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Beyond one-axis twisting: Simultaneous spin-momentum squeezing
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The creation and manipulation of quantum entanglement is central to improving precision measurements. A
principal method of generating entanglement for use in atom interferometry is the process of spin squeezing
whereupon the states become more sensitive to SU(2) rotations. One possibility to generate this entanglement
is provided by one-axis twisting (OAT), where a many-particle entangled state of one degree of freedom is
generated by a nonlinear Hamiltonian. We introduce a method which goes beyond OAT to create squeezing and
entanglement across two distinct degrees of freedom. We present our work in the specific physical context of a
system consisting of collective atomic energy levels and discrete collective momentum states, but also consider
other possible realizations. Our system uses a nonlinear Hamiltonian to generate dynamics in SU(4), thereby
creating the opportunity for dynamics not possible in typical SU(2) one-axis twisting. This leads to three axes
undergoing twisting due to the two degrees of freedom and their entanglement, with the resulting potential for a
more rich context of quantum entanglement. The states prepared in this system are potentially more versatile for
use in multiparameter or auxiliary measurement schemes than those prepared by standard spin squeezing.
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I. INTRODUCTION

The creation and manipulation of quantum entanglement
is central to developing powerful quantum technologies [1,2].
In particular, precision measurements can greatly benefit from
exploiting quantum entanglements [3,4] because nonclassical
states may be engineered for greater sensitivity to a parameter
of interest compared to their classical counterparts [5,6]. This
field has seen rapid progress on several frontiers [7] includ-
ing, but not limited to, experimental demonstration of atomic
clock timekeeping below the shot noise limit [8], extensions
of quantum error correction into quantum metrology schemes
[9], and machine learning and optimization for complex state
preparation [10–12] and measurement schemes [13]. Through
this rapid progress, there is the possibility that we will soon
use quantum mechanical devices to probe new fundamental
physics via tabletop experiments [14,15].

Many state-of-the-art atom interferometry schemes rely on
the process of spin squeezing [16,17], where a set of quantum
spins are correlated to prepare a nonclassical state that is
sensitive to SU(2) rotations at a precision below the standard
quantum limit (SQL) [18] of �φ2 ∝ 1/N , where �φ2 is the
mean square error and N is the number of particles used in the
measurement. One candidate for generating this entanglement
is one-axis twisting (OAT), whereupon many particles become
entangled in a single degree of freedom under a nonlinear
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Hamiltonian [19,20]. Through entangling processes such as
OAT, the SQL may be surpassed and a limit in precision
of �φ2 ∝ 1/N2 is achievable. This limit is a result of a
Heisenberg uncertainty-like principle between the operator
generating the unitary and the parameter one is measuring.
This limit is aptly named Heisenberg limited scaling (HLS)
[21] and is the ultimate limit for metrological systems [22].

Schemes using OAT provide below SQL improvements for
single-parameter measurements, such as the angle a dipole
sweeps under rotation generated by a magnetic field. These
improvements are realized by sacrificing the variance of quan-
tum fluctuations in one direction in exchange for a reduction
in the variance of fluctuations in the direction we wish to
measure. This hints at a natural extension of OAT; one where
multiple degrees of freedom are entangled and squeezed to
provide below SQL improvements for multiple parameters
simultaneously.

In this paper, we introduce a method for squeezing and en-
tangling two distinct degrees of freedom: The internal energy
levels of an atomic ensemble and the collective atomic mo-
mentum. As a gedanken experiment, we consider a collimated
packet of atoms passing through a cavity. The cavity-mediated
emission and absorption of photons induces a twisting of
the collective internal and momentum degrees of freedom,
while also rapidly creating entanglement between these two
degrees of freedom. The states prepared by this system could
have the potential for multiparameter sensing and estimation
[23] below the SQL, squeezed state Bragg interferometry
[24], or single-parameter estimation benefiting from auxiliary
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measurements. By analyzing the quantum Fisher information
matrix (QFIM) of the system, we find that the maximum
metrological gain in each individual degree of freedom is
shown to scale proportionally to HLS. Here, we focus on the
squeezing and correlation of the collective atomic internal en-
ergy state and momentum, but we emphasize that the general
process could be realized with any system having the same
structure in its couplings and interactions. To this point, we
discuss possible platforms which might be made to generate
similar forms of entanglement in the conclusion of this paper.

The structure of this paper is as follows. In Sec. II, we cast
the Hamiltonian into a form that illustrates the entanglement
generating process: Atomic emission and absorption of pho-
tons and the resulting momentum recoil. From this form, we
show that some features may be intuitively understood as a
generalization of the OAT Hamiltonian, while other important
features have no analog in OAT. In Sec. III, we explore the
structure of the system and Hamiltonian using an underlying
Lie algebra, and use these to simplify the subsequent analysis
of the dynamics. In Sec. IV, we use the QFIM to discuss the
results of a numerical simulation of the time dynamics. Lastly,
in Sec. V we show schematically two interferometry protocols
that benefit from the form of entanglement generated by this
scheme.

II. DERIVATION OF THE HAMILTONIAN
AND SYSTEM DYNAMICS

We consider the gedanken experiment depicted in Fig. 1(a),
where a collimated packet of atoms passes through the center
of the beam waist of a linear optical cavity, similar to a pulsed
version of the setup proposed in [25]. Each atom has a mass
m, and two relevant internal energy levels labeled the excited
and ground states |e〉 and |g〉, respectively. These energy levels
are separated by the transition energy h̄ωa. We assume that
the cavity supports a single optical mode with corresponding
frequency ωc, which is far detuned from the atomic tran-
sition by an amount � = ωa − ωc. The interaction strength
between the cavity photons and the jth atom is taken to be
g(x̂ j ) = gcos(kx̂ j )/2. Furthermore, we assume N atoms enter
the cavity with uniform velocity, and spend a time t inside the
light-atom interaction volume. During this interaction time,
the Hamiltonian is then

Ĥ =
N∑

j=1

(
p̂2

j

2m
+ h̄ωa

2
σ̂ z

j

)
+ h̄ωcâ†

c âc

+ h̄g

2

N∑
j=1

cos(kx̂ j )(âcσ̂
+
j + â†

c σ̂
−
j ), (1)

where σ̂ z
j = |e〉 j〈e| j − |g〉 j〈g| j , σ̂+

j = (σ̂−
j )† = |e〉 j〈g| j are

Pauli matrices for the jth atom, p̂ j (x̂ j) is the transverse
momentum (position) operator for the jth atom parallel to the
cavity axis, and â†

c (âc) is the photon creation (annihilation)
operator of the cavity mode.

