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We calculate the finite-temperature local spectral weight �LSW� of a Luttinger liquid with an “open” �hard-
wall� boundary. Close to the boundary the LSW exhibits characteristic oscillations indicative of spin-charge
separation. The line shape of the LSW is also found to have a Fano-like asymmetry, a feature originating from
the interplay between electron-electron interaction and scattering off the boundary. Our results can be used to
predict how edges and impurities influence scanning tunneling microscopy �STM� of one-dimensional electron
systems at low temperatures and voltage bias. Applications to STM on single-walled carbon nanotubes are
discussed.
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I. INTRODUCTION

Metallic electrons confined to one dimension exhibit a
plethora of intriguing effects, driven by interactions and the
coupling to impurities and defects.1 At low energies a clean
system is described by the concept of a spinful Luttinger
liquid �LL�,2 with properties very different from those of a
Fermi liquid: the quasiparticle pole vanishes identically and
only collective modes remain, separately carrying spin and
charge. The response of a LL to the addition of a local po-
tential scatterer also differs dramatically from that of a Fermi
liquid. The repulsive electron-electron interaction produces
long-range density oscillations that get tangled up with the
impurity potential in such a way as to suppress the single-
electron spectral weight close to the impurity, as well as the
conductance through it:3,4 In the zero-temperature limit and
with a spin-rotational-invariant interaction the impurity ef-
fectively cuts the system in two parts, with “open” bound-
aries �hard walls� replacing the impurity. The case of a mag-
netic impurity—which interacts dynamically with the
conduction electrons—is similar: In the zero-temperature
limit the physics is that of two LLs separated by open bound-
aries, with the finite-T response governed by a scaling opera-
tor that tunnels electrons through the boundaries.5 The pic-
tures that emerge in both cases are universal in the sense that
all response functions depend only on the electron-electron
interaction, with critical exponent which for a spin-rotational
interaction is coded by the single LL charge parameter Kc.
Details of the coupling of the electrons to the impurity, or the
structure of the impurity potential, are irrelevant.

The fact that an impurity in a LL drives the system to an
open boundary fixed point6 has spurred considerable theoret-
ical work on properties of LLs with an open boundary
condition �OBC�.7–14 Added interest comes from the fact
that many measurements on one-dimensional electron
structures—such as the single-wall carbon nanotubes
�SWCNTs�,15 or quantum wires, realized in gated semi-
conductor heterostructures16 or grown on metallic
substrates17—are expected to be significantly influenced by
electron scattering from the edges, where the confining po-
tential to a first approximation can be treated as an OBC.

Most work to date has focused on the local spectral
weight �LSW� of a LL with an OBC, yielding predictions for
single-electron tunneling and photoemission measurements
close to an edge18 or close to an impurity at sufficiently low
temperatures.19 Measuring the energy � �with �=1� with re-
spect to the Fermi level, the low-temperature LSW A���
close to an open boundary scales as3,7,8

A��� � ��Kc
−1−1�/2 �1�

where Kc�1 for a repulsive electron-electron interaction.20

This is to be compared with that of a clean system probed

away from its edges, where A������Kc+Kc
−1�/4−1/2.2 Experi-

ments on SWCNTs seem to agree with the theoretical pre-
diction that the tunneling rate of electrons should follow a
characteristic power law with temperature,15 with a signifi-
cant reduction of tunneling into the end of a tube as com-
pared to tunneling into its interior �“bulk” regime�.21 Oscil-
lation patterns that suggest spin-charge separation have also
been seen in the tunneling conductance between two quan-
tum wires produced by cleaved edge overgrowth,22 in quali-
tative agreement with theoretical results. In another line of
research, photoemission spectroscopy measurements on
quasi-one-dimensional organic conductors have been inter-
preted within a picture where the one-dimensional chains in
the samples are cut by impurities into disconnected pieces,
each modeled as a LL with OBCs. Again using results for the
LSW, it has been argued8–10,17,23 that this approach gives
better agreement with experiments than conventional theory
where photoemission spectra are compared to predictions
from ordinary bulk LL theory.24 However, this alternative
interpretation remains controversial and the issue has been
difficult to settle, mainly due to the fact that photoemission
measurements on these materials are subject to a variety of
subtle effects.

The most direct way to probe a LSW is via scanning
tunneling microscopy �STM�.18 These experiments are deli-
cate, as the STM tip must be positioned at a very small
distance from the sample for electrons to tunnel.25 While this
is feasible for SWCNTs, the high-precision STM experi-
ments that have been carried out have probed tubes deposited

PHYSICAL REVIEW B 74, 085114 �2006�

1098-0121/2006/74�8�/085114�12� ©2006 The American Physical Society085114-1

http://dx.doi.org/10.1103/PhysRevB.74.085114


on metallic substrates. This leads to a suppression of the
electron-electron interaction from screening charges, and
early results were successfully interpreted within a free-
electron model.26,27 In another effort STM measurements
were performed on SWCNTs freely suspended over a
trench,28 thus bypassing the problem with screening charges.
However, the resolution achieved in this experiment was not
sufficient to test for the expected LL scaling at small ener-
gies. In more recent experiments SWCNTs deposited on
atomically clean Au�111� surfaces were studied by high-
resolution STM spectroscopy,29 revealing that the electronic
standing waves close to the end of a tube have an enhanced
charge velocity which may imply spin-charge separation, and
a fortiori LL behavior.30

Turning to theory, the spectral properties of LLs with
OBCs are by now fairly well understood, although some
open problems remain. Maybe most pressing is the question
about the very applicability of LL theory: What is the energy
scale � below which the power law in Eq. �1� becomes vis-
ible? Obviously, an answer to this question is essential for
making sensible predictions for experiments. From numeri-
cal and other studies of the one-dimensional Hubbard
model31 it is known that the decrease of the LSW—as pre-
dicted by LL theory—is often preceded by a sharp increase,
and that this effect is particularly pronounced near an
edge13,14 or close to an impurity.32 The effect is expected to
be generic for any one-dimensional metallic system where
the amplitude for backscattering is larger than for forward
scattering. For some systems with a �weakly screened� long-
range interaction, such as the carbon nanotubes, backscatter-
ing gets suppressed above a threshold temperature, and one
expects the asymptotic LL scaling in Eq. �1� to be visible at
accessible energy scales, as is also suggested by
experiments.15 More work is needed, though, to obtain a re-
liable estimate of the crossover scale �, given data from the
underlying microscopic physics.

