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Abstract. Here we review the bosonization of the spin-1/2 xxz-chain and the

derivation of correlation functions, which are used to derive the recursive approach

used in the main paper. First the criterium for the validity of the bosonization

approximation is determined by analyzing the individual energy levels as a function

of length, energy, and anisotropy. We then consider open boundary conditions and

provide analytical expressions for the integrations. The corrections to the resulting

expressions for smaller K = 0.7 and K = 0.6 (i.e. larger ∆) are analyzed numerically.

Periodic boundary conditions and the integrated spectral weights are also considered.

Finally, details for the derivation of the averaging procedure are presented.

The goal of these notes is to review the bosonization and calculation of correlation

functions for finite spin-1/2 xxz-chains

H = J
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Sx
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with L sites and open or periodic boundary conditions. Using the correlation functions

we want to calculate the dynamic structure factor at low frequencies and near the

antiferromagnetic wave-vector k ≈ π, which is given by

S(ω, k) =
1

L

∑

j,j′

e−ik(j−j′)

∫ ∞

−∞
dt eiωt〈Sz

j (t)S
z
j′(0)〉

= ∆ω
∑

m 6=0

SL(ωm, k)δ(ω − ωm) (2)

where in the last line we have used the Lehmann representation using spectral weights

SL(ωm, k) =
2π

∆ω
|〈ωm|Sz

k |0〉|2 (3)

at discrete energies ωm = m∆ω assuming that nearly degenerate states at the same

energy are implicitly summed over.
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Figure 1. The total spectral weights Ŝ for each individual state as a function of

energy ω relative to the ground state energy for different L and K.

I. Validity of the bosonization approximation

For the derivation of bosonization in finite systems with open boundary conditions a

strong assumption is usually made, that the spectrum can be described by a regularly

spaced energy spectrum ωm = m∆ω with ∆ω = πv/L and spinon velocity v [1], which

is in fact implicitly required for Eq. (3). On the other hand it is known that this

assumption never holds exactly in lattice systems. Cardy showed that energy levels will

have finite size corrections of the form [2]

ωm = m
πv

L

(
1 + cm

(π
L

)dn−2

+ ...

)
, (4)

where dn is the scaling dimension of the leading irrelevant operator. Moreover, each

energy level does not correspond to a single state, but instead there is a whole set of

nearly degenerate states, all of which may have slightly different energies due to the

correction in Eq. (4). Unfortunately, the values of the correction coefficients cm will in

general be different for each of the nearly degenerate states and are not a priori known.

For the spin-1/2 chain it is well known that there is a leading perturbing operator

[3, 4, 5], which is expressed as the cosine of the bosonic field cos
√
16πKφ and has

scaling dimension dn = 4K, but a systematic analysis of the region of validity where

the corrections cm in Eq. (4) can be neglected is so far missing as a function of L, m,

and anisotropy K.

We therefore now present a short analysis of our numerical data in order to derive

a reliable criterium for the regime where the corrections in Eq. (4) can be neglected.

As an example we plot the total spectral weights Ŝ in Fig. 1 for K = 0.8 and L = 50

as well as for K = 0.5 and L = 100. The grouping into nearly equally spaced energy

levels labeled by m can clearly be seen as indicated by the different colors in Fig. 1.
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Figure 2. Relative standard deviation δ/∆ω for the nearly degenerate energy levels

as a function of mean energy ω̄m of the corresponding level in spin chains with different

anisotropies K and length L = 50 (closed symbols) and L = 100 (open symbols). The

lines for K ≥ 0.6 are given by 0.4(ω̄m/2.8J)4K−2 as a guide to the eye consistent with

the powerlaw in Eq. (4). For the isotropic point K = 0.5 the line indicates logarithmic

behavior 0.5/ ln(2.8J/ω̄m).

The number of states in each level m increases quickly with the possible partitions of

m, but only few states carry spectral weight [6], which can sometimes be explained by

underlying symmetries [7].

The k−dependent spectral weight for each level m is implicitly summed up over the

nearly degenerate states to obtain SL(ωm, k) in Eq. (3). This is justified for the levels in

Fig. 1, since the energies of the states with non-zero spectral weights for a given m are

very close, i.e. the energy spread is much smaller than the degeneracy lifting of other

states and also can be assumed to be much smaller than the experimental resolution.

