the probability density of the in-
tensity, and showed that it corresponds to the theoretical
laser speckles of reference [7]. However, the proposed simu-
lation method can drastically deviate in the second-order
statistical property of a speckle, i.e. its autocorrelation
function, from the theoretical one.

Indeed, in accordance with the theory of a speckle au-
tocorrelation function as presented in this section, after
the first Fourier mapping the object waves a(α, β) acquire
a correlation with the correlation length δα = δβ = λz/L,
where L is size of the square x, y plane. More precisely,
now the function C′

a(α, β) is not delta correlated. How-
ever, according to equation (3), the broadening of the
C′

a(α, β) function reduces to a changing of a constant char-
acter of the Ia(α, β) function to one of varying in space
in the α,β plane. Substituting this function of Ia(α, β) in
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Fig. 1. (Color online) Cross section of the ellipsoidal reflective
cavity with spheres A and B in its focuses. Focus A contains
a small size absolute spherical light reflector in the center and
volume optic inhomogeneities. Incident laser beams (thick yel-
low arrows), after reflection from the reflector, scatter addition-
ally from inhomogeneities producing individual wavelets (thin
yellow lines), which are collected in focus B, where a BEC is
deposited.

equation (9) and integrating over α and β gives the func-
tion C′

A(x, y) which may qualitatively be different from
the one discussed in this section.

A simulation method, which is consistent with the
above laser speckle theory, is described in the book of
Goodman [11]. There are other numerical methods in ref-
erences [28,29], in which the exact form of the real space
autocorrelation function is used to generate the speckle
pattern. In particular, one of such methods was exploited
for the simulation of 1d speckle in reference [30].

4 Experimental realization of 3d
isotropic speckle

As was already mentioned in the introductory section, we
consider here a true 3d speckle, not the quasi-three di-
mensional one consisting of a transverse 2d speckle with a
longitudinal depth in the autocorrelation function as de-
scribed in details in reference [23] and section 4.4.3 of the
Goodman book [11] and applied in many experiments. At
a first glance, it seems exotic and unrealistic to experimen-
tally realize such a 3d volume speckle pattern. However, in
the present section we will describe the physical principle
how it can be generated.

In the typical 2d geometry of the experimental real-
ization of a speckle a lens, which collects the incident
light, is installed close to the glass plate such that its focal
plane coincides with the far-field plane [22]. This idea of
a speckle formation in the focal plane can be generalized
to a full 3d geometry, when the speckle is formed in the
focal point, i.e. the focus, of an empty ellipsoidal optic
cavity according to the scheme displayed in Figure 1. Let
us consider that cavity, whose inside surface reflects ab-
solutely the light emitted from one of its focus (point A)
and collects it at the second focus (point B). Two laser

beams (thick yellow arrows) are incident through holes in
the cavity surface into the small metallic sphere, i.e. the
reflector, with absolute light reflection, located in the cen-
ter of the glass sphere A. It is assumed that laser beams
cover the entire surface of this reflector and a BEC is de-
posited in the sphere B, which is located at the second
focus of the ellipsoid.

The glass sphere A additionally contains the located
randomly light scattering centers, for instance, absolutely
light reflective metallic polyhedrons with a random aver-
age size of each facet. The theory how to derive the 2d
object wave autocorrelation function C′

a(α, β), described
in references [7,11], can be easily generalized to the deriva-
tion of C′

a(α, β, γ) for such a 3d case with the same expres-
sion (4). However, now this expression is a function of 3d
other quantities. The condition, at which C′

a(α, β, γ) be-
comes delta correlated and the object waves are indepen-
dent, is the same as for C′

a(α, β). Therefore, if the mean
distance between these light scattering centers and the av-
erage size of polyhedrons are larger than the light wave-
length, then C′

a(α, β, γ) will be delta correlated. On the
other hand, each sphere with radius (α2 +β2 +γ2)1/2 and
with the same center as the sphere A will be the object
wave volume, whereas for comparison for 2d we had a α, β
object wave plane.

Incident laser beams, after reflection from the reflector,
scatter additionally from scattering centers and produce
individual and independent wavelets, the object waves
a(α, β, γ), indicated via thin yellow lines in Figure 1, which
are collected in the sphere B, where a BEC is deposited.
For the presented geometry the far-field condition is sat-
isfied, since a distance z between the object wave and the
far-field volumes, i.e. the length of each wavelet trajectory
between two focuses of the ellipsoid, is larger than the size
of the object wave sphere A.