We shall not address this issue here, but rather reconsider
the problem of determining the full coordinate and tempera-
ture dependence of the LSW of one-dimensional interacting
electrons with an OBC, assuming that the energy scale is
sufficiently low for LL theory to be applicable. Knowing the
detailed structure of the LSW is important for making pre-
dictions of future high-precision STM measurements of LL
systems, for which the SWCNTs are presently the prime
candidates.33 In earlier works the zero-temperature properties
of the LSW,18 as well as the finite-temperature properties of
the uniform part of the LSW �neglecting Friedel
oscillations�,9 have been reported. Here we treat the full
problem at a finite temperature and exhibit the LSW for dif-
ferent choices of interaction strength and band filling. We
shall find that close to an open boundary the line shape of the
LSW has a marked asymmetry as a function of energy with
respect to the Fermi level, a property that arises from the
phases that appear in the single-electron Green’s function,
and which has not been examined before to our knowledge.
The form of the asymmetry in the neighborhood of the Fermi
level resembles a Fano line shape, a feature expected univer-
sally whenever a resonant state �like that induced by a mag-
netic impurity in an electron system� interferes with a non-
resonant one.34 As we shall see, the origin of the asymmetric

line shape in the present case is very different, and is formed
by an interplay between electron-electron interaction and
scattering off the open boundary. The asymmetry is fairly
robust against thermal effects, suggesting that Fano-like line
shapes produced by the reflection of interacting electrons off
boundaries can be observed at temperatures higher than
those originating from their interference with a resonating
level. Having access to the full LSW, we will also be able to
give a systematic description of how charge and spin sepa-
ration shows up as an oscillation pattern when close to an
edge �or an impurity at low temperatures�. This information,
which we extract for different temperatures, can be directly
translated into a prediction of the measured differential con-
ductance when probing a LL system by STM. Also, given the
full LSW we derive its crossover from boundary to thermal
scaling near the Fermi level. The thermal effects soften the
power-law singularities of the LSW, since the nonchiral
terms in the electron Green’s function produce a leading
scaling term that is linear in energy at higher temperatures.
This softening should not be confused with the averaging
effects that always occur when the experimental tunneling
currents are calculated by integrating over the Fermi-Dirac
distribution.

Our paper is organized as follows. In Sec. II we review
some basics about temperature-dependent local spectral
weights and STM currents. In Sec. III we derive an exact
representation of the local spectral weight for a Luttinger
liquid with an open boundary, paying due attention to the
phase dependence that has not been examined in earlier stud-
ies. In this section we also show how to adapt the theory for
applications to scanning tunneling microscopy of SWCNTs.
Section IV contains our results, and in Sec. V we summarize
the most important points. A reader mostly interested in the
physics of the problem is advised to go directly to Sec. IV.
Unless otherwise stated we use units where �=kB=c=1.

II. PRELIMINARIES

In order to calculate tunneling currents, e.g., from a STM
tip, we will consider the transition rate of adding electrons to
a LL system at a position x and with energy �,

�+��,x;�� = 2�g2Z−1�
m,n

exp�− �Em���n�	

†�x��m��2

���� − En + Em� . �2�

This expression follows from Fermi’s golden rule assuming a
tunneling Hamiltonian of the form −g	


†

,tip+H.c., and
treating the tip as a reservoir with unit probability that an
electron is available for tunneling. Here Z is the partition
function of the N-particle system, 	


†�x� creates an electron
in the sample with spin 
 at x, and 

,tip

† removes an electron
of the same spin from the tip. Equation �2� represents the
probability that the N-particle states �m� of energy Em are
connected to the �N+1�-particle states �n� of energy En=Em

+� by the addition of an extra electron of energy � and
coordinate x. The transition rate �− of removing an electron
is given by Eq. �2� by simply replacing the index m by n in
the Boltzmann weight, assuming that a “hole” is available in
the tip with unit probability.
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In order to calculate the transition rates it is useful to
define the single-electron local spectral weight A�� ,x ;��
which is directly related to the transition rates by

A��,x;�� = Z−1	1 + exp�− ���
�
m,n

exp�− �Em���n�	

†�x��m��2

���� − En + Em�

= 	1 + exp�− ���
�+��,x;��/2�g2

= 	1 + exp����
�−��,x;��/2�g2. �3�

It is well known that the LSW defined in this way can be
extracted from the spectral representation of the single-
electron retarded Green’s function

GR�t,x;�� = − i��t���	
�t,x�,	

†�0,x����, �4�

by using that36

A��,x;�� = −
1

�
Im


0

�

GR�t,x;��ei�tdt . �5�

At zero temperature this quantity is known to be the single-
electron local density of states N�� ,x� in agreement with the
definition in Eq. �3�.

We shall extract the LSW in the standard way by first
calculating the single-electron retarded Green’s function. The
calculation of A�� ,x ;�� for the present problem requires
some care in order to analyze the analytic structure and phase
dependence in detail. In fact, the result that we derive in the
next section, using bosonization, reveals a surprising asym-
metric energy dependence of the LSW close to the Fermi
level for a semi-infinite LL with an open boundary condition.