However, in order to find a general condition for the validity of finite size bosonization,

we require thatall states for a given level m have a well defined energy separation to

other states. For example in Fig. 1 for L = 100 and K = 0.5 we see that this condition

still holds for m = 7, but levels m = 8 and m = 9 are not well separated any more.

Note, however, that signal-carrying states with Ŝ 6= 0 remain nearly degenerate in any

case.

For a more comprehensive analysis we have determined the standard deviation δ

of the energies for a large number of levels m at different lengths and anisotropies as a

function of the mean energy ω̄m of the corresponding level as shown in Fig. 2 relative

to the level spacing ∆ω. As a cutoff criteria of energetically separated levels we use

δ/∆ω < 0.2 (dotted line), which is just below the value for m = 7, L = 100, and

K = 0.5 in the example discussed above.

The deviation of each level in Fig. 2 increases with the index m, which is consistent
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with a powerlaw m4K−2. Together with the length behavior of the corrections in Eq. (4)

with the same powerlaw ∆ω4K−2 ∝ (π/L)4K−2, this leads to a data collapse so that

δ/∆ω is only dependent on the mean energy ω̄m ≈ m∆ω, which is well observed

in Fig. 2 and valid for all lengths. In fact, the curves of δ/∆ω for all anisotropies

K ≥ 0.6 approximately follow the same simple powerlaw 0.4(ω̄m/2.8J)
4K−2, while for

the isotropic case K = 0.5 a logarithmic fit of the form 0.5/ ln(2.8J/ω̄m) can be used.

In summary, we find a rather simple criteria for the bosonization predictions to

hold which is independent of length, but simply requires that we are below an upper

critical energy ωc for each anisotropy K so that δ < 0.2∆ω. Numerically, we find from

Fig. 2 ωc(K = 0.5) ≈ 0.2J and ωc(K = 0.6) ≈ 0.5J . For even larger values of K ≥ 0.7

(i.e. smaller ∆) the energy range is so large that we cannot determine a reliable cutoff

from our numerics. The extrapolation curves would result in ωc(K = 0.7) ≈ 1.2J and

ωc(K = 0.8) ≈ 1.6J , but other non-linear effects are bound to become important around

ωc ∼ 1J in any case.

II. Bosonization and correlations for open boundary conditions

The low-energy theory for the model in Eq. (1) is well described in the continuum limit

by bosonic fields, which are rescaled by the square-root of the Luttinger parameter

K = π/2(π − θ) where cos θ = ∆ [3]. The free Hamiltonian is given by

H =
v

2

∫ L

0

dx[Π(x)2 + (∂xφ(x))
2]. (5)

where v = Jπ sin θ/2θ is the spinon velocity and Π is the momentum density conjugate

to φ, [φ(x),Π(y)] = i δ(x − y). Higher order corrections exist and are also interesting

[1, 4, 5, 8], but can be neglected for low energies as quantitatively discussed in the

previous section.

We are interested in the local Sz-operators, which can be expressed in terms of the

bosons

Sz(x, t) =

√
K

π
∂xφ(x, t) + A(−1)x sin

(√
4πKφ(x, t)

)
, (6)

where A2 = Az/2 is related to the amplitude of the asymptotic correlation functions,

that is known from exact methods [9].

Open boundaries lead to the following mode expansion of the bosonic fields [1, 10]

φ(x, t) = Q̂
2x

L
+ φosc(x, t) (7)

with

φosc(x, t) =
∞∑

ℓ=1

1√
πℓ

sin
πℓx

L

(
e−iπℓvt

L bℓ + ei
πℓvt

L b†ℓ

)
. (8)

The zero mode Q̂ is given in terms of the total magnetization

Sz =

∫ L

0

√
K

π
∂xφ = 2

√
K

π
Q̂. (9)
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Note that those expressions agree with previous works [3, 1, 10], up to an overall phase

shift φ0 in the boson, which is of no consequence.

