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A theory is developed for the emission noise at frequency ν in a quantum dot in the presence of Coulomb
interactions and asymmetric couplings to the reservoirs. We give an analytical expression for the noise in
terms of the various transmission amplitudes. Including the inelastic scattering contribution, it can be seen as
the analog of theMeir-Wingreen formula for the current. A physical interpretation is given on the basis of the
transmissionof one electron-hole pair to the concerned reservoirwhere it emits an energy after recombination.
We then treat the interactions by solving the self-consistent equations of motion for the Green functions. The
results for the noise derivative versus eV show a zero value until eV ¼ hν, followed by a Kondo peak in the
Kondo regime, in good agreement with recent measurements in carbon nanotube quantum dots.
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In quantum devices, the fluctuations of electrical current
provide information on the dynamics of electrons [1–4], as
well as on the energy-photon exchange with the measure-
ment circuit or with the electromagnetic environment
[5–16]. Understanding the nature of these fluctuations in
a quantum dot (QD) is thus a crucial step insofar as this
system is the elementary brick of quantum circuits. The
measurement of current fluctuations in a QD is becoming
more and more precise, and reliable results are now
available both at zero frequency [17–19] and finite fre-
quency [20–22]. Interpreting these experimental findings
turned out to be a challenging task, especially in the case of
a biased interacting QD with asymmetric couplings to the
reservoirs. In view of the challenges, there is an increasing
need to develop a theory for calculating the current noise in
nonequilibrium, incorporating the inelastic scattering con-
tributions that play a crucial role when Coulomb inter-
actions are present. So far, most of the noise calculations in
a QD connected to left (L) and right (R) reservoirs either do
not distinguish between the noise in the L reservoir and that
in the R reservoir [23–31] or assume that the left coupling
strength ΓL and the right coupling strength ΓR are equal
[24,32–34], in apparent contradiction with experiments
[20–22]. Indeed, the measured asymmetry of the couplings
can be very large, e.g., a ¼ 11 [22], where a ¼ ΓL/ΓR is the
asymmetry factor. Certainly, there are theoretical works
where the distinction between left and right couplings is
made, but these works are limited to the calculations of the
zero-frequency noise [28] and symmetrized noise (gener-
ally not the quantity measured in experiments) both for
noninteracting [2,3,35–38] and interacting QDs [39,40].

In some other works, a linear combination of the autocor-
relators and of the cross-correlators is calculated [41,42]. In
summary, developing an efficient theory to calculate the
finite-frequency noise in nonequilibrium, and investigating
the effects of Coulomb interactions and of coupling
asymmetry on the noise profile in each reservoir are
important unsolved issues which we address in this Letter.
The noise considered here is the emission noise [43–45]

at frequency ν, SαβðνÞ ¼
R
∞
−∞hΔÎαðtÞΔÎβð0Þie−2iπνtdt,

where ΔÎαðtÞ ¼ ÎαðtÞ − hÎαi is the deviation of the current
from its average value [the index α (β) represents one of the
two reservoirs]. We calculate SαβðνÞ in an interacting QD
by using the nonequilibrium Keldysh Green function
technique. When the system is in a steady state, we
establish the following formula:

SαβðνÞ ¼
e2

h

X

γδ

Z
∞

−∞
dεMγδ

αβðε; νÞfeγðεÞfhδðε − hνÞ; ð1Þ

where feγðεÞ and fhδðεÞ ¼ 1 − feδðεÞ are the Fermi-Dirac
functions for electrons in the γ reservoir and holes in the δ
reservoir, respectively, and where the matrix elements
Mγδ

αβðε; νÞ are listed in Table I. These elements are written
in terms of the transmission amplitude tαβðεÞ, the trans-
mission coefficient T αβðεÞ ¼ jtαβðεÞj2, the reflection
amplitude rααðεÞ ¼ 1 − tααðεÞ, and an effective transmis-
sion coefficient defined as T eff;α

LR ðεÞ¼2ReftααðεÞg−T ααðεÞ
[46]. The transmission amplitude is related to the retarded
Green function in the QD for spin σ, Gr

