Supplementary Material for Spin-resolved charge flow through an AC-driven impurity
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Here we discuss in detail the mathematical formulation and intermediate steps leading to the
mean-field theory approximation and corresponding Floquet equations presented in the main body

of the article.

PACS numbers: 05.60.-k,

For a system that is periodically driven, periodicity
in time allows to express the solutions to the dynami-
cal problem in terms of a set of eigenfunctions |¥(t)) =
e~ et @ (1)), with e a Floquet eigenvalue, and an asso-
ciated periodic eigenfunction |®(t 4+ T)) = |®(t)). If one
restricts the non-equivalent values of € to a first Brillouin
zone € € [—mh/T,wh/T), then the periodic eigenfunction
can be expanded as

(1)) = Y e @y, (1)
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where each stationary Floquet mode |®,,) is associated
to an eigenvalue €, = € + nfw outside the first Brillouin
zone.

Let us consider now the Hamiltonian described in the
main body of the article,

H = =03 (el410850 + he.) + Unoito,,
J,0
+ (€q — 0b — pcos(wt)) Z 10,0 (2)

o

The exact treatment of the interaction would require
a two-particle eigenbasis. Here, in order to obtain a
simpler physical interpretation of the transport proper-
ties, we decide to remain in the single-particle eigenbasis
l7,0) = é;[g|0>, for {¢;o, é;»,a/} = 0y00j,;+ Fermonic oper-
ators. Therefore, each stationary Floquet component in
the periodic function defined by Eq.(1) is expressed by a
linear combination of the form

[©7) =D é5.uli.0) 3)

Therefore, we treat the Coulomb interaction in a mean-
field theory (MFT) approximation, using the standard
decoupling of the number operators as follows

Uoro,, ~ Ulfor)yfos + Ulfo,) )for
=U(fo,4) ) (R0,4) 1) (4)

In Eq.(4), we have introduced the definition of the time-
dependent expectation value of the number operators in

the Floquet eigenstate |®(t))

(f0g) 1y = (@(B)[720,0® (1))
= Z e_i(nl_n2)wt<®n2|ﬁ0,a

ni,n2€Z

®,) (5

Notice that Eq.(5) shows that the interaction couples dif-
ferent Floquet modes |®,,) through the dynamical expec-
tation value of the local number operators. Let us now
calculate the matrix elements involved, using the single-
particle representation of the Floquet basis Eq.(3)

(@,,1000®,,) = D (672,,) 67,

J1,J2,01,02
X (ja, 02|00 |j1,01)

(65.1,)" 6, (6)

where we used the identity (jg,ag\éagéogul,m) =
051,004,000, ,000,,0. Substituting Eq.(6) into Eq.(5), re-
duces to the simpler expression

(Moo ) (1) = Z e g, (7)
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where we have defined the parameters

ygm = Z ((bg,m)* ¢C07,n+m (8)
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Using Eq.(7), we can express the product of occupation
numbers that appears in Eq.(4) as

(ot (o) = . e mrmenl
ny,ne€Z
_ Ze—inwtﬁn (9)
nez
Here, we have defined
ﬁn = Z Vg,nyg,n—m (10)
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Inserting the MFT terms into the Hamiltonian Eq.(2),



we obtain the effective single-particle MFT Hamiltonian

ﬁMFT(t) = —JZ (é}+1yaéj,g + hc)
3,0

+>
-3 e, (1)
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€q— ob— pcoswt+U E e_m“’tug’n] 10,0
nez

(11)

The eigenvalue equation for this MF'T effective Hamilto-
nian is

Hyrpr(8)|® (1)) = (€ + nhw) |8 (1)) (12)

Projecting this equation onto a single-particle state of
the basis (i, 0’|, we have

Z e*inwtz ?7” (13)

nez J,0

x ({i, ' [ a e (8))5, @) = (€ + nhw)dijdarq ) =0

From the orthogonality of the set {e~"<'} ez
obtain the set of finite-differences equations

we finally

7J (Qqu—Q—l,n + (rbg—l,n) - (6 + nhw + Bn) Zn
- 61'70 {(ed + Ub) ¢(Or,n + g (¢8,n+1 + (bg,n—l)]
+ 52',0U Z l/g,m(bg,nfm =0 (14)
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whose numerical and analytical solution is developed
and discussed for different physical scenarios in the main
body of the article.