For the dynamical structure factor near k ≈ π we are interested in the alternating

part of the SzSz-correlation function

〈sin(
√
4πKφ(x, t)) sin(

√
4πKφ(y, 0)〉 = 1

2

(
G+(x, y, t)−G−(x, y, t)

)
(10)

with

G±(x, y, t) = 〈ei2πSz(x∓y)/L〉〈ei
√
4πKφosc(x,t)e∓

√
4πKφosc(y,0)〉. (11)

The first factor gives different results for even chains Sz = 0 and for odd chains

Sz = ±1/2 [10]

〈ei2πSz(x±y)/L〉 =





1, L even

cos(π(x±y)
L

), L odd

(12)

which reflects the different parity symmetry of the wavefunctions in even and odd chains.

For the second factor in Eq. (11) it is useful to apply normal ordering

exp
(
i
√
4πKφosc(x, t)

)
= c(x) exp

(
i
∑

ℓ

eiωlt
A†

ℓ(x)√
ℓ

)
exp

(
i
∑

ℓ

e−iωℓt
Aℓ(x)√

ℓ

)
(13)

where ωℓ = ℓ∆ω with ∆ω = πv
L

and operators [11]

Aℓ(x) = 2
√
K sin

πℓx

L
bℓ. (14)

The prefactor is given via the Baker-Campbell-Hausdorff formula by

c(x) = exp

(
−
∑

ℓ

2K

ℓ
sin2 πℓx

L

)
, (15)

which is divergent. However, using

∞∑

ℓ=1

qℓ/ℓ = − log(1− q) (16)

it is possible to capture the dependence on L and x correctly, so that only an overall

factor is dependent on the regularization, which we choose to be finite by setting

c(x) =

(
2L

π
sin

πx

L

)−K

. (17)

Therefore, upon using Baker-Campbell-Hausdorff again, the correlation functions in

Eq. (11) becomes

G±(x, y, t) = c(x)c(y) exp

(
∑

ℓ=1

±1

ℓ
e−i ωℓtγℓ(x, y)

)
(18)
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where we introduced the commutator

γℓ(x, y) = [Aℓ(x), A
†
ℓ(y)] = 4K sin

ℓπx

L
sin

ℓπy

L
. (19)

For odd chains, the additional factor in Eq. (12) must also be inserted.

At this point all information for the large space-time behavior of the correlation

function is known, which in fact can be expressed in closed form using Eq. (16)

[1, 10, 12, 13]

G±(x, y, t) = c(x)c(y)

[
sin π(x+y−vt)

2L
sin π(x+y+vt)

2L

sin π(x−y−vt)
2L

sin π(x−y+vt)
2L

]±K

(20)

for even L (and by including the factor in Eq. (12) for odd L). Note that we have

normalized the correlation function so that

G+(x, y, t) →
(
(x− y)2 − υ2t2

)−K
(21)

in the thermodynamic limit away from the boundary. The overall prefactor must be

determined from exact methods [9], so that the normalization in Eqs. (17) and (21) is

simply a matter of convenience.

III. Fourier transform and recursive formula

To calculate the dynamical structure factor it is useful to go back to Eq. (18) in order

to obtain the Fourier transformation in time. In accordance with the periodicity in t

this yields an expansion in delta functions∫ ∞

−∞
dt eiωt G±(x, y, t) = 2π

∑

m

S±
m(x, y)δ(ω − ωm). (22)

where the discrete spectral weight for ωm = m∆ω = mπv
L

is determined by the functions

γl in a recursive way [11],

S±
m(x, y) =

±1

m

m∑

ℓ=1

S±
m−ℓ(x, y) γℓ(x, y). (23)

which simply follows from partial integration. This equation defines the recursion

formula, which allows to calculate any individual spectral weight as a sum of the previous

ones from starting values S±
0 (x, y) = c(x)c(y) (and including Eq. (12) for odd L). Note

that this is much easier than an integration over Eq. (20) which would require a small

imaginary cutoff for the time and a complicated contour integration.

For the spatial Fourier transform we define

S±
m(k) =

1

L

∫ L

0

dx

∫ L

0

dy ei(π−k)(x−y)S±
m(x, y) (24)

where the shift of the wavevector by π follows from the alternating factor in Eq. (6).

