Supplementary Material for Spin-resolved charge flow through an AC-driven impurity

Daniel Thuberg ${ }^{1}$, Enrique Muñoz ${ }^{1}$, Sebastian Eggert ${ }^{2}$ and Sebastián A. Reyes ${ }^{1}$
${ }^{1}$ Instituto de Física and Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile and
${ }^{2}$ Physics Department and Research Center OPTIMAS, University of Kaiserslautern, D-67663 Kaiserslautern, Germany

Abstract

Here we discuss in detail the mathematical formulation and intermediate steps leading to the mean-field theory approximation and corresponding Floquet equations presented in the main body of the article.

PACS numbers: 05.60.-k,

For a system that is periodically driven, periodicity in time allows to express the solutions to the dynamical problem in terms of a set of eigenfunctions $|\Psi(t)\rangle=$ $e^{-i \hbar^{-1} \epsilon t}|\Phi(t)\rangle$, with ϵ a Floquet eigenvalue, and an associated periodic eigenfunction $|\Phi(t+T)\rangle=|\Phi(t)\rangle$. If one restricts the non-equivalent values of ϵ to a first Brillouin zone $\epsilon \in[-\pi \hbar / T, \pi \hbar / T]$, then the periodic eigenfunction can be expanded as

$$
\begin{equation*}
|\Phi(t)\rangle=\sum_{n \in Z} e^{-i n \omega t}\left|\Phi_{n}\right\rangle \tag{1}
\end{equation*}
$$

where each stationary Floquet mode $\left|\Phi_{n}\right\rangle$ is associated to an eigenvalue $\epsilon_{n}=\epsilon+n \hbar \omega$ outside the first Brillouin zone.
Let us consider now the Hamiltonian described in the main body of the article,

$$
\begin{align*}
\hat{H}= & -J \sum_{j, \sigma}\left(\hat{c}_{j+1, \sigma}^{\dagger} \hat{c}_{j, \sigma}+h . c .\right)+U \hat{n}_{0, \uparrow} \hat{n}_{0, \downarrow} \\
& +\left(\epsilon_{d}-\sigma b-\mu \cos (\omega t)\right) \sum_{\sigma} \hat{n}_{0, \sigma} \tag{2}
\end{align*}
$$

The exact treatment of the interaction would require a two-particle eigenbasis. Here, in order to obtain a simpler physical interpretation of the transport properties, we decide to remain in the single-particle eigenbasis $|j, \sigma\rangle=\hat{c}_{j \sigma}^{\dagger}|0\rangle$, for $\left\{\hat{c}_{j \sigma}, \hat{c}_{j^{\prime} \sigma^{\prime}}^{\dagger}\right\}=\delta_{\sigma \sigma^{\prime}} \delta_{j, j^{\prime}}$ Fermonic operators. Therefore, each stationary Floquet component in the periodic function defined by Eq.(1) is expressed by a linear combination of the form

$$
\begin{equation*}
\left|\Phi_{n}^{\sigma}\right\rangle=\sum_{j} \phi_{j, n}^{\sigma}|j, \sigma\rangle \tag{3}
\end{equation*}
$$

Therefore, we treat the Coulomb interaction in a meanfield theory (MFT) approximation, using the standard decoupling of the number operators as follows

$$
\begin{align*}
U \hat{n}_{0, \uparrow} \hat{n}_{0, \downarrow} \sim & U\left\langle\hat{n}_{0, \uparrow}\right\rangle_{(t)} \hat{n}_{0, \downarrow}+U\left\langle\hat{n}_{0, \downarrow}\right\rangle_{(t)} \hat{n}_{0, \uparrow} \\
& -U\left\langle\hat{n}_{0, \uparrow}\right\rangle_{(t)}\left\langle\hat{n}_{0, \downarrow}\right\rangle_{(t)} \tag{4}
\end{align*}
$$

In Eq.(4), we have introduced the definition of the timedependent expectation value of the number operators in
the Floquet eigenstate $|\Phi(t)\rangle$

$$
\begin{align*}
\left\langle\hat{n}_{0 \sigma}\right\rangle_{(t)} & =\langle\Phi(t)| \hat{n}_{0, \sigma}|\Phi(t)\rangle \\
& =\sum_{n_{1}, n_{2} \in Z} e^{-i\left(n_{1}-n_{2}\right) \omega t}\left\langle\Phi_{n_{2}}\right| \hat{n}_{0, \sigma}\left|\Phi_{n_{1}}\right\rangle \tag{5}
\end{align*}
$$

