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Two-bath spin-boson model: Phase diagram and critical properties
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The spin-boson model, describing a two-level system coupled to a bath of harmonic oscillators, is a generic
model for quantum dissipation, with manifold applications. It has also been studied as a simple example for an
impurity quantum phase transition. Here, we present a detailed study of a U(1)-symmetric two-bath spin-boson
model, where two different components of an SU(2) spin 1

2 are coupled to separate dissipative baths. Nontrivial
physics arises from the competition of the two dissipation channels, resulting in a variety of phases and quantum
phase transitions. We employ a combination of analytical and numerical techniques to determine the properties
of both the stable phases and the quantum critical points. In particular, we find a critical intermediate-coupling
phase which is bounded by a continuous quantum phase transition which violates the quantum-to-classical
correspondence.
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I. INTRODUCTION

Impurity models, describing small quantum systems cou-
pled to one or multiple baths of bosons or fermions, have seen
a lot of activity over the last years, for a variety of reasons:
(i) Impurity models display a rich phenomenology, includ-
ing local Fermi-liquid and non-Fermi-liquid behavior [1,2],
phase transitions and quantum criticality [3,4], as well as
interesting properties far from equilibrium [5]. (ii) Impurity
models can often be simulated by numerical means more
efficiently than lattice models [6,7], such that, on the one
hand, high-accuracy numerical results can guide analytical
approaches and, on the other hand, analytical concepts can be
readily tested numerically. A particularly interesting branch
is nonequilibrium physics where quantum impurity models
have served a test bed for methodological developments.
(iii) Impurity models find realizations in diverse settings such
as dilute magnetic moments in bulk solids [8,9], electrons
in quantum dots coupled to leads [10,11], quantum bits in
a dissipative environment [12], and charge-transfer processes
in organic molecules [13]. The design of impurity models in
cold-atom systems provides further means of manipulating
and detecting impurity phenomena [14,15].

The spin-boson model (SBM1 in the following) is a simple
paradigmatic model for quantum dissipative systems [16]. It
describes a two-level system, i.e., a spin 1

2 , which is coupled
to both a bath of harmonic oscillators and a transverse field.
While the field induces tunneling (i.e., delocalization) between
the two states, the oscillator bath causes friction and impedes
tunneling. For gapless baths, characterized by a power-law
spectral density J (ω) ∝ ωs with 0 < s � 1, this competition
results in a quantum phase transition between a delocalized and
a localized phase which has been studied extensively [17–28].
As has been shown both analytically and numerically [21–
23,25–28], this quantum phase transition obeys the so-called
quantum-to-classical correspondence: It is equivalent to the
thermal phase transition of a classical Ising chain with long-
ranged interactions falling off as 1/r1+s where r is the distance
between two classical spins [29–31].

In this paper, we consider the generalization of the spin-
boson model to two baths (i = x,y below) [32–34], dubbed
SBM2. It is described by Ĥ = Ĥs + Ĥcpl + Ĥbath with

Ĥs = −�h · �σ
2

, (1a)

Ĥcpl =
∑
i=x,y

∑
q

λqi

σi

2
(âqi + â

†
qi) , (1b)

Ĥbath =
∑
i=x,y

∑
q

ωqâ
†
qi âqi . (1c)

The two-level system (or quantum spin, with σx,y,z being the
vector of Pauli matrices) is coupled both to an external field �h
and, via σx and σy , to two independent bosonic baths, whose
spectral densities Ji(ω) = π

∑
q λ2

qiδ(ω − ωq) are assumed to
be of the same power-law form

Ji(ω) = 2π αi ω
1−s
c ωs , 0 < ω < ωc , (2)

where ωc = 1 defines the unit of energy used throughout
the paper. For a symmetric coupling to identical bath, i.e.,
α = αx = αy , and hx = hy = 0 the model displays a U(1)
symmetry, corresponding to a rotation of the impurity spin
about its z axis combined with corresponding bath-mode rota-
tion. In addition, the model features a separate Z2 symmetry
for hz = 0, corresponding to σz ↔ −σz.

The model SBM2 is governed not only by the competition
between the local field, which tends to point the spin in the
�h direction, and the dissipative bath effects, but also by a
competition between the two baths, as an oscillator bath which
couples to σi tends to localize the spin in i direction. As a result,
the combined dissipative effect of both baths in SBM2 can be
smaller than that of one bath alone (in a sense which will
become clear in the course of the paper), an effect which has
been dubbed “frustration of decoherence” [34]. In practical
realizations of SBM2, the two baths can be two different
sources of dissipation influencing a quantum bit [34,35] or
two spin-wave modes which couple to a magnetic impurity in
a magnet [36,37].
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The model SBM2 is of particular theoretical interest
because it displays a nontrivial intermediate-coupling (i.e.,
critical) phase, characterized by partial screening of the impu-
rity degree of freedom corresponding to a fractional residual
moment [i.e., a residual entropy Simp with exp(Simp/kB) not
an integer] [3,38], not unlike in the two-channel Kondo
state [2,39,40]. The existence of this critical phase, orig-
inally deduced by perturbative RG arguments [32,33,37],
was recently confirmed numerically [24]. The latter study,
performed using a variational matrix-product-state (VMPS)
approach, also revealed that the critical phase is unstable at
large couplings, resulting in a complex phase diagram.

It is the purpose of this paper to study the physics
of SBM2 in some detail, extending the results published
in Ref. [24], with particular focus on the quantum phase
transitions occurring in this model. To this end, we combine
VMPS calculations with analytical renormalization-group and
scaling approaches. Our implementation of VMPS, including
the use of the U(1) symmetry and an optimized boson basis,
enables highly accurate studies of quantum critical behavior.

A. Summary of results

We have used VMPS to determine quantitative phase
diagrams for the U(1)-symmetric version of SBM2 as function
of the bath exponent s, the dissipation strength α, and the
transverse field hz. For 0 < s < 1 and finite hz, there is always
a transition between a delocalized (DE) and a localized (LO)
phase (Fig. 1) with the LO phase spontaneously breaking
the model’s U(1) symmetry. There is no localization for
s = 1 (not shown) [34]: this is qualitatively different from
the behavior of the standard single-bath spin-boson model
(SBM1) and reflects the frustration of decoherence mentioned
above. For hz = 0 the critical (CR) phase emerges, existing
for s∗ < s < 1 and small α.

Based on numerical and analytical results for the quantum
critical behavior, we conclude that the transition between the
DE and LO phases, controlled by a fixed point labeled QC2 in
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FIG. 1. (Color online) Quantitative phase diagrams of SBM2 for
s = 0.4 (a) and s = 0.8 (b). For a bath exponent s < s∗ ≈ 0.76 in (a),
the SBM2 ground state is either in a delocalized (DE) or localized
(LO) phase depending on coupling strength α and magnetic field
hz; the corresponding quantum phase transition is controlled by the
critical fixed point QC2. For larger s > s∗ in (b), an additional critical
phase (CR) emerges at hz = 0 and small couplings. The quantum
phase transition between LO and CR is controlled by a different
critical fixed point QC1.

the body of the paper, is in the universality class of the classical
XY chain with 1/r1+s interactions, i.e., obeys a quantum-to-
classical correspondence. In particular, s = 1

2 corresponds to
the upper-critical dimension for this transition, with mean-field
behavior found for s < 1

2 .
In contrast, the transition between CR and LO, controlled

by a different fixed point QC1, does not appear to obey
a quantum-to-classical correspondence. Its exponents fulfill
hyperscaling relations for hz = 0, but hyperscaling is violated
in the presence of a transverse field. We propose how to
construct a critical field theory which should ultimately enable
an analytical understanding of this conceptually interesting
nonclassical transition.

B. Outline

The body of the paper is organized as follows. In Sec. II,
we introduce the employed VMPS method. In particular, we
discuss both the variational choice of bosonic basis states and
the implementation of the U(1) symmetry into the algorithm.
Section III describes the phase diagram of the U(1)-symmetric
SBM2, together with the main characteristics of the stable
phases. The subsequent Sec. IV analyzes the numerical
findings in terms of renormalization-group flow and discusses
the resulting quantum critical points. Section V is devoted
to analytical approaches to the critical phenomena of SBM2,
using the toolbox of field theory and epsilon expansion. In
particular, we highlight that QC2 is expected to follow the
quantum-to-classical correspondence while QC1 is not. In
Sec. VI, we show numerical results for critical properties of
SBM2. We will extract numerous critical exponents as function
of the bath exponent s, confirming the analytical expectations.
The concluding Sec. VII will highlight open problems as
well as connections to other impurity and lattice problems.
In addition, the physics of SBM2 with broken U(1) symmetry
will be quickly discussed. Technical details are relegated to
various appendices.

II. VMPS METHOD

We start by describing the numerical VMPS approach
which we employed to study SBM2. This extends the cor-
responding presentation in Ref. [41]. In particular, the explicit
implementation of the U(1) symmetry, which we found crucial
to obtain accurate critical exponents, is a novel ingredient here.

A. Discretization and Wilson chain mapping

Since both bosonic baths of SBM2 are noninteracting and
gapless, it is possible to transfer the concept of energy-scale
separation frequently employed in numerical renormalization
group (NRG) [6,7,42,43]. To this end, the spectral functions
of the baths are logarithmically discretized. Then, the Hamil-
tonian is mapped on a semi-infinite tight binding chain, a
so-called Wilson chain.

The choice of a logarithmic coarse graining of the spectral
function Ji is motivated by the fact that the study of critical
behavior requires exponentially small energy scales. To resolve
these scales appropriately, a logarithmic coarse graining is
necessary since it yields an exponentially enhanced low-energy
resolution compared to a linear or power-law discretization.
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Assuming the spectral function Ji of each bosonic bath has
a nonzero contribution for energies ω ∈]0,ωc], with ωc = 1
being an upper cutoff frequency, we introduce a dimensionless
discretization parameter � > 1 which defines a set of intervals
with discretization points [6,7,18,44]

ωz
0 = ωc (m = 0) ,

(3)
ωz

m = ωc�
−m+z (m = 1,2,3, . . .) ,

with z ∈ [0,1[ an arbitrary shift. Averaging over different z

uniformly distributed in [0,1[ is referred to as z averaging.
Considering a symmetric coupling of the impurity to two
identical baths and using z = 0 for simplicity, the discretized
Hamiltonian is represented by

Ĥbath =
∑
i=x,y

∞∑
m=0

[
ξmâ

†
miâmi + γm

σi

2
(âmi + â

†
mi)

]
, (4)

with âmi being a discrete bosonic state at energy ξm and
coupling strength γm to the impurity spin. For general J (ω)
one has [44]

γ 2
m =

∫ ωm

ωm+1

J (ω)dω , (5a)

ξm = γ −2
m

∫ ωm

ωm+1

ωJ (ω)dω . (5b)

Employing the improved z-averaging scheme of Žitko and
Pruschke to reduce discretization artifacts [45], the explicit
expressions for the parameters for general z are given by [41]

ξz
0 =

[
1−�z(1+s)

(1+s) ln �
− z + 1

] 1
1+s

(m = 0) ,

(6a)

ξz
m =

[
�−(s+1)(m+z)(�(1+s)−1)

(1+s) ln �

] 1
1+s ∼ ωz

m (m > 0) ,

γ z
0 =

√
2πα
1+s

(1 − �−z(1+s)) (m = 0) ,

(6b)

γ z
m =

√
2πα
1+s

(�1+s − 1)�−(m+z)(1+s) ∼ (
ωz

m

) s+1
s (m > 0) .

