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Here we give details on the Floquet Bogoliubov trans-
formation, its relation to Floquet theory, the explicit
form of the transformed ground state state, density-
density correlations, and the application of Floquet’s the-
orem to Mathieu functions.

Relation of the time-dependent transformation to

Floquet theory

The goal is to find all possible steady state solutions
|un(t)〉 = |un(t+T )〉 under time-periodic driving at each
time t, which are defined by the Floquet eigenvalue equa-
tion

(H − i∂t)|un(t)〉 = ǫn|un(t)〉, (1)

where ǫn are real quasi energies. It should be noted
that it is not always possible to find steady state solu-
tions, but if they exist they form a complete basis in the
original Hilbert space. The underlying Floquet theory
has been discussed in a number of review articles [1–
4], where different approaches are presented: By Fourier
transforming into frequency space, the eigenvalue prob-
lem becomes static in an extended Hilbert space. Dif-
ferent frequency components can be perturbatively de-
coupled using a Magnus expansion, which is helpful in
defining a so-called Floquet Hamiltonian HF . The Flo-
quet Hamiltonian is useful since it determines the quasi-
energies and the stroboscopic time evolution. The eigen-
states of HF are the steady states |un(0)〉 at one in-
stant in time only, so for the full time evolution it is
necessary to additionally know the micromotion opera-
tor U(t) =

∑

n |un(t)〉〈un(0)|, which is in general more
difficult.
Our novel approach is now to solve the Floquet eigen-

value problem in one single step by mapping it to a static
problem in the original Hilbert space

H̃|n〉 = (QHQ† − iQ∂tQ
†)|n〉 = ǫn|n〉. (2)

If solutions to the original problem in Eq. (1) exist the
unitary transformation Q can formally always be written
as

Q(t) =
∑

n

|n〉〈un(t)|, (3)

which transforms the entire basis of steady state solutions
at each time into a diagonal static basis. This new trans-
formation Q therefore does three things at once: It maps

the system to a static problem in the original Hilbert
space, it diagonalizes the eigenvalue problem, and it pro-
vides the time-dependent steady states for all times. All
this is done without using a Fourier transform into an ex-
tended Hilbert space. Needless to say, each of the above
steps is normally highly non-trivial, so finding such a
transformation Q into a diagonal rotating frame is very
ambitious indeed. Note, that Q(t) = Q(t + T ) is time
periodic, but we need not assume that Q(t) becomes the
identity at the initial time or any other time.
The operator Q must therefore not be confused with

the time-evolution operator W

W (t) =
∑

n

|un(t)〉〈un(0)|e−iǫnt = U(t)e−iHF t, (4)

which can be used to study the time-dependence of a
given initial state. In particular, knowing the time evo-
lution cannot be used to construct Q, but the time evo-
lution can always be expressed as

W (t) = Q†(t)e−iH̃tQ(0). (5)

Moreover, the Floquet Hamiltonian can be obtained by
HF = Q†(0)H̃Q(0), but again just knowing HF cannot
be used to extract the steady states for all times unless Q
is known. Finally, also the micromotion operator U(t) =
Q†(t)Q(0) and all steady states |un(t)〉 = Q†(t)|n〉 can be
obtained withQ, so such a transformation truely contains
a complete solution of the many-body driven system.

Explicit form of the Floquet Bogoliubov

transformation

The model of interest can conveniently be expressed in
terms of SU(1,1) generators

H(t) = λ12J0 + λ2(J+ + J−), (6)

where

2J0 = b†LbL + bRb
†
R, J+ = J†

− = b†Lb
†
R, (7)

and λ1 = vF q(1 + g4) and λ2 = vF qg2 are the time-
periodic coupling parameters. For the static case it is
known that the transformation U1 = er(J+−J−) can be
used for diagonalization, using the following relations for
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transformed operators Λ̃ = U1ΛU
†
1 [5–7]

b̃R = bR cosh r − b†L sinh r (8)

b̃L = bL cosh r − b†R sinh r (9)

J̃0 = J0 cosh 2r −
J+ + J−

2
sinh 2r (10)

J̃± = −J0 sinh 2r +
J+ + J−

2
cosh 2r ± J+ − J−

2
(11)

J̃+ + J̃− = −2J0 sinh 2r + (J+ + J−) cosh 2r (12)

For the time-dependent transformation, we need a
more general ansatz parametrized in terms of three real
time-periodic parameters θ, φ, r

Q(t) = eiθJ0er(J+−J−)e−iφJ0 (13)

Q† = Q† = eiφJ0e−r(J+−J−)e−iθJ0 . (14)

