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Mean-field treatment of the long-range transverse field Ising model with fermionic Gaussian states
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We numerically study the one-dimensional long-range transverse field Ising model (TFIM) in the antifer-
romagnetic (AFM) regime at zero temperature using generalized Hartree-Fock (GHF) theory. The spin-spin
interaction extends to all spins in the lattice and decays as 1/rα , where r denotes the distance between two spins
and α is a tunable exponent. We map the spin operators to Majorana operators and approximate the ground
state of the Hamiltonian with a fermionic Gaussian state (FGS). Using this approximation, we calculate the
ground-state energy and the entanglement entropy, which allows us to map the phase diagram for different
values of α. In addition, we compute the scaling behavior of the entanglement entropy with the system size to
determine the central charge at criticality for the case of α > 1. For α < 1 we find a logarithmic divergence of the
entanglement entropy even far away from the critical point, a feature of systems with long-range interactions. We
provide a detailed comparison of our results to outcomes of density matrix renormalization group (DMRG) and
the linked cluster expansion (LCE) methods. In particular, we find excellent agreement of GHF with DMRG
and LCE in the weak long-range regime α � 1, and qualitative agreement with DMRG in the strong-long
range regime α � 1. Our results highlight the power of the computationally efficient GHF method in simulating
interacting quantum systems.
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I. INTRODUCTION

Quantum phase transitions describe the behavior of quan-
tum many-body systems at zero temperature when tuning a
nonthermal control parameter, such as an applied magnetic
field. The phase transition appears as a result of competing
phases that describe the ground state at the corresponding
parameter and typically lead to a fundamental change in the
nature of the correlation present in the ground state. Quantum
many-body systems can undergo a quantum phase transition
and their study has lead to the discovery of many exotic
collective phenomena such as superconducting ground states
[1], long-range topological order [2], and anyonic statistics
[3]. Close to the critical point, the properties of many different
physical systems can be classified by a universality class,
which is independent of the system size and only depends on
the underlying dimensions and symmetries of the problem. In
this situation, one can in many instances describe the many-
body problem by an interacting spin system [4].

One of the paradigmatic microscopic models displaying a
quantum phase transition is the transverse field Ising model
(TFIM) at zero temperature [5]. This model is exactly solvable
in the limit of short-range, nearest-neighbour interactions.
However, the solution of this problem is much harder if one
considers beyond nearest-neighbour or even long-range in-
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teractions [6–10]. Long-range interacting systems can host
exotic states of quantum matter and are therefore of large
scientific interest. Recent advances have made effective long-
range spin-interactions experimentally accessible [11–15]. In
such systems, the effective interaction extends to all spins in
the lattice and decays as a power law 1/rα , where r is the
distance of the spins in the lattice and α is a tunable alge-
braic exponent. In the experiments one can realize 0 � α � 3,
which allows one to experimentally probe the regime of long-
range interactions in spin systems [11].

In order to analyze the properties of a quantum many-body
system, it is important to study large system sizes, which is in
our case the number of spins N . The exponential scaling of the
Hilbert space dimension with N makes the ad hoc diagonal-
ization of such many-body problems illusive. Consequently,
one demands numerical methods, which are able to capture
the qualitative behavior of the many-body system with a com-
putational cost that displays a low scaling with N . A range
of many-body methods of varying computational complexity
have been applied to study finite-size long-range quantum
many-body systems, including quantum Monte Carlo (QMC)
[16], stochastic series expansion QMC [17], a combination
of QMC and renormalization group methods [18], Lanczos
exact diagonalization [19], and density matrix renormalization
group (DRMG) [6,8]. Recently, a method to study short-
range quantum-lattice models in the thermodynamic limit, the
linked-cluster expansion (LCE), has been extended to allow
for the study of long-range systems for α > 1 [9,10].

In this paper, we add generalized Hartree-Fock (GHF)
theory to this mix of methods. GHF is a mean-field method,
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which aims to approximate the ground state of an interacting
quantum system as a free electron gas [20], where the latter
describes a class of variational functions known as fermionic
Gaussian states (FGS). Due to its mean-field nature, GHF
is a method with very low computational cost, where the
most-demanding compute operation—the evaluation of the
Pfaffian Pf(A) of a M × M matrix A—scales at most as
O(M3) [21]. Even though FGS describe ground or thermal
states of quadratic fermionic Hamiltonians [22], they have
been applied to various areas of quantum many-body physics
with great success, most notably as ab initio methods to obtain
approximate ground states in electronic structure problems
and to condensed matter systems [20,23,24]. In this paper, we
demonstrate for the TFIM that GHF achieves qualitatively and
quantitatively similar results as non-mean-field methods such
as DMRG and LCE, which are designed to describe strongly
correlated quantum many-body systems. In order to find the
FGS, which best approximates the ground state of the long-
range TFIM, we employ two physically-motivated methods,
which have been described in Ref. [23]. The first one (ITE)
derives the ground state using imaginary time evolution. The
second one (ZT) uses a self-consistent equation for the FGS
ground-state covariance matrix. Using these two methods we
calculate the ground-state energy and the entanglement en-
tropy. By comparison of these results with the ones obtained
from DMRG and ZT we will show that GHF is able to capture
the qualitative and quantitative behavior of the long-range
TFIM. This highlights the ability of GHF in predicting physi-
cally relevant material properties at computationally low cost.