Before taking on this task, let us recall how scanning
tunneling microscopy is used to experimentally probe the
LSW close to edges and impurities. In the simplest approach,
when the STM tip is assumed to couple only to the conduc-
tion electrons �thus neglecting tunneling into localized impu-
rity levels� the tunneling current is given by the integrated
difference between the transition rates �+ and �−, weighted
by the corresponding probabilities that an electron �hole� is
available in the tip for tunneling to �from� the sample. With
an applied voltage V one thus has

I�V,x;�� = e

−�

�

NSTM�� − eV��f�� − eV��+��,x;��

− 	1 − f�� − eV�
�−��,x;���d�

� 2�eg2�0

−�

�

	f�� − eV� − f���
A��,x;��d� ,

�6�

where f��� is the Fermi-Dirac distribution and we have ap-
proximated the density of states NSTM��� in the tip by a
constant �0 in the last step. It is clear that we recover the
conventional formula for tunneling at zero temperature37

I�V,x� = 2e�g2

0

eV

N��,x�NSTM�� − eV�d� , �7�

where N�� ,x� is the local single-electron density of states for
a conduction electron in the sample, and NSTM��� is the den-
sity of states of the STM tip measured relative to the Fermi
energy. By differentiating, the local differential tunneling
conductance can then be directly related to the local density
of states in Eq. �7�

dI�V,x�
dV

� 2e2�g2�0N�V,x� . �8�

This expression remains valid at a finite temperature T, pro-
vided that the thermal length �T�vs /T is larger than any
other characteristic length L of the experimental setup �such
as the distance between the STM tip and the edge of the
sample�. The speed vs that determines �T is that of the spin
collective modes �which in a one-dimensional interacting
electron system are slower than the collective charge modes�.
When L��T a temperature-dependent description becomes
necessary, and the expression for I�V ,x� has to be modified
according to Eq. �6�. The local differential conductance at
finite temperature can therefore be written as

dI�V,x;��
dV

= 2eg2��0

−�

� d

dV
f�� − eV�A��,x;��d� . �9�

It follows that the line shape properties of the local tunneling
conductance are directly determined by the LSW.

With these preliminaries we now turn to the calculation of
the finite-temperature LSW for a LL with an open boundary.

III. DERIVING THE LOCAL SPECTRAL WEIGHT

We consider an interacting electron liquid on a semi-
infinite line x�0, subject to an OBC at the end x=0. Fol-
lowing the standard Luttinger-liquid approach,1 we linearize
the spectrum and decompose the electron field 	
 into left-
�L� and right- �R� moving chiral fermions at the two Fermi
points ±kF,

	
�x� = e−ikFx
L
�x� + eikFx
R
�x� . �10�

The zero-temperature single-electron Green’s function at a
point x can then be expressed in terms of the propagators of
the time-evolved chiral fermions,

G�t � 0,x� = �	
�t,x�	

†�0,x��

= �
L
�t,x�
L

† �0,x�� + �
R
�t,x�
R


† �0,x��

+ ei2kFx�
R
�t,x�
L

† �0,x��

+ e−i2kFx�
L
�t,x�
R

† �0,x�� . �11�

We see that there are two types of contributions to G�t
�0,x�: oscillatory and nonoscillatory. While the latter are
always present, the former are nonzero only if the left- and
right-moving fermions get entangled at a boundary. Imposing
an open �Dirichlet� boundary condition at the “phantom site”
which is situated one lattice spacing a from the end of the LL
at x=−a,
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�− a� = eikFa
L
�− a� + e−ikFa
R
�− a� = 0, �12�

and assuming that the chiral fermions are slowly varying on
the scale of a, it follows that


R
�0� = ei�
L
�0� , �13�

where

� = � + 2kFa = ��1 + ne� , �14�

with ne the filling factor �ne=1 for a half-filled band�. Al-
though not essential here, the “softening” of the boundary—
implied by imposing the Dirichlet condition at x=−a—is
sometimes useful for modeling the dependence of the scat-
tering phase shift � on the shape of the edge or impurity
potential. The value of � may therefore depend on the details
of the boundary geometry, but it is important to notice that it
is in general not a multiple of � even at half filling. Using
Eq. �13� to analytically continue to negative coordinates,6 the
right movers may be represented by left movers as


R
�x� = ei�
L
�− x�, x � 0. �15�

We can then express the Green’s function in Eq. �11� in terms
of left-moving fermions only, now taking values on the full
line −� �x��,

G�t � 0,x� = �
L
�t,x�
L

† �0,x�� + �
L
�t,− x�
L


† �0,− x��

+ ei�2kFx+���
L
�t,− x�
L

† �0,x��

+ e−i�2kFx+���
L
�t,x�
L

† �0,− x�� . �16�

Introducing

GLL�t,x,x�� = �
L
�t,x�
L

† �0,x��� = �
L


† �t,x�
L
�0,x��� ,

�17�

with the second equality following from the charge conjuga-
tion symmetry of the linearized theory, Eq. �16� may be writ-
ten as

G�t � 0,x� = GLL�t,x,x� + GLL�t,− x,− x�

+ ei�2kFx+��GLL�t,− x,x�

+ e−i�2kFx+��GLL�t,x,− x� . �18�

With the definition in Eq. �4� the retarded Green’s function
can finally be cast on the compact form

GR�t,x� = − i��t�	4 Re GLL�t,x,x�

+ 2ei�2kFx+��Re GLL�t,− x,x�

+ 2e−i�2kFx+��Re GLL�t,x,− x�
 , �19�

using Eqs. �17� and �18�. To obtain the LSW in Eq. �5� we
thus need to calculate the chiral Green’s function in �17�,
identify its real part, and then Fourier-transform the resulting
expression for GR�t ,x� from Eq. �19�. The first part can be
done analytically by using bosonization, and we turn to this
task in the next section.