The described scheme can be generalized for the ex-
perimental realization of any 3d anisotropic speckle. To
this end one only needs to change the form of the spher-
ical aperture A, which contains the glass and the light
scattering centers, into a suitable one listed in the previ-
ous section. The spherical form of the metallic reflector
retains unchanged.

At the end of this section, it is worthwhile to discuss
the possible realization of a 3d volume speckle pattern
using 2d plane speckles. Such a scenario presumes a 3d
speckle as a result of the sum or, more clearly, as a linear
interference of two and more 2d speckles. While theoret-
ically this scenario is discussed by Pilati et al. in refer-
ence [14], the experiment, in which two perpendicular 2d
speckle planes form a 3d speckle pattern, was realized in
reference [31] by Jendrzejewski et al. Instantly the ques-
tion arises whether the random pattern realized in such
a way belongs to the class of speckles or not. In spite
of an additional theoretical analysis, which is required
to answer that question in detail, the following argument
shows that the possible conclusion is negative. Indeed, ac-
cording to the fundamentals of the laser speckle theory of
Goodman, references [7,11], and Dainty, reference [12], see
also Sections 2 and 3 of this paper, the correlated speckle
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pattern in any dimension, except the one described in ref-
erence [23] and its analogue for 1d (see next paragraph), is
a result of the Fourier transform over the restricted aper-
ture object wave region in the same dimension. This means
that a 3d volume speckle can be obtained only by a 3d
object wave volume. Physically it means that the single
connected spatial domain of each 3d speckle grain, which
is a result of 3d correlations, can not be obtained by a
linear combination of randomly sized and independent 2d
speckle grains. By that reason, the true 3d speckle cannot
be obtained even by a combination of quasi-three dimen-
sional speckles, which we discussed at the beginning of
this section.

5 BEC depletion and sound velocity in weak
3d isotropic speckle

The interaction potential of light with an atom at position
r is determined by the far-field intensity I(r) = |A(r)2|
and has the form V (r) = tI(r), see for instance refer-
ences [22,25], where the constant t is a function of the
atomic and light characteristics. At the derivation of V (r)
it was assumed that the incident laser wave does not in-
duce an atomic electron interlevel transition, but merely
deforms the atomic ground state.

It is convenient to define the interaction potential as
V (r) = V0 + ΔV (r), where ΔV (r) = V (r) − V0 and
V0 = 〈I〉. Using the obvious property 〈ΔV (r)〉 = 0, a sim-
ple calculation shows that

〈V (r′)V (r′ + r)〉 = V 2
0

[
1 +

〈ΔV (r′)ΔV (r′ + r)〉
V 2

0

]
(30)

and, therefore, we have the following relationships between
the laser speckle autocorrelation and the disorder poten-
tial correlation functions:

|CI(r)|2 = 〈V (r′)V (r′ + r)〉 ,
|C′

A(r)|2 =
〈ΔV (r′)ΔV (r′ + r)〉

V 2
0

. (31)

Our interest is a Bose gas with a contact interaction. Tak-
ing into account that, according to the novel definition
of V (r), the chemical potential for the ground state of
BEC will be renormalized according to μ → μ − V0, the
Gross-Pitaevskii equation (GPE) reads

[
− �

2

2m
∇2 +ΔV (r) + g|Ψ(r)|2 − μ

]
Ψ(r) = 0 . (32)

Here g = 4π�
2a/m denotes the strength of the contact

interaction with the scattering length a.
Under the assumption that the disorder potential is

weak, one can expand the solution

Ψ(r) = ψ0 + ψ1(r) + ψ2(r) + · · · (33)

and solve the GPE (32) perturbatively in the respective or-
der of ΔV (r) [32]. For the ground state all functions of the

expansion as well as Ψ(r) are real. In this way the problem
is reduced to find the total particle density n = 〈Ψ(r)2〉
and the condensate density n0 = 〈Ψ(r)〉2. In particular,
the lowest order expression for the condensate depletion
reads

n− n0 = n0

∫
d3k

(2π)3
R(k)

[�2k2/2m+ 2ng]2
+ · · · , (34)

where we introduced the literature notation
R(k) = R|C′

A(k)|2 with R = V 2
0 .