This paper is structured as follows. In Sec. II we discuss
the GHF theory, which we then apply to the TFIM model
described in Sec. II A. The introduced methods are used in
Sec. III where we numerically study the ground-state energy
and the entanglement entropy. We conclude by summariz-
ing our findings in Sec. IV and providing an outlook for
future work.

II. THEORY

A. Long-range transverse field Ising model

In this paper we consider the TFIM Hamiltonian describing
a system of N spins with open boundary conditions

Ĥ =
N∑

p=1

hpσ̂
z
p +

N∑
p<q

Jpqσ̂
x
p σ̂ x

q , (1)

where we introduced the transversal magnetic field strength
hp = cos(θ ), the interaction strength Jpq = sin(θ )/|p − q|α
and the Pauli matrices σ̂ a

p (a ∈ {x, y, z}) for each spin indexed
by p, q. The magnetic field and interactions strengths are
parameterized by the angle θ and the algebraic scaling of the
interaction range is given by α. In this paper we furthermore
focus on antiferromagnetic (AFM) couplings, which implies
Jpq > 0 or θ ∈ (0, π ). Because the Hamiltonian is symmetric
under the simultaneous transformations σ̂ z

p �→ −σ̂ z
p and θ →

π − θ we can restrict our study to θ ∈ (0, π/2].
In a next step, we map the TFIM Hamiltonian onto a

fermionic Hamiltonian. To this end, we use the Jordan-Wigner

transformation σ̂+
p = ĉ†

peiπ
∑p−1

q=1 ĉ†
qĉq and σ̂−

p = ĉpe−iπ
∑p−1

q=1 ĉ†
qĉq

[25]. Here, we used σ̂±
p = [σ̂ x

p ± iσ̂ y
p]/2 and introduced the

fermionic raising and lowering operators ĉ†
p, ĉp, respec-

tively. The latter obey the canonical anticommutation relations
{ĉp, ĉq} = 0 and {ĉp, ĉ†

q} = δp,q, where δp,q is the Kronecker
delta and {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator of
two operators Â, B̂. Instead of analyzing the problem in the
basis of the 2 × N fermionic operators ĉp, ĉ†

p we represent
the Hamiltonian in 2N Majorana operators â2p−1 = ĉ†

p + ĉp

and â2p = i(ĉ†
p − ĉp). The latter posses the anticommuta-

tion relation {âl , âm} = 2δl,m (l, m = 1, 2, . . . , 2N ) and the
Hamiltonian (1) in the Majorana representation is given by

Ĥ = − i
N∑

p=1

hpâ2p−1â2p +
N∑

p<q

(−i)q−pJpqâ2pŜpqâ2q−1. (2)

Here, we introduced the string operator Ŝpq =∏q−1
k=p+1(â2k−1â2k ), which is the product of 2 × (q − p + 1)

Majorana operators. For nearest-neighbour interactions,
α = ∞ and Jpq = δp,q±1, this string operator becomes the
identity, Ŝpq = 1 and Ĥ becomes quadratic in the Majorana
operators. Consequently, the model can be described by free
fermions and is therefore exactly solved by a FGS [22]. In
general, however, for the long-range TFIM we will need
to include the contribution of the operator Ŝpq. To avoid
ambiguity, we use the term long-range in this paper for
all systems with α < ∞, since the spin interaction breaks
up into a sum of terms proportional to 1/|p − q|α , where
all lattice sites p, q give nonzero contributions, and not
just nearest-neighbour sites p, p + 1 (as in the special case
α → ∞). Often times, the term long-range is reserved in
literature for nonadditive systems with an algebraic exponent
α = σ + d in a d-dimensional system for σ < 0 (which in a
one-dimensional system refers to the regime α < 1) [26–28].
Thus, to avoid confusion, in our paper we will refer to α < 1
as the strong long-range, and to α > 1 as the weak long-range
regime, while the special case α = 1 marks the boundary of
both regimes.

B. Fermionic Gaussian states

The formal definition of a FGS is given by [22]

ρ̂GS =tr
(

e−βĤGS

)−1
e−βĤGS , (3)

where ĤGS = i
4 âT Gâ is a Hermitian operator, β ∈ R, â =

(â1, â2, . . . , â2N )T is a column vector of Majorana operators,
and G is a (2N × 2N ) real-valued and antisymmetric matrix.
FGS are fully described by the real and antisymmetric covari-
ance matrix � with entries

	lm = i

2
tr(ρ̂GS[âl , âm]), (4)

l, m ∈ {1, 2, . . . , 2N}, and where [Â, B̂] = ÂB̂ − B̂Â denotes
the commutator of two operators Â, B̂. While Eqs. (3) and
(4) describe both pure and mixed FGS, we only focus on
pure FGS in this paper, since we are interested in the ground
state. Pure FGS are characterized by �2 = −12N [1k denotes
the (k × k)-identity matrix], and eigenvalues of the covariance
matrix are given by λ ∈ {−1, 1}. All information contained
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in the density matrix (3) of a FGS is also contained in its
covariance matrix (4). The expectation value of a product of
Majorana or fermionic operators can be computed efficiently
through Wick’s theorem [22,29],

tr(ρ̂GSâi1 âi2 · · · âi2m ) =(−i)mPf
(
�|i1i2...i2m

)
, (5)

where i1 �= i2 �= · · · �= i2m for ik ∈ {1, . . . , 2N} and k =
1, . . . , 2N . The matrix �|i1i2...i2m denotes a (2m × 2m)-
submatrix of � with the corresponding rows and columns
i1, i2, . . . , i2m, and Pf(A) denotes the Pfaffian of a skew-
symmetric matrix A.