A. Chiral Green’s function from bosonization

Using standard bosonization38 we write the left- and right-
moving fermion fields as coherent superpositions of free

bosonic charge and spin fields, �rc= ��r↑+�r↓� /�2 and �rs

= ��r↑−�r↓� /�2, with r=L ,R,


L
�t,x� =
�L


�2��
exp�− i�2�	cosh � �Lc�x,t�

+ sinh � �Rc�x,t� + 
�Ls�x,t�
�


R
�t,x� =
�R


�2��
exp�i�2�	cosh � �Rc�x,t�

+ sinh � �Lc�x,t� + 
�Rs�x,t�
� . �20�

Here � is a small-distance cutoff of the order of the lattice
spacing of the underlying microscopic model, and �r
 are
Klein factors obeying a diagonal Clifford algebra that ensure
that fermion fields of different chirality r and/or spin 
 anti-
commute. The parameter � is related to the LL charge pa-
rameter Kc by Kc=e2�, and is parametrized by the amplitudes
for the low-energy scattering processes. For a system with
long-range interaction these amplitudes become momentum
dependent, but since we shall only be interested in the
asymptotic low-energy behavior of the Green’s functions we
can restrict them to zero momentum and treat Kc as a con-
stant �taking a value less than 1 for repulsive interaction�.
Note that this shortcut assumes a finite-range interaction,
whereas an unscreened Coulomb interaction which diverges
at vanishing momentum leads to very different physics.39

Away from half filling umklapp scattering vanishes, and
standard renormalization group �RG� arguments show that
backscattering processes become irrelevant �again assuming
a repulsive electron-electron interaction�. As is well known,
for this case the remaining dispersive and forward scattering
vertices can be written as quadratic forms in bosonic opera-
tors, leading to two free-boson theories, one for charge, and
one for spin,

H = �
j=c,s

v j

2
	��x�Lj�2 + ��x�Rj�2
 . �21�

This defines the LL Hamiltonian density, here expressed in
the chiral fields, with vc�s� the speed of the charge �spin�
bosonic modes.

The logic of the construction just sketched is strictly valid
only for a translationally invariant system where all interac-
tion processes can be classified into dispersive, forward,
backward, or umklapp scattering.1 For a system with an open
boundary, translational invariance is broken and a two-
particle interaction leads to additional scattering processes.
As shown by Meden et al.,14 however, the theory in Eq. �21�
still captures the universal low-energy physics. Perturbative
arguments suggest that the energy range where it applies
increases with the range of the interaction of the original
microscopic theory.

To make progress we analytically continue the charge �Lc
and spin �Ls boson fields in �20� to x�0 such that the
boundary condition in Eq. �13� is satisfied:
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�Lc�t,− x� = − �Rc�t,x� +
�

�2�Kc

,

�Ls�t,− x� = − �Rs�t,x�, x � 0. �22�

Using �22� we can write


L
�t,x� =
ei��1−Kc�/2Kc�L


�2��
exp�− i�2�	cosh � �Lc�t,x�

− sinh � �Lc�t,− x� + 
�Ls�t,x�
� . �23�

Given �23� the chiral Green’s functions in �19� are now eas-
ily calculated, using that �Lc/s are chiral bosons governed by
the free theory38 in �21�,

GLL�t,x,x� = � 1

� + ivst
�1/2� 1

� + ivct
�k1+k2

�� 4x2

�� + ivct�2 + 4x2�k3

, �24�

GLL�t,x,− x� = � 1

� + i�vst + 2x��
1/2� 1

� + i�vct + 2x��
k1

�� 1

� + i�vct − 2x��
k2� 4x2

�� + ivct�2�k3

, �25�

with GLL�t ,−x ,−x� and GLL�t ,−x ,x� obtained from Eqs. �24�

and �25�, respectively, by taking x→−x. The exponents are
given by

k1 = �Kc + 1/Kc + 2�/8,

k2 = �Kc + 1/Kc − 2�/8,

k3 = �1/Kc − Kc�/8. �26�

To obtain the finite-temperature Green’s function we use
conformal field theory techniques40 and map the complex
planes �zj =v j�+ ix� on which the zero-temperature chiral
theory is defined �with �= it the Euclidean time, and j=c ,s�
onto two infinite cylinders � j = �w=v j��+ ix�� of circumfer-
ence �=1/T,

wj =
v j�

�
arctan� �

�v j
zj� . �27�

Employing the transformation rule

�ei�1��w1�
¯ ei�n��wn�� = �

i=1

n �dw

dz
�

w=wi

−�i
2/8�

�ei�1��z1�
¯ ei�n��zn��

�28�

we obtain for the finite-temperature versions of the Green’s
functions

GLL�t,x,x;�� = � �

�vc
�k1+k2� �

�vs
�1/2

� 1

sin��

�
�� + it���

1/2

� 1

sin��

�
�� + it���

k1+k2

�� sinh2��

�

2x

vc
�

sin��

�
	� + i�t + 2x/vc�
�sin��

�
	� + i�t − 2x/vc�
��

k3

, �29�

GLL�t,x,− x;�� = � �

�vc
�k1+k2� �

�vs
�1/2

� 1

sin��

�
	� + i�t + 2x/vs�
��

1/2

� 1

sin��

�
	� + i�t + 2x/vc�
��

k1

�� 1

sin��

�
	� + i�t − 2x/vc�
��

k2� sinh2��

�

2x

vc
�

sin2��

�
�� + it���

k3

. �30�

We have here dropped the primes on the transformed coordinates and reinserted the real time variable.