Following the standard NRG protocol, the discretized Hamilto-
nian in Eq. (4) is mapped using an exact unitary transformation
onto a semi-infinite tight-binding chain, dubbed Wilson chain,
with the impurity coupled to the open end only. The resulting
Hamiltonian including (N + 1) bosonic sites is given by
ĤN

∼= Ĥs + Ĥcpl + Ĥ(N)
bath with

Ĥcpl =
∑
i=x,y

√
η0

π

σi

2
(b̂0i + b̂

†
0i) , (7a)

Ĥ(N)
bath =

∑
i=x,y

[
N∑

k=0

εkn̂ki +
N−1∑
k=0

(tkb̂
†
ki b̂(k+1)i + H.c.)

]
, (7b)

with the operator n̂ki = b̂
†
ki b̂ki counting the number of bosons

of bath i on chain site k. Each bosonic site represents a
harmonic oscillator at frequency εk ∼ �−k that is coupled
to its nearest neighbors by the hopping amplitude tk ∼
�−k . Assuming identical baths, η0 = ∫

J (ω)dω describes the
overall coupling between a bath and impurity. Note that the
impurity spin now couples to a single bosonic degree of

|ψ =

δk

|ñk

|nk

V k

Ã[ñk]

A[nN ]A[nk]A[n0]

Ã[ñ0]

δ0

V 0

|ñ0

|n0

|σ

FIG. 2. (Color online) Schematic diagram of |ψ〉 in Eq. (8) using
the OBB representation with explicit bosonic shift. The first index
of A[n0] and the last index of A[nN ] link to the impurity and the
right-vacuum state |〉R , respectively (for details see text).

freedom per bath located at k = 0, i.e., the first site of a bosonic
tight-binding chain (see also Fig. 2). Their combined local
Hamiltonian is given by Ĥ0.

B. VMPS optimization with OBB

The steps remaining in the NRG procedure would involve
an iterative diagonalization by adding one site at a time
and a subsequent truncation of the high-energy states of the
system, keeping only the D lowest-lying energy eigenstates.
However, the bosonic nature of the model complicates the
NRG approach drastically. Employing NRG, it is required
to truncate the infinite-dimensional local bosonic Hilbert
spaces on site k to manageable number of dk states. Thus,
a priori, NRG is not able to take into account the growing
oscillator displacements x̂ki = 1/

√
2(b̂ki + b̂ki) occurring in

the system’s localized phase. This restricts its application
to the delocalized phase. Already at the phase boundary, in
combination with the inherent mass-flow error [26], this leads
to non-mean-field results for the critical exponents of SBM1
in the regime s < 1

2 [23,25].
To resolve the issue of bosonic state space truncation, Guo

et al. [24] proposed a variational matrix-product-state (VMPS)
approach involving an optimized boson basis (OBB) [46], that
allows an accurate numerical study of the entire phase diagram
in the (generalized) spin-boson model. Since we heavily used
this method for the numerical results presented here for SBM2,
we briefly outline the concept of this powerful approach [41].

The starting point of the variational procedure is setting
up an initially random many-body state |ψ〉 of the truncated
Wilson chain described by ĤN [having (N + 1) sites in total]
in the language of matrix-product-states (MPS) [47]:

|ψ〉 =
∑

σ=↑,↓

∑
n

(A[n0]A[n1] . . . A[nN ])σ |σ 〉|n〉 , (8)

where |σ 〉 = |↑〉,|↓〉 are the eigenstates of σx and the states
|n〉 = |n0, . . . ,nN 〉 represent the boson-number eigenstates of
the truncated Fock space, i.e., n̂ki |n〉 = nki |n〉 with nki =
0, . . . ,dk − 1. Combining the state spaces of both chains in
Eqs. (7a) and (7b) to supersites, nk = (nkx,nky) should be
interpreted as a combined index of the x and y chains. Each
A[nk ] forms a D × D matrix with elements (A[nk ])αβ , except
for A[n0] and A[nN ] connecting to local impurity and vacuum
states, respectively, as indicated in Fig. 2 further discussed in
the following. Using standard MPS methods, we optimize |ψ〉
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by iteratively varying one A[nk] at a time in order to find an
appropriate representation of the ground state of ĤN .

The main advantage of VMPS is the possibility to change
the local basis during the stepwise optimization process, while
NRG in principle requires the local basis to be fixed a priori
before starting to diagonalize. To exploit this, we implement
the OBB using two key features:

(1) Effective local basis. A basis transformation V is
introduced with V †V = I, which maps the local harmonic
oscillator basis |nk〉 onto a smaller effective basis |ñk〉 on each
site k,

|ñk〉 =
dk−1∑
nk=0

Vñk,nk
|nk〉 (ñk = 0, . . . ,d̃k − 1) , (9)

with dk and d̃k denoting the size of the original and effective
bases, respectively. Merging V into the A tensors on each
bosonic site, the structure of A[nk ] in Eq. (8) is then given by

A
[nk ]
α,β =

d̃k−1∑
ñk=0

Ã
[ñk]
α,β Vñk,nk

. (10)

Nevertheless, from an efficiency point of view, it is desirable
to keep the separate structure of Ã and V , where Ã[ñk ] links
the effective bosonic basis to the left and right parts of the
chain, while V maps the original to the effective local basis.
The local optimization procedure for each site thus splits into
two steps: at first, V is updated and in this process the optimal
effective local basis set |ñk〉 is determined. Then, we optimize
Ã[ñk ] using the new local basis states and move to the next site.
Note that with the introduction of the OBB a second adjustable
dimension d̃k besides the bond dimension D exists. Treating Ã

and V as separate structures, both dimensions are fixed before
the start of the ground-state optimization. If a dynamical ad-
justment of the bond dimensions is required, one has to switch
to a two-side optimization procedure or variants of these,
which is numerically more expensive [47]. This is for example
necessary when enforcing explicit symmetry conservation. In
practice, this implementation makes an increase of the size of
the local basis sets from dk ≈ 10 to dk � 104 possible, while
using typically d̃k � dk below.

(2) Oscillator shifts. Moreover, in the localized phase we
incorporate an oscillator shift in the Hamiltonian to take the os-
cillator displacement into account. The oscillator coordinates
x̂ki = 1/

√
2(b̂ki + b̂

†
ki) are shifted by their equilibrium value

〈x̂ki〉 [21] to be determined self-consistently in a variational
setting, such that OBB captures the quantum fluctuations near
the shifted coordinate x̂ ′

ki = x̂ ′
ki − 〈x̂ki〉. This is achieved by

formulating the shift δki as unitary transformation acting on
the Hamiltonian itself. With

Û (δki) = e
δki
2 (b̂†ki−b̂ki ) , (11)

the shifted local bosonic operators b̂
′†
ki and b̂′

ki are

b̂′
ki ≡ Û †(δki)b̂ki Û (δki) = b̂ki + δki√

2
. (12)

By the application of Û (δki) we automatically shift x̂ki by δki ,

x̂ ′
ki = 1√

2
(b̂′

ki + b̂
†′
ki) = x̂ki + δki . (13)

After processing the local optimization procedure, we cal-
culate the mean displacement 〈x̂ki〉. By setting δki = −〈x̂ki〉
and replacing b̂ki with the displaced b̂′

ki , the shift is included
exactly on the Hamiltonian level Û †(δki)ĤN ({b̂ki})Û (δki) =
ĤN ({b̂′

ki}) = Ĥ′
N ({b̂ki},{δki}). Afterwards, the optimization of

the current site is repeated in the shifted local bosonic basis
until 〈x̂ki〉 converges, before moving to the next site.

The implementation of an OBB with shifted oscillator
modes allows us to simulate an effective local basis that would
require a local dimension of deff

k ≈ 1010 in the nonshifted basis,
while the actual shifted basis can be kept small, dk � 102.
In addition, since the variational procedure determines the
optimal shift δki for each site of the Wilson chain individually,
the exponential growth of 〈x̂ki〉 ∝ �k with increasing iteration
number k no longer represents a barrier for the method.

Working in the Wilson chain setup with an exponentially
decreasing energy scale, it is advantageous to replicate the
NRG rescaling procedure in the iterative VMPS procedure
in order to avoid losing numerical accuracy towards higher
iterations. Therefore, when optimizing A[nk ], we rescale the
Hamiltonian in the local picture by a factor �k to ensure that
optimization can take place on the effective energy scale ∼ωc.

Employing standard VMPS methods, we determine the
convergence of |ψ〉 by calculating the variance of the (un-
scaled) energy E0

k of the ground state calculated at each
site k. The iterative optimization procedure is stopped once
std(E0

k )/Ē0 < ε, using double precision accuracy ε = 10−15

with N = 50,� = 2 and thus εN−1 ∼ �−N−1 = 10−15. The
resulting state |ψ〉 is considered to be a reliable approximation
of the system’s ground state given ĤN . When computing
systems where the effective energy resolution drops below
double precision, the relevance of numerical noise as a
perturbation to ĤN should be double-checked by additionally
studying the energy-flow diagrams.

Most results shown in this paper have been obtained using
parameters � = 2, N = 50, d̃k = 24, unless noted otherwise.

C. U(1) symmetry

Considering the case with symmetric coupling αx = αy ,
and no in-plane magnetic fields hx = hy = 0, the system
exhibits an Abelian U(1) symmetry: The Hamiltonian is
invariant under simultaneous rotation of the impurity spin and
the bosonic baths in the xy plane by an arbitrary angle φ,
leading to a twofold degeneracy of the resulting ground state.
A rotation of this type is described by a unitary operator Û (φ):

|ψ〉 → eiφŜ︸︷︷︸
≡Û (φ)

|ψ〉 , (14)

where Ŝ is the generator of the continuous U(1) symmetry,
given by

Ŝ = 1

2
σz + i

∑
k

(b̂†ky b̂kx − b̂
†
kx b̂ky) , (15)

with
[
Ŝ,Ĥ

] = 0. In the form of Eq. (15), however, the
symmetry operation Ŝ involves a hopping between the two
baths in the local bosonic state spaces, which poses a serious
impediment for the numerical implementation of the symmetry
due to truncation of the bosonic state space. Essentially,
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the discrete quantum number associated with the symmetry
requires a diagonal representation. Hence, it is useful to apply
a canonical transformation in order to bring Ŝ in a diagonal
form in the spinor space of b̂† ≡ (b̂†x,b̂

†
y). This leads to

S̃ = 1

2
σz +

∑
k

(b̃†ky b̃ky − b̃
†
kx b̃kx) . (16)

Note that this transformation also alters the coupling term
in the Hamiltonian. In this form, the symmetry sectors are
characterized by the z component of the impurity spin and the
difference in the bosonic occupation number in both baths
in contrast to the hopping term of Eq. (15), allowing an
exact symmetry implementation in the VMPS procedure in
the presence of a truncated bosonic state space [48].