The two relevant processes at play are the exchange of
photons between different atoms and the atom’s recoil due to
the emission and absorption of photons. To simplify our study
of these dynamics, we first take the interaction picture with
Ĥ0 = ∑N

j=1 h̄ωaσ̂
z
j /2 + h̄ωaâ†

c âc. We assume the cavity is in

FIG. 1. (a) Schematic of the proposed setup. Here, the momen-
tum perpendicular to the cavity controls the interaction time. The
initial momentum along the cavity axis selects the manifold of mo-
mentum states that the cavity couples to. (b) The spectrum of the
kinetic energy versus the spectrum of momentum states. Here, we
note the ±3h̄k/2 states are far from the ±h̄k/2 states, thus demon-
strating that the lowest manifold of four states can be considered
isolated from the rest of the quadratic spectrum. (c) The two Bloch
spheres for the collective two-level system. This picture is only valid
when there is no entanglement between the two degrees of freedom,
but it still provides a useful picture of the approximate behavior of the
system. The blue cloud is the starting state, while the green dashed
line represents the approximate distribution of the final state. The
final state may not be fully represented on these Bloch spheres due to
entanglement breaking the initial SU(2) ⊗ SU(2) symmetry needed
to represent states on two collective Bloch spheres. (d) The four-level
system, and black arrows representing each of the three unique su(2)
algebras acting on the system.

the dispersive regime |�| � √
Ng, κ , where κ is the cavity

decay rate, such that we can adiabatically eliminate the cavity
degrees of freedom over a coarse-grained timescale [26]. The
resultant Hamiltonian becomes

Ĥ =
N∑

j=1

p̂2
j

2m
+

N∑
i, j=1

h̄g2

4�
cos(kx̂i ) cos(kx̂ j )σ̂

+
i σ̂−

j . (2)

The photon exchange has now been abstracted to an excita-
tion exchange between different atoms and a resultant change
in momentum. We note that the operators

∑N
j=1 cos(kx̂ j )σ̂±

j
cause a change in an atom’s momentum by ±h̄k upon trading
an excitation, as exp(±ikx̂ j ) are the momentum shift opera-
tors. Therefore, if the atomic ensemble is prepared such that
the atoms are in motional states differing in their momen-
tum by integer multiples of h̄k, the atoms will never leave
this manifold under purely Hamiltonian evolution. We con-
sider atoms in a superposition of motional states of the form
|n〉 j ≡ |nh̄k/2〉 j for odd integers n. Preparation of such a state
could be accomplished with a diffraction grating [2] or via
Kapitza-Dirac pulses and a trapping potential [27].

Lastly, we assume that h̄Ng2/(4�) 	 (h̄k)2/m, such that
the lowest two momentum states are far detuned from the
rest of the quadratic kinetic energy spectrum, as shown in
Fig. 1(b). Therefore, if the atoms start in the | ± 1〉 j states,
they will in the subspace spanned by these two states. Under
these conditions, the total kinetic energy remains fixed at

043711-2



BEYOND ONE-AXIS TWISTING: SIMULTANEOUS … PHYSICAL REVIEW A 106, 043711 (2022)

N (h̄k)2/(8m). As a result, we can ignore the constant kinetic
energy.

In this regime, the momentum now has a spin-1/2 alge-
braic structure and so the atom’s momentum is effectively
mapped onto a two-level system. We define ŝ+

j = (ŝ−
j )† =

|+1〉 j〈−1| j and ŝz
j = |+1〉 j〈+1| j − | − 1〉 j〈−1| j such that

we can cast the translation operator cos(kx̂ j ) = [exp(ikx̂ j ) +
exp(−ikx̂ j )]/2 in terms of spin raising and lowering opera-
tors. We note that e+ikx̂ j = (e−ikx̂ j )† = ŝ+

j in this regime and
therefore 2 cos(kx̂ j ) = (ŝ+

j + ŝ−
j ) ≡ ŝx

j , thus we can rewrite
our Hamiltonian in terms of these operators. Our simplified
Hamiltonian therefore becomes

Ĥ = χ

N∑
i, j=1

ŝx
i ŝx

j σ̂
+
i σ̂−

j , (3)

with χ = h̄g2/(16�). This nonlinear Hamiltonian dictates
how the atoms are to be entangled via cavity-mediated inter-
actions.

From Eq. (3), we see that if the atoms enter the cavity
in the same momentum state, with all atoms in the state
(| + 1〉 j + | − 1〉 j )/

√
2, then the dynamics are generated by

Ĥ ≈ ∑N
i, j=1 σ̂+

i σ̂−
j ∝ (Ĵ z )2, where Ĵ z = ∑N

j σ̂ z
j /2, and one-

axis twisting is recovered. This is because the momentum
flip operator, ŝx

j , affects an atom in the state (| + 1〉 j + | −
1〉 j )/

√
2 trivially. Physically, this is the case that all the atoms

are in the same equal superposition of the +h̄k/2 momen-
tum states, so the recoil from emission and absorption of
light does not affect the collective momentum, but the atom’s
internal degree of freedom remains free to evolve. With a
starting state such as |+〉⊗N = (1/

√
2)N (|e〉 + |g〉)⊗N for the

internal atomic energies, the Hamiltonian induces standard
OAT behavior, leading to an effective spin squeezing. This
starting state and behavior is shown in Fig. 1(c), where the
red arrows on the left Bloch sphere represent the action
of (Ĵ z )2.