B. An exact representation of the LSW

Having obtained the chiral Green’s functions we next calculate their real parts, which, according to Eq. �19�, define the
LSW. It is essential here to consistently identify the phases of the Green’s functions that appear in �19�. This is most easily
done by exponentiating the expressions in �29� and �30� and choosing the negative real axis as branch cut of the logarithm.41

Treating t as a complex variable, this amounts to choosing the branch cuts for GLL�t ,x ,x ;�� as shown on Fig. 1. Functions
GLL�t ,x ,x ;�� and GLL�t ,x ,−x ;�� have different phases in different regions defined by branch points, since the phases differ by
2� on opposite sides of the cuts. Taking the cutoff �→0 we get

LOCAL SPECTRAL WEIGHT OF A LUTTINGER¼ PHYSICAL REVIEW B 74, 085114 �2006�

085114-5



Re GLL�t,x,x;�� = � �

�vc
�k1+k2� �

�vs
�1/2

cos ��t��sinh��

�
t��−�1/2+k1+k2�

�� sinh��

�
�t + 2x/vc��sinh��

�
�t − 2x/vc��

sinh2��

�

2x

vc
� �

−k3

,

Re GLL�t,x,− x;�� = � �

�vc
�k1+k2� �

�vs
�1/2

cos ���t��sinh��

�
�t + 2x/vs���−1/2

��sinh��

�
�t + 2x/vc���−k1�sinh��

�
�t − 2x/vc���−k2� sinh��

�
t�

sinh��

�

2x

vc
��

−2k3

, �31�

with k1 ,k2, and k3 defined in Eq. �26�, and where

��t� = �
�

4
+

�k1

2
+

�k2

2
, 0 � t �

2x

vc
,

�

4
+

�k1

2
+

�k2

2
+ �k3, t �

2x

vc
,

���t� =�
�
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�
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,

−
�

4
−

�k1

2
−

�k2

2
− �k3, t �

2x

vc
.

�32�

We see that the phases that appear in the real parts of the
Green’s functions take different values in different domains,
consistent with the fact that the end points of the domains are
branch points �see Fig. 1�. Given the results in Eq. �31� we
can finally write down an exact representation of the LSW
for a LL with an open boundary. Combining Eqs. �5� and
�19� we find that

A��,x;�� =
4

�



0

�

dt cos �t Re GLL�t,x,x;��

+
2

�



−�

�

dt cos�2kFx + � − �t�Re GLL�t,x,− x;�� .

�33�

This expression reveals that A�� ,x ;�� has a nontrivial de-

pendence on the interaction strength �via k1 ,k2 ,k3, and the
velocities vc and vs that parametrize the chiral Green’s func-
tions�, in addition to an oscillation in the second term that is
shifted by a phase controlled by the band filling via kF and �
in Eq. �14� and the distance x to the boundary. This leads to
an interesting asymmetric dependence of the LSW on energy
as will be discussed in Sec. IV.

Some of the most promising candidates for LL behavior
are single-walled carbon nanotubes, which, however, require
some modification to the Green’s functions in Eqs. �29�–�31�
due to the presence of two electronic channels. Depending
on the substrate the interaction constant Kc may be very
small �0.25 and strongly k dependent for isolating sub-
strates or closer to unity �0.6–1 for metallic substrates. Es-
pecially in the latter case backscattering processes may also
play an important role at very low temperatures. Following
Refs. 42 and 43 the low-energy expression for the electron
field is written in terms of Bloch functions on the two graph-
ite sublattices in order to arrive at two spinful channels of
one-dimensional �1D� fermion operators 
L�
 and 
R�


where 
= ↑ ,↓ is the spin and �=± labels the two distinct
channels. In order to bosonize the problem it is then possible
to introduce bosonic fields of total and relative ��= ± � charge
and spin chiral bosons �rj� �r=L ,R, j=c ,s� and write the
bosonization formula


L�
 =
�L�


�2��
exp�− i��	cosh � �Lc+�x� + sinh � �Rc+�x�

+ ��Lc−�x� + 
�Ls+�x� + �
�Ls−�x�
� , �34�

where 
R�
 is obtained by taking the complex conjugate of
the right-hand side of Eq. �34� and switching L↔R.

An open end or an impurity will in general mix the two
channels so the effective open boundary condition will in
most cases not be a simple reflection. The analytic continu-
ation analogous to Eq. �22� may therefore turn out to be
more complicated for the four bosons. In the simplest sym-
metric cases we see that the boundary Green’s functions have
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again a structure as given in Eqs. �29�–�31�; however, with
the exponent 1 /2 replaced by 3/4 and k1= �Kc++1/Kc+

+2� /16, k2= �Kc++1/Kc+−2� /16, and k3= �1/Kc+−Kc+� /16.
Accordingly ��t� and ���t� are given by Eq. �32� with each
occurrence of the term � /4 in �32� replaced by 3� /8. The
oscillating Friedel-like terms in the LSW in the second term
of Eq. �33� turn out to have the opposite sign on the two
sublattices.44

IV. RESULTS

In order to extract the physics from the LSWs derived in
the previous section we have numerically carried out the
Fourier transforms in Eq. �33�. The results reveal a rich
structure in the LSW of a Luttinger liquid when an edge or
an impurity is present. We here focus on three aspects of the
LSW of particular interest for STM experiments: its asym-
metric line shape as a function of energy, oscillation patterns
revealing spin-charge separation, and thermal effects. To
keep the discussion general, we do not specify the depen-
dence of the velocities vc,s on the Luttinger-liquid parameter
Kc, which is sensitive to the choice of microscopic model.
Since our results do not depend on the particular relation
between vc,s and Kc, we choose them freely so as to be able
to observe all possible scenarios for the behavior of the LSW.
The question whether a particular scenario will be realized in
a particular model is, of course, determined by the relation
between velocities and Luttinger-liquid parameter.