Notice that Eq.(5) shows that the interaction couples different Floquet modes $\left|\Phi_{n}\right\rangle$ through the dynamical expectation value of the local number operators. Let us now calculate the matrix elements involved, using the singleparticle representation of the Floquet basis Eq.(3)

$$
\begin{align*}
\left\langle\Phi_{n_{2}}\right| \hat{n}_{0, \sigma}\left|\Phi_{n_{1}}\right\rangle= & \sum_{j_{1}, j_{2}, \sigma_{1}, \sigma_{2}}\left(\phi_{j_{2}, n_{2}}^{\sigma_{2}}\right)^{*} \phi_{j_{1}, n_{1}}^{\sigma_{1}} \\
& \times\left\langle j_{2}, \sigma_{2}\right| \hat{n}_{0, \sigma}\left|j_{1}, \sigma_{1}\right\rangle \\
= & \left(\phi_{0, n_{2}}^{\sigma}\right)^{*} \phi_{0, n_{1}}^{\sigma} \tag{6}
\end{align*}
$$

where we used the identity $\left\langle j_{2}, \sigma_{2}\right| \hat{c}_{0, \sigma}^{\dagger} \hat{c}_{0 \sigma}\left|j_{1}, \sigma_{1}\right\rangle=$ $\delta_{j_{1}, 0} \delta_{j_{2}, 0} \delta_{\sigma_{1}, \sigma} \delta_{\sigma_{2}, \sigma}$. Substituting Eq.(6) into Eq.(5), reduces to the simpler expression

$$
\begin{equation*}
\left\langle\hat{n}_{0 \sigma}\right\rangle_{(t)}=\sum_{n \in Z} e^{-i n \omega t} \nu_{0, n}^{\sigma} \tag{7}
\end{equation*}
$$

where we have defined the parameters

$$
\begin{equation*}
\nu_{0, n}^{\sigma}=\sum_{m \in Z}\left(\phi_{0, m}^{\sigma}\right)^{*} \phi_{0, n+m}^{\sigma} \tag{8}
\end{equation*}
$$

Using Eq.(7), we can express the product of occupation numbers that appears in Eq.(4) as

$$
\begin{align*}
\left\langle\hat{n}_{0, \uparrow}\right\rangle_{(t)}\left\langle\hat{n}_{0, \downarrow}\right\rangle_{(t)} & =\sum_{n_{1}, n_{2} \in Z} e^{-i\left(n_{1}+n_{2}\right) \omega} \nu_{0, n_{1}}^{\uparrow} \nu_{0, n_{2}}^{\downarrow} \\
& =\sum_{n \in Z} e^{-i n \omega t} \beta_{n} \tag{9}
\end{align*}
$$

Here, we have defined

$$
\begin{equation*}
\beta_{n}=\sum_{m \in Z} \nu_{0, n}^{\uparrow} \nu_{0, n-m}^{\downarrow} \tag{10}
\end{equation*}
$$

Inserting the MFT terms into the Hamiltonian Eq.(2),
we obtain the effective single-particle MFT Hamiltonian

$$
\begin{align*}
& \hat{H}_{M F T}(t)=-J \sum_{j, \sigma}\left(\hat{c}_{j+1, \sigma}^{\dagger} \hat{c}_{j, \sigma}+\text { h.c. }\right) \\
& +\sum_{\sigma}\left[\epsilon_{d}-\sigma b-\mu \cos \omega t+U \sum_{n \in Z} e^{-i n \omega t} \nu_{0, n}^{\bar{\sigma}}\right] \hat{n}_{0, \sigma} \\
& -\sum_{n \in Z} e^{-i n \omega t} \beta_{n}(t) \tag{11}
\end{align*}
$$

The eigenvalue equation for this MFT effective Hamiltonian is

$$
\begin{equation*}
\hat{H}_{M F T}(t)|\Phi(t)\rangle=(\epsilon+n \hbar \omega)|\Phi(t)\rangle \tag{12}
\end{equation*}
$$

Projecting this equation onto a single-particle state of the basis $\left\langle i, \sigma^{\prime}\right\rangle$, we have

$$
\begin{align*}
& \sum_{n \in Z} e^{-i n \omega t} \sum_{j, \sigma} \phi_{j, n}^{\sigma} \tag{13}\\
& \times\left(\left\langle i, \sigma^{\prime}\right| \hat{H}_{M F}(t)|j, \sigma\rangle-(\epsilon+n \hbar \omega) \delta_{i j} \delta_{\sigma^{\prime}, \sigma}\right)=0
\end{align*}
$$

From the orthogonality of the set $\left\{e^{-i n \omega t}\right\}_{n \in Z}$, we finally obtain the set of finite-differences equations

$$
\begin{align*}
& -J\left(\phi_{i+1, n}^{\sigma}+\phi_{i-1, n}^{\sigma}\right)-\left(\epsilon+n \hbar \omega+\beta_{n}\right) \phi_{i, n}^{\sigma} \\
- & \delta_{i, 0}\left[\left(\epsilon_{d}+\sigma b\right) \phi_{0, n}^{\sigma}+\frac{\mu}{2}\left(\phi_{0, n+1}^{\sigma}+\phi_{0, n-1}^{\sigma}\right)\right] \\
+ & \delta_{i, 0} U \sum_{m \in Z} \nu_{0, m}^{\bar{\sigma}} \phi_{0, n-m}^{\sigma}=0 \tag{14}
\end{align*}
$$

whose numerical and analytical solution is developed and discussed for different physical scenarios in the main body of the article.