C. Approximating the ground state with a fermionic
Gaussian state

Using Wick’s theorem (5), we are able to compute the
energy expectation value

E (�) =tr(ρ̂GSĤ ), (6)

which results in

E (�) = −
N∑

p=1

hp

2
(	2p−1,2p − 	2p,2p−1)

+
N∑

p<q

Jpq(−1)q−pPf{	|2p,2p+1,...,2q−1}, (7)

for the Hamiltonian given by Eq. (1). In order to approximate
the ground state of the Hamiltonian within the family of FGS,
one has to find a covariance matrix �, which minimizes E (�).
While one can apply any constrained optimization method, in
the following, we will discuss two particular algorithms for
finding the optimal �, which we will use in Sec. III.

(a.) Imaginary time evolution (ITE). The first algorithm
performs an imaginary time evolution (ITE) under the con-
straint that Wick’s theorem holds throughout the evolution.
This constraint guarantees that the evolved state remains a
FGS, and leads to an equation of motion for the corresponding
covariance matrix,

d�

dτ
= 1

2
[�, [�, H(mf)]], (8)

where τ ∈ R denotes the imaginary time. We derive Eq. (8)
in Appendix A. The central quantity herein is the mean-field
Hamiltonian H(mf)(�), which is the gradient of the energy
with respect to the covariance matrix,

H (mf)
lm = 4

dE (�)

d	lm
. (9)

Note, that the mean-field Hamiltonian H(mf) is by construction
an antisymmetric matrix. This term can be computed explic-
itly by using identities for the matrix derivative of a Pfaffian,
which we have derived in Appendix B.

We solve Eq. (8) iteratively, by discretizing the ITE into
small time steps �τ . Starting from a random initial covari-
ance matrix, we evolve the covariance matrix through �(τ +
�τ ) ≈ O(�τ )�(τ )O(�τ )T , where O(�τ ) = e

1
2 [H(mf),�]�τ is

an orthogonal matrix. As explicitly shown in Ref. [23], this
approach preserves the purity of the FGS, while ensuring a
monotonic decrease of the energy in each iteration.

(b.) Zero temperature (ZT). The second algorithm uses
a self-consistent equation for the steady-state solution of
Eq. (8). In this algorithm, for a given �, we diagonalize the
mean-field matrix iH(mf) = UDU† and recalculate

� = iUsgn(D)U†. (10)

Here, U is a unitary matrix, D is a diagonal matrix containing
the real eigenvalues of iH(mf), and sgn(D) is the sign function
applied to the diagonal entries of D. From this � we recal-
culate iH(mf) and repeat the procedure until the covariance
matrix is converged. One can check that the solution of this
algorithm is also a stationary state of Eq. (8) with �2 = −1.

In both algorithms we choose several random initial co-
variance matrices �init to ensure unbiased results. A random
�init is generated through �init = OT �O, where O is a random
orthogonal matrix and we defined the block diagonal matrix

� = ⊕N
k=1(−1)rk (

0 1
−1 0), where rk ∈ {0, 1} is chosen ran-

domly and
⊕

denotes the direct sum. After convergence of
the corresponding algorithm we achieve a stationary solution
�st. With the help of this solution we can then find the GHF
approximation to the ground-state energy given by E (�st ).
Besides the energy and entanglement entropy introduced in
the following section, the covariance matrix allows us direct
access to quantum correlations.

(c.) Algorithmic cost. The computational cost of perform-
ing GHF scales as O(N3), as it involves diagonalizations
of a quadratic fermionic Hamiltonian [30,31]. The cost of
DMRG, which we used and referenced in our paper scales
as O(Nχ3), where χ is the employed bond dimension of the
underlying matrix product state and N is the system size [32].
The maximum bipartite entanglement that an MPS can reach
is bounded by log(χ ). Therefore, χ needs to grow exponen-
tially with the entanglement for DMRG to give an accurate
description of a corresponding quantum state [31,32]. For the
one-dimensional case studied here, the entanglement entropy
can scale up to logarithmically with the system size, lead-
ing to a computational cost of DMRG of O(N4), indicating
the computational scaling advantage of GHF over DMRG.
Note, that this computational scaling advantage becomes
more pronounced if one were to consider higher-dimensional
systems.