σðεÞ, through:
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tαβðεÞ ¼ i
ffiffiffiffiffiffiffiffiffiffi
ΓαΓβ

p
Gr

σðεÞ, where Γα ¼ 2πραjVαj2 is the cou-
pling between the QD and the α reservoir, Vα being the
electron hopping amplitude between the QD and the α
reservoir, the density of states of which is ρα. To lighten the
notations, we do not put a spin index to tαβðεÞ since we
consider a spin-unpolarized QD.
It is important to underline that even if the noise formula

for the interacting QD shows an apparent similarity to
the one obtained for the noninteracting QD [33], the
two formulas are distinct since the effective transmission
coefficient T eff;α

LR ðεÞ differs from T LRðεÞ. Especially
T eff;α

LR ðεÞ incorporates inelastic scattering contributions
[47,48] which are crucial in interacting systems at finite
temperature and voltage. In the absence of interactions, or
when only elastic scattering processes are present, T eff;α

LR ðεÞ
simply equals T LRðεÞ: this result follows from the optical
theorem which is verified in this case [49], and allows one
to recover the formula established in Ref. [33] in the
noninteracting case. The difference between the noise
formula in Eq. (1) and its noninteracting counterpart can
be seen as the exact analog of the difference between the
Meir-Wingreen formula for the current valid in the presence
of interactions [50] and the Landauer formula obtained
using scattering theory.
The proof of Eq. (1) is the following (see Ref. [49] for

details): we start from Eqs. (A11)–(A15) of Ref. [33],
obtained in the flat wideband limit for the conduction band
after having factorized the two-particle Green function in
the QD into a product of single-particle Green functions.
Provided that the system is in a steady state, we have
[51,52]: G≷

σ ðεÞ ¼ Gr
σðεÞΣ≷

tot;σðεÞGa
σðεÞ, where Σ≷

tot;σðεÞ is
the total self-energy [51,53]: Σ≷

tot;σðεÞ¼Σ≷
L;σðεÞþΣ≷

R;σðεÞ þ
Σ≷
int;σðεÞ, with Σ≷

α;σðεÞ, the self-energy brought by the

coupling with the α reservoir, and Σ≷
int;σðεÞ, the additional

self-energy brought by the interactions in the QD. Making
use of these relations and noticing that the linear and
quadratic terms in Σ≷

int;σðεÞ cancel in the steady state, one
derives Eq. (1).

In the same way that in the Landauer approach the
current is interpreted in terms of transmission of electrons
from L reservoir to R reservoir, the autocorrelator SααðνÞ
can be interpreted in terms of transmission of e − h pairs or
their constituents through the QD, from all possible initial
locations, before the pairs recombine leading to the
emission of an energy hν in the α reservoir. To get
SααðνÞ, we thus have to identify the whole set of such
physical processes for each given initial state, determine
their transmission amplitudes ti, and take the quantum
superposition jPitij2 to calculate the transmission proba-
bility. The processes contributing to SLLðνÞ are six in
number as depicted in the top row of Fig. 1. We restrict the
discussion to SLLðνÞ because one can straightforwardly
deduce SRRðνÞ by interchanging L and R indices.
When the e − h pair is initially located in the L reservoir,

there are three possibilities to emit energy in the L reservoir
by recombination of e − h pairs: (i) through process P1 in
which one electron of energy ε (green sphere) and one hole
of energy ε − hν (blue sphere) both experience an excursion
into the QD and come back to the L reservoir, correspond-
ing to the transmission amplitude t1 ¼ tLLðεÞt�LLðε − hνÞ;
(ii) through process P2 in which the electron experiences an
excursion into the QD and comes back to the L reservoir,
whereas the hole is reflected by the left barrier, correspond-
ing to the transmission amplitude t2 ¼ tLLðεÞr�LLðε − hνÞ;
and (iii) through process P3 in which the hole experiences
an excursion into the QD and comes back to the L reservoir
whereas the electron is reflected, corresponding to the
transmission amplitude t3 ¼ rLLðεÞt�LLðε − hνÞ. By taking
the quantum superposition of these three processes,
jt1 þ t2 þ t3j2, we get a contribution to the noise which
is equal to the matrix element MLL

LLðε; νÞ of Table I [49].
Note that even if the amplitudes t1;2;3 involve the L index
only, we use the subscript LR in the notation for the
effective transmission coefficient T eff;L

LR ðεÞ, for the reason
that it gives back T LRðεÞ when the optical theorem
holds [49].