Given a simultaneous eigenstate |q〉 of Ŝ and H, the
application of the generator results in

S̃|q〉 = q|q〉 with q = 1
2σz + Ñy − Ñx , (17)

where Ñi = ∑
k b̃

†
ki b̃ki is the total number of bosons occupying

the Wilson chain of the individual baths and σz is the spin
component in the z direction. Given any ground state |G〉,
it follows that one may obtain another ground state via
eiφS̃ |G〉. Noting that the ground state comes with a symmetric
distribution of boson numbers (Ñx = Ñy), we conclude that q

should be chosen to be ± 1
2 :

S̃|Gq=±1/2〉 = ± 1
2 |Gq=±1/2〉 , (18)

Ĥ|Gq=±1/2〉 = Eg|Gq=±1/2〉 , (19)

where Eg is the ground-state energy. Hence, the ground
state is doubly degenerate. The expectation values 〈σx〉 and
〈σy〉 evaluated using the ground states |G±1/2〉 are zero
by symmetry. How to reconstruct the magnetization of the
symmetry-broken ground state, which is a linear superposition
within |Gq=±1/2〉, is described in Appendix D.

It turns out that the U(1) symmetry implementation cannot
be combined with the shifted OBB. Employing a continuous
shift δki to the bosonic creation and annihilation operators via
Eqs. (12) leads to additional terms of the form δki(b̃ki + b̃

†
ki)

in the symmetry generator. These linear corrections add non-
diagonal elements to S̃, precluding an explicit implementation
of the U(1) symmetry in the way indicated above. This limits
the application of symmetry-enforced VMPS effectively to the
parameter regime 1

2 < s < 1, in which the bosonic state space
truncation error does not spoil the calculations of physical
quantities such as critical exponents (see Appendix C for more
details). Here, the U(1) symmetry implementation is necessary
to accurately access the ultra-low-energy behavior governing
the critical phenomena of the model (see Sec. VI for details).
Note that all results of Ref. [24] are in agreement with the data
presented in the following.

D. Energy-flow diagrams

When VMPS is applied to a Wilson-chain Hamiltonian
such as Eq. (7), it is possible to generate an energy-level-
flow diagram akin to the ones of NRG. To this end, we
calculate the eigenvalues Ek of the left-block Hamiltonian
Ĥk

L in each iteration k < N when sweeping from the left
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FIG. 3. (Color online) Characteristic VMPS energy-flow dia-
grams for SBM2 with s = 0.6 in two phases for different values
of α and hz. k parametrizes the running energy scale according to
ω = ωc�

−k . While in the two upper panels the flow is generated using
the symmetry-enforced VMPS, the center panels show diagrams
generated by employing the shifted OBB. The energy levels flow
to a localized fixed point in (a) and (c) and to a delocalized fixed
point in (b) and (d) with degenerate (nondegenerate) ground-state
space, respectively. The degeneracy of each state is indicated by the
numbers to the right side of each curve. The colors in (a) and (b)
decode the symmetry label q of each energy level [black and red for
q = ±1/2, green and purple for q = ±3/2, and blue for q � |5/2|;
matching colors are used in panels (c) and (d)]. Panels (e) and (f)
display the corresponding occupation numbers 〈nkx〉 [Eq. (22)].

to the right end of the Wilson chain truncated to N sites.
Multiplied with the proper rescaling factor �k , the spectrum
E(k)

s relative to the ground-state energy E
(k)
0 = 0 corresponds

to the rescaled eigenspectrum determined in a NRG step.
The energy flow of excited states is not as smooth as using
NRG since our variational procedure focuses on optimizing
the global ground state of the system only. However, it can be
systematically improved by incorporating symmetries of the
model and keeping more states.

Energy-flow diagrams contain information about the fixed
points of the impurity model, as illustrated in Fig. 3 for
SBM2, where the upper panels [3(a) and 3(b)] are generated by
enforcing the U(1) symmetry while for the center panels [3(c)
and 3(d)] a shifted OBB is employed in the VMPS procedure.
The flow towards a localized fixed point with a twofold-
generated ground state is depicted in the left panels of Fig. 3.
Only the usage of OBB accounts for the exponential growth
of bosonic occupation numbers in the localized phase [cf.
Fig. 3(e)]. The energy flow in (c) is distorted when introducing
the bosonic shift on the Wilson chain since energy-scale
separation is effectively broken due to the exponential growth
in local bosonic occupation. The ground-state degeneracy
is conserved, however, when enforcing the symmetry in the
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VMPS optimization 3(a). In case the system moves towards a
delocalized fixed point with a single ground state at the end
of the Wilson chain, both methods generate flow diagrams of
similar quality [cf. Figs. 3(b) and 3(d)] since no bosonic shift
is necessary to appropriately describe the system’s ground
state. Hence, energy-scale separation remains intact in this
case. In the particular example of Figs. 3(b) and 3(d), the
intermediate fixed point visible at earlier iterations corresponds
to the critical fixed point QC2 discussed in Sec. IV B.

In addition to determining the system’s phase or the
convergence of the numerical data, flow diagrams can be used
to extract information about the effective energy scales charac-
terizing the crossover between fixed points. For example, the
transition from the critical to the DE fixed point is governed
by the low-energy scale T ∗ ≈ ωc�

−k∗
, with k∗ ≈ 25 for the

parameters used in Figs. 3(b) and 3(d).

III. PHASES AND PHASE DIAGRAM

In this section, we describe the phase diagram of the U(1)-
symmetric SBM2, together with the main characteristics of the
stable phases.

A. Observables

The most important observables for SBM2 employed in
this study are the static magnetization

Mα = 1
2 〈σα〉 (α ≡ x,y,z) (20)

and the corresponding susceptibility

χα = lim
h→0

∂Mα

∂hα

(α ≡ x,y,z) . (21)

In the case of U(1) symmetry, we distinguish χxy ≡ χx,y and
χz as well as Mxy ≡ Mx,y and Mz. We will also monitor
the occupation numbers of the bath modes of the discretized
Wilson chain

〈nki〉 = 〈b̂†ki b̂ki〉 (22)

with i = x,y.

B. Stable phases and trivial fixed points

We start with an overview on the stable phases numerically
found for SBM2. The description is augmented by an assign-
ment of the corresponding RG fixed points (which are trivial
with the exception of the critical phase), with their locations
specified in terms of renormalized values of the coupling
constants α and hz.

1. Free-spin or local-moment phase (F)

An asymptotically free spin is controlled by the free-spin
(F) fixed point, corresponding to vanishing dissipation α = 0
and hz = 0. The ground state is doubly degenerate, and the
susceptibility follows χ (T ) = 1/(4T ) for all field directions.

2. Localized or strong-coupling phase (LO)

For large dissipation, the system enters a phase with
spontaneously broken U(1) symmetry, controlled by the
localized (LO) fixed point. LO is located at α = ∞ and hz = 0.
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FIG. 4. (Color online) Behavior of the magnetization near the
LO–DE transition. The order parameter Mxy is driven to zero by in-
creasing hz past the critical value hz,c, indicated by the dashed line (a).
Correspondingly, the slight kink in the transverse-field response of
Mz at the LO–DE transition in (b) indicates the expected higher-order
singularity. The dashed lines are guide to the eye. The inset shows a
zoom into the data in panel (b), with the red dashed guide subtracted.
We note that the numerics tends to spontaneously favor ordered states
with |Mx | = |My |, as these are the least entangled states.

The bath-oscillator displacements are strongly coupled to the
impurity spin, which develops a T = 0 expectation value in
an arbitrary fixed direction in the xy plane [Fig. 4(a)]. This
phase is stable for finite (small) transverse field hz in which
case the expectation values of the impurity describe a canted
spin [Fig. 4(b)].

Since the symmetry-broken phase exists at T = 0 only, its
associated finite-T susceptibility is expected to be Curie-like,
albeit with a classical prefactor [37] χxy(T ) = 1/(12T ).

3. Delocalized or polarized phase (DE)

For dominant transverse field, the impurity spin is polarized
along the z axis and asymptotically decoupled from the bath.
This situation is controlled by the delocalized (DE) fixed point,
located at hz = ∞ and α = 0. The ground state is unique, the
in-plane magnetizations Mx and My vanish [Fig. 4(a)], and all
susceptibilities are finite.

4. Critical phase (CR)

The nontrivial feature of SBM2 is the existence of a stable
critical phase. This is reached for nonzero (but not too large)
dissipation strength α and hz = 0 in a certain range of bath
exponents s. It is controlled by an intermediate-coupling fixed
point, not unlike the celebrated two-channel Kondo fixed
point [2,39,40]. In this phase, the expectation value of the
impurity moment vanishes, but its temporal correlations decay
with a fractional power law. This translates into nonlinear
response functions with fractional exponents, as shown in
Fig. 5(b).

In contrast to assumptions based on early RG work [32,33]
(see also Sec. V A), the critical phase is not stable for all
dissipation strengths α [Fig. 5(a)] and does not even exist for
bath exponents s < s∗, with a critical value s∗ ≈ 0.76 ± 0.01.

We note that the critical nature of the CR phase implies sig-
nificant finite-size effects for the magnetization, as discussed
in Appendix B.
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FIG. 5. (Color online) Order parameter near the CR–LO transi-
tion (a) for different couplings α and (b) response to finite hx at two
points in CR and LO phase. The small but finite magnetization in the
CR phase in panel (a) is caused by finite-size effects as discussed in
Appendix B.

C. Numerical determination of phase boundaries

In order to study the critical phenomena of SBM2, it is
necessary to accurately determine the phase boundaries, i.e.,
to numerically calculate the critical coupling αc and the critical
transverse field hz,c, which define the location of the LO–CR
and LO–DE transitions.