We may also consider the case that the internal degrees
of freedom do not affect the dynamics. This case is not
physical, but rather provides an important intuition for the
behavior in the system. Here, we take Ĥ ≈ χ

∑N
i, j=1 ŝx

i ŝx
j =

4χ (K̂x )2, where K̂x = ∑N
j ŝx

j/2. While this is not neces-
sarily physical, it sheds light on the approximate behavior
of the atomic momentum: We expect the momentum states
to experience OAT-like behavior through the nonlinear ro-
tation under (K̂x )2. With a starting state of |+1〉⊗N for
the momentum degrees of freedom, we would expect to
see operators orthogonal to K̂x, such as K̂z = ∑

ŝz
j/2, to

undergo a twisting-like behavior. This starting state and
approximate behavior is shown in Fig. 1(c), where the
red arrow on the right Bloch sphere represents the action
of (K̂x )2.

For the full Hamiltonian we expect the state |ψ〉0 =
|+〉⊗N ⊗ | + 1〉⊗N to experience the corresponding spin
twisting-like behavior in both degrees of freedom, and to lead
to interesting entanglement between the two. In the subse-
quent sections, we demonstrate mathematically that this state
breaks an important symmetry typically found in OAT, and
then we numerically show this leads to entanglement that has
the potential for metrological advantage.

III. THE OPERATOR ALGEBRAS

In full, it is not immediately obvious how dynamics evolve
under Eq. (3). The ŝx

j operators complicate the Hamiltonian
compared to the usual OAT Hamiltonian, preventing us from
using methods typically used to solve OAT models. However,
we can use the symmetries of the system to recast the Hamil-
tonian such that it is a member of an su(4) algebra yielding
a clear picture of the full dynamics and allowing for efficient
numerical simulation.

The operators appearing in the Hamiltonian are all Pauli
operators which correspond to a single atom’s internal or
momentum observable. For the jth atom’s internal state, the
operators {σ̂ x

j , σ̂
y
j , σ̂

z
j } fully describe any possible observ-

able, where σ̂ x
j = σ+

j + σ−
j and σ̂

y
j = i(σ−

j − σ+
j ). Similarly,

its momentum state is fully described by {ŝx
j, ŝy

j, ŝz
j}, where

ŝy
j = i(ŝ−

j − ŝ+
j ) is needed for the momentum operators to

close under commutation. The total system is then described,
in part, by the collective atomic and momentum operators,
Ĵ i = ∑N

j σ̂ i
j/2 and K̂ i = ∑N

j ŝi
j/2 for i = x, y, z, respectively.

These collective atomic and momentum operators each form
an su(2) algebra: J = {Ĵ z, Ĵ±} and K = {K̂z, K̂±}. These two
algebras allow us to fully describe any state which is seperable
in the two degrees of freedom, such as the state |ψ0〉 which
is represented on two composite Bloch spheres in Fig. 1(c)
in blue. Importantly, we note that the momentum operator
K̂z corresponds to the observable for the center-of-mass mo-
mentum, P̂COM = h̄kK̂z, which is intuitively the difference
between the number of atoms moving in the +1 and −1
eigenstates.

We can further simplify our analysis by mapping particles
into the Schwinger boson representation [28]. Here we use
the simultaneous eigenstates of Ĵ z and K̂z as the basis for the
new representation, but in general this could be done via the
procedure shown in [29]. First, we define

|α, β, γ , δ〉 = S (|e,+1〉⊗α|g,−1〉⊗β |e,−1〉⊗γ |g,+1〉⊗δ ),
(4)

where α + β + γ + δ = N is the total number of atoms and
S is the symmetrization operator. Note that the symmetrizer
is defined with the normalization factor, shown explicitly
in Appendix A 1, so this representation is normalized. We
can represent all the relevant operators in this formalism
as well by associating the annihilation (creation) operators
â, b̂, ĉ, d̂ (â†, b̂†, ĉ†, d̂†) to each of the four modes, such that
â|α, β, γ , δ〉 = √

α|α − 1, β, γ , δ〉 and similarly for the other
three modes as shown in Appendix A 2. Now, the number
of atoms in the excited state is simply α + γ for states of
the form in Eq. (4). Therefore, we define n̂e|α, β, γ , δ〉 =
(â†â + ĉ†ĉ)|α, β, γ , δ〉. By the same process, we can recover
the ground state number operator to be n̂g = b̂†b̂ + d̂†d̂ , the
+1 momentum state number operator to be n̂+1 = â†â + d̂†d̂ ,
and the −1 momentum state number operator to be n̂−1 =
b̂†b̂ + ĉ†ĉ. Our collective atomic and momentum operators are
simple to represent in the form

Ĵ z = 1
2 (n̂e − n̂g),

K̂z = 1
2 (n̂+1 − n̂−1),

(5)
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and Ĵ− = âd̂† + ĉb̂† = (Ĵ+)†, K̂− = âĉ† + d̂ b̂† = (K̂+)†.
Moreover, the Hamiltonian is also simply represented:

Ĥ = χ (â†b̂ + ĉ†d̂ )(âb̂† + ĉd̂†). (6)

This is intuitively what should be expected because, for exam-
ple, âb̂† is collective emission where a single atom goes from
the excited, +1 motional state to a ground, −1 motional state.
The other terms can be similarly understood.

Lastly, we introduce the raising and lowering operators
Ê+ = â†b̂ + ĉ†d̂ = (Ê−)†, and we notice that [Ê+, Ê−] =
2Ĵ z and [Ĵ z, Ê±] = ±Ê±. Thus, we see that the set E =
{Ĵ z, Ê±} forms a third closed su(2) algebra on the system
which succinctly represents the entanglement-generating pro-
cesses due to absorption and emission. The three subalgebras
J, K, and E taken together are members of a complete
su(4) algebra, which generates an SU(4) group that efficiently
describes the dynamics of this system. The action of three
subalgebras is represented schematically in Fig. 1(d) for a
single atom. In summary, within the full su(4) describing our
dynamics, we find that there exists three SU(2) subgroups
each generated by J, K, or E, which matches the general
structure for SU(4) [30]. Thus, the system can be considered
as a collection of hybridized angular momentum.