TABLE I. Expressions of the matrix elements Mγδ
αβðε; νÞ involved in Eq. (1) for the noise SαβðνÞ of an interacting QD with arbitrary

coupling symmetry. T eff;α
LR ðεÞ is an effective transmission coefficient defined as T eff;α

LR ðεÞ ¼ 2ReftααðεÞg − T ααðεÞ.

Mγδ
αβðε; νÞ γ ¼ δ ¼ L γ ¼ δ ¼ R γ ¼ L, δ ¼ R γ ¼ R, δ ¼ L

α ¼ L T eff;L
LR ðεÞT eff;L

LR ðε − hνÞ T LRðεÞT LRðε − hνÞ ½1 − T eff;L
LR ðεÞ�T LRðε − hνÞ T LRðεÞ½1 − T eff;L

LR ðε − hνÞ�
β ¼ L þjtLLðεÞ − tLLðε − hνÞj2
α ¼ R T LRðεÞT LRðε − hνÞ T eff;R

LR ðεÞT eff;R
LR ðε − hνÞ T LRðεÞ½1 − T eff;R

LR ðε − hνÞ� ½1 − T eff;R
LR ðεÞ�T LRðε − hνÞ

β ¼ R þjtRRðεÞ − tRRðε − hνÞj2
α ¼ L tLRðεÞt�LRðε − hνÞ t�LRðεÞtLRðε − hνÞ tLRðεÞtLRðε − hνÞ t�LRðεÞt�LRðε − hνÞ
β ¼ R ×½r�LLðεÞrLLðε − hνÞ − 1� ×½rRRðεÞr�RRðε − hνÞ − 1� ×r�LLðεÞr�RRðε − hνÞ ×rRRðεÞrLLðε − hνÞ
α ¼ R t�LRðεÞtLRðε − hνÞ tLRðεÞt�LRðε − hνÞ t�LRðεÞt�LRðε − hνÞ tLRðεÞtLRðε − hνÞ
β ¼ L ×½rLLðεÞr�LLðε − hνÞ − 1� ×½r�RRðεÞrRRðε − hνÞ − 1� ×rLLðεÞrRRðε − hνÞ ×r�RRðεÞr�LLðε − hνÞ

PHYSICAL REVIEW LETTERS 120, 107702 (2018)

107702-2



When the e − h pair is initially located in the R reservoir,
both particles cross the entire structure to emit energy
in the L reservoir by recombination, as depicted in Fig. 1
(P4), giving rise to the transmission amplitude t4 ¼
tLRðεÞt�LRðε − hνÞ, which leads to the matrix element
MRR

LLðε; νÞ of Table I after taking jt4j2. When the electron
is initially located in the L reservoir and the hole in the R
reservoir, as depicted in Fig. 1 (P5), the electron is reflected
and the hole transmitted, giving rise to the transmission
amplitude t5 ¼ rLLðεÞt�LRðε − hνÞ which leads to the
matrix element MLR

LLðε; νÞ. By symmetry, the transmission
amplitude in process P6 is t6 ¼ tLRðεÞr�LLðε − hνÞ, leading
to the matrix element MRL

LLðε; νÞ. We do not need to take
any quantum superposition for the three processes P4–P6

as each of them corresponds to a different initial state.
To get the cross-correlators, one needs to consider

the interference terms between the processes accompanied
by an emission of energy in both reservoirs [2,3,32].
Our study shows that the sum SLRðνÞ þ SRLðνÞ corre-
sponds to the interference between the processes P5 and
P11 as regards the term proportional to feLðεÞfhRðε − hνÞ,
since MLR

LRðε; νÞ þMLR
RLðε; νÞ ¼ t5t�11 þ t�5t11, and to the

interference between the processes P6 and P12 as
regards the term proportional to feRðεÞfhLðε − hνÞ, since
MRL