D. Entanglement entropy and central charge

Entanglement entropy is a well-studied measure for the
amount of quantum correlations in a pure quantum state
[33,34]. Let A,B be a bipartition of the full quantum
system. The entanglement entropy is defined as SNA =
−tr(ρ̂A log(ρ̂A)), where A describes a subsystem contain-
ing NA spins. The reduced density matrix ρ̂A = trB(ρ̂ ) is
obtained by performing a partial trace over the disjoint sub-
system B, with NB = N − NA spins. For the spins numbered
as A = {1, 2, . . . , N/2} we label the corresponding Majorana
operator indices by MA = {1, 2, . . . , N − 1, N}. The entan-
glement entropy is then fully determined by the matrix �A =
�|MA and can be calculated with [23,35,36]

SN/2 =N

2
log(2) − 1

2
tr[(1N + i�A) log (1N + i�A)]. (11)
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For short-range 1D systems, the entanglement entropy typ-
ically follows two different scalings: for gapped phases, SN/2

saturates to a constant value independent of N and thus obeys
the so-called area law [37]. For gapless phases, the entangle-
ment entropy exhibits the following behavior [38]:

SN/2 = c

6
log(N ) + B, (12)

where c is the central charge characterizing the universality
class of the system and B is a nonuniversal constant. For the
nearest-neighbour TFIM at α = ∞ the value of c = 1/2 can
be found exactly.

For long-range systems we need to distinguish between
weak long-range interactions, α > d = 1, and the strong long-
range interactions, α < d = 1.

For weak long-range interactions and a nonvanishing en-
ergy gap we expect also an area-law scaling, implying that
SN/2 is independent of N . For the case of a vanishing gap
one also finds a logarithmic divergence [37,39–41] following
Eq. (12).

For strong long-range interactions in the AFM-TFIM we
expect instead a logarithmic divergence of the entanglement
entropy, where SN/2 obeys Eq. (12) and one can find c �= 0
even in presence of a nonvanishing gap [42–45]. In this regime
c is strictly speaking not a central charge but because of
the same functional dependence of SN/2 in Eq. (12), we also
denote c as the effective central charge.

III. RESULTS

A. Phase diagram

In this section, we show that a computationally inexpensive
GHF mean-field approach can reproduce the phase diagram of
the AFM-TFIM for a wide range of values α, both in the weak
and strong long-range regime, and is able to locate the point
of the phase transition for α � 1 in excellent agreement with
state-of-the-art numerical methods.

As a first benchmark and in the same spirit of Ref. [6]
we map the phase diagram by calculating the entanglement
entropy for a wide range of values of α, from weak to strong
long-range interactions, and for θ ∈ (0, π/2). The values of
SN/2 [Eq. (11)] computed with the ZT GHF method are visible
in Fig. 1 for N = 100. For θ = 0 the interactions vanish and
SN/2 = 0 for all values of α. This represents the phase where
all spins are uncorrelated and align with the external magnetic
field. However, when θ and therefore the AFM interactions
are increased, the minimization of the interaction energy com-
petes with the external magnetic field. This is accompanied
by an increase of SN/2. Dependent on α, there is a critical
value θc(α) beyond which the spins favor an AFM order. This
transition is highlighted in Fig. 1 by a sharp rise of SN/2. Our
findings are in qualitative agreement with the ones obtained
in Ref. [6] from DMRG calculations. To compare our results
also quantitatively, we will now focus on the weak and strong
long-range interactions cases separately.

FIG. 1. We plot the entanglement entropy SN/2 from the covari-
ance matrix obtained through the ZT algorithm for a system size
N = 100, α ∈ {0.30, 0.50, 0.75, 1.00, . . . , 3.00}, and θ ∈ (0, π/2).
For the color coding we use the color map “plasma” in the python
package “matplotlib”. Black squares represent the quantum critical
points θ∞

c /π in the thermodynamic limit, which are listed in Table I,
while the dashed line serves as a guide to the eye.

B. Weak long-range interactions

1. Comparison of GHF and DMRG

For weak long-range interactions, α � 1, we show the
ground-state energy and the entanglement entropy in Fig. 2(a)
and Fig. 2(b), respectively.

The solid lines represent the results obtained from the GHF
theory while hollow markers represent the results obtained
from DMRG simulations. Both simulation methods predict a
rather smooth behavior of the energy in Fig. 2(a). For larger
values of α � 1.5 we find a maximum and a decrease beyond
the maximum point. The GHF and DMRG simulations agree
perfectly.

The entanglement entropy, visible in Fig. 2(b), shows for
all values and both simulations methods a very quick increase

TABLE I. The critical points θ∞
c /π obtained from Eq. (13) with

FGS and ZT, in comparison to LCE [10], and DMRG [6], DMRG*
[8] results. The values are obtained for various exponents α and for
simulations up to N = 100 spins. The error indicated in the FGS
column in round brackets is the standard deviation for the intersect
of a linear regression fit of θmax/π as a function of 1/N .