In our experience, the most accurate and efficient way
to calculate αc and hz,c is to distinguish the phases by the
characteristic behavior of the bosonic occupation numbers
〈nki〉 on the Wilson chain. The average occupation of boson
modes increases towards the end of the Wilson chain in
the localized phase, while it decreases in both critical and
delocalized phases. Moreover, right at the phase boundary
(i.e., at criticality) the occupation numbers stay almost constant
throughout the chain, except for a sharp decay at the end due
to choosing a finite N for the Wilson chain. This characteristic
behavior, illustrated in Fig. 6, can be used to determine the
phase boundaries with high accuracy. We have thus adopted
this approach throughout to determine the precise values of
αc and hz,c involved in the results described in Sec. VI. The
accessible accuracy depends on the length N of the Wilson
chain. Specifically the calculation of αc or hz up to a decimals
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FIG. 6. (Color online) Characteristic behavior of the bosonic
occupation numbers on the Wilson chain near QC1 (a) and QC2 (b). In
both cases, the occupation numbers stay almost constant throughout
the chain directly at the phase boundary, while increasing towards the
end of the chain in the localized phase. In the delocalized and critical
regimes, we observe a steady decay.

requires a minimal chain length [24]

N ∝ aν
ln(10)

ln �
, (23)

where ν is the correlation-length exponent. Thus, for regions
in the phase diagram where ν becomes larger we have to
increase the length of the Wilson chain, making calculations
numerically more demanding.

Note that the numerically determined values of αc and hz,c

depend on the simulation parameters. Especially the logarith-
mic discretization shifts their values from those expected for a
continuum environment. Therefore, αc and hz,c deviate slightly
for different choices of � (typically the specific values vary
up to within 1%). This, however, does not affect the numerical
results for critical exponents [7,41].

IV. RENORMALIZATION-GROUP FLOW AND QUANTUM
PHASE TRANSITIONS

In this section, we use the insights gained in Sec. III to
deduce the qualitative RG flow of SBM2. The discussion will
primarily be made in the language and coupling constants of
the original Hamiltonian (1). A more complete discussion of
RG beta functions is given in Sec. V.

A. Qualitative RG flow

We start by rephrasing our numerical findings in RG
language while referring to the qualitative RG flow diagrams
in Fig. 7. For hz = 0, the model SBM2 displays three phases:
F, CR, and LO. For s � 1, the free-spin phase F is the only
stable phase, i.e., even large dissipation does not overcome the
quantum fluctuations arising through the two-bath coupling.
This can be contrasted with the physics of SBM1 where, in
the Ohmic case s = 1, large dissipation can overcome the
quantum fluctuations induced by a finite tunneling term (hz)
leading to localization: this distinction reflects the frustration
of decoherence in SBM2. For s < 1, F is unstable against
any finite α, whereas the localized phase LO is stable for
sufficiently large α. Finally, the critical phase CR only exists
for s∗ < s < 1 and small values of α.

A transverse field hz �= 0 destabilizes F for any s and drives
the system into the DE phase. CR is unstable against any finite
hz as well. In contrast, LO is stable and hence requires a critical
hz to be destroyed.

This collection allows us to construct the qualitative RG
flow diagrams for the ranges of bath exponents 0 < s < s∗,
s∗ < s < 1, and s � 1, as shown in Fig. 7. We also note that
the system is always localized for −1 < s � 0 provided that
α �= 0.

In addition to the CR fixed point corresponding to the
critical phase, there are two further critical fixed points, QC1
and QC2, which control the quantum phase transitions of
SBM2. These are described in more detail in the next section.

B. Intermediate-coupling fixed points

For hz = 0, there are two fixed points at intermediate
coupling, namely, CR and QC1, with QC1 controlling the
transition between CR and LO. Both intermediate-coupling
fixed points are unstable w.r.t. finite hz. Both fixed points
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FIG. 7. (Color online) Qualitative RG flow diagrams of the U(1)-symmetric SBM2 model in a plane spanned by the dissipation strength
α and the transverse field hz, as deduced from the VMPS results and supported by the analytical considerations of Sec. V. Filled (open) dots
denote stable (unstable) RG fixed points; the heavy line is the separatrix corresponding to the DE–LO transition. Qualitatively distinct behavior
is found for the bath-exponent ranges (a) 0 < s < s∗ ≈ 0.76, (b) s∗ < s < 1, and (c) s � 1. The panels (b1) and (b2) illustrate the evolution
of both location and relevant-operator dimensions of the fixed points CR and QC1, i.e., ν > ν ′ of QC1 in regime (b1) while ν < ν ′ of QC1 in
regime (b2) (for details see text).

only exist for s∗ < s < 1, and it is interesting to discuss their
location upon variation of the bath exponent s: As will be
shown analytically in Sec. V, CR moves towards F as s → 1−
whereas QC1 moves towards LO in the same limit, in the
fashion characteristic of a lower critical dimension.

In contrast, as s → s∗+, both CR and QC1 approach each
other, merging at s = s∗, and disappear for s < s∗. This
merging of two intermediate-coupling fixed points leads to
rather unusual behavior, with the phase boundary of LO
jumping upon variation of s across s∗.

For finite hz, a transition can be driven between DE and
LO, which is controlled by QC2. QC2 moves towards LO as
s → 1−, again in a manner of a lower critical dimension. This
is consistent with the fact that the localized phase ceases to
exist for s > 1. In the limit s → 0+, QC2 approaches DE, such
that DE becomes unstable w.r.t. finite α for s � 0, reflecting
that the system is always localized.

C. Critical exponents

The quantum phase transitions of SBM2 can be character-
ized by standard critical exponents [49]. For a transition which
can be accessed by varying α (at fixed hz), with the transition
point at α = αc, the following exponents can be defined from
the zero-temperature order parameter Mxy and its conjugate
field hxy :

Mxy(α,hxy = 0) ∝ (α − αc)β , (24)

Mxy(α = αc,hxy) ∝ h1/δ
xy . (25)

Transitions which occur at finite hz can also be driven by
varying hz at fixed α; correspondingly, the exponent β may
be defined via Mxy ∝ (hz,c − hz)β as well. In contrast, for
hz = 0 transitions, hz takes a role different from (α − αc), as
it reduces the symmetry of the model from U(1) × Z2 to U(1).
It is useful to introduce an exponent for the nonlinear response
to hz according to

Mz(α = αc,hxy = 0,hz) ∝ h1/δ′
z . (26)

A correlation-length exponent is defined as usual from
the divergence of a correlation length, here equivalent to the

vanishing of a crossover energy T ∗ according to

T ∗(α,hxy = 0) ∝ |α − αc|ν ; (27)

note that there is no separate dynamical exponent for the (0 +
1)-dimensional impurity model under consideration, formally
z = 1. For fixed points located at hz = 0 which are unstable
towards finite hz, we additionally define

T ∗(α = αc,hxy = 0,hz) ∝ |hz|ν ′
. (28)

The linear-response order-parameter susceptibility diverges
at the quantum critical point, in the approach from either
smaller α or from finite T , according to

χxy(α,T = 0) ∝ (αc − α)−γ , (29)

χxy(α = αc,T ) ∝ T −x . (30)

Within the quantum-to-classical correspondence, x is related
to the finite-size scaling of the classical model’s susceptibility
at criticality. One may also consider the dynamic version of
the order-parameter susceptibility, which follows a power-law
behavior at criticality

χxy(α = αc,ω) ∝ ω−y , (31)

corresponding to power-law autocorrelations of the impurity
spin in time. The exponent y contains the same information
as the usually defined anomalous exponent η, with y ≡ 2 − η.
At the critical points of SBM2 (and other spin models with
long-ranged interactions), η = 2 − s (equivalently, y = s) is
believed to be an exact relation (see also Sec. V).

Due to the anisotropic nature of the spin fluctuations,
different power laws arise for the z-component susceptibility:

χz(α = αc,T ) ∝ T −x ′
, (32)

χz(α = αc,ω) ∝ ω−y ′
,. (33)

Finally, it is also useful to introduce exponents which
describe the location of the DE–LO phase boundary at small
hz. For 0 < s < s∗, this phase boundary is connected to the
α = hz = 0 point, and we define

hz,c ∝ αψ . (34)
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In contrast, for s∗ < s < 1, the DE–LO boundary terminates
at the CR–LO transition located at α = αc and hz = 0, and we
use

hz,c ∝ (α − αc)ψ . (35)

D. Scaling

The exponents introduced above can be related to each
other via scaling relations, following textbook strategy [49].
The standard scaling relations do hold:

β δ = β + γ , (36)

γ = (2 − η)ν ≡ yν . (37)

The exact result y = s then implies

γ = sν . (38)

For critical points with hyperscaling, additional scaling rela-
tions apply, which involve spatial dimensionality d:

2β + γ = νd , (39)

δ = d + 2 − η

d − 2 + η
. (40)

Furthermore, hyperscaling implies x = y. For d = 1 and using
the exact result y = s, the hyperscaling relations can be
converted into

x = s , (41)

β = γ
1 − s

2s
= ν

1 − s

2
, (42)

δ = 1 + s

1 − s
. (43)

For critical points of SBM2 with hz = 0, the scaling
hypothesis underlying hyperscaling can be extended to include
the dependence on hz [in addition to that on (α − αc), hxy , and
T ]. This then yields additional hyperscaling relations: x ′ = y ′
and

ν ′ = 1 + 1

δ′ , (44)

δ′ = 1 + x ′

1 − x ′ (45)

(see Appendix A for a derivation).
We recall that hyperscaling, which is of general interest

because it implies simple and powerful scaling relations which
can be applied in analyzing both experimental and numerical
data, usually holds for phase transitions below their upper
critical dimension. Hyperscaling is spoiled by the existence of
dangerously irrelevant variables in the critical theory; the most
important example here is the quartic coupling of a (classical)
φ4 theory in dimensions d > 4.

V. EPSILON EXPANSIONS AND CRITICAL BEHAVIOR

We now describe analytical approaches to the critical-point
properties of SBM2, utilizing the field-theoretic toolbox with
renormalization-group and epsilon-expansion techniques.

A. Expansion around F: CR phase

The free-impurity fixed point F is characterized by a
doubly degenerate impurity at α = 0, hz = 0. Tree-level power
counting yields the scaling dimensions (recall that α ∝ λ2

qi)

dim[α] = 1 − s , (46)

dim[hz] = 1 . (47)

1. DE–LO phase boundary

From the scaling dimensions one can immediately read
off the asymptotic behavior of the flow trajectories leaving
the F fixed point hz ∝ α1/(1−s). This also applies to the DE–
LO separatrix in the exponent range 0 < s < s∗, yielding the
phase-boundary exponent according to Eq. (34) as

ψ = 1

1 − s
. (48)

2. RG analysis

Now, we turn to a RG analysis of the flow of α at hz = 0.
Given that the dissipation is a marginal perturbation at s = 1,
this is akin to a standard epsilon expansion with ε = 1 − s,
which can give reliable results for small (1 − s). Straightfor-
ward perturbation theory, along the lines of Refs. [33,37,38],
yields the two-loop beta function [33,50]

β(α) = (1 − s)α − α2 + α3 . (49)

This beta function indicates the existence of an infrared-stable
fixed point at

α∗ = (1 − s) + (1 − s)2 + O[(1 − s)3] (50)

and hz = 0; this is the CR fixed point. Its properties can be
obtained in a double expansion in α and (1 − s). The exact
result x = y = s follows from the diagrammatic structure
of the susceptibility [37] or, alternatively, from a Ward
identity [33]. From this, we have

1/δ = 1 − s

1 + s
(51)

as above. The z-component correlator requires an explicit
computation, with the two-loop result [33]

1 − y ′ = 2(1 − s) + (1 − s)2 + O[(1 − s)3]. (52)

The remaining exponents involving the hz response can be
calculated from the hyperscaling relations (44) and (45), with
the result

1/ν ′ = s − (1 − s)2

2
+ O[(1 − s)3] , (53)

1/δ′ = 1 − s + 3(1 − s)2

2
+ O[(1 − s)3] . (54)

We point out that the RG flow towards the CR fixed point is
rather slow because the leading irrelevant operator, its prefactor
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being (α − α∗), has a small scaling dimension of ω = 1 −
s. Therefore, quickly converging numerical results are best
obtained using a bare coupling close to α∗ [50].