In order to further apply our formula equation (28)
for the 3d isotropic autocorrelation function |C′

A(k)|23d,sph,
one needs to make a remark. According to the definition
in equation (23), the Fourier transforms of autocorrelation
functions carry a physical dimension. In particular, the
correlation function |C′

A(k)|23d,sph, calculated with equa-
tion (23), is proportional to the inverse volume of the 3d
isotropic aperture 3/(4π)(2/D)3 times (λz)3. If we intro-
duce the correlation length as σ = λz/D, then the propor-
tionality factor is 3(2σ)3/(4π). In the following, we assume
that |C′

A(k)|23d,sph is already normalized by that factor.
It is convenient to introduce also the BEC co-

herence length according to ξ = [�2/(2mng)]1/2 =
1/

√
8πna. Substituting the normalized correlation func-

tion R|C′
A(k)|23d,sph from equation (28) in equation (34)

and performing the integration, we get the expression
n − n0 = nHMf(σ/ξ), where the depletion nHM =
[m2R/(8π3/2

�
4)]

√
n/a was obtained by Huang and Meng

in reference [33] (see also [34]) for delta correlated dis-
order R(r) and the condensate depletion function is de-
fined via

f

(
σ

ξ

)
=

1√
2π

σ

ξ

[
4 −

(
8σ2

ξ2
+ 6

)
ln

(
1 +

ξ2

2σ2

)

+
4√
2
ξ

σ
arctan

(
ξ√
2σ

)]
. (35)

The function f(σ/ξ), which is depicted in Figure 2, has
the following asymptotics for small σ/ξ

f

(
σ

ξ

)
≈ 1 − 14

√
2

3π

(
σ

ξ

)3

− 18
√

2
5π

(
σ

ξ

)5

+ · · · (36)

and, correspondingly, for large σ/ξ

f

(
σ

ξ

)
≈ 1

25/2π

[
1
3

(
ξ

σ

)3

− 1
10

(
ξ

σ

)5
]

+ · · · (37)

Introducing the appropriate correlation length for each
aperture, as described in Section 3, one can show that,
when this correlation length tends to zero, then the corre-
sponding correlation function |C′

A(r)|2 tends to the delta
function. The same behavior has our function |C′

A(r)|23d,sph
in the limit σ → 0. Therefore, we should reproduce the
Huang and Meng result nHM for the condensate deple-
tion in this limit. Indeed, when σ/ξ → 0 we read off from
equation (36) that one obtains f(σ/ξ) → 1.

For the 3d isotropic Bose gas with contact interaction
the normalfluid density nN is determined by the equation
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Fig. 2. (Color online) Condensate depletion function f(σ/ξ)
from equation (35).

nN = 4(n− n0)/3 (see Sect. 6 and Ref. [32] as well as the
references therein), from which nN is proportional to the
function of f(σ/ξ).

In reference [32] the sound velocity of a dipolar BEC in
a weak external disorder potential is calculated within a
hydrodynamic approach. To this end a general derivation
was performed which is applicable for an arbitrary inter-
action potential. For an isotropic 3d system with contact
interaction it has the form:

c

c0
= 1 +

∫
d3k

(2π)3
R(k)

(�2k2/2m+ 2ng)2

×
{

�
2k2/2m

(�2k2/2m+ 2ng)
− (q̂k̂)2

}
+ · · · , (38)

where c0 = (ng/m)1/2 is the sound velocity in a sys-
tem without disorder and the scalar product between the
sound direction q̂ and the direction of wave propagation k̂
has the form q̂k̂ = cosϑ for an isotropic system.