�����α

θ∞
c /π

FGS LCE DMRG DMRG*

1.00 0.3534(4) 0.3509
1.25 0.3357(1) 0.35(5)
1.50 0.3218(1) 0.3213(5) 0.3226
1.75 0.3106(1)
2.00 0.3013(2) 0.3026(8) 0.3027 0.3021
2.25 0.2932(2) 0.294(4)
2.50 0.2865(1) 0.2871(11)
2.75 0.2807(2)
3.00 0.2760(2) 0.27722(25) 0.2782
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FIG. 2. For a system of size N = 100 and exponents α ∈ [1, 3],
we plot (a) the energy E and (b) the entanglement entropy SN/2

(bottom), as defined in Eqs. (6) and (11), obtained from the co-
variance matrix of the ZT algorithm (solid lines) and compare it to
DMRG (hollow markers).

and a pronounced singularity. The latter is an indicator for
the phase transition point. Beyond this point we find again
a decrease of the entanglement entropy. Both methods, GHF
and DMRG, are in very good agreement, see Appendix C for
more details.

2. Threshold and central charge

In order to find a value for the threshold at N → ∞, we
are performing a finite-size scaling. For this we carry out
analog simulations for a range of smaller system sizes N ∈
{20, 30, . . . , 100}. Then we find numerically the maximum of
the entanglement entropy of the half chain Smax = SN/2(θmax)
and the corresponding value θmax. The latter is found us-
ing the optimizer scipy.optimize.fminbound(), which is
pre-implemented in python. For every value θ examined by
the optimizer we find the optimal FGS for the correspond-
ing Hamiltonian. Optimizing SN/2 over θ can be achieved as
FGS provide a way for calculating SN/2 polynomially in N ,

FIG. 3. Example for the fit of Eq. (13) to the value of θmax ob-
tained by maximization of the entanglement entropy S with FGS. The
thresholds θ∞

c /π are shown for the respective cases α ∈ {1, 2, 3}, see
Table I for more details.

see Eq. (11). We then use the following finite-size scaling
law [46]:

θmax(N ) = θ∞
c + a

N
, (13)

where θ∞
c is the threshold at N → ∞ and a is a fitting param-

eter, which determines the finite-size scaling. Fitting Eq. (13)
to the numerically obtained data of θmax reveals the θ∞

c in the
thermodynamic limit [47]. In Fig. 3 we provide examples for
the fits that are used to calculate θ∞

c . We perform these fits
for various values of α and the results for the threshold are
collected in Table I. In addition, we have plotted the results
of θmax

c in Fig. 1 as black squares, which mark the sudden
spike of the entanglement entropy. In Table I we compare the
results obtained from the GHF theory with the ones obtained
from LCE calculations [10], DMRG data of Ref. [6] (labeled
DMRG) and Ref. [8] (labeled DMRG*). We find in general
very good agreement of the thresholds obtained from the
different methods.

Besides the threshold θ∞
c we can also extract the scaling

of the maximum entropy Smax = S(θmax). At the critical point
we use the scaling law [38] given by Eq. (12). We fit Eq. (12)
to the maximum values Smax as displayed in Fig. 4(a). From
these fits we extract the central charge c, which is shown
in Fig. 4(b) as function of α. The central charge is always
above the result c = 1/2 expected from the short-range TFIM.
We also compare our results to different DMRG results of
Ref. [6,8]. We find that the central charges obtained from FGS
are systematically smaller than the values provided by Ref. [6]
and larger than the DMRG results of Ref. [8]. The central
charge c is monotonically decreasing in the weak long-range
regime, but drops at the onset of the strong long-range regime
at α = 1. In conclusion, we found that the results of the GHF
method are in good qualitative and quantitative agreement
with state-of-the-art numerical methods for weak long-range
interactions.
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FIG. 4. (a) Extracting the central charge. Using the ZT
algorithm for various α, here exemplified by α ∈ {1, 2, 3}, we plot
the entanglement entropy SN/2 against log(N ). For each α we perform
a linear regression fit, neglecting the system sizes N ∈ {20, 30, 40}
to mitigate finite-size effects. (b) Central charge c obtained from
finite-size scaling up to system size N = 100 of FGS evolutions
through the ZT algorithm (blue squares) for the AFM long-range
TFIM. For comparison, DMRG results from finite-size scaling of
system sizes of up to N = 100 from Ref. [6] (“DMRG”, orange
square) and [8] (“DMRG*”, green triangles) are included. The red
horizontal line represents the value c = 1/2, which describes the
Ising universality class. Error bars represent the standard deviation
from the linear regression fit.

C. Strong long-range interactions

1. Comparison of GHF and DMRG

We will now shift our focus to the regime of strong
long-range interactions, α < 1. We first plot the ground-
state energy and the entanglement entropy in Fig. 5(a) and
Fig. 5(b) for three different values of α < 1 of size N = 100.
In Fig. 5(a) we obtain for all three values of α a monotonously
increasing energy with θ . This is different to the case of
weak long-range interactions [see Fig. 2(a)] where we have

FIG. 5. (a) Energy and (b) entanglement entropy obtained from
the covariance matrix of the ITE algorithm (solid lines) and DMRG
(empty markers) simulations for N = 100 and α ∈ {0.3, 0.5, 0.75}.

observed a maximum close to the threshold at least for suf-
ficiently large α � 1.5. We compare our results obtained
from FGS also with the ones obtained from DMRG results.
Here, we find that DMRG always predicts a lower ground-
state energy. The discrepancy of the two methods is even
more striking in the entanglement entropy visible in Fig. 5(b).
Here, while we still observe very good agreement for α =
0.75 we found clear deviations for α = 0.3 and α = 0.5. The
DMRG results predict tendentially a larger entanglement en-
tropy than the FGS. This is an indicator that FGS are less well
suited for the description of the TFIM for very small α, i.e.,
very strong long-range interactions.