Using Sm(k) =
Az

4
(S+

m(k)− S−
m(k)) we obtain

S(ω, k) = 2π
∑

m

Sm(k) δ(ω − ωm). (25)
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Figure 3. Left: The dynamical structure factor SL(ωm, k) for K = 0.6, L = 100

and m = 8 as a function of k from numerical DMRG calculations (blue) compared to

bosonization (green) and rescaled bosonization predictions (red) using the prefactor

A = 0.649. Right: The rescaling factor A = SDMRG/S
bosonization

L as a function of

energy for different levels and lengths L = 50 (closed symbols) and L = 100 (open

symbols). Lines are guides to the eye of the form (1− .26ωγ/γ) with γ = 4K − 2.

Since the integrand S±
m(x, y) in Eq. (24) only involves a sum of exponentials

exp(iℓxπx/L) and exp(iℓyπy/L) according to Eqs. (23) and (19), it is possible to perform

the integral for each such term analytically together with the prefactor c(x) in Eq. (17)

by using

∫ L

0

dx
ei

π

L
qx

(
sin πx

L

)K =
πeiπq/22KL csc(πK)

Γ(K)Γ (q/2−K/2 + 1)) Γ (−q/2−K/2 + 1)
(26)

for K < 1 and analogously for the integration over y. In the summation of Eq. (23) we

therefore keep track of the prefactors for each pair (ℓx, ℓy) for each level m and then add

up the exactly known integrals as a function of k in Eq. (26) in the end. This implies

that the expression of SL(ωm, k) for any energy and length is given as a closed analytic

expression involving a simple finite sum over a large number of terms.

IV. Corrections for larger K

As shown in the paper the resulting expressions agree very well without any fitting

parameter with numerical DMRG data for K = 0.8. On the other hand it is known

that the corrections increase close to the isotropic point ∆ → 1, i.e. K → 0.5 as already

discussed for the energies above. We have therefore analyzed the k−dependent spectral

weights SL(ωm, k) also for K = 0.6 and 0.7 for different lengths using DMRG. A typical

result for K = 0.6, m = 8 and L = 100 is shown in Fig. 3 (left). When using the

normalization from Bethe ansatz, the bosonization gives a larger spectral weight (green),

but after rescaling by a correction factor A the bosonization prediction (red) again

coincides very well with the numerical data (blue). Therefore, we observe a rescaling
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of the spectral weight, but surprisingly the momentum dependence is not strongly

influenced by higher order corrections. For a further analysis we have determined the

prefactors A for a large number of levels, anisotropies, and lengths and observe again

a data collapse, so the rescaling is only a function of energy at each anisotropy K

valid for all lengths as shown in Fig. 3 (right). The prefactor becomes significantly

renormalized close to the isotropic point K = 0.6, but still approaches unity as ω → 0.

Remarkably, such a correction factor can be trivially absorbed by the energy-dependent

rescaling in Fig. 2 of the paper, while the k−dependence is quite accurately described

by bosonization even for K = 0.6 (especially also the redistribution of spectral weights).

V. Periodic boundary conditions

The recursive approach is particularly simple for periodic boundary conditions. In this

case the system is translationally invariant, so that G+(x, y, t) is a function of x−y and

t only and G−(x, y, t) vanishes. The prefactor is constant c(x) = c =
(
2π
L

)K
. It is then

convenient to introduce light-cone coordinates z = vt− (x− y) and z̄ = vt+ x− y such

that the correlation function factorizes with frequencies u = 1
2
(ω
v
+ k) and ū = 1

2
(ω
v
− k)

e−ik(x−y)eiωtG+(x, y, t) = eiuzeiūz̄G(z)G(z̄) (27)

where k is measured relative to π and

G(z) = c exp

(
∑

ℓ

1

ℓ
e−i 2π

L
ℓzγ

)
(28)

with γ = K. The double Fourier transform in z and z̄ can then be performed directly

by applying the recursion formula in Eq. (23) to the contributions of right-movers and

left-movers separately. Due to periodicity with L in z and z̄, the values for both u and