LRðε; νÞ þMRL
RLðε; νÞ ¼ t6t�12 þ t�6t12. These interference

terms can be either positive or negative according to the
relative values of ε and ν, but become strictly negative at
zero frequency due to charge conservation. As far as the
contributions proportional to feαðεÞfhαðε−hνÞ are concerned,
they are given by the interference between the process P7

and the set of processes P1–P3 when α ¼ L, and between
the processP4 and the set of processesP8–P10 when α ¼ R.
The noise, given by Eq. (1) with Mδγ

αβðε; νÞ of Table I, is
completely determined once the retarded Green function

Gr
σðεÞ in the QD is known. For the noninteracting single

energy level QD, we take the Breit-Wigner form: Gr
σðεÞ ¼

½ε − ε0 þ iðΓL þ ΓRÞ/2�−1 where ε0 is the QD energy level.
For the interacting single energy level QD, we use the self-
consistent renormalized equation-of-motion approach, as
developed in Refs. [54–56], which applies to both equi-
librium and nonequilibrium and allows one to determine
Gr

σðεÞ [49]. It has been successfully used [57] to quanti-
tatively explain the experimental results [58] about the
interplay of spin accumulation and magnetic field
in a Kondo QD, and is well adapted to describe the
Kondo regime in which the noise measurements are
performed [22].
In Fig. 2, we report the noise derivative dSααðνÞ/dV

as a function of the voltage V for two values of
a¼ΓL/ΓR and U (with ε0¼−U/2), as well as the derivative
of the sum of the cross-correlators d½SLRðνÞ þ SRLðνÞ�/dV.
For completeness, we also plot the derivative of
the total noise, dStotðνÞ/dV, where StotðνÞ ¼
½SLLðνÞ þ a2SRRðνÞ − aSLRðνÞ − aSRLðνÞ�/ð1þ aÞ2, fol-
lowing recent theoretical works which show, by using a
current conservation argument along with the Ramo-
Shockley theorem, that this is the quantity which is
measured in experiments [37,38,40]. A common point to
all the curves is the presence of a plateau of value zero at
voltage smaller than frequency, here jVj<hν/e¼0.32mV,
since hν ¼ 78 GHz. The origin of this plateau is related to
the fact that the system cannot emit at a frequency higher
than the energy provided to it, i.e., the voltage, in full
agreement with experiments [21,22]. In the absence of
interaction [Figs. 2(a) and 2(b)], the noise derivatives
present a broad peak at jeVj > hν. Its intensity is larger
for dSRRðνÞ/dV than for dSLLðνÞ/dV for both symmetric
and asymmetric couplings, due to the fact that the L
reservoir is grounded (μL ¼ 0). The effect of the coupling

FIG. 1. Illustration of the six physical processes contributing to SLLðνÞ with the emission of an energy hν in the L reservoir (top row
with orange background devices), and the other six physical processes contributing to SRRðνÞwith the emission of an energy hν in the R
reservoir (bottom row with pink background devices). The transmission amplitude ti of the e − h pair for each process with i ∈ ½1; 12� is
indicated at the bottom of each diagram. A green (blue) sphere represents an electron (a hole) and a yellow wavy arrow represents the
emission of energy hν in one of the reservoirs.
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asymmetry is to shift the position of the broad peak towards
lower values of V. Note that in both cases, the derivative
of SLRðνÞ þ SRLðνÞ is sign negative [green curves in
Figs. 2(a) and 2(b)]. In the presence of interactions, the
electronic transport through a QD is strongly affected. In
the Kondo regime, when the number of electrons in the QD
is equal to 1 and T ≪ TK (TK being the Kondo temper-
ature), the differential conductance shows a Kondo peak
around V ¼ 0, in addition to the broad peaks resulting from
the Coulomb blockade [49]. These effects have their
counterparts in the noise. Indeed, the noise derivative
shows two clear features [Figs. 2(c) and 2(d)]: a Kondo
peak above jeVj ¼ hν, and a secondary broad peak in the
proximity of jeVj ¼ U/2, corresponding to the boundaries
of the Coulomb blockade structure, in full agreement with
experiments [22]. We observe that the noise intensity is
reduced in the presence of interactions, as expected in
the Kondo regime [24]. This is related to the fact that
T eff;α