Calculating the integral in equation (38), we ob-
tain c/c0 = 1 + nHMs(σ/ξ)/(2n), where the sound velocity
function reads

s

(
σ

ξ

)
=

23/2

π

σ

ξ

[
14
3

−
(

28σ2

3ξ2
+ 4

)
ln

(
1 +

ξ2

2σ2

)

+
5

3
√

2
ξ

σ
arctan

(
ξ√
2σ

)]
. (39)

It is depicted in Figure 3 and has the following asymptotics
for small σ/ξ

s

(
σ

ξ

)
≈ 5

3
+

23/23
π

(
σ

ξ

)
− 23/262

9π

(
σ

ξ

)3

+ · · · (40)

and for large σ/ξ

s

(
σ

ξ

)
≈ 21/2

π

[
−7

3

(
ξ

σ

)
+

13
18

(
ξ

σ

)3
]

+ · · · , (41)

respectively.
Again, when the correlation length σ → 0 and thus

the correlation function |C′
A(r)|23d,sph is delta correlated,

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

Σ�Ξ

s�
Σ
�Ξ
�

Fig. 3. (Color online) Sound velocity function s(σ/ξ) from
equation (39).

we reproduce the result s(σ/ξ) ≈ 5/3 of reference [35],
obtained for delta correlated R(r).

As shown in this section, the finite range of integration
for the vector k, when a Fourier transform of a speckle
correlation function is being applied, essentially simplifies
the analytic calculation of the BEC properties. This is an
essential advantage of applying the laser speckle theory
to the BEC investigation. Conversely, due to the infinite
limit of integration on k, the Gaussian disorder correlation
function, which is often used in the literature, introduces
some difficulties in its application to the BEC theory.

6 Landau derivation of normalfluid density

Let K0 be a reference frame, and K a second frame with
relative velocity −v with respect to K0. According to the
Galilean transformation in classical mechanics, the en-
ergy E0 of a system in the frame K0 and its energy E
in the frame K are related to each other by:

E = E0 − P0v +
M

2
v2 , (42)

where P0 and M are the total momentum and the mass
of the system, respectively.

Following to references [36,37] let us assume that, at
temperature T = 0, the condensate is in rest, i.e., in
the frame K0, and its energy is E0 = 0 with momen-
tum P0 = 0. If one quasiparticle with mass m appears
in the condensate with energy ε(p), where p is a momen-
tum of the quasiparticle, then in the frame K0 energy
and momentum now become E0 = ε(p) and P0 = p.
Hence, from equation (42) the energy E in frame K will
be E = ε(p) − pv +Mv2/2 and the energy of the quasi-
particle in frame K after a Galilean transformation has a
form ε(p) − pv.

According to the Landau two-fluid theory [36,37] of liq-
uid helium II, a gas of quasiparticles, for instance phonons,
constitutes the normalfluid density at low temperatures.
For T = 0 no quasiparticles exist, thus the helium is en-
tirely superfluid. If a gas of quasiparticles appears in the
system for finite but low temperatures, which has zero
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center mass velocity in the frame K0 and moves with con-
stant velocity −v with respect to the frame K, in which
the helium liquid is in the rest, then the total momentum
of the gas per volume in the frame K is given by

P
V

=
∫

pN(ε(p) − pv)
d3p

(2π�)3
, (43)

where N(ε(p)) is the average occupation number of states
by phonons with energy ε(p). Equation (43) describes the
thermodynamic property of a gas of phonons. However,
it can be generalized to our BEC system in the exter-
nal disorder potential at T = 0, if we assume that, after
scattering with the disorder, particles of the condensate
become the quasiparticles of the normalfluid density. It is
clear that it occurs when the disorder is attached to the
frameK0. To this end we replace in equation (43) the ther-
modynamic quantity N(ε(p) − pv) by the quantum one
|Ψ(p−mv)|2, where the wave function is a solution of the
GPE with disorder and written in momentum representa-
tion. After that we average both sides of equation (43) over
the disorder ensemble. The obtained mean square of the
modulo of the wave function is now homogeneous in space,
so it can be expressed in terms of the energy of a quasipar-
ticle, as the Hamiltonian is commutative with the momen-
tum operator and thus the eigenfunction of the latter can
be taken as the eigenfunction of the former [38]. Recalling
that the expression for the total density is n = 〈Ψ2〉, we
obtain

〈P〉
V

=
∫

pn(ε(p) − pv)
d3p

(2π�)3
. (44)

In order to derive the expression for the normalfluid den-
sity we expand the integrand of equation (44) in power
of pv and, in the limit v → 0, retain only its first two
terms. After integrating over the directions of the vec-
tor p the zeroth order term of this expansion disappears.
Thus one obtains

〈P〉
V

= −
∫

p (pv)
dn(ε(p))
dε(p)

d3p

(2π�)3
. (45)

This expression is the main result of the normalfluid den-
sity Landau theory, when the two replacements 〈P〉 by P
and n(ε(p)) by N(ε(p)) are performed.