We can take advantage of the commutation structure in E

to simplify the Hamiltonian even further:

Ĥ = χ Ê+Ê−

= χ [Ê2 − (Ĵ z )2 + Ĵ z], (7)

where Ê2 = Ê+Ê− + (Ĵ z )2 − Ĵ z is the quadratic Casimir op-
erator [31] for E. Now, Eq. (7) looks like the familiar form
of a OAT Hamiltonian, except for the important difference
that K̂y and K̂z do not commute with Ê2. This means there
exist states which are eigenstates of K̂z that evolve nontrivially
under the operator Ê2, such as the starting state discussed
at the end of Sec. II. Furthermore, we can observe that the
operator Ê2 has shells corresponding to each of its eigen-
values, similar to the shells typically defining eigenvalues
for total angular momentum observables. The starting state,
|ψ0〉, creates a superposition over these shells and, with Ê2

contributing nontrivially to the dynamics, each of the three
pseudoangular momentum subgroups experience a twisting
under this Hamiltonian.

IV. ANALYSIS OF THE DYNAMICS
AND ENTANGLEMENT GENERATION

Now we use the Schwinger boson representation intro-
duced in Sec. III to numerically simulate the system and
explore the dynamics. For these simulations we assume the
cavity decay at rate κ and other dissipative processes, such
as spontaneous emission at rate γ , are negligible. This as-
sumption is valid in the limit that the timescale considered
for unitary dynamics, t , is much smaller than the relevant
inverse decay rates. Further analysis of the effects of deco-
herence is left to future work, but we attempt to make explicit
note of when one would expect decoherence to become non-
negligible, and the relevant bounds in these cases.

To simulate the system, we use the four annihilation and
creation operators found in the previous section, and model

the atomic system as a system of four harmonic oscillators.
The Hilbert space of four harmonic oscillators has a dimen-
sionality of (N + 1)4 containing all states with atom numbers
between 0 and 4N atoms. We may use either of the con-
ditions that n̂e + n̂g = N or n̂+1 + n̂−1 = N to project onto
only the states with N atoms. This corresponds to restrict-
ing to only states which may be reached by SU(4) action,
and the typical argument of putting N atoms indistinguish-
ably in four distinguishable states shows the system scales
at (N + 1)(N + 2)(N + 3)/6 states for N atoms. This now
matches the dimensionality of the basis states with an SU(4)
symmetry, given in Ref [32], and is numerically more efficient
than the initial (N + 1)4 scaling.

We use the starting state discussed in Sec. II, |ψ0〉 =
|+〉⊗N ⊗ | + 1〉⊗N . As noted in the end of Sec. III, |ψ0〉 is
not an eigenstate of Ê2. From the discussion of this state
and the picture in Fig. 1(c), we expect this initial state to
lead to twisting-like behavior and entanglement generation
between the two degrees of freedom. The intuitive picture to
understand this behavior is the following. When an atom emits
light, its internal degree of freedom becomes entangled to that
of the atom which absorbs the emitted light. At the same time,
both these atom’s momentum states must switch, causing their
external degrees of freedom to become entangled similar to
their internal ones.

To diagnose the amount of entanglement and potential
metrological use, we consider the case that one wants to
prepare states which will be used to estimate some phase, φ j ,
encoded by unitary evolution under some operator, Ĝ j , so that
the state evolves according to exp(−iφ j Ĝ j ). Specifically, we
consider the cases that Ĝ j is in either J or K, and choose the
indices i, j so that if i, j = 1, 2, 3, then Ĝi, Ĝ j = Ĵx, Ĵy, Ĵ z

and if i, j = 4, 5, 6, then Ĝi, Ĝ j = K̂x, K̂y, K̂z. In this sce-
nario the QFIM serves as both an entanglement measure [33]
and a measure of the potential metrological use of a state
in quantum metrology [34]. We use the form of the QFIM
given in Ref. [35] for pure states, since in the present proof of
concept we do not address decoherence. Under this condition,
the matrix elements are given by

F i j = 4

(〈 {Ĝi, Ĝ j}
2

〉
− 〈Ĝi〉〈Ĝ j〉

)
, (8)

where {Ĝi, Ĝ j} = ĜiĜ j + Ĝ jĜi is the anticommutator. For
i = j, Eq. (8) returns the fourfold variance, which captures the
amount of squeezing and entanglement present. The condition
for an entanglement witness to squeezing is F ii/N2 > 1/N ,
which is equivalent to the condition given in Ref. [33]. If
F ii/N2 approaches a constant as N grows, then the sufficient
condition for entanglement is clearly met and the system’s po-
tential metrological use proportional to HLS is demonstrated.
Meanwhile for i �= j, Eq. (8) returns the fourfold covariance,
thereby capturing the amount of quantum correlations be-
tween these observables. We observe that [Ĵ i, K̂ j] = 0 for all
Ĵ i ∈ J, K̂ j ∈ K. As a result, the covariance of two operators
on the internal state and the momentum, such as cov(Ĵx, K̂z ),
is nonzero only for pure states which are entangled. The
off-diagonal elements of the QFIM with i ∈ {1, 2, 3} and
j ∈ {4, 5, 6} therefore represent the covariance between the
atomic and momentum operators, and act as an entanglement
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units of

FIG. 2. Four of the six diagonal elements of the QFIM, for four
different atom numbers. The operators Ĵ z and K̂x are left out because
they commute with the Hamiltonian and are therefore conserved
quantities. We see that as the number of atoms grows, the behavior of
the diagonal QFIM elements converge. For atom numbers of N ≈ 50
or more, a plateau with respect to time appears, centered around
χt = π/4. This is similar to the behavior found in OAT where the
QFIM for Ĵx and Ĵy reaches a plateau [5] centered around the same
time. As N grows, the plateau exists almost everywhere in time. Here
we only show even atom numbers, N , but we note that for odd atom
numbers the behavior is the same except for at χt = π/2, where the
concavity is opposite from what is shown here.

witness of quantum correlations between the two degrees of
freedom. Thus, we use the sufficient condition that F i j �= 0 as
an entanglement witness for the two degrees of freedom as a
pure state bipartite system. This is a modified version of the
condition given in Ref. [36].