LR ðεÞ > T LRðεÞ (curves not shown), leading to a
decrease of MLR

αα ðε; νÞ which provides the dominant con-
tribution at low temperature. Moreover, the derivative of
SLRðνÞ þ SRLðνÞ changes sign at jeVj ¼ U/2, going from
positive to negative values with increasing V. It explains
why for symmetric couplings (a ¼ 1) the total noise
derivative becomes smaller below jeVj ¼ U/2. We also
notice that the height of the Kondo peak in dSLLðνÞ/dV is
larger than in dSRRðνÞ/dV when a ¼ 1. This relative order
in magnitude is reversed when ΓL > ΓR: in this case the
Kondo peak becomes more prominent for the more weakly
coupled reservoir. The explanation is the following: when

a ≠ 1, (i) the more pronounced Kondo resonance in the
density of states is pinned at the chemical potential (μL)
of the more strongly coupled reservoir [orange curve in
Fig. 3(a)], and (ii) at low temperature, the main process
contributing to dSLLðνÞ/dV is P5 with a probability equal
to T LRðε − hνÞ at low transmission, whereas the main
process contributing to dSRRðνÞ/dV is P11 with a proba-
bility equal to T LRðεÞ at low transmission. In the process
P5 of Fig. 3(c), there is a transfer of holes from the R
reservoir to the L reservoir at energy close to μR ¼ −eV, in
the vicinity of which a relatively smaller Kondo resonance
is observed, whereas in the process P11 of Fig. 3(c), there is
a transfer of electrons from the L reservoir to the R
reservoir at energy close to μL¼0, in the vicinity of which
a stronger Kondo resonance is observed [orange curve in
Fig. 3(a)]. Since P11 contributes to dSRRðνÞ/dV, the Kondo
peak is more visible in dSRRðνÞ/dV. In the same way,
Fig. 3(b) illustrates how the height of the Kondo peak in
dSLLðνÞ/dV is larger than that in dSRRðνÞ/dV when a ¼ 1.
We have established a general formula for the emission

noise in an interacting QD asymmetrically coupled to
reservoirs taking the inelastic scattering contributions into
account, and we have given a physical interpretation of the
results in terms of the transmission of an e − h pair through
the QD with an emission of energy. Combining the theory
with the equation-of-motion approach to determine the
transmission amplitudes entering the noise formula, we
have discussed the profile of the noise derivative. The
obtained results explain most of the distinctive features
recently observed for the noise in a carbon nanotube QD,
specially, the presence or the absence of a narrow peak in
dSxðνÞ/dV versus V in the vicinity of �hν/e, and why the
Kondo peak in the noise derivative is more prominent in the
more weakly coupled reservoir. The theory developed in
this Letter can be applied to treat other realistic systems.

(a) (b)

(c) (d)

FIG. 2. Noise derivative dSxðνÞ/dV as a function of V (with
μL ¼ 0,μR ¼ −eV) atT ¼ 80 mK, ν ¼ 78 GHz (chosen such that
hν < kBTK) for ε0 ¼ −U/2 (middle of the Kondo ridge). (a) and
(b): U ¼ 0. (c) and (d): U ¼ 3 meV. (a) and (c): ΓL;R ¼ 0.5 meV
(a ¼ 1). (b) and (d): ΓL ¼ 0.8 meV, ΓR ¼ 0.2 meV (a ¼ 4). A
Kondo peak is observed close to eV ¼ hν when U ≠ 0. Plots for
V < 0 are not shown since dSxðνÞ/dV is an odd function in V.

(a)
(b)

(c)

FIG. 3. (a) Spectral density AðεÞ ¼ −π−1ImfGr
σðεÞg for ΓL;R ¼

0.5 meV (a ¼ 1), and ΓL ¼ 0.8 meV, ΓR ¼ 0.2 meV (a ¼ 4), at
U ¼ 3 meV, ε0 ¼ −U/2, and T ¼ 80 mK. The vertical lines
indicate the positions of μR ¼ −eV ¼ −0.35 mV and μL ¼ 0.
The a ¼ 1 curve has been vertically translated for clarity. The
spectral density at U ¼ 0 is shown in blue in the inset. (b) and
(c) Schematic representation of the relative importance of the
transmission processes at low temperature, low transmission, and
for eV ≈ hν: P5 is dominant over P11 for a ¼ 1, and P11 is
dominant over P5 for a ¼ 4.
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