3. Disappearance of CR for s < s∗

It is interesting to note that the beta function in
Eq. (49) displays two nontrivial fixed points at α∗

1,2 = 1/2 ±√
1/4 − (1 − s). While α∗

2 corresponds to the stable CR fixed
point of Eq. (50), the infrared-unstable fixed point at α∗

1 is
outside the range of validity of the epsilon expansion. However,
if we choose to ignore this restriction, the comparison with
the numerical results suggests to associate α∗

1 with QC1.
Remarkably, α∗

1 and α∗
2 approach each other upon decreasing

s from unity, and the criterion α∗
1 = α∗

2 yields s∗ = 3
4 which

is extremely close to the numerical determined value of
s∗ ≈ 0.76 ± 0.01 where CR and QC1 merge.

While this can be interpreted as a remarkable success of
the epsilon expansion (it predicts not only the existence of
the CR phase, but also its disappearance for s < s∗), we note
that this epsilon expansion does not provide means to reliably
calculate critical properties of QC1, simply because α∗

1 is never
small. As we show in the following, the presence (absence) of
hyperscaling in a field at CR (QC1) even indicates a qualitative
difference between CR and QC1 which is not apparent from
this epsilon expansion.

B. Expansion around DE: QC2

It is also possible to devise an expansion around the
delocalized fixed point DE, located at hz = ∞, α = 0. Such
an expansion has been first used in Ref. [19] for SBM1,
but the analysis there missed the presence of a dangerously
irrelevant operator [the quartic coupling u in Eq. (56)] and
erroneously assumed hyperscaling, which led to partially
incorrect conclusions [23]. Here, we correct this approach
and apply it to SBM2. For convenience we assume equal
couplings between the impurity and the different oscillator
modes λqi ≡ λi , such that the energy dependence of Ji(ω) is
contained in the density of states of the oscillator modes ωq ,
and we have αi ∝ λ2

i .

1. Projection

At DE we have a single low-lying impurity level |↑〉, while
|↓〉 is separated by an energy hz. Low-energy interaction
processes between the impurity and the baths arise in second-
order perturbation theory, controlled by the coupling

κi = λ2
i /hz . (55)

In the low-energy sector (this corresponds to projecting out the
|↓〉 state), the effective theory reads as (assuming from here
on αx = αy or κx = κy)

Ĥeff = Ĥbath + m
(
φ2

x + φ2
y

) + u
(
φ2

x + φ2
y

)2
(56)

with m = −κ and u = κ2. We have defined

φi =
∑

q

(âqi + â
†
qi) , (57)

and we have omitted higher-order terms in Eq. (56). Figure 8
illustrates how the m and u terms are generated from H of

λ
(a) (c)(b)

FIG. 8. Feynman diagrams occurring in the perturbation expan-
sion around DE. Full and dashed lines denote the propagators of the
|↑〉 and |↓〉 impurity states, respectively; the two states are separated
by a gap hz. The wiggly line is the local bath boson φx,y . (a) Interaction
vertex λ. (b) Bilinear φ term. (c) Quartic φ term.

the original model SBM2; this approach is valid provided that
λ � hz,ωc.

2. Local φ4 theory and quantum-to-classical correspondence

The theory Ĥeff can be understood as a theory for the
local bosonic fields φx,y . Their “bare” propagator arises from
Ĥbath and is given by G−1

φ (iνn) = iA0sgn(νn)|νn|s + A1 at low
energies, with A1 = −2ωc/s for the power-law spectrum in
Eq. (2). The main role of the impurity in Ĥeff is that of an
additional mass term (recall that the impurity spin degree of
freedom has been projected out).

Importantly, Ĥeff in Eq. (56) is identical to a local φ4

theory for an XY-symmetric order-parameter field (φx,φy)
with long-ranged interactions ∝1/τ 1+s in imaginary time. It
displays a critical point which corresponds to a vanishing φ

mass. Ignoring the influence of the quartic interaction u, this
happens at mc = A1 < 0; this can alternatively be understood
by interpreting m as the strength of a potential scatterer, where
mcGφ(0) = mc/A1 = 1 is the condition for a zero-energy pole
of the T matrix. For positive mass, i.e., small κ , Ĥeff is in a
disordered phase corresponding to DE, whereas negative mass
drives the system into an ordered phase with spontaneously
broken XY symmetry; this can be identified with LO.

Consequently, the critical point of Ĥeff corresponds to QC2.
As the φ4 theory in question is the low-energy theory of a
classical XY chain with long-range interactions, we conclude
that QC2 obeys a quantum-to-classical correspondence at least
if QC2 is located in the small-κ parameter regime where the
above mapping to Ĥeff is valid, i.e., for small s. The critical
properties for the classical XY chain are listed in Sec. V D; in
particular, mean-field behavior obtains for s < 1

2 .

3. RG analysis

An alternative approach to Ĥeff is to analyze the flow of
the couplings m and u near the DE fixed point by RG means.
Power counting w.r.t. the λ = 0 limit gives

dim[m] = −s , (58)

dim[u] = 2s − 1 , (59)

i.e., m is marginal at s = 0 while u is irrelevant. Near s = 0
we can follow the flow of m which yields at one-loop order

β(m) = −sm + m2 . (60)
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Aside from the stable DE fixed point at m = 0 (i.e., α = 0),
this flow equation displays an infrared unstable fixed point
(QC2) at

m∗ = s + O(s2) (61)

which controls the transition between the DE and LO phases.
Corrections from u only enter at higher orders in s because
the initial values obey u = m2. We note that the value of m∗ in
Eq. (60) is consistent with mc = −A1 from above. Expanding
the RG beta function around the fixed point (61) gives the
correlation-length exponent

1/ν = s + O(s2), (62)

apparently in agreement with the classical mean-field re-
sult (65).

One may employ renormalized perturbation theory to
calculate critical exponents in a double expansion in m and
s. This is, however, complicated by the facts that (i) for
many observables of the original model SBM2 one needs to
restore the impurity Hilbert space, i.e., undo the elimination
of the |↓〉 state, and (ii) the quartic coupling u is dangerously
irrelevant and cannot be neglected. For selected exponents, we
have checked that this procedure yields results consistent with
Eqs. (66)–(70).

C. Quantum-to-classical mapping of SBM2

One may ask whether a general mapping of SBM2 to a
classical statistical-mechanics model exists. Such a mapping,
using a Feynman path-integral representation, can indeed be
formulated for the single-bath spin-boson model (SBM1) and
directly leads to an Ising chain with both long-ranged 1/r1+s

and short-ranged interactions [16,25].
Here, we sketch what happens when applying the same

procedure to SBM2. For simplicity, we restrict ourselves to
�h = 0. The Hamiltonian may be written as Ĥ = Ĥx + Ĥy +
Ĥbath with

Ĥi =
∑

q

λqi

σi

2
Qqi (i = x,y),

Ĥbath =
∑
i=x,y

∑
q

(
P 2

qi

2mq

+ mqω
2
qQ

2
qi

2

)
. (63)

The Feynman path integral for the partition function can be
expressed using eigenstates of σx , σy , and the oscillator’s
coordinates. Inserting the identities for the spin variables (those
for the oscillator coordinates are standard and do not lead to
any complications), it reads as

Z = TrP,Q

∫
DσxDσy〈σxN |e−εĤx |σyN−1〉

× 〈σyN−1|e−εĤy |σxN−1〉e−εĤbath〈σxN−1| . . . |σx0〉, (64)

where N is the number of Trotter slices, ε = β/N , and
σx0 = σxN . In principle, a classical spin model can now
be obtained by integrating out the bath oscillators, which
generates long-ranged interactions for the variables coupled
to these oscillators. In the case of SBM2, these are both σx

and σy , such that one ends up with a representation in terms of
sets of Ising spins. To rewrite this in terms of a classical spin
model requires to express the matrix elements in Eq. (64) as
exponentials of classical interactions. Remarkably, the set of
matrix elements 〈σx |σy〉 cannot be expressed as eHc(σx,σy ) with
a classical real Hamiltonian function Hc, i.e., the Feynman
path-integral representation of SBM2 leads to an ill-defined
classical model with negative Boltzmann weights [51]. Clearly,
this problem can be traced back to the noncommutativity of
the two spin components which couple to the oscillator baths
in SBM2.

We recall, however, that the physics of the QC2 fixed
point of SBM2 can be mapped onto that of a classical XY
model at least near s = 0 (see Sec. V B). Assuming that the
character of QC2 does not change fundamentally as a function
of s, this implies that a quantum-to-classical correspondence
indeed holds for QC2. As will be shown in Sec. VI, our
numerical results for the critical behavior near QC2 are
perfectly consistent with this assertion.

D. Exponents of classical XY chain

Here, we collect and summarize the available results for
critical exponents of the classical XY chain with long-range
interactions decaying as 1/r1+s ; these have been discussed
in Refs. [29,30]. The classical model has a thermal phase
transition for 0 < s < 1; no ordered phase exists for s � 1.