In Fig. 2, we show the quantity F ii/N2 for the four op-
erators of interest, and for four different numbers of atoms,
N , each as a function of interaction time with the cavity, t .
We observe that F ii/N2 increases sharply before leveling off
to a constant value over time. Because F ii/N2 > 1/N , the
entanglement witness condition is satisfied for each case. This
condition is met in a short interaction time, demonstrating
that entanglement is quickly generated in both the collective
internal and the momentum modes. Therefore we see that
along with the spin squeezing in the internal atomic degrees
of freedom, this platform also leads to an effective squeezing
of the momentum degrees of freedom.

To quantify the potential metrological use of this system,
we fix the time at χt = π/4 and show how the diagonal
element of QFIM for Ĵx and K̂z scales with atom number. The
results are shown in Fig. 3. Achieving an interaction timescale
of χt ∼ 1 would require a very big cavity-atom coupling,
such that χ � γ . The same is true for any other decoherence
rate one might consider. As a result, this timescale may be
physically inaccessible with traditional cavities, but is theo-
retically interesting nonetheless. These long timescales form
the equivalent of the “oversqueezed” timescales in standard

FIG. 3. The diagonal elements of the QFIM corresponding to Ĵx

and K̂z shown as a function of atom number, N . We fit 4�Ĵx and
4�K̂z with second order polynomials FJ (N ) and FK (N ), respectively.
We fit for N � 4, because for N = 2 and N = 3 the system has
anomalous behavior for small atom numbers. We find that 4�Ĵx is fit
with the function FJ (N ) ≈ 0.366N2 + 0.793N − 2.662, and 4�K̂z is
fit with the function FK (N ) ≈ 0.356N2 + 0.599N + 1.466. Both of
these demonstrate the HLS.

OAT. We specifically choose the time χt = π/4 because it is
the center of the plateau in the QFIM’s diagonal elements.

We see that both the atomic and momentum degrees of
freedom scale proportionally to N2, i.e., with HLS. Similar
behavior exists in OAT, where one finds a plateau in the
variance of the antisqueezed quadrature for times between
1/

√
N � χ ′t � π/2 − 1/

√
N , where χ ′ is an appropriately

defined frequency. However, in OAT this plateau is restricted
to just the spin degree of freedom [5]. Our scheme provides
a squeezing mechanism for momentum degrees of freedom,
creating the possibility that spin-squeezing techniques used
in Ramsey interferometry [37] might be generalized to Bragg
interferometry or that the two might be performed simultane-
ously.

Now, we study the behavior of the entanglement between
the degrees of freedom, which has no analog in OAT. We study
the entanglement via the fourfold covariance between the two
operators Ĵx and K̂z, corresponding to an off-diagonal element
of the QFIM. In Fig. 4(a), we see that the system moves
through a highly correlated state, with a high covariance be-
tween the two degrees of freedom, before it approaches an
uncorrelated state for a moment in time at χt = π/2. At an
interaction time of χt = π , the system returns to its original
state. In Fig. 4(b), we see that for interaction times of χt ≈
π/4 the correlations only scale linearly with N . Therefore,
interaction times which reach this plateau prepare a system
which is capable of quantum sensing for two parameters at
the Heisenberg limit, with relatively little error introduced by
the simultaneous measurement of the two parameters. This
motivates the first half of the next section, where a schematic
representation of two-parameter interferometry is shown.
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units of

FIG. 4. Plots of F i j = 4cov(Ĵx, K̂z ). (a) The off diagonal of
the QFIM, F i j , normalized by N2 for four different values of
N . We see the covariance between Ĵx, K̂z grows rapidly before
decaying for longer timescales, then in a collapse-revival-like
effect at χt ≈ π the operators become correlated again before ap-
proaching the starting state. (b) The same off-diagonal element
of the QFIM at two different times: χt = π/4 when the corre-
lations are decreasing, and χt = N−2/5 when the correlations are
largest. We find that F i j |χt=π/4 ≈ 4.103 × 10−3N2 + 0.926N , and
F i j |χt=N−2/5 ≈ 0.1782N2 − 0.02721N .

The time at which the system is maximally correlated is la-
beled tmax, and we find χtmax decreases with number of atoms
such that χtmax ≈ Nν , where ν ≈ −2/5 is found from fitting.
At this time, the maximum correlation scales proportionally to
N2, which is on the order of the squeezing for the two degrees
of freedom.

To achieve an interaction time with these large correla-
tions, one needs χt ∼ N−2/5. Compared to the single-particle
emission, one has the requirement χ � N−2/5γ , which can be
achieved for sufficiently large N . Therefore we expect single-
particle decoherence to be negligible on these timescales. In
this regime, we instead expect that collective decoherence
processes, such as collective spontaneous emission medi-
ated by the cavity, would limit the amount of achievable
entanglement. After adiabatic elimination of the cavity, the
collective decoherence rate is due to light being incoherently
scattered into the cavity and lost. This rate can be estimated as
Nχκ/� ∝ Ng2κ/�2. Therefore one may reduce it by increas-
ing the cavity-atom detuning, �, at the expense of reducing χ .
However, interaction times of χt ∼ N−2/5 may still be possi-
ble in cavities with low photon loss rate κ . We also note that
a similar timescale of χt ∼ N−2/3 is needed for production of
optimally squeezed states in standard OAT [5,38], so it could
be possible to achieve an interaction time on the order needed
to see strong correlations.

This short timescale with highly correlated degrees of free-
dom motivates the second half of our next section, where a
schematic representation of single-parameter interferometry
is shown. The parameter is estimated via an interaction with
one degree of freedom, and an auxiliary measurement on the
other degree of freedom.