Using relations Eqs. (8)-(12) together with gauge trans-
formations, we find that the general time-dependent Bo-
goliubov transformation can be written as

βχ = Q†bχQ = γ1bχ + γ2b
†
χ̄ (15)

QbχQ
† = γ∗

1bχ − γ2b
†
χ̄ (16)

with χ = L,R and

γ1 = ei(θ−φ)/2 cosh r (17)

γ2 = ei(θ+φ)/2 sinh r (18)

With this parametrization the transformed operators
Λ̃ = QΛQ† can again be straightforwardly derived from
Eqs. (15)-(18)

J̃0 = cosh 2rJ0 − 1
2 sinh 2r(e

iθJ+ + h.c.) (19)

J̃+ + J̃− = −2 cosφ sinh 2r J0 + (20)
[

(cosφ cosh 2r − i sinφ)eiθJ++h.c.
]

(21)

−iQ∂tQ
† = (−θ̇ + φ̇ cosh 2r)J0 (22)

+
[

(iṙ − φ̇
2 sinh 2r)eiθJ+ + h.c.

]

(23)

Note, that the three real parameters θ, φ, r give a general
one-to-one parametrization of the complex functions γ1
and γ2 which obey |γ1|2 − |γ2|2 = 1. The functions γ1
and γ2 have been extensively discussed in the paper so the
transformation Q is already explicitly known, but what
is left to show in the following is that the Hamiltonian in
Eq. (6) indeed becomes static and diagonal when using
those functions.
The defining differential equation is given in Eq. (9) of

the paper in terms of γ1 and γ2

iγ̇1 = (∆− λ1)γ1 + λ2γ2 (24)

iγ̇2 = (∆ + λ1)γ2 − λ2γ1 (25)

where ∆ is a real constant which is fixed by the constraint
that both γ1 and γ2 are periodic as discussed in the pa-
per. In terms of the parametrization θ, φ, r, the differen-
tial equations become after multiplying by exp(−i θ±φ

2 )

respectively

iṙ sinh r − θ̇ − φ̇

2
cosh r = (∆− λ1) cosh r + λ2e

iφ sinh r

iṙ cosh r − θ̇ + φ̇

2
sinh r = (∆ + λ1) sinh r − λ2e

−iφ cosh r

The imaginary parts of both equations give the same re-
lation

ṙ = λ2 sinφ (26)

The real parts give

0 = (∆ + θ̇/2− λ1 − φ̇/2) cosh r + λ2 cosφ sinh r(27)

0 = (∆ + θ̇/2 + λ1 + φ̇/2) sinh r − λ2 cosφ cosh r(28)

For later use we take (27)× sinh r−(28)× cosh r, which
gives

0 = −(λ1 + φ̇/2) sinh 2r + λ2 cosφ cosh 2r (29)

Likewise (28)× sinh r−(27)× cosh r gives

∆ = −θ̇/2 + (λ1 + φ̇/2) cosh 2r − λ2 cosφ sinh 2r(30)

We now turn to identify the different parts in the trans-
formed Hamiltonian

H̃ = QHQ† − iQ∂tQ
† (31)

Collecting all the terms of H̃ from Eqs. (19)-(23) we find
that the prefactor of the diagonal part 2J0 reads

(λ1 +
φ̇
2 ) cosh 2r − λ2 cosφ sinh 2r − θ̇

2 (32)

which is exactly ∆ according to Eq. (30) and therefore
time-independent. The prefactor of the off-diagonal part
eiθJ+ is given by

−λ1 sinh 2r + λ2(cosφ cosh 2r − i sinφ) + iṙ − φ̇
2 sinh 2r.

(33)
Using Eq. (26) for the imaginary part and Eq. (29) for
the real part, we see that this expression is indeed zero, so
that we have shown that the model in Eq. (6) transforms
to

H̃ = QHQ† − iQ∂tQ
† = 2∆J0 = ∆(b†LbL+bRb

†
R) (34)

where the constant ∆ is determined by the constraint
of periodicity and Floquet’s theorem as described in the
text.

The transformed ground state

We give an explicit expression of the transformed
ground state |u0(t)〉 = Q†|0〉 and show that it indeed
satisfies the condition

βL,R(t)|u0(t)〉 = 0 ∀t. (35)
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With Eq. (14) the calculation of Q†|0〉 is split into
three steps, one for each operator exponential. As |0〉
is an eigenstate of J0, the first step yields e−iθJ0 |0〉 =
e−iθ/2|0〉. Using the relation [6]

e−r(J+−J−) = e− tanh(r)J+e−2 ln(cosh(r))J0etanh(r)J− (36)

and J−|0〉 = 0, we find as an intermediate result

Q†|0〉 = e−iθ/2eiφJ0e− tanh(r)J+e− ln(cosh(r))|0〉, (37)

With the definition of γ1 and γ2 in Eqs. (17) and (18)
we further simplify e− ln(cosh(r)) = 1/|γ1| and tanh(r) =
|γ2|/|γ1|. The action of the last part of the transforma-
tion is found to be

eiφJ0e−|γ2|/|γ1| J+ |0〉 = eiφ/2
∞
∑

n=0

(−|γ2|/|γ1|eiφ)n|n〉L|n〉R.