ū are quantized

u =
2π

L
n ū =

2π

L
n̄ (29)

The boundaries of the integrals transform as follows:

1

L

∫ L

0

dx

∫ L

0

dy → 1

L

∫ L

0

dy

∫ L−y

−y

dr =

∫ L

0

dr (30)

for integrands independent of y and L-periodic in r. Furthermore we use
∫ L

0

dr

∫ ∞

−∞
dt → 1

2υ

∫ ∞

−∞
dz

∫ 2L−z

−z

dz̄ =
1

2υ

∫ ∞

−∞
dz

∫ 2L

0

dz̄ (31)

for integrands invariant under z̄ → z̄ + L. Since γ = K is independent of ℓ in Eq. (28),

the recursion can be solved exactly to give a ratio of gamma functions [11], i.e.
∫ ∞

−∞
eiuzG(z)dz =

2π c

Γ(K)

∑

n

Γ(n+K)

Γ(n+ 1)
δ

(
u− 2π

L
n

)
(32)

and ∫ 2L

0

eiūz̄G(z̄)dz̄ =
2L c

Γ(K)

∑

n̄

Γ(n̄+K)

Γ(n̄+ 1)
δn̄,ūL/2π (33)
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for the integration over z̄. Now using the exact result for the asymptotic amplitude of

the alternating correlation functions Az from Ref. [9] we obtain

S(ω, k) =
πAzL c2

2vΓ2(K)

∑

n,n̄

Γ(n+K)

Γ(n+ 1)

Γ(n̄+K)

Γ(n̄+ 1)
δ

(
u− 2π

L
n

)
δū,2πn̄/L (34)

=
πAzL c2

2Γ2(K)

∑

m

m∑

l=−m

Γ(m+l
2

+K)

Γ(m+l
2

+ 1)

Γ(m−l
2

+K)

Γ(m−l
2

+ 1)
δ

(
ω − 2πvm

L

)
δk,2πl/L (35)

where the sum over l goes in steps of two, so that l = n− n̄ and m = n + n̄ are either

both even or both odd and |l| ≤ m. Comparing with Eq. (2) we can write for quantized

frequencies ωm = m∆ω = m2πv
L

and momenta kl − π = l 2π
L

SL(ωm, kl) =
AzL

2 c2

4vΓ2(K)

Γ(m+l
2

+K)

Γ(m+l
2

+ 1)

Γ(m−l
2

+K)

Γ(m−l
2

+ 1)
(36)

Stirling’s formula for large arguments Λ gives

Γ(Λ +K)

Γ(Λ + 1)
≈ ΛK−1

(
1 +

K(K − 1)

2Λ
+O

(
1

Λ2

))
(37)

so that to leading order we find the bulk behavior in the thermodynamic limit

S∞(ω, q + π) =
π2Az

2vΓ2(K)
22−2K

(
ω2

υ2
− q2

)K−1

for v|q| < ω, (38)

where we get a factor of 1/2 due to the fact that the quantization of kl jumps in steps

of two at a given m. The analogous analysis can be made for odd L where the prefactor

in Eq. (12) basically gives the sum of two contribution with the k-quantization changed

by one l → l ± 1.

VI. Integrated spectral weight

For the total spectral weight near the antiferromagnetic wave vector, we can integrate

the contribution from the alternating correlation function

Ŝ(ω) =

∫
dkS(ω, k) (39)

where the integral is taken in the vicinity of k = π. Let us also define the integrated

spectral weight at discrete energies by

Ŝ(ω) = 2π
∑

m

Ŝmδ(ω − ωm). (40)

with Ŝm = Az

4
(Ŝ+

m−Ŝ−
m). Integrating Eq. (24) over k generates a delta function 2πδ(x−y)

such that one spatial integration can be trivially performed and Sm simplifies to

Ŝm =
πAz

2L

∫ L

0

dx
(
S+
m(x, x)− S−

m(x, x)
)
. (41)
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The functions S+
m(x, x) are generated recursively via Eq. (23). In case of periodic

boundary conditions – since γl(x, x) = 2K is independent of l – the recursion can

again be solved exactly. From Eq. (32) we find

Ŝm =
πAzc

2

2Γ(2K)

Γ(m+ 2K)

Γ(m+ 1)
. (42)

The bulk power law for the k-integrated structure factor is

Ŝ∞(ω) =
π2Az

vΓ(2K)

(ω
v

)2K−1

. (43)

Note that this result can also be obtained by directly integrating Eq. (38).