V. INTERFEROMETER SCHEMES

To demonstrate a possible metrological use, we numeri-
cally explore two interferometry schemes. The first uses the
system to detect two relative phases: One encoded in the
atom’s internal degree of freedom, and a second encoded in
the momentum degree of freedom. The second scheme uses

FIG. 5. A quantum circuit schematic of the two schemes. The
two tracks represent the actions affecting either degree of freedom,
with the top track representing the internal states of the atoms, and
the bottom track representing the momentum. (a) The two-parameter
scheme. The interaction time for this two-parameter scheme, τ2, is
fixed at χτ2 = π/4 to demonstrate metrological use on the plateau
found in Sec. IV. (b) The auxiliary measurement scheme. Here,
χτ1 = N−2/5 is chosen such that the ensembles are maximally corre-
lated. The time-reversed unitary could be achieved by changing the
detuning on the cavity.

this system to detect a single parameter via auxiliary mea-
surements. The version of the auxiliary measurement scheme
presented here is the case that the collective internal degree
of freedom accumulates phase and the momentum degree
of freedom is measured. However, this process would work
similarly if the roles were reversed.

For both schemes, we choose a new interaction picture for
the Hamiltonian such that Ĵ z is removed from Eq. (7). This has
no effect on the physics described above, besides keeping the
atomic ensemble polarized in Ĵx instead of precessing about
Ĵ z. This matches what is often done in OAT, and the process
is shown in more depth in Appendix B.

We start with the two-parameter scheme. The relevant
schematic representation is shown in Fig. 5(a). Here, we first
pass the atomic ensemble through the cavity for an interaction
time χτ2 = π/4 to prepare the probe state. We chose this time
to show the metrological use for times near the plateau, when
correlations between the degrees of freedom are decreasing
with respect to interaction time. However, this multiparameter
scheme could be used for any interaction time, albeit with
slight differences due to varying correlation strengths. After
the state preparation, a rotation generated by Ĵx is performed
so that the maximum fluctuation is in Ĵ z, where the angle θopt

is found numerically. For the momentum degree of freedom,
it was found that the state is already prepared such that the
maximal fluctuations are along K̂y at this time. The signal is
encoded in the system by unitary

V̂ = exp(−iφ3Ĵ z − iφ5K̂y), (9)

where we assume for numerical convenience the phases φ3, φ5

are small, at φ3 = φ5 = π/16. However, we found that these
results hold for larger phases as well as for two phases which
are not equal. After the unitary, we measure the observables
Ĵx and K̂z and carry out phase estimation for both phases
simultaneously. To estimate the phase, we simulate a Bayesian
inferencing scheme [21] for two parameters and with a flat
prior, and to find the asymptotic behavior of this Bayesian
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FIG. 6. (a) A plot of the standard deviation corresponding to the
final result of Bayesian inferencing for estimating the phases φ3 and
φ5 with M = 5000 measurements, and φ3 = φ5 = π/16. (b) A plot
of the quantities 1

Mσ 2
i

for σi = σJ , σK , the CFI I (Ĝi ) for Ĝi = Ĵ z, K̂y

corresponding to these measurements, and the diagonal elements of
the QFIM for these measurements. Note that because of the rota-
tion generated by Ĵx prior to the interferometry, F33 = (�Ĵ z )2 now
scales with HLS. We see that the quantities 1

Mσ 2
i

= I (Ĝi ) saturate

the classical CRB from the left half of Eq. (10), and nearly saturate
the quantum CRB. By fitting the diagonal QFIM elements and 1

Mσ 2
i

we find the CFI scales as I (Ĵ z ) ≈ 0.3184N2 + 0.9162N , I (K̂y ) ≈
0.2022N2 + 1.454N , while F33 = (�Ĵ z )2 ≈ 0.3815N2 + 0.1577N ,
F 55 = (�K̂y )2 ≈ 0.2512N2 + 0.8727N . This indicates this mea-
surement scheme scales at about 80% the theoretical maximum.

inference, we numerically calculate the classical Fisher in-
formation (CFI) as a function of atom number. The exact
algorithm for sampling and updating a probability distribu-
tion, as well as the explicit form of the CFI are shown in
Appendix C. Using the CFI, we have a useful set of inequali-
ties from the Cramér-Rao bound [39] (CRB):

σ 2
i � 1

MI (Ĝi )
� 1

MF ii
, (10)

where i = 3, 5 corresponds to either φ3 or φ5, σ 2
i is the

variance of the probability distribution, M is the number of
measurements, I (Ĝi ) is the CFI for a parameter encoded by
the operator Ĝi = Ĵ z, K̂y, and F ii is the diagonal element of
the QFIM for the corresponding operator. The first inequality
is the classical CRB, and the second inequality is the quan-
tum CRB. By inverting this bound we find the following:
F ii � I (Ĝi ) � 1/Mσ 2

i , so we can tell how close our resultant
probability distribution from Bayesian inferencing is to satu-
rating the CRB. In Fig. 6, we see the results of this analysis
for M = 5000 measurements. This measurement scheme sat-
urates the classical CRB for both parameters, and reaches a
value of about 80% of the quantum CRB. Moreover, it does
this simultaneously for both parameters.

We also note that, while not shown, as φ3, φ5 tend towards
zero the CFI exactly saturates the quantum CRB, but Bayesian
inferencing takes asymptotically more measurements to sat-
urate the classical CRB. This result was found numerically,
but it can be intuitively explained by the formation of narrow,
ringlike Q functions on the collective Bloch spheres of the
internal and external degrees of freedom. Those rings form
along the Jx-Jz plane and along the Ky-Kz plane which makes
them sensitive to any rotation which results in leaving the
corresponding planes. For rotations of these planes around the

FIG. 7. (a) The standard deviation of the final state fidelity, σFid,
with the | + 1〉⊗N momentum state. This is found by fitting the
central peak with a Gaussian and offset. (b) The quantities 1/σ 2

Fid

and the QFIM element corresponding to rotations about Ĵx . We see
that 1/σ 2

Fid ≈ 0.1699N2 + 0.1069N and F ii|χt=N−2/5 ≈ 0.2874N2 −
0.0577N , showing that this auxiliary measurement reaches about 0.6
the quantum CRB.

