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Here we discuss in detail the mathematical formulation and intermediate steps leading to the

mean-field theory approximation and corresponding Floquet equations presented in the main body

of the article.
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For a system that is periodically driven, periodicity
in time allows to express the solutions to the dynami-
cal problem in terms of a set of eigenfunctions |Ψ(t)〉 =

e−i~−1ǫt|Φ(t)〉, with ǫ a Floquet eigenvalue, and an asso-
ciated periodic eigenfunction |Φ(t+ T )〉 = |Φ(t)〉. If one
restricts the non-equivalent values of ǫ to a first Brillouin
zone ǫ ∈ [−π~/T, π~/T ], then the periodic eigenfunction
can be expanded as

|Φ(t)〉 =
∑

n∈Z

e−inωt|Φn〉, (1)

where each stationary Floquet mode |Φn〉 is associated
to an eigenvalue ǫn = ǫ + n~ω outside the first Brillouin
zone.
Let us consider now the Hamiltonian described in the

main body of the article,

Ĥ = −J
∑

j,σ

(

ĉ†j+1,σ ĉj,σ + h.c.
)

+ Un̂0,↑n̂0,↓

+(ǫd − σb− µ cos(ωt))
∑

σ

n̂0,σ (2)

The exact treatment of the interaction would require
a two-particle eigenbasis. Here, in order to obtain a
simpler physical interpretation of the transport proper-
ties, we decide to remain in the single-particle eigenbasis

|j, σ〉 = ĉ†jσ|0〉, for {ĉjσ, ĉ
†
j′σ′} = δσσ′δj,j′ Fermonic oper-

ators. Therefore, each stationary Floquet component in
the periodic function defined by Eq.(1) is expressed by a
linear combination of the form

|Φσ
n〉 =

∑

j

φσ
j,n|j, σ〉 (3)

Therefore, we treat the Coulomb interaction in a mean-
field theory (MFT) approximation, using the standard
decoupling of the number operators as follows

Un̂0,↑n̂0,↓ ∼ U〈n̂0,↑〉(t)n̂0,↓ + U〈n̂0,↓〉(t)n̂0,↑

−U〈n̂0,↑〉(t)〈n̂0,↓〉(t) (4)

In Eq.(4), we have introduced the definition of the time-
dependent expectation value of the number operators in

the Floquet eigenstate |Φ(t)〉

〈n̂0σ〉(t) = 〈Φ(t)|n̂0,σ|Φ(t)〉

=
∑

n1,n2∈Z

e−i(n1−n2)ωt〈Φn2
|n̂0,σ|Φn1

〉 (5)

Notice that Eq.(5) shows that the interaction couples dif-
ferent Floquet modes |Φn〉 through the dynamical expec-
tation value of the local number operators. Let us now
calculate the matrix elements involved, using the single-
particle representation of the Floquet basis Eq.(3)

〈Φn2
|n̂0,σ|Φn1

〉 =
∑

j1,j2,σ1,σ2

(

φσ2

j2,n2

)∗
φσ1

j1,n1

×〈j2, σ2|n̂0,σ|j1, σ1〉

=
(

φσ
0,n2

)∗
φσ
0,n1

(6)

where we used the identity 〈j2, σ2|ĉ
†
0,σ ĉ0σ|j1, σ1〉 =

δj1,0δj2,0δσ1,σδσ2,σ. Substituting Eq.(6) into Eq.(5), re-
duces to the simpler expression

〈n̂0σ〉(t) =
∑

n∈Z

e−inωtνσ0,n (7)

where we have defined the parameters

νσ0,n =
∑

m∈Z

(

φσ
0,m

)∗
φσ
0,n+m (8)

Using Eq.(7), we can express the product of occupation
numbers that appears in Eq.(4) as

〈n̂0,↑〉(t)〈n̂0,↓〉(t) =
∑

n1,n2∈Z

e−i(n1+n2)ων↑0,n1
ν↓0,n2

=
∑

n∈Z

e−inωtβn (9)

Here, we have defined

βn =
∑

m∈Z

ν↑0,nν
↓
0,n−m (10)

Inserting the MFT terms into the Hamiltonian Eq.(2),
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we obtain the effective single-particle MFT Hamiltonian

ĤMFT (t) = −J
∑

j,σ

(

ĉ†j+1,σ ĉj,σ + h.c.
)

+
∑

σ

[

ǫd − σb− µ cosωt+ U
∑

n∈Z

e−inωtνσ̄0,n

]

n̂0,σ

−
∑

n∈Z

e−inωtβn(t)

(11)

The eigenvalue equation for this MFT effective Hamilto-
nian is

ĤMFT (t)|Φ(t)〉 = (ǫ + n~ω) |Φ(t)〉 (12)

Projecting this equation onto a single-particle state of
the basis 〈i, σ′|, we have

∑

n∈Z

e−inωt
∑

j,σ

φσ
j,n (13)

×
(

〈i, σ′|ĤMF (t)|j, σ〉 − (ǫ + n~ω)δijδσ′,σ

)

= 0

From the orthogonality of the set
{

e−inωt
}

n∈Z
, we finally

obtain the set of finite-differences equations

−J
(

φσ
i+1,n + φσ

i−1,n

)

− (ǫ + n~ω + βn)φ
σ
i,n

− δi,0

[

(ǫd + σb)φσ
0,n +

µ

2

(

φσ
0,n+1 + φσ

0,n−1

)

]

+ δi,0U
∑

m∈Z

νσ̄0,mφσ
0,n−m = 0 (14)

whose numerical and analytical solution is developed
and discussed for different physical scenarios in the main
body of the article.