Taking into account that p(pv) = p2
zv, the expression

for the normalfluid density reduces to

ρn = −
∫
p2

z

dn(ε(p))
dε(p)

d3p

(2π�)3
. (46)

From equation (34) we have the expression of the total
density Fourier transform

n(ε(p)) = (2π)3n0δ(k) +
n0R(k)

(�2k2/2m+ 2ng)2
, (47)

in first order of R(k), from which the energy of the quasi-
particles follows to be ε(p) = p2/2m+2ng, where p = �k.
Substituting ε(p) in equation (46) and performing its inte-
gral by parts and using in the obtained expression n(ε(p))

from equation (47), one gets

ρn = ρ0

∫
d3k

(2π)3
p2

zR(k)
p2(�2k2/2m+ 2ng)2

, (48)

where ρ0 = mn0.
It is interesting that there is the relationship

εB(p) = ε1/2(p)p/(2m)1/2 between our ε(p) and the
Bogoliubov quasiparticle energy εB(p). If we use this re-
lation, then we obtain

ρn =
ρ0

4

∫
d3k

(2π)3
p2 p2

zR(k)
m2ε4B(p)

. (49)

This expression without the prefactor 1/4 coincides with
equation (19) of reference [35] for the normalfluid den-
sity ρn,LR, obtained within the linear response approach,
if we replace V

∫
d3k/(2π)3 by

∑
k. The prefactor 1/4

appears from the relation between ε(p) and εB(p). For
a 3d isotropic BEC system we have p2

x = p2
y = p2

z

and p2 = 3p2
z. Multiplying the right-hand side of equa-

tion (48) with 3 and canceling 3p2
z and p2 in the numerator

and the denominator, we obtain equation (34), therefore,
n− n0 = 3ρn,LR/(4m) [35].

It is worth to discuss the validity to use the Landau
approach for BEC with the disorder. According to a re-
mark in the text book [39] the Landau approach should
not be applicable for such a system. Indeed, the applied
Landau derivation of the normalfluid density presumes
the validity of the quasiparticle concept (see, for instance,
Refs. [36,37]), in which there are no collisions not only be-
tween quasiparticles but also of last ones with the external
disorder potential. More exactly, according to this concept
quasiparticles should be well defined and their gas should
be ideal.

In our case, effective quasiparticles with the mean-field
energy ε(p) and the quantum state distribution at tem-
perature T = 0, represented by the total density n(ε(p)),
appear in the system after the disorder ensemble average.
However, after this averaging the real space is homoge-
neous and there is no reason for the gas of effective quasi-
particles to be not ideal. Hence, if for the conventional
quasiparticles the source of their appearance is the low
temperature, here it is the scattering of the condensate
particles with the disorder and then their excitation and
departure from the condensate. This physical conclusion
naturally arises from the Landau derivation of the nor-
malfluid density.

7 Summary and conclusion

At first, we have summarized the derivation of the au-
tocorrelation function of the laser speckle in 1d and 2d
following the seminal work of Goodman. We showed that
a Gaussian approximation of this function, proposed in
some recent papers, is inconsistent with the background
of laser speckle theory. Then we have proposed a possible
experimental realization for an isotropic 3d laser speckle
potential and derived its corresponding autocorrelation
function. Using a Fourier transform of that function, we

http://www.epj.org
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calculated both condensate depletion and sound velocity
of a BEC in a weak speckle disorder within a perturba-
tive solution of the Gross-Pitaevskii equation. At the end,
we reproduced the expression of the normal fluid den-
sity obtained earlier within the treatment of Landau. This
physically transparent derivation showed that condensate
particles, which are scattered by disorder, form a gas of
quasiparticles which is responsible for the normal fluid
component. We have justified the validity of the Landau
approach to our BEC system with disorder.
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for International Cooperation at the Freie Universität Berlin
for its hospitality. Both authors appreciate Hagen Kleinert and
the members of his group for many discussions.
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