For s < 1
2 and s � 1

2 one may utilize the language of a φ4

theory. Power counting shows that the quartic interaction is
marginal for s = 1

2 , such that mean-field behavior attains for
s < 1

2 , with

1/ν = s , (65)

η = 2 − s , (66)

β = 1/2 , (67)

γ = 1 , (68)

δ = 3 , (69)

x = 1/2 , (70)

with hyperscaling being violated.
In the non-mean-field regime s > 1

2 , one can obtain
exponents in an expansion in ε = s − 1

2 , with two-loop results
as quoted in Ref. [29]:

γ = 1 + 8

5
ε − 16

25

(
1 − 17A(1/2)

5

)
ε2 + O(ε3) , (71)

η = 2 − s , (72)

the latter result is believed to be exact to all orders [29,52],
and the constant

A(s) = s[ψ(1) − 2ψ(s/2) + ψ(s)] (73)

in terms of the digamma function ψ(x), with A(1/2) = 2.957.
Hyperscaling holds for 1

2 < s < 1; this allows us to derive
the remaining exponents: The correlation-length exponent ν

follows from the scaling relation γ = (2 − η)ν [Eq. (37)],
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while β can be read off from the hyperscaling relation
β = γ (1 − s)/(2s) [Eq. (42)], with the results

1/ν = 1/2 + 1/5ε − 3.217ε2 + O(ε3) , (74)

1/β = 2 + 24/5ε − 3.269ε2 + O(ε3) . (75)

Near s = 1 RG equations can be derived [30] using a variant
of a method proposed by Polyakov [53]; this is similar to an
ordered-phase expansion in (2 + ε) dimensions for magnets
with short-range interactions. Exponents are formally obtained
in an expansion in (1 − s); the one-loop results read as [30]

1/ν = 1 − s + O[(1 − s)2] , (76)

η = 2 − s , (77)

the latter result again believed to be exact to all orders. Using
hyperscaling, we obtain the one-loop result for β as

β = 1/2 + O[(1 − s)2] . (78)

VI. NUMERICAL RESULTS FOR CRITICAL EXPONENTS

Taking into account the insights gained in the preceding
Secs. IV and IV, we now focus on the numerical results
obtained for the critical behavior of SBM2. To this end, we
employ the VMPS methodology as introduced in Sec. II at the
quantum phase transitions QC1 and QC2, as well as in the CR
phase to extract various critical exponents.

Our main results are that (i) the transition between LO and
DE, controlled by QC2, indeed obeys quantum-to-classical
correspondence, i.e., its critical properties are that of a
classical XY chain with long-range interactions, and (ii) the
transition between CR and LO, controlled by QC1, is of
unusual nature, with no quantum-to-classical correspondence
and hyperscaling present only at hz = 0.

In the following, we distinguish VMPS results obtained
using the shifted OBB (denoted by OBB) from the symmetry-
enforced approach [denoted by U(1)SB]. In all calculations, we
work with a fixed Wilson discretization parameter � = 2, bond
dimension D = 60, and local bosonic dimension dk = 100
while varying the chain length N and the effective local
dimension d̃k � dk/2, as denoted in the figures. Since dk

and d̃k are set equal for different sites during a single VMPS
calculation, we omit the label k in the following. This choice
of D and d̃ ensures that we keep all singular values larger than
10−5 in our calculation.

A. Transition between LO and DE phase

We start the discussion with the continuous quantum phase
transition between the LO and DE phases that is controlled
by the critical fixed point QC2. As explained in Sec. V,
this transition should correspond to the thermal transition
of the XY chain with long-ranged interactions. Here, we
show that our numerical results are in excellent agreement
with analytical predictions of scaling and epsilon-expansion
calculations, listed in Sec. V D, and therefore fully confirm
the quantum-to-classical correspondence.

1. Order-parameter exponent β

Accessible only at finite hz, we drive the transition between
the DE and LO phases by varying hz for fixed α. Hence,
the critical exponent β is defined via Mxy ∝ (hz,c − hz)β

at the phase boundary moving into the LO phase. Figures 9(a)
and 9(d) show the corresponding numerical data. The char-
acteristic power-law behavior of the magnetization for fixed
s = 0.4 close to the critical point on a log-log scale is displayed
in Fig. 9(a). The exponent derived from a linear fit to these
data, namely β = 0.48 ± 0.03, corresponds to the mean-field
prediction in Eq. (67) within the error bars. Deviations from
power-law behavior at small |hz − hz,c| can be attributed to
a combination of finite chain length N � 80 and numerical
errors of VMPS. Our numerical method generates power-law
plots of similar quality for all s � 0.3; the resulting exponents
are collected in Fig. 9(d). These are found to be in excellent
agreement with the predictions of the quantum-to-classical
mapping. As for the classical XY chain, the exponent assumes
its mean-field value β = 1

2 for 0 < s < 1
2 , while it follows the

two-loop RG results in Eq. (75) for s = 1
2 + ε. In the limit

of s → 1−, β shows the tendency to approach the value 1
2 ,

consistent with Eq. (78). The growing shifts in the localized
phase, in combination with the decreasingly low-energy scale
necessary to precisely access the critical point, prevent our
numerics to extract accurate results for β in the deep sub-
Ohmic regime (s � 0.3). The second issue (decreasingly
low-energy scale) also applies in the limit s → 1−.

2. Response exponent δ

As defined in Eq. (25), δ can be extracted from the response
at criticality of the order parameter Mxy to an external magnetic
field. Figure 9(b) displays the typical power-law scaling of the
magnetization at the critical point. The deviations at small hx

are again related to finite system size and numerical artifacts.
Determining δ from power-law fitting over six decades for
fixed s = 0.4, we find it to be in accordance with the mean-field
predictions of the quantum-to-classical mapping δMF = 3.
Although the deep sub-Ohmic regime s < 0.3 is again not
accurately accessible for our VMPS approach, the collected
results for s � 0.3 depicted in Fig. 9(e) strongly support
the validity of quantum-to-classical mapping: for s < 1

2 ,
δ approaches its mean-field value of δMF = 3, while for 1

2 <

s < 1 it clearly follows the hyperscaling relation in Eq. (43).

3. Correlation-length exponent ν

The definition of the correlation-length exponents ν in
Eq. (27) involves a crossover energy scale T ∗ that can easily
be derived using the VMPS energy-flow diagrams introduced
in Sec. II D. To this end, we determine the site on the Wilson
chain k∗ where the flow starts to significantly deviate from
the characteristically smooth flow at the critical point. This
approach is illustrated in Fig. 10, where two typical energy
flows inside the localized phase close to QC2 are displayed.
In the beginning, the system resides at the critical fixed
point (smooth energy flow), then a transition to the localized
fixed point occurs. This crossover is indicated by the red bar
corresponding to the iteration k∗. It is defined by the point
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FIG. 9. (Color online) VMPS results for critical exponents β, δ, and ν at the LO–DE quantum phase transition. Analogous to Fig. 12,
the upper panels (a)–(c) display the calculated VMPS results for the order parameter and the crossover scale close to/at the critical point for
s = 0.4, respectively. The s-dependent behavior of the critical exponents β, δ, and ν obtained from the respective power-law fits is illustrated
in lower panels (d)–(f). In addition, these panels contain the corresponding predictions of the classical XY model (dashed lines), which we find
to be in excellent agreement with the numerical data.

where the first-excited energy level drops below E < 0.05 in
rescaled energy units.

The crossover energy scales T ∗ determined from such
an analysis are collected in Fig. 9(c) for fixed s = 0.4 and
α = 0.1 close to the phase transition. The power-law scaling
of T ∗ over several orders allows us to extract ν with high
accuracy. Studying the s dependence in Fig. 9(f), we again find
excellent agreement with the classical XY model: ν closely
follows the mean-field prediction [Eq. (65)] for 0 < s < 1

2
(black dashed line), and also agrees with the perturbative RG
calculations near s = 1

2 [Eq. (74)] and s = 1 [Eq. (76)]. As
a further check, we analyze the validity of the hyperscaling
relation (42) involving both β and ν by usage of our numerical
results. Figure 11(a) shows that the numerically extracted
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FIG. 10. (Color online) Energy-level-flow diagrams for s = 0.4
in the LO close to the LO–DE transition. The smooth behavior in the
first iterations reflects the characteristics of the critical fixed point,
while the bending and jumps in the lines suggest that the system flows
to the localized fixed point. The red bar indicates the characteristic
iteration k∗ of the transition that is used to calculate the low-energy
scale T ∗. By tuning hz close to its critical value, k∗ moves towards
higher iterations.

exponents obey hyperscaling for 1
2 < s < 1 but clearly violate

the respective relation in regime s < 1
2 , as expected by

quantum-to-classical correspondence.

B. Transition between LO and CR phases

Next, we consider the second continuous quantum phase
transition of SBM2 between LO and CR phases, which is
controlled by the critical fixed point QC1. In this case, the
quantum-to-classical correspondence is presumably violated
(see Sec. V C), and no analytical predictions for the critical
exponents are available.

1. Order-parameter exponent β

The transition between CR and LO phases can be driven
by varying α at hz = 0 and s∗ < s < 1. Hence, β is defined

/
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FIG. 11. (Color online) Hyperscaling relation (42) involving ex-
ponents β and ν at QC1 (a) and QC2 (b) with the numerical data (dots)
is compared to the exact results (dashed line). We find excellent
agreement with the theory at QC1 for all values of s∗ < s < 1 as
well as for 1

2 < s < 1 at QC2. As expected by quantum-to-classical
mapping, the numerical data confirm that hyperscaling (HYP) fails
at QC2 below s < 1

2 .
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FIG. 12. (Color online) VMPS results for critical exponents β, δ, and ν at the LO–CR quantum phase transition. In (a) the power-law
scaling of the order parameter in the vicinity of the critical point is displayed for fixed s = 0.875, whereas the fitted values of β are collected
for various s in (d). Panel (b) shows similar VMPS data for the order parameter at the critical point w.r.t. an increasing hx for fixed s = 0.8,
which we use to extract the exponent δ. Its overall s dependence is illustrated in (e), which is in accordance with hyperscaling equation (43)
(dashed line). In addition, (c) depicts the crossover energy scale T ∗ close to the transition, which relates to the exponent ν for the correlation
length which shows an overall s dependence according to panel (f).

according to Eq. (24) with the corresponding numerical data
displayed in Figs. 12(a) and 12(d). Figure 12(a) depicts the
scaling of Mx close to αc for fixed s = 0.875 on a log-log scale,
where a power-law behavior is apparent over more than three
decades, with an exponent β = 0.48 ± 0.01. Figure 12(d)
shows the dependence of β on the bath exponent s gained
from power-law scaling fits with similar quality as Fig. 12(a).
We find increasing values of β > 1 for s → s∗, while in
the limit of s → 1− our VMPS calculations suggest that β

approaches the value 1
2 . Furthermore, we are able to show that

β in combination with ν satisfies the hyperscaling relation in
Eq. (42), as illustrated in Fig. 11(b).

Note that the extraction of β is particularly complicated
for QC1 since this transition comes with a large exponent ν

for the correlation length, on which we elaborate below. This
property relates to a low-energy scale required to resolve αc

appropriately Eq. (23), a precondition to obtain a solid power-
law scaling of the order parameter Mx . Such calculations
involving large chain lengths (N > 100) become extremely
sensitive to artificial symmetry breaking caused by numerical
noise. Therefore, the use of the symmetry-enforced VMPS
is essential in this parameter regime, for performance and
accuracy reasons. In particular, the application of OBB fails
for energy scales significantly below double precision accuracy
since the small “perturbations” introduced by a shifted basis
grow exponentially for later Wilson shells, and hence break
the energy-scale separation on the Wilson chain. This should
not affect the validity of our results since a shifted basis is not
strictly required for 1

2 < s < 1 (see Appendix C).