Jz and Ky axes one can then efficiently read out the applied
phase by measuring Jx and Kz, respectively. With this picture
in mind, we would expect the optimal measurement for any
value of (φ3, φ5) is [Ĵx cos(φ3) + Ĵy sin(φ3)] ⊗ [K̂z cos(φ5) +
K̂x sin(φ5)], such that the measurement will always be ori-
ented the same relative to plane this state is in. Numerically we
find that this in fact always saturates the quantum CRB. How-
ever, using this measurement requires knowledge of (φ3, φ5).

Now, we turn our attention to the auxiliary measurement
scheme, shown in Fig 5(b). Here, the atomic ensemble first
passes through the cavity for a time of χτ1 = N−2/5, so that
the observables Ĵx and K̂z are well correlated. Then, the phase
is encoded on either the internal degree of freedom or the mo-
mentum. By changing the detuning on the cavity, the unitary
may be reversed and a measurement on the noninteracting
degree of freedom may be used to determine the phase. We
simulate this scheme using a phase encoded on the atomic
degree of freedom and a momentum measurement. To diag-
nose the metrological use, we consider the fidelity between
the |+1〉⊗N momentum state and the final momentum state.
This is the same as measuring if 〈P̂COM〉 is equal to +Nh̄k/2
or not. We consider this measurement outcome because for
values of φ1 near zero, a K̂z measurement outcome of +N/2
is the most likely outcome, and for φ1 = 0, it will be the
only outcome. As a result, this fidelity forms an effective
probability distribution of φ1 for just this one measurement
outcome of K̂z, and groups together the rest of the possible
measurement outcomes. In Appendix D we show that this
effective probability distribution provides a lower bound for
the CFI. The standard deviation of this distribution may be
used to calculate a lower bound for the CFI of this mea-
surement scheme. The standard deviation of this fidelity is
shown in Fig. 7(a), while the inverted form of the standard
deviation from Eq. (10) is compared to the relevant QFIM
diagonal element and shown in Fig. 7(b). Using the fidelity to
represent only one of the possible measurement outcomes, the
uncertainty scales at 1/σ 2

Fid ≈ 0.1699N2 and from this we see
that these auxiliary measurements allow us to predict the real
phase with an uncertainty that scales with at least 59% of the
quantum CRB. This demonstrates that the auxiliary measure-
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ment, while not optimal compared to a direct measurement,
still recovers a large amount of information about the degree
of freedom not being directly measured.

VI. CONCLUSION

In this work, we have introduced a method which indi-
vidually squeezes and entangles two degrees of freedom, and
showed there exists a nontrivial interplay between the atomic
internal and momentum degrees of freedom. We have demon-
strated that these extra degrees of freedom might create the
opportunity for multiparameter metrology at the Heisenberg
limit in either degree of freedom, or for novel metrology
schemes which benefit from the entangled degrees of freedom.
The multiparamter and auxiliary schemes shown in the final
section have the potential to be the basis for practical tools in
matter wave interferometry. This form of entanglement gener-
ation and manipulation represents a possible new frontier for
atom interferometry.

Future work could include adding decoherence in a nu-
merical exploration, and explorations of the existence of
multipartite entanglement [40] that may be realized by this
system. We also note that the physical system explored here
might pose experimental challenges. Namely, the regime re-
quiring � � √

Ng leads to the parameter χ being small,
thereby requiring long interaction times which are hard to
achieve in atomic beam-cavity experiments. To explore the
effects of the small χ and long interaction times compared
to the decoherence time, one could simulate this system with
full beam dynamics. It would also be interesting to explore
the use of a moving optical lattice [41] to select the atomic
transverse momentum, and trap the atoms in the cavity longer.
We are also interested in the possibility of using the auxiliary
measurement scheme for much shorter interaction times than
shown here, χt 	 1, such that the degrees of freedom only
become weakly correlated and measurements on one degree
of freedom only perturbatively affect the other degree of free-
dom. This could allow for measurements which only extract a
small amount of information, but do not destroy the quantum
state of the other degree of freedom.

Lastly, we point out that the above discussion is centered
on realizing Eq. (3); however, the principles discussed here
may be relevant to different platforms. Specifically, we be-

lieve coherently controlling a two-component Bose-Einstein
condensate [42,43] in order to select for interactions, and engi-
neering an optical lattice to induce spin-momentum couplings
in a Bose-Einstein [44] might lead to similar Lie algebraic
structure and allow for controlled generation of metrologically
useful entanglement. The use of a two-component BEC might
have the added benefit of relaxing the condition on small χ

that we have here [43].
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APPENDIX A: SCHWINGER BOSON REPRESENTATION

1. Normalization coefficient

The symmetrizer in Eq. (4) is defined with the normaliza-
tion factor, 1/Mα,β,β,δ , such that

Mq,q3,σ3 =
√

N!

α!β!γ !δ!
, (A1)

so that the bosonic state representation is normalized. In fact,
we can see that M2

α,β,β,δ is just a multinomial coefficient
so this normalization makes our bosonic modes match a
straightforward second quantization of the system’s degrees
of freedom.

2. Creation and annihilation operators

For posterity, we present the remaining three annihilation
operators not shown in the paper:

b̂|α, β, γ , δ〉 =
√

β|α, β − 1, γ , δ〉, (A2)

ĉ|α, β, γ , δ〉 = √
γ |α, β, γ − 1, δ〉, (A3)

d̂|α, β, γ , δ〉 =
√

δ|α, β, γ , δ − 1〉. (A4)

APPENDIX B: INTERACTION PICTURE FOR THE SIMPLIFIED HAMILTONIAN

Starting with the Hamiltonian Eq. (7), we can choose a different interaction picture, such that

Ĥ − χ Ĵ z = χ [Ê2 − (Ĵ z )2 + Ĵ z − Ĵ z] = χ [Ê2 − (Ĵ z )2]. (B1)