A. Properties of the LSW

One of the most striking features of the LSW of a LL is
the well-known power-law suppression at low energies pro-

portional to ��Kc+Kc
−1�/4−1/2. For the special case of zero tem-

perature and commensurate oscillations 	i.e., setting 2kFna
+�=�m �m�Z�
 the LSW of Eq. �33� near a boundary at
x=na has been analyzed before.8,18 In that case the first term
of Eq. �33� takes on a scaling form with the variable �x that
shows a crossover from bulk scaling to boundary scaling
in Eq. �1� with slow oscillations proportional to
sin�2�x /vc��k3−1xk3−k1−k2−1/2.8 If the phase is neglected or set
to 2kFna+�=m� the second Friedel-like term in Eq. �33�

also takes on a scaling form, but shows both spin and charge
modulations that decay with �k1−1x−k2−1/2. We will now focus
on the energy dependence at both small and large tempera-
tures together with the effect of the phase �.

1. Asymmetric line shape

At small energies, the most striking feature of the LSW is
the asymmetry of its line shape, as seen in Fig. 2. From Eq.
�33� it is apparent that this property is due to the phase
2kFx+� appearing in the second term of A�� ,x ;��. Here the
distance from the boundary x=na has to be measured in
integer units of the lattice spacing a, since the original fer-
mion operators typically correspond to orbitals in the crystal
lattice. The phase causes a shift of the periodic structure of
A�� ,x ;�� with respect to the Fermi level, and accordingly
determines how the spectral weight suppression close to the
Fermi level affects the line shape. The shift depends upon the
filling factor ne since, for fixed x, ne determines the values of
kF and � in Eq. �14�. The LSW is asymmetric in general, but
for particular fillings for which 2kFna+�=�m �m�Z� it be-
comes a symmetric function of �. By inspection of Eqs. �31�
and �33� one finds that for a given interaction strength the
asymmetry tends to zero very close to the boundary
�2�x /vs�1� and very far from the boundary �2�x /vc�1,
bulk regime� and reaches a maximum in the intermediate
region. It is important to realize that the shift of the periodic
structure with respect to the Fermi level is present also for
the noninteracting case when the LSW takes the simple form
A�� ,x ;���cos�2kFx+�−2�x /vF�. We conclude that the
shift is a pure boundary effect, and is due to the interference

FIG. 1. �Color online� Branch points and branch cuts for
GLL�t ,x ,x ;��. The phases are different in different regions defined
by branch points.

FIG. 2. Local spectral weight A�� ,x ;�� for Kc=0.7, vc /vF

�1.43, vc /vs�3 �a�, and Kc=0.9, vc /vF�1.11, vc /vs�1.26 �b�
with T /kFvF=2.6�10−6, x=10a, ne=0.97.
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of the incoming and reflected electrons at the boundary. In
contrast, the dip of the spectral weight at the Fermi level is
an interaction effect.

In Fig. 3 we show the energy and coordinate dependence
of the LSW for even and odd sublattices. The Friedel oscil-
lations on the scale of the lattice spacing a are easily visible
as a flip of the asymmetry when going from one graph to the
other. The spin and charge modulations of the amplitude are
also present over longer wavelengths in real space, but are
not clearly visible due to the relatively narrow coordinate
range in Fig. 3. Note that the asymmetry with energy varies
with the distance to the boundary since the phase 2kFx+�
also varies with distance.

It is interesting to note the similarity of the typical asym-
metric line shapes in Figs. 2 and 3 with that of a Fano
resonance34 when � is close to the Fermi level. A Fano reso-
nance is known to develop in the LSW for noninteracting
electrons when coupled, e.g., to a magnetic impurity, the
effect being produced by the interference between resonating
and nonresonating electron paths through the impurity.35 As
we have seen, the asymmetry in the present case instead
comes from the combined effect of electron interactions
�causing a dip in the LSW at the Fermi level� and the reflec-
tion of electrons off the boundary �causing a phase shifted
oscillation in the LSW�. As one expects the Fano line shape
to survive for interacting electrons coupled to a magnetic
impurity it is indeed satisfying to see this feature reproduced

by the open boundary for which the impurity gets traded at
low temperatures.

2. Spin-charge separation

The proximity to an open boundary reveals a key property
of interacting electrons in one dimension—spin-charge
separation—i.e., the fact that the collective spin and charge
excitations �induced, e.g., by inserting an extra electron into
the system� propagate with different speeds, and hence
“separate.”2 The effect shows up in the LSW as a character-
istic peak structure at intermediate distances from the bound-
ary. Very far from the boundary ��xs�1� A�r ,� ;�� is a
monotone function scaling as �� near the Fermi level, with
bulk exponent �= �Kc+Kc

−1� /4−1/2 at low temperatures.2

Extremely close to the boundary ��xs�1� A�r ,� ;�� has a
similar structure, but with an enhanced suppression near the
Fermi level, A�r ,� ;�����B, with boundary exponent �B

= �Kc
−1−1� /2 at low temperatures3,7,8 �see Fig. 4, with color

coding in arbitrary units�. As one moves away from the im-
mediate vicinity of the boundary an oscillation pattern
emerges, which becomes most pronounced when �xs
�O�1�. This oscillatory feature �see Fig. 5� which is a su-
perposition of spin and charge waves is due to the two types
of branch points in Eqs. �29� and �30� which define the
propagating collective spin and charge modes. The two pan-
els correspond to two different choices of Kc, with two dif-
ferent values of the ratio vc /vs, leading to the two different
peak structures. By close inspection of the graphs one can
easily read off the corresponding velocity ratios. To see how,
let us make a “cut” of the two panels in Fig. 5 at a distance
x=100a from the boundary, yielding the panels in Fig. 6.