2. Response exponents δ and δ′

For a transition at hz = 0, it is possible to extract both
exponents δ and δ′ via the order parameter’s response to a

magnetic field according to Eqs. (25) and (26), respectively.
Focusing first on δ, Figs. 12(b) and 12(e) illustrate the results
of our VMPS calculations. Again, Fig. 12(b) shows the typical
response of the magnetization to an increasing hx at the
critical point for s = 0.8. The robust power-law scaling over
more than six decades allows us to extract δ = 9.2 ± 0.3 with
high accuracy. The data collected from OBB calculations with
different values of s in Fig. 12(e) indicate that δ closely follows
the hyperscaling relation in Eq. (43).

In contrast to δ, we find the exponent δ′, corresponding
to the hz response, to be completely independent of the bath
exponent s, having δ′ = 1 for all s at the LO–CR transition
(not shown).

3. Correlation-length exponent ν

As described above, the crossover energy scale T ∗ charac-
terizing the LO–CR transition is obtained by studying energy-
flow diagrams close to the phase boundary. Figure 12(c)
displays the extracted T ∗ for fixed s = 0.875 and hz = 0, with
clear power-law scaling being apparent over several decades.
This allows us to extract ν with high accuracy by fitting.
Figure 12(f) shows the s dependence of the exponent ν. Our
results suggest that ν diverges both in the limit s → s∗+ and
s → 1−, in a manner reminiscent of the approach to a lower
critical dimension. We have verified that the exponent ν is
identical for both sides of the transition, i.e., independent
of whether QC1 is approached from the LO or from the
CR phase.

Generally, the computed values of ν take large values for the
entire range of bath exponents. As previously discussed, this
causes our VMPS calculations to require large chains (N >

100) in order to access the ultra-low-energy scales needed to
accurately determine αc.
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however, hyperscaling appears to be violated. Note that the dots show
ν ′ − 1, as we find that δ′ = 1 for all s.

4. Correlation-length exponent ν ′, absence of hyperscaling,
and field instability of QC1

A finite hz applied at the zero-field critical coupling αc(hz =
0) places the system into the DE phase. The characteristic
crossover scale T ∗ obtained from the energy-flow diagrams
determines the critical exponent ν ′, which only diverges in
the limit s → 1− but not for s → s∗+, in contrast to ν.
Most importantly, δ′ and ν ′ in combination do not obey the
hyperscaling relation (44), as illustrated in Fig. 13(b). Hence,
our results suggest that QC1 obeys hyperscaling properties
only in the absence of a transverse field hz. The underlying
reason for this exotic critical behavior is not understood.

We note that the values for ν ′ can be read off from Fig. 13(b)
as δ′ = 1 for all s. They imply that ν > ν ′ for s∗ < s � 0.83
while ν < ν ′ for 0.83 � s < 1, i.e., the role of the leading
relevant operator at QC1 changes at s ≈ 0.83 [see Fig. 7(b)].

We have also investigated the flow along the separatrix
between DE and LO at small hz, in order to verify that QC1
is unstable along this separatrix, which implies that any finite-
field transition is controlled by QC2. To this end, we first
identify the stable energy-flow patterns corresponding QC1
and QC2 by placing the system at criticality for hz = 0 (QC1)
and sizable hz (QC2) (see Fig. 14). Second, we study the
energy-flow diagrams for parameters sets at criticality and
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FIG. 14. (Color online) Energy-flow diagrams at QC1 (a) and
QC2 (b). The two critical fixed points can be distinguished by noting
the twofold ground-state degeneracy at QC1 that disappears at QC2
introducing a finite hz.
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FIG. 15. (Color online) Two energy-flow diagrams for parame-
ters located on the critical separatrix with small hz, i.e., close to
QC1. In both cases, the level energies clearly flow from QC1 at high
energies to QC2 at low energies, thus confirming the instability of
QC1.

very small hz. As displayed in Fig. 15, we observe a clear
flow from QC1 at high energies to QC2 at lower energies, thus
confirming the schematic RG flow diagram in Fig. 7(b).

C. CR phase

We supplement the analysis of the critical phenomena of
SBM2 by briefly elaborating on the properties of the impurity
spin in the CR phase. Although an abridged version of the
results has already been presented elsewhere [41], this section
completes the picture and also includes a discussion on the
validity of hyperscaling inside the CR phase.

1. Response exponents δ and δ′

The RG calculations around the free-spin fixed point,
presented in Sec. V A, predict a nonlinear scaling of the
magnetization in the CR phase [see Eqs. (51) and (54)]. Our
numerical data confirm this nonlinear response, as illustrated
in Figs. 16(a) for δ and in 16(b) for δ′ at different values
of s, α chosen close to the CR fixed point α∗. We find a
clear power-law scaling over several decades. The extracted
values for δ in Fig. 16(d) are perfectly consistent with the
hyperscaling result (51), while those for δ′ in Fig. 16(e) are
in good agreement with the perturbative results for s → 1−.
The small deviations of the numerical data from the RG
calculations for larger values of (1 − s) are expected since the
higher-order contributions in Eq. (54) become more important.

2. Correlation-length exponent ν ′ and field instability of CR

The energy-flow diagrams (not shown) confirm that the
CR phase is unstable w.r.t. a finite transverse field hz, i.e.,
applying any finite hz places the system into the DE phase.
The corresponding crossover scale T ∗(hz) between the CR
and DE fixed points allows us to extract the correlation-length
exponent ν ′ (28). The collected results for different s are
displayed in Figs. 16(c) and 16(f), with ν ′ being in fair
agreement with perturbative prediction in Eq. (53).

In contrast to QC1, where the hyperscaling relation (44) is
not met by the numerical data, ν ′ and δ′ obey hyperscaling in
the critical phase, as depicted in Fig. 13(a).
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FIG. 16. (Color online) VMPS results for critical exponents δ, δ′, and ν ′ inside the CR phase for various s, with α chosen close to the CR
fixed point α∗ [α(s) displayed in inset of panel (a)]. The magnetization shows nonlinear behavior in response to hx (a) and hz (b). The exponents
δ and δ′ extracted from the power-law scaling are in good agreement with perturbative RG from Eqs. (51) and (54) in the limit of s → 1+, as
illustrated in panels (d) and (e). The same applies for ν ′ computed from the vanishing crossover energy scale T ∗ in panel (c), which agrees
with the RG prediction (53) for large values of the bath exponent s (f).

D. Phase-boundary exponent ψ

We have determined the location of the DE–LO phase
boundary for small hz, in order to extract the expected
power-law behavior. Sample results for s < s∗, where the
phase boundary starts at α = 0, are shown in Fig. 17(a); they
are in essentially perfect agreement with the analytical result
ψ = 1/(1 − s) (48).

For s∗ < s < 1, the phase boundary starts at the zero-field
CR–LO transition at α = αc, and thus determining ψ requires
an accurate knowledge of αc and is therefore rather time
consuming. Sample results are in Fig. 17(b). A hyperscaling-
based guess would be ψ = ν/ν ′ which we find approximately
fulfilled for s = 0.825 and 0.85, but violated for s = 0.875.
(Recall that the hyperscaling relation between ν ′ and δ′ is
violated as well.)
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FIG. 17. (Color online) Numerical results for the DE–LO phase
boundary at small hz for selected values of the bath exponent s,
obtained by U(1)SB with N = 50,d̃k = 24 (a) and N = 120,d̃k = 40
(b). (a) Regime of s < s∗ where hz,c ∝ αψ . (b) Regime of s∗ < s < 1
where hz,c ∝ (α − αc)ψ . The power-law fits to determine the phase-
boundary exponent ψ are shown by dashed lines.

VII. CONCLUSIONS

Using the variational matrix-product-state approach, we
have numerically determined the phase diagram of the U(1)-
symmetric two-bath spin-boson model (SBM2), which is char-
acterized by the phenomenon of frustration of decoherence.
Our detailed study of the quantum phase transitions of SBM2,
using both numerical and analytical techniques, has revealed
that the transition between the localized and delocalized
phases, accessed at finite transverse field, is in the universality
class of the XY spin chain with long-ranged interactions and
thus obeys a quantum-to-classical correspondence.

In contrast, the zero-field critical (intermediate-coupling)
phase and its transition to the localized phase do not have
a classical counterpart. Our numerical results for the critical
exponents can serve as a guide for developing an analytical
theory of the latter transition. Given that the relevant critical
fixed point (QC1) approaches the localized fixed point (LO)
as s → 1−, we believe that an expansion around LO akin to an
expansion in (2 + ε) dimensions for classical magnets should
be able to access the properties of QC1; this task is left for
future work.

We recall that the analysis in this paper has been restricted to
the model SBM2 with symmetric couplings, i.e., two identical
baths and αx = αy . For asymmetric couplings, with finite
�α = αy − αx , the behavior of the model is driven towards
that of the one-bath model SBM1. Naturally, the LO phase
now displays spontaneous Ising order, with the impurity spin
localized in direction of the stronger coupled bath. Further,
the CR phase is unstable against any finite �α. The rich and
interesting crossover physics of SBM2 in the presence of small
symmetry breaking is beyond the scope of this paper and will
be discussed elsewhere.

Interesting open questions concern the finite-temperature
behavior of SBM2, specifically the quantum critical finite-T
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susceptibilities and the residual entropy, as well as its equilib-
rium and nonequilibrium dynamics. Generalizations to three
bosonic baths as well as combined fermionic and bosonic
baths would be interesting as well. The former is linked to the
problem of impurity spins in quantum critical magnets [32,37],
and both occur in self-consistent single-site solutions for
certain lattice models, e.g., in the large-N -based theory of
a gapless spin liquid [54] and in more general extensions of
dynamical mean-field theory [55].

In the quest for nontrivial quantum critical behavior, we
believe that SBM2 presents, in a sense, the simplest quantum
model violating the quantum-to-classical correspondence: It
lives in (0 + 1) dimensions and is constructed solely from
bosonic degrees of freedom. Our analysis reveals that the
violation of the quantum-to-classical correspondence is rooted
in the noncommutativity of the spin components coupled to
the two baths; this property of a quantum spin can also be
rephrased as a spin Berry phase. We note that quantum phase
transitions in quantum impurity models with fermionic baths
frequently behave nonclassically, with the pseudogap Kondo
and Anderson models [56,57] being well-studied examples.
Here, the absence of a quantum-to-classical correspondence
can be traced back to fermionic “signs,” i.e., exactly integrating
out the fermionic bath is only possible at the expense of
working with a fermionic impurity, which has no classical
analog.
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APPENDIX A: SCALING HYPOTHESIS FOR QC1

Here, we sketch the use of the scaling hypothesis to deduce
hyperscaling relations for QC1. The standard homogeneity
law for the critical contribution to the free energy implies the
scaling form

Fcr (α,hx,hz,T ) = Tf1(�α/T a,hx/T b,hz/T c) (A1)

[recall that the problem at hand is effectively (0+1) di-
mensional]. Here, �α = α − αc and hz correspond to two
operators which drive the system away from criticality, and f1

is a scaling function. The definitions of the correlation-length
exponents in Eqs. (27) and (28) lead to the identifications
a = 1/ν and c = 1/ν ′.