2. Violations to the area law

We will now analyze the scaling of the entanglement
entropy with the system size. For this we calculate the en-
tanglement entropy for various parameters θ and α and for
different numbers of spins N ∈ {40, 50, . . . , 100}. We then fit
the coefficients c and B using Eq. (12) to the obtained values
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FIG. 6. Violations to the area law. The effective central charge
c [Eq. (12)] calculated from finite scaling of system sizes N ∈
{40, 50, . . . , 100} for 50 different values deep in the gapped re-
gion θ ∈ (0, π/4) for the GHF ITE algorithm. Error bars for
the standard deviation are also included, but too small to be
visible. Solid lines connecting the markers serve as a guide to
the eye.

of the entanglement entropy. The obtained values of c are
shown in Fig. 6. At this point we remark that the effective
central charge c is calculated far away from the threshold in
a phase with a nonvanishing energy gap [6]. As mentioned
at the end of Sec. II D, the behavior of the strong-long-range
regime for values θ far away from θ∞

c differs here significantly
from the weak-long-range regime. While one expects an effec-
tive central charge c = 0 in the latter, the strong-long-range
regime displays an effective central charge c �= 0 that follows
Eq. (12).

For the values α < 1, we find c = 0 only at θ = 0. For
increasing θ we find a sharp increase of c. For α = 0.3 and
α = 0.5 we find a maximum and then a decrease again for
larger values of θ . A qualitatively similar behavior has also
been observed in Ref. [6]. This is a violation to the area law
where the logarithmic divergence does not originate from a
closing gap in the spectrum of the system [6]. Our GHF results
exhibit the most significant deviations from DMRG close to
the maximum values θmax at α = 0.3 and α = 0.5. This also
suggests a potential discrepancy of the obtained thresholds
that can be obtained from the two methods. This also suggest
a potential discrepancy of the obtained thresholds that can be
obtained from the two methods. We therefore conclude that
the FGS are able to predict this feature, although the quan-
titative values deviate from the ones obtained from DMRG
results.

IV. SUMMARY AND OUTLOOK

This paper presents an extensive study of the AFM long-
range TFIM in both the weak and strong long-range regime
using generalized Hartree Fock theory, a mean-field method
with low computational cost. We validate our results by com-
paring the computed energy and entanglement entropy to
DMRG. We plot the phase diagram and provide estimates for

the location of the critical point of the second-order phase
transition through finite-size scaling for α ∈ [1, 3] and find
that they are in excellent agreement with both LCE calcu-
lations of Ref. [10] and DMRG simulations of Refs. [6,8].
At the critical point, we compute the central charge c of the
underlying conformal field theory for α ∈ {0.3, 0.5, 1}, and
find c > 1/2 for all values of α. In the strong long-range
regime we still found qualitative agreement between FGS and
DMRG calculations. Hereby we found larger quantitative de-
viations for smaller values of α. Remarkably, GHF can predict
the logarithmic violations to the area law in the AFM-TFIM,
which has previously been studied with DMRG. Based on
these findings, we conclude that FGS provide a numerically
inexpensive alternative to study the AFM long-range TFIM
and that our results are in good agreement with DMRG, the
current state-of-the-art numerical method for one-dimensional
lattice systems.

All GHF simulations were carried out using a standard
laptop computer. Since the dimensionality of the system
only appears in the Hamiltonian elements hpq and Jpq, it
is straightforward to apply FGS to the two- and three-
dimensional TFIM. Therefore, it would be interesting to
compare FGS simulations with methods that can be ap-
plied to the two-dimensional AFM-TFIM [10]. Moreover,
while we have focused on the AFM regime, FGS can read-
ily be applied to the ferromagnetic regime θ ∈ (−π, 0). In
this paper we have focused on the entanglement entropy;
however, we remark that GHF gives also access to quan-
tities such as correlation functions and the entanglement
spectrum that can be extracted directly from the covari-
ance matrix and using Wick’s theorem. FGS can also be
used to study dynamics under the evolution of the TFIM,
with equations of motion similar to Eq. (8) [23,24]. In
particular, this would enable an efficient simulation of en-
tanglement dynamics after a parameter quench for spins
with short- to long-range interactions [48]. From a numerical
standpoint, more efficient calculations of the central quan-
tities such as Eq. (7) could lead to dramatic computational
speedups. As a possible pathway, it would be interesting
to see if sum identities for Pfaffians such as provided in
Refs. [49–51] could be applied to the TFIM Hamiltonian
in order to achieve more efficient calculations of the en-
ergy and mean-field Hamiltonians. Finally, one could study
if different spin-to-fermion mappings [52–54], each result-
ing in a different form of H when expressed in fermionic
operators, have an effect on the FGS simulations and the
obtained values of ground-state energy and entanglement
entropy.
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APPENDIX A: DERIVATION OF THE EQUATIONS OF
MOTION FOR THE ITE ALGORITHM

In this Appendix, we will derive Eq. (8), which describes
the imaginary-time evolution of a FGS. Equation (8) was also
shown in Ref. [23] for fourth-order polynomials of fermionic
operators and for an even more general case in Ref. [24].