When Kc=0.7 	Fig. 6�a�
 the spin and charge velocities
differ significantly. For this case the short-wavelength ��s

=�vs /x� spin oscillations are modulated by long-wavelength
charge oscillations ��c=�vc /x�. We note that there are three
spin oscillations per one charge oscillation which is in agree-
ment with the fact that in this case �c /�s=vc /vs�3 	see Fig.
6�a�
. When Kc gets closer to unity �noninteracting limit� the
spin and charge velocities approach each other and the spin-
charge separation manifests itself as a beating pattern, pro-
vided that Kc is not identical to unity 	see Fig. 6�b� where
Kc=0.9
. The short-wavelength 	�=2�vsvc /x�vs+vc�
 oscil-

FIG. 3. �Color online� A�� ,x ;�� for Kc=0.7, vc /vF�1.43,
vc /vs�3, T /kFvF=2.6�10−6, ne=0.97, shown for even and odd
sublattices.

FIG. 4. �Color online� A�� ,x ;�� for Kc=0.7, vc /vF�1.43,
vc /vs�3, T /kFvF=2.6�10−4, ne=0.97.

KAKASHVILI, JOHANNESSON, AND EGGERT PHYSICAL REVIEW B 74, 085114 �2006�

085114-8



lations are now amplitude modulated by long-wavelength os-
cillations 	��=2�vsvc /x�vc−vs�
. We see that there are about
six short-wavelength oscillations per “bubble” of the long-
wavelength amplitude modulations, which is in agreement
with the fact that �� /��12 in this case, corresponding to
�c /�s=vc /vs�1.26.

The spin-charge oscillations in the LSW are also present
in real space as discussed before.18 The oscillations as a
function of energy might be easier to observe, however, since
here there are no superimposed Friedel oscillations. We also
remark that the existence of the beating pattern for values of
Kc close to unity was proposed in Ref. 45 as a diagnostic tool
for spin-charge separation in possible tunneling experiments
of a LL where a scanning probe microscopy tip would be
used as an impurity.

One can map the dispersion of the spin and charge waves
by taking a Fourier transform of the LSW 	see Fig. 7�a�
.
This Fourier transform should not be confused with the
momentum- or angle-resolved spectral weight, which is mea-
sured in photoemission experiments, although it shows simi-
lar features of spin-charge separation. The dominant weights
in the transform correspond to the ��k� dependence of the
excitations. The dispersion lines at k=0 come from the
nonoscillatory part of the LSW and represent the charge ex-
citations, since the nonoscillatory part contains only charge
oscillations. This feature at k=0 is also a clear indication of
interaction effects and disappears as Kc→1. The dispersion
lines at k�0 come from the Friedel terms, and contain

FIG. 5. �Color online� A�� ,x ;�� for T /kFvF=2.6�10−6, ne

=0.97, with Kc=0.7, vc /vF�1.43, vc /vs�3 �a� and Kc=0.9,
vc /vF�1.11, vc /vs�1.26 �b�. The color coding is the same as in
Fig. 4.

FIG. 6. A�� ,x ;�� for T /kFvF=2.6�10−6, ne=0.97, with x
=50a, Kc=0.7, vc /vF�1.43, vc /vs=�c /�s�3 �a� and x=100a, Kc

=0.9, vc /vF�1.11, vc /vs=�c /�s�1.26 �b�.

FIG. 7. �Color online� Fourier transform of the LSW for Kc

=0.7, vc /vF�1.43, vc /vs�3, T /kFvF=2.6�10−4, ne=0.97 �a� and
the same graph with charge �solid lines� and spin �dashed lines�
wave dispersions superimposed �b�.
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spin and charge branches shifted from k=0 by ±2kF. The
mirror symmetry about k=0 reflects the standing wave
nature of the oscillations. In Fig. 7�b� the dispersion rela-
tions ��k�= ±kvc /2 at k�0 and ��k�= �±k−2kF�vc/s /2 at
k� ±2kF are plotted on top of the Fourier transform and
agree with the location of the maxima.

3. Thermal effects

On general grounds one expects that thermal effects be-
come visible only for energies ��T and distances x��T
=vs /T. Choosing, e.g., T�10 K and vF�105 m/s �a typical
value for a quasi-1D organic metal for which LL theory
should be applicable1� this implies that the spin-charge peak
structure as seen in Fig. 5 will remain intact for distances not
too far from the edge �2x /�vs�1�. We should caution the
reader that the energy range for which the LL theory is ap-
plicable to a specific experiment may sometimes be smaller
than the range depicted in Fig. 5 �cf. our discussion in Sec.
I�. For 2x /�vc�1 the spin and charge waves lose their co-
herence before reaching the edge and therefore spin-charge
separation is destroyed 	see Fig. 9�a� below
.

A more interesting issue is the fate of the asymptotic scal-
ing behavior of the LSW near the Fermi level as the tem-
perature increases. In earlier work it was found that the “uni-
form part” of the LSW 	corresponding to the first term in
�33�
 crosses over to �2 scaling in both boundary
�2�x /vs�1� and bulk regimes �2�x /vc�1� when ���1.9

The effect was found to originate in the exponential damping
of the density correlations for unequal times due to thermal
fluctuations. By performing an expansion of the full LSW in
Eq. �33� with the small parameter �� we find that the power
law is now modified to

A��,x;�� � A + B� + C�2, �� � 1, �35�

where A, B, and C depend on the temperature and the dis-
tance from the boundary. We depict the crossover from

boundary scaling ���Kc
−1−1�/2 for ���1 to thermal scaling

�A+B�+C�2 for ���1 in Fig. 8. Note that one is able to
observe this crossover for 2x /�vs�1. For 2x /�vc�1 the
boundary scaling is completely washed out. Since in this
regime GLL�t ,x ,−x ;�� in Eq. �30� is exponentially sup-
pressed compared to GLL�t ,x ,x ;�� in Eq. �29�, it follows that

A�� ,x ;���A+C�2, and the line shape becomes symmetric
	see Fig. 9�b�
.