VII. Averaging over chain lengths

For a doping density of p = Nimp/N missing sites, the probability of finding a linear

segment of length L is [14]

P (L) = p2(1− p)L ≈ p2 exp(−Lp), (44)

which is normalized so N
∑

P (L) = Nimp. The probability of a single site to belong to

a segment of length L is LP (L) which is normalized so that N
∑

LP (L) = N − Nimp,

which excludes the missing sites. In the limit of large chains or small doping, the sums

can be converted to integrals since the signal does not change significantly as a function

of length so that
∫
dL P (L) = p and

∫
dL LP (L) = 1.

For a segment of length L we use the Lehmann representation in Eq. (2) in order

to define the average signal

S̄(ω, k) =
∑

L

P (L)LS(ω, k) ≈
∫

dLP (L)
∑

m

πvSL(ωm, k)δ(ω − ωm) (45)

which allows us to average separately over the bulk and impurity contributions in the

1/L expansion from the thermodynamic limit

SL(ωm, k) ≈ S∞(ωm, k) +
1

L
Scorr(ωm, k) +O

(
1

L2

)
. (46)

For the bulk average we find

S̄∞ =

∫ ∞

0

dL πvp2e−Lp
∑

m

S∞(ωm)δ
(
ω −m

πv

L

)
(47)

=
∑

m

∫ ∞

0

dν p2
mπ2v2

ν2
e−pmπv/νS∞(ω)δ (ω − ν) (48)

=
∑

m

mp2π2v2

ω2
e−pmπv/ωS∞(ω) (49)

= E1(πvp/ω)S∞(ω). (50)
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upon using the substitution L = πvm
ν

and dL = −dν mπv
ν2

. Here

E1(y) =
∑

m

my2e−my =
y2ey

(ey − 1)2
(51)

is the Einstein function of the scaling variable y = pπv/ω which measures the ”average-

length” gap vπ/L̄ compared to ω [15, 16]. For the average impurity correction we use

the same substitution L = πvm
ν

and dL = −dν mπv
ν2

S̄imp =

∫ ∞

0

dL
πvp2e−Lp

L

∑

m

Simp(ωm)δ
(
ω −m

πv

L

)
(52)

=
∑

m

∫ ∞

0

dν p2
πv

ν
e−pmπv/νSimp(ω)δ(ω − ν) (53)

=
∑

m

p2πv

ω
e−pmπv/ωSimp(ω) (54)

= pE2(πvp/ω)Simp(ω). (55)

which is proportional to p and the scaling function

E2(y) =
∑

m

ye−my =
y

ey − 1
. (56)
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antiferromagnets, Phys. Rev. Lett. 89, 047202 (2002).

[11] I. Schneider and S. Eggert, Recursive method for the density of states in one dimension,

Phys. Rev. Lett. 104, 036402 (2010).

[12] S. Eggert and I. Affleck, Impurities in S=1/2 Heisenberg antiferromagnetic chains: Consequences

for neutron scattering and Knight shift, Phys. Rev. Lett. 75, 934 (1995)

[13] A.E. Mattsson, S. Eggert, and H. Johannesson, Properties of a Luttinger liquid with boundaries

at finite temperature and size, Phys. Rev. B 56, 15615 (1997).



Supplementary Material for the dynamic structure factor in impurity-doped spin chains 12

[14] S. Wessel and S. Haas, Excitation spectra and thermodynamic response of segmented Heisenberg

spin chains, Phys. Rev. B 61, 15262 (2000).

[15] G. Simutis, et al., Spin pseudogap in Ni-doped SrCuO2, Phys. Rev. Lett. 111, 067204 (2013).

[16] G. Simutis, et al., Spin pseudogap in the S=1/2 chain material Sr2CuO3 with impurities, Phys.

Rev. B 95, 054409 (2017).