We start by writing down the imaginary-time time evolu-
tion for the pure FGS ρ̂GS = |�GS〉〈�GS| determined by

d

dτ
|�GS〉 = −(Ĥ − 〈�GS|Ĥ |�GS〉)|�GS〉. (A1)

The pure FGS can be generated by a Gaussian transformation

|�GS〉 =ÛGS|vac〉, (A2)

where |vac〉 denotes the fermionic vacuum and

ÛGS(ξ) =e
i
4 âT ξâ (A3)

describes the generator of a pure FGS [22]. Here, ξ denotes
a (2n × 2n) antisymmetric and Hermitian matrix (the matrix
elements ξkl = −ξlk are purely imaginary). To calculate the
covariance matrix � we use

� = −UξϒUT
ξ , (A4)

where

ϒ =
N⊕

p=1

(
0 1

−1 0

)
. (A5)

is the covariance of the vacuum state and where we employed
the transformation

Û †
GS(ξ)âÛGS(ξ) = Uξ â, (A6)

with

Uξ = eiξ. (A7)

Now, the idea is that we derive from Eq. (A1) a differential
equation for Uξ , which can then be used to calculate � using
Eq. (A4). For this we treat the left- and right-hand side of
Eq. (A1) separately and rewrite it as

ÛGSL̂|vac〉 = ÛGSR̂|vac〉. (A8)

We then expand the operators L̂ and R̂ up to second order in
terms of normal-ordered monomials of the Majorana opera-
tors and apply them to the vacuum state.

(a.) Left-hand side of Eq. (A1). The operator L̂ is
defined as

L̂ = Û †
GS

(
dÛGS(ξ)

dτ

)
. (A9)

The derivative of the unitary transformation is given by

dÛGS(ξ)

dτ
=ÛGS(ξ)

[
i

4
âT UT

ξ

dUξ

dτ
â
]
. (A10)

Here, we have used Eq. (A3), the identity [55]

deĴ (τ )

dτ
=

∫ 1

0
due(1−u)Ĵ (τ )

(
dτ Ĵ (τ )

)
euĴ (τ ), (A11)

and the orthogonality property Uξ UT
ξ = 1. For the normal-

ordered expression we therefore find

L̂ = L̂0 + L̂2, (A12)

with

L̂0 = i

4
tr

[
dUξ

dτ
UT

ξ �

]
, (A13)

L̂2 =1

4
: âT UT

ξ

dUξ

dτ
â :, (A14)

where : Â : denotes the elementwise normal ordering of Â.
(b.) Right-hand side of Eq. (A4). The definition of R̂ is

R̂ = −Û †
GS(Ĥ − 〈�GS|Ĥ |�GS〉)ÛGS. (A15)

We can now use a modification of Wick’s theorem to calculate

Û †
GSĤÛGS = 〈�GS|Ĥ |�GS〉 + i

4
: âT UT

ξ H(mf )Uξ a : +Q̃,

(A16)

where Q̃ collects all normally ordered monomials of quartic
order or higher. We derive this expression in Appendix B.
Inserting Eq. (A16) into Eq. (A15), we find for R̂ the following
expression:

R̂ = R̂2 − Q̃, (A17)

with

R̂2 = − i

4
: âT UT

ξ H(mf )Uξ a : . (A18)

(c.) Comparing left- and right-hand side. We now require
to match L̂|vac〉 and R̂|vac〉 up to second order. This is a
consequence of our restriction to FGS. Therefore, we find two
equations

L̂0|vac〉 =0, (A19)

L̂2|vac〉 =R̂2|vac〉, (A20)

from which we wish to derive the equations of motion of the
ITE. We first consider Eq. (A20),

: âT UT
ξ

dUξ

dτ
â : |vac〉 = − i : âT UT

ξ H(mf)Uξ â : |vac〉. (A21)

For any normal-ordered polynomial of fermionic operators
applied to the vacuum state, the only terms that do not vanish
are polynomials, which exclusively contain fermionic creation
operators. Therefore, we define the vector

r = ĉ† ⊗
(

1
i

)
, (A22)

where ĉ† = (ĉ†
1, . . . , ĉ†

N ), and rewrite Eq. (A21) in terms of
fermionic creation and annihilation operators, which leads to

r̂T UT
ξ

dUξ

dτ
r̂|vac〉 = − ir̂T UT

ξ H(mf)Uξ r̂|vac〉, (A23)

where the normal ordering “: :” may now be dropped. We
would now like to compare the matrices of Eq. (A23). How-
ever, before doing so, we need to take into account the
symmetry operations, which leave the operator r̂ invariant.
For this, we first rewrite ϒ defined in Eq. (A5) as ϒ = 1N ⊗
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FIG. 7. Energy expectation EFGS (a) and entanglement entropy SFGS (b) obtained from GHF ZT simulations in relation to EDMRG and
SDMRG calculated from DMRG simulation as function of θ . The results are obtained for the AFM-TFIM of size N = 100 and various values of
α in the weak-long-range regime. [(c),(d)] Same as (a) and (b), but for values of α in the strong-long-range regime, including GHF simulation
results for both, the GHF ITE and ZT algorithms.