In this context it is important to point out that our finite-
temperature results are strictly valid only for the case where
an edge is modeled by an open boundary. An impurity, on
the other hand, is faithfully represented by an open boundary
condition only in the zero-temperature limit.3,4 For finite
temperatures a new energy scale T0 appears, characterizing
the crossover from weak to strong coupling �“open boundary
fixed point”�, and depending on the impurity strength V0.
A simple RG estimate shows that T0 scales with V0 as
T0�V0

2/�1−Kc�, with an overall scale factor that depends on the
details of the regularization procedure.4 For finite T with
T�T0, an open boundary representation of the impurity is
still expected to capture the essential physics. An interesting,
albeit technically challenging, project would be to redo the
calculations in this section for an impurity in the presence of
the operators that appear away from the T=0 open boundary
fixed point, allowing for a complete picture of impurity ther-
mal effects.

B. Properties of the local tunneling conductance

The local differential tunneling conductance, defined in
Eq. �9�, exhibits the very same features as the LSW. The only
difference is that the fine structure of the differential conduc-
tance is thermally smeared via the temperature dependence
of the Fermi-Dirac distribution. This can clearly be seen by
examining the energy dependence at some fixed distance
from the boundary, as done in Fig. 10, and then comparing to
the corresponding graphs for the LSW in Fig. 6. As the
smearing occurs on the scale of T, spin-charge separation is

FIG. 8. �Color online� A�� ,x ;�� for Kc=0.7, vc /vF�1.43,
vc /vs�3, x=10a, ne=0.97 at different temperatures.

FIG. 9. �Color online� A�� ,x ;�� for T /kFvF=2.6�10−2, Kc

=0.7, vc /vF�1.43, vc /vs�3, ne=0.97 �a� and cut at x=200a �b�.
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wiped out for temperatures T��s. The distance x from the
boundary determines the wavelength of the oscillations in
energy space, so in most cases it should be possible to find a
range for x which shows many waves in the energy interval
where LL theory applies that are not washed out by tempera-
ture, i.e., 1 /��x /vc�1/T, where � is the bandwidth. Note
that the inequality above coincides with the criterion for ob-
serving spin-charge separation in the LSW, discussed in the
previous section.

In wires of finite length l the energy levels become dis-
crete and are given by a characteristic direct product of two
spectra with uniform spacing �vc / l and �vs / l.9,12 The stand-
ing waves of the individual levels show the corresponding
interference of spin and charge excitations.12 If the tempera-
ture becomes comparable to the level spacing, a continuous
pattern of Friedel oscillations as shown above emerges.
However, in order to see the predicted behavior at all, the
wire must always be long enough so that many levels lie
within the energy interval in which the LL theory applies,
i.e., �vc / l��. For metallic materials this translates into
lengths of typically 100 nm or more.

When applying the results to SWCNTs similar features
can be expected as has already been partially confirmed
experimentally.30 The dominant effect is the complicated in-
terference pattern of the Bloch waves, which strongly de-
pends on the geometry of the boundary condition and the
chirality of the tubes.44 Nonetheless, an enhanced velocity, a
suppressed spectral weight, and a characteristic power law of
decaying oscillations are clear signatures of interaction ef-
fects which all have been seen in experiments.30 A more

complete theoretical analysis would also have to include the
effects of backscattering, band structure, longer-range inter-
actions, and the mixing of the channels near the boundary,
which we defer to a future presentation.

V. SUMMARY

We have derived the full finite-temperature LSW for a
Luttinger liquid with an edge or impurity �modeled as an
open boundary condition�, relevant to high-precision STM
measurements. We have also generalized our approach to the
two-channel case that describes SWCNTs in the Luttinger-
liquid regime, which is qualitatively similar to the single-
channel case.

The LSW �determining the local differential tunneling
conductance in STM measurements� exhibits a very rich
structure as a function of temperature, distance from the im-
purity, and the strength of the electron interaction. Depend-
ing on the choice of parameters one is able to see asymmetric
Fano-like line shapes and spin and charge oscillations. The
Fano-like asymmetries are caused by an interplay of bound-
ary and interaction effects, and, as we have shown, are
closely linked to the Friedel oscillations in real space. Spin
and charge oscillations appear due to the interference of
propagating spin and charge waves reflected from the bound-
ary.

We have discussed how to consistently determine the key
parameters of a Luttinger liquid �the interaction parameter
Kc, and the spin and charge velocities� from experimental
measurements of the tunneling conductance. We have also
extensively discussed various thermal effects with focus on
their influence on the Fano-like asymmetries and spin-charge
oscillations in the LSW as a function of energy. The thermal
suppression of the coherence of spin and charge waves
makes it hard to detect interaction effects in the LSW and
even more so in the local differential tunneling conductance
�where the finite-temperature LSW gets weighted by the
Fermi-Dirac distribution�: For temperatures T�vs /x �where
vs is the speed of the spin excitations, and x is the distance to
the edge or the impurity� the characteristic power-law behav-
ior near the Fermi level is completely washed out and re-
placed by an interaction-independent analytic scaling. For
these temperatures spin-charge separation also becomes vir-
tually impossible to detect.

In conclusion, our results provide guidelines for identify-
ing and interpreting signals of electron correlations in STM
data on SWCNTs and other one-dimensional systems, and as
such should be useful in the search for realizations of Lut-
tinger liquid physics.
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FIG. 10. dI /dV�V ,x ;�� for T /kFvF=2.6�10−3, ne=0.97, with
x=50a, Kc=0.7, vc /vF�1.43, vc /vs=�c /�s�3 �a� and x=100a,
Kc=0.9, vc /vF�1.11, vc /vs=�c /�s�1.26 �b�.
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