Taking the derivative of Eq. (A1) w.r.t. hx yields

Mx = T 1−bf2(�α/T a,hx/T b,hz/T c) (A2)

which can be cast into the forms

Mx = (�α)(1−b)/af3(T a/�α,T b/hx,T
c/hz) (A3)

and

Mx = h(1−b)/b
x f4(T a/�α,T b/hx,T

c/hz). (A4)

Upon taking the limit T → 0 in Eq. (A3), one deduces
the order-parameter exponent as β = (1 − b)/a; similarly
Eq. (A4) yields 1/δ = (1 − b)/b or b = δ/(1 + δ). Using
a = 1/ν then leads to β = ν/(1 + δ) which is consistent with
the hyperscaling relations (42) and (43). Taking the second
derivative of Eq. (A1) w.r.t. hx yields χx and facilitates the
identification 1 − 2b = −x. Together with b = δ/(1 + δ) this
yields δ = (1 + x)/(1 − x), consistent with the relations (41)
and (43).

In full analogy, taking the derivative of Eq. (A1) w.r.t. hz

yields 1/δ′ = (1 − c)/c or c = δ′/(1 + δ′). Using c = 1/ν ′
finally gives ν ′ = 1/δ′ + 1 which is Eq. (44). Taking the
second derivative w.r.t. hz yields 1 − 2c = −x ′ and then
δ′ = (1 + x ′)/(1 − x ′) which is Eq. (45). The hyperscaling
relations (44) and (45) can also be applied in the CR phase
where hz corresponds to a relevant operator as well. Note
that the nature of the exponent pair (ν,δ) is different from
that of (ν ′,δ′): ν parametrizes the scaling dimension of �α at
criticality and δ the nonlinear response to a field conjugate to
the order parameter. In contrast, ν ′ and δ′ correspond to the
scaling dimension of and the nonlinear response to the same
field hz.

APPENDIX B: FINITE-SIZE EFFECTS

As the numerical computations are done for finite Wilson
chains, it is worth discussing finite-size effects arising from a
finite chain length N . The most important effect of finite N is to
induce a gap �̄ in the bath spectrum which scales as �̄ ∝ �−N .
While this gap has no effect in the DE phase, as its fixed point
corresponds to α = 0, it prevents true spontaneous symmetry
breaking in the LO phase. However, this does not affect our
calculations because, with increasing N , the finite correlation
length induced by �̄ increases faster than the system size, such
that the finite-size system “looks” ordered in the LO phase once
N is sufficiently large.

Most problematic are finite-size effects in the CR phase.
Here, M = 0 in the infinite-system limit, but a bath gap
induces a finite residual magnetic moment scaling as [37]
M ∝ �̄(1−x)/2, with x defined in Eq. (30). Indeed, our VMPS
calculations in Fig. 5 find a small but finite magnetization.
Figure 18 supports that Mx indeed vanishes in infinite-system

5 10 15 20 25 30 35 40
10

10

N

0.8    0.15    0.1       0.80    0.8
0.85  0.08    0.074   0.85   0.85
0.9    0.05    0.049   0.90   0.9
0.95  0.025  0.024   0.95   0.95
fit

s         p
fit

     x
fit
        x

HYP

x
|M

 |

FIG. 18. (Color online) Finite-size scaling of Mx for different
points close to the CR fixed point α∗. We observe that the
magnetization decreases exponentially with system size. The small
value of the decay exponent p results in a notable finite-size effects
even for large systems [U(1)SB with N = 60,d̃k = 24].
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limit as

Mx ∝ L−p ∝ (�−N )p = e− ln (�)pN , (B1)

with the system size L ∼ �N on a Wilson chain. Given that
the exponent p governing the decrease of Mx is very small,
the order parameter remains finite even for very large systems.

The fit exponent p allows us to extract the value of the
exponent x in the CR phase according to p = (1 − x)/2. The
values for x obtained in this way are indicated in Fig. 18 and are
consistent with the hyperscaling result x = s (see Sec. IV D).
We note that a direct measurement of x at the various critical
points is not easily possible using the present numerics, as (i)
the variational approach is designed for T = 0 only, and (ii) the
mass-flow problem [26] would prevent an accurate approach
to critical points using chains of different length.

APPENDIX C: INFLUENCE OF TRUNCATION ERROR
ON CRITICAL EXPONENTS

As numerical artifacts play an increasingly important role
close to the critical phase, we found it to be essential to
enforce the conservation of the U(1) symmetry when trying to
access the critical properties of QC1 and QC2 for large bath
exponents s > 0.8. Since the symmetry incorporation excludes
employing a shifted OBB-VMPS calculation, it is fair to ask
whether the bosonic truncation error corrupts the presented
results of the critical exponent β.

Careful analysis revealed a similar situation as in the
SBM1 [25], where the resulting critical exponents are only
affected by the truncation error in the regime s < 1

2 . In the same
fashion, Hilbert-space truncation in the SBM2 only influences
the behavior of critical properties for s < 1

2 , as illustrated
in Fig. 19. Comparing the scaling of the magnetization to
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FIG. 19. (Color online) Influence of Hilbert-space truncation on
critical exponents β and δ employing VMPS with (blue) and without
shifted OBB (purple). Choosing s = 0.4 < 1

2 in panels (a) and (b),
we observe considerable deviations between both types of VMPS
calculations where the mean-field prediction for β and δ is only
obtained with a shifted OBB. In the case of s > 1

2 , both methods lead
to similar results, as illustrated in panels (c) and (d) for the exponent
s = 0.6 [OBB with N = 60,d̃k = 24].

determine β and δ using VMPS calculations with and without
shifted OBB reveals the characteristic difference between
s < 1

2 and s > 1
2 . In Figs. 19(a) and 19(b), we observe

significant deviations between both types of calculations for
s = 0.4. Employing the shifted OBB method, the resulting
critical exponents are in good agreement with the mean-field
predictions βMF = 1

2 and δMF = 3, while VMPS calculations
without shift lead to considerable deviations from the mean-
field values. In contrast, considering a larger bath exponent
s = 0.6, we clearly obtain the same results for both types of
VMPS calculations, as illustrated in Figs. 19(c) and 19(d).
Thus, for the evaluation of critical exponents we conclude
the following: the shifted OBB is only strictly necessary for
small bath exponents s < 1

2 , whereas for of s > 1
2 VMPS

calculations with and without shifted OBB work equally well.

APPENDIX D: CALCULATION OF THE MAGNETIZATION
IN THE U(1)-SYMMETRIC IMPLEMENTATION

The ground state of SBM2 in the LO phase with hx =
hy = 0 exhibits a continuous degeneracy due to the inherent
rotational symmetry, which was elaborated on in Sec. II C.
When not enforcing the U(1) symmetry, the final ground
state of a VMPS calculation spontaneously breaks this U(1)
symmetry, while maximizing magnetization Mx = My in the
x and y directions in the localized phase (note that this is the
least entangled state).

In contrast, for a U(1)-symmetric implementation, these
expectation values vanish by construction. However, it is
possible to attach a well-defined symmetry label (q = ± 1

2 )
to the numerical ground state. The two resulting states |G±1/2〉
form an orthonormal pair, which can be used to construct the
space of all (symmetry-broken) ground states. By symmetry,
the expectation value 〈Gq |σi=x,y |Gq ′ 〉 evaluated using only
one symmetry eigenstate q = q ′ gives zero. To reconstruct
the magnetization of the “original,” symmetry-broken ground
state, we have to calculate the magnetization using nondiago-
nal elements q �= q ′ of the above-defined expectation value.

In general, this can be accomplished in two different
ways. The simple but numerically expensive variant is to
use two VMPS runs to obtain |G+1/2〉 and |G−1/2〉 sep-
arately for the same parameters and explicitly calculated
〈G+1/2|σi=x,y |G−1/2〉. Alternatively, we may borrow a concept
of NRG that allows us to use only a single VMPS to determine
the magnetization for a system with arbitrary Wilson chain
length 0 < k < N . Starting with the right-orthogonalized
representation of either |G+1/2〉 or |G−1/2〉, we construct and
diagonalize the left-block Hamiltonian Ĥk

L. After projecting
into the subspace of the two lowest-lying energy states |sk〉,
with sk ∈ {0,1},

|sk〉 =
∑

n1...nn

(A[σ ]A[n1] . . . A[nn])s |n1,n2, . . . ,nn〉 , (D1)

we explicitly determine all matrix elements (Mi)
[n]
sks

′
k
≡

〈sk|σi=x,y |s ′
k〉n of the magnetization. The eigenvalues of the

2 × 2 matrix M
[n]
i give the two possible values of the

magnetization of the system with chain length k in the ground
state 〈σi=x,y〉/2 = ±Mi . Therefore, the plain thermal average
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FIG. 20. (Color online) Influence of bosonic truncation error.
Studying the finite-size scaling effects of the impurity magnetization
in the localized phase, we clearly observe in (a) that the symmetry
implementation is accompanied by a further downbending induced by
reaching the maximum bosonic occupation numbers towards larger
iterations.

without spontaneous symmetry breaking would result in zero
magnetization.

Independently of how the magnetization is calculated,
we face an additional challenge regarding the Hilbert-space

truncation error in the context of explicit symmetry implemen-
tation. Studying the finite-size scaling of the magnetization in
the localized regime, we expect Mx to saturate at a finite value
after an initial decay when moving towards larger systems.
As illustrated in Fig. 20(a), our VMPS data for Mx indeed
saturates as expected when symmetry is not enforced (solid
line).

However, when employing the symmetry implementation
we observe a further decrease (dashed line) after the saturation
to an intermediate plateau. Considering the behavior of the
bosonic occupation numbers on the Wilson chain in Fig. 20(b),
we attribute this effect with the Hilbert-space truncation error.
The difference between solid and dashed lines sets in once the
bosonic occupation numbers 〈nkx〉 for the symmetry-enforced
implementation, where a shifted OBB cannot be used, begin
to saturate [Fig. 20(b), dashed line], whereas those for non-
symmetry-enforced implementation, for which a shifted OBB
can be used, do not yet saturate [Fig. 20(b), solid line]. To
circumvent this systematic error, we extract Mx not at the
end of the chain but choose an iteration N∗ right before 〈nkx〉
saturates (indicated by the red dashed line in Fig. 20). At N∗,
the magnetization from the symmetry-enforced code clearly
agrees with a VMPS calculation using a shifted bosonic basis.

As indicated in the previous section, this approach is only
appropriate for bath exponents s > 1

2 . For smaller values of
s, it is absolutely necessary to employ VMPS with the shifted
OBB scheme in order to capture the correct physical properties
of the system.
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