This is equivalent to choosing Ĥ0 = ∑N
j=1 h̄ωaσ̂

z
j /2 + χ

∑N
j=1 σ̂ z

j /2 + h̄ωaâ†
c âc for our transformation into the interaction

picture. This leads to an extra phase on the Pauli raising operator for the jth atom, so σ̂+
j (t ) = e(−iχt )σ̂+

j in the interaction

picture. However, this phase cancels after the adiabatic elimination of the cavity mode. Thus, we may effectively ignore the h̄Ĵ z

appearing in the Hamiltonian. Our Hamiltonian is then

Ĥ = χ

N∑
i, j=1

ŝx
i ŝx

j σ̂
+
i σ̂−

j − χ

N∑
j=1

σ̂ z
j /2

= χ (â†b̂ + ĉ†d̂ )(âb̂† + ĉd̂†) − χ

2
(â†â + ĉ†ĉ − b̂†b̂ − d̂†d̂ )
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= χ

(
â†âb̂†b̂ + ĉ†ĉd̂†d̂ + â†b̂ĉd̂† + âb̂†ĉ†d̂ + â†â + ĉ†ĉ − 1

2
n̂e + 1

2
n̂g

)

= χ

(
â†âb̂†b̂ + ĉ†ĉd̂†d̂ + â†b̂ĉd̂† + âb̂†ĉ†d̂ + 1

2
n̂e + 1

2
n̂g

)

= χ [Ê2 − (Ĵ z )2]. (B2)

In the last line we have used the fact that 1
2 n̂e + 1

2 n̂g = N/2, and dropped this term due to it only contributing a global phase.

APPENDIX C: BAYESIAN INFERENCING ALGORITHM

In Sec. V, we use Bayes’ theorem to carry out Bayesian
inferencing. We aim to construct a probability distribution
P( �φ|�ε), where �φ = (φ3, φ5) and �ε is a measurement logarithm
derived from a weighted random sampling of possible mea-
surement outcomes. Here, we use the fact that Ĵx = ∑

i λ
x
i �̂

x
i

and K̂z = ∑
j λ

z
j�̂

z
j , for eigenvalues λx

i , λ
z
j and projective

operators �̂x
i , �̂

z
j . Both sets of projective operators form a

complete positive operator valued measure on the set of
states.

We simulate a measurement by choosing an outcome, εi, j ,
corresponding to finding eigenvalue λx

i for a Ĵx measurement
and λz

j for a K̂z measurement. This outcome is chosen at ran-
dom by sampling a list of all possible outcomes with weights
P(εi, j ) = 〈ψ |V̂ †�̂x

i �̂
z
jV̂ |ψ〉, where V̂ is given in Eq. (9) and

|ψ〉 = exp(−it Ĥ )|ψ0〉. Through this process we generate the
measurement logarithm, �ε.

We start with a flat prior distribution, P( �φ) = (2π )−2, and
update our probability distribution with each measurement
outcome according to

Pm+1( �φ|εi, j ) = P(εi, j | �φ)
Pm( �φ)

P(εi, j )
, (C1)

where P(εi, j | �φ) = 〈ψ |V̂ †
est( �φ)�̂x

i �̂
z
jV̂est( �φ)|ψ〉 with V̂est( �φ) be-

ing a numerical reconstruction of the unitary, P(εi, j ) is the
probability of the measurement outcome integrated over all
values of φ3, φ5, Pm( �φ) is the probability distribution from the
first m measurements, and Pm+1( �φ|�ε) is the updated probabil-
ity distribution.

We can predict the asymptotic behavior of Bayesian anal-
ysis from the CFI. The CFI can be explicitly calculated:

I (Ĝi ) =
∑

i

(
d

dφi
ln [P(ε j |φi )]

)2

P(ε j |φi ), (C2)

where ε j represents the jth measurement outcome, and
P(ε j |φi ) is the same probability distribution, but marginalized
over any independent variables besides φi. For example, if
i = 3 such that Ĝ3 = Ĵ z, we have that

P(ε j |φ3) = TrJ{�̂x
jTrK [V̂est( �φ)|ψ〉〈ψ |V̂ †( �φ)]}, (C3)

where TrJ and TrK are the traces over the atomic internal
degree of freedom and the momentum degree of freedom, re-
spectively. The CFI we consider is only dependent on a single
degree of freedom because we only use it in a comparison to
a diagonal element of the QFIM.

APPENDIX D: FIDELITY AS A LOWER
BOUND OF THE CRB

The trace of one degree of freedom in this system is very
hard to calculate, even just numerically, because correlations
between the atomic energy level and momentum states hap-
pen on an atom by atom basis, whereas large simulations
are only feasible using the second quantization picture we
show in this paper. This provided challenges for calculat-
ing the scaling behavior of the axuiliary scheme, where one
wants to measure one degree of freedom but not the other.
Here we briefly show that the fidelity between an eigen-
state of an observable and the state one wishes to measure
serves as a suitable lower bound on the actual set of mea-
surements, without needing to take the trace of a degree of
freedom.

One may analytically calculate the CFI with respect to a Ĵx

rotation and a full K̂z measurement as follows:

I (Ĵx ) =
+N/2∑

m=−N/2

p j

(
∂

∂φ1
ln(p j )

)2

, (D1)

where p j represents the probability of the jth measurement
outcome of K̂z, for example pN/2 = 〈+1|N TrJ (|ψ〉〈ψ |)| +
1〉N , where TrJ means we first trace over the atomic degrees
of freedom. We also have that p j[ ∂

∂φ1
ln(p j )]2 � 0 for all out-

comes j, so we can observe that

pN/2

(
∂

∂φ1
ln(pN/2)

)2

+ p j �=N/2

(
∂

∂φ1
ln(p�=N/2)

)2

�
+N/2∑

m=−N/2

p j

(
∂

∂φ1
ln(p j )

)2

, (D2)

where p j �=N/2 = 1 − pN/2 is the probability of not measur-
ing K̂z = +N/2. These two probabilities, pN/2 and p j �=N/2,
can be calculated without the use of a trace via the fi-
delity. This is because one may observe that under the
time evolution of the Hamiltonian, the only atomic states
entangled to | + 1〉N momentum states are those in the ini-
tial atomic configuration, |+〉N . Otherwise, momentum flips
occur in pairs from the ŝx

i ŝx
j term in the Hamiltonian. There-

fore, the CFI of this single probability distribution, pN/2,
serves as a lower bound for the CFI by construction, be-
cause this would be the same as measuring if K̂z is +N/2
or not.
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