(38)
With eiφ|γ2|/|γ1| = γ2/γ1 we finally find an explicit ex-
pression for the transformed ground state

|u0(t)〉 =
1

γ1
e−

γ2
γ1

b†
L
b†
R |0〉. (39)

It is important to note that while the form of state (39) is
similar to the results of a static Bogoliubov transforma-
tion [7] here all parameters are time-dependent. Using
the transformation Q the state (39) solves the Floquet
Eq. (5) in the main article with ǫ0 = ∆. Moreover, we
can show explicitly that the transformed ground state
|u0(t)〉 obeys condition Eq. (35) by applying βL(t) =

γ1(t)bL + γ2(t)b
†
R to Eq. (39), which reads

βL(t)|u0(t)〉 =
1

γ1

∞
∑

n=0

(

−γ2
γ1

γ1 + γ2

)(

−γ2
γ1

)n √
n+ 1 |n〉L|n+ 1〉R.

(40)

As the first bracket in (40) vanishes trivially, the state
(39) is indeed the ground state of the βL(t) operator
obeying Eq. (35) and analogously also for βR(t). This
is an important result, as |u0(t)〉 serves as base case for
generating the entire set of steady states |un(t)〉 by ap-

plication of (β†
L(t))

nL(β†
R(t))

nR using Eq. (7) in the main
article.

Correlation functions

It is well known how to calculate correlation func-
tions of physical operators in terms of the diagonal bo-
son model H̃ [8–10]. Of particular interest for ultra-cold
gases is the density-density correlation, which we will
consider here to exemplify the calculation. The fluc-
tuating density is given in terms of the bosonic field

n(x) = ∂xφ(x)/π, which has the mode expansion [8–10]

∂xφ =
∑

q>0

[
√

πq

2L
eiqx

(

b†L,q + bR,q

)

+ h.c.

]

(41)

For the density-density correlation function we find in
the transformed ground state |u0(t)〉 = Q†(t)|0〉

〈u0|n(x)n(y)|u0〉 =
∑

q>0

q

Lπ
|γ1 + γ∗

2 |2 cos q(x− y) (42)

where we have used Eq. (15). If the parameters γ1,2
are constant we recover the known asymptotic powerlaw
behavior 1

2π2 |γ1 + γ∗
2 |2/|x− y|2 [8–10]. However, if a res-

onance qℓ = ℓω/2v̄ is part of the linear TLL regime, the
parameters γ1,2 will become very large as discussed in the
main article. Therefore, the sum in Eq. (42) will be dom-
inated by the corresponding instability region, leading to
a long-range density order of the form

〈u0|n(x)n(y)|u0〉 ∝ cos qℓ(x− y). (43)

Floquet solution in terms of Mathieu functions

The solution of the Mathieu equation

ÿ(t) + (a− 2p cosωt)y(t) = 0 (44)

is usually discussed in terms of even and odd solutions,
known respectively as Mathieu cosine C and Mathieu sine
S functions. A general solution can be therefore written
as

y(t) = c1C(a, p, τ) + c2S(a, p, τ) , (45)

with τ = ωt/2. Floquet’s theorem states that the solu-
tions of a time-periodic differential equation can always
be written in the form

y(t) = eıντPν(τ) (46)

with Pν(τ) = Pν(τ ± π). We want to use the quantum
number ν, which is commonly referred to as Mathieu
characteristic exponent. Therefore, in this section we
clarify the relation between the latter and the Mathieu
functions. Comparing Eqs. (45) and (46) and employing
the periodicity of Pν(τ), we get the following relation

c1C(a, p, τ) + c2S(a, p, τ) =
e∓ıνπ (c1C(a, p, τ ± π) + c2S(a, p, τ ± π)) .

(47)

Evaluating this expression in τ = 0 and normalizing the
Mathieu functions such that C(a, p, 0) = S(a, p, π) = 1,
we obtain

c1(e
±ıπν − C(a, p, π)) = ±c2S(a, p, π) = ±c2 , (48)
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from which we finally get

cosπν = C(a, p, π) , and

c2 = ıc1 sinπν .
(49)
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