( 0 1
−1 0). Thus, the symmetry operations on the operators are

given by −iϒr̂ = r̂ and ir̂T ϒ = r̂T . The real-valued skew-
symmetric solution for dUξ

dτ
, which satisfies Eq. (A19) is then

given by

dUξ

dτ
= −1

2
�H(mf)Uξ − 1

2
H(mf)Uξϒ. (A24)

For the derivative of the covariance matrix � we find then

d�

dτ
= −dUξ

dτ
ϒUT

ξ − Uξϒ
dUT

ξ

dτ

= −H(mf) − �H(mf)�, (A25)

which is identical to Eq. (8) using �2 = −1.

APPENDIX B: BEST QUADRATIC APPROXIMATION

In this Appendix we will show Eq. (A16), which can be
derived using Wick’s theorem. In particular, we will derive
this formula for an arbitrary Hamiltonian, which is a sum
of even products of Majorana operators. By the application

of normal ordering onto a polynomial p̂(k) of order k we
understand the sum of normal-ordered monomials m̂(l ) of or-
der l � k, in other words : p̂(k) := ∑k

l=0 : m̂(l ) :. Therefore,
it is sufficient to show the relation (A16) for arbitrary even
products of Majorana operators. Without loss of generality
we number the Majorana operators from 1, ..., 2n with n ∈ N.
Using normal ordering and Wick’s theorem we can write the
product Â = â1â2 . . . â2n (a monomial of Majorana operators)
in the following way:

Â = 〈vac|Â|vac〉 +
∑
i< j

(−1)i+ j+1〈vac|Âî, ĵ |vac〉 : âiâ j : +Q̂,

(B1)

where Q̂ collects all normal-ordered monomials, which are
at least quartic in the Majorana operators. We furthermore
introduced the reduced product Âî, ĵ , which emerges from Â by
removing the operators âi and â j . If we transform the vacuum
state using Eq. (A2), this expansion needs to be modified
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according to

ÛGSÂÛ †
GS = 〈�GS|Â|�GS〉 +

∑
i< j

(−1)i+ j+1〈�GS|Âî, ĵ |�GS〉 :

× ÛGSâiâ jÛ
†
GS : +Q̃, (B2)

where Q̃ collects terms of order four and higher. Denoting
A = �|1,2,...,2n and using Eq. (5), we can rewrite the above
equation and find

â1â2 . . . â2n = (−i)nPf(A) +
∑
i< j

(−i)n−1(−1)i+ j+1Pf(Aî ĵ ) :

× ÛGSâiâ jÛ
†
GS : +Q̃. (B3)

Here, we have introduced the submatrices Aî ĵ , which emerge
from A by canceling the ith and jth rows and columns. Using

∂Pf(A)

∂	i j
= (−1)i+ j+1

2
Pf(Aî ĵ ), (B4)

we obtain the expression

Â = (−i)nPf(A) + i
∑
i, j

(−i)n ∂Pf(A)

∂	i j
: ÛGSâiâ jÛ

†
GS : +Q̃

= 〈�GS|Â|�GS〉 + i

4
: âT UT

ξ A(mf )Uξ a : +Q̃, (B5)

with matrix entries

A(mf )
i j = 4

∂〈�GS|Â|�GS〉
∂	i j

. (B6)

We want to remark that Eq. (B4) can also be used to efficiently
calculate the derivative Eq. (9) of Eq. (7).

APPENDIX C: COMPARING NUMERICAL RESULTS
OF DMRG AND GHF SIMULATIONS

In this Appendix, we present the difference of the nu-
merical results for the energy expectation value (7) and
entanglement entropy (11) displayed in Fig. 2. In Fig. 7 we
plot how the energy (a) and entanglement entropy (b) obtained
from the GHF ZT algorithm relates to the DMRG simulation
results (using a maximal bond dimension of χ = 200) in the
weak-long-range regime. Note, that unlike the 399 equally
space grid used for the GHF simulations, DMRG simula-
tions were performed on a coarse grid of 49 equally distant
values of θ ∈ (0, 0.5). Similarly, (c) and (d) present the en-
ergy and entanglement entropy relations of the GHF versus
DMRG results for the strong-long-range regime, however,
for both GHF algorithms. As indicated by the appearance of
a stripe-like pattern in the entanglement entropy of Fig. 1
for α � 0.5, the ZT algorithm (hollow markers) displays
numerical instabilities close to the critical point, which is
why the ITE algorithm (filled markers) is always used in the
strong-long-range regime in the main text. Overall we observe
excellent agreement of DMRG and GHF in the short-long-
range regime, and qualitative agreement between DMRG
and GHF in the strong-long-range regime. An overall larger
(lower) value of the energy expectation (entanglement en-
tropy) value is observed for the GHF results, most pronounced
around the critical point.
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