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Luttinger liquid in a finite one-dimensional wire with box-like boundary conditions
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We study a Luttinger Liquid in a finite one-dimensional wire with box-like boundary conditions by consid-
ering the local distribution of the single-particle spectral weight. This corresponds to the experimental prob-
ability of extracting a single electron at a given place and energy, which can be interpreted as the square of an
electron wave function. For the noninteracting case, this is given by a standing wave at the Fermi wave vector.
In the presence of interactions, however, the wave functions obtain additional structure with a sharp depletion
near the edges and modulations throughout the wire. In the spinful case, these modulations correspond to the
separate spin- and charge-like excitations in the system.
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The problem of a particle in a one-dimensional box is
classic example in almost any quantum mechanics text b
since it gives a pedagogical introduction to the concept
energy quantization and provides a complete visualizatio
the corresponding wave functions. It is however only
cently that this problem has gained true experimental
evance due to the progress in constructing smaller and m
refined structures to confine electrons in dots and wires. I
for example, now possible to resolve the electron wave fu
tions in a finite piece of carbon nanotube by scanning t
neling microscopy~STM! experiments.1–3 Most experimen-
tal realizations of one-dimensional electron boxes con
many electrons in a Fermi sea, but it is possible to stud
single particle excitation on top of such a ground-state c
figuration and classify the possible energy levels and w
functions.

However, electron-electron interactions may produce
teresting effects in such one-dimensional many-body syst
and systematically change the shape of the electron w
functions. In fact single-particle excitations are no longer
eigenstates of an interacting Hamiltonian, but of course i
still interesting to determine the probability of extracting
inserting individual electrons at a given position and ener
This local probability density can be interpreted as the squ
of the electron wave function. We therefore study the fun
mental problem of single-particle excitations in a many-bo
interacting fermion system confined to a one-dimension
box using the Luttinger Liquid formalism.

We find that the classic example of a box provides aga
good visualization of the effect of interactions on the wa
function and the energy quantization. In particular, in ad
tion to the expected rapid Fermi wave vector oscillations
the wave-function we can recognize long wavelength mo
lations, which correspond to the underlying boson-like ex
tations in the Luttinger liquid. For repulsive interactions t
wave-functions are sharply depleted at the edges with a c
acteristic power law. Analytic expressions for the wave fun
tions of the first few levels are presented. For an analysi
an interacting boson system see Ref. 4.

The Luttinger liquid formalism is a well-established to
to describe interacting electrons confined to one dim
0163-1829/2003/68~24!/241301~4!/$20.00 68 2413
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sion.5,6 In a linearized region around the Fermi points t
fermion field can be expanded in terms of left and right mo
ers

C~x,t !'eikFxcR~x,t !1e2 ikFxcL~x,t !. ~1!

The Fourier modes of the left- and right-moving fermio
density are then represented by bosonic creation and an
lation operators, which effectively act by ‘‘shifting’’ fermion
m steps up or down the spectrum. In the presence of inte
tions it is then possible to solve the model by a Bogoliub
transformation which mixes the left- and right-movin
bosons. This transformation can be described by a sin
‘‘Luttinger liquid parameter’’g, which gives the hyperbolic
cosinea and sineb of the Bogoliubov transformation

a5
1

2 S 1

g
1gD , b5

1

2 S 1

g
2gD . ~2!

Here g,1 for repulsive backscattering interactions andg
51 for no interactions. Forward scattering does not aff
this parameter, but rescales the effective Fermi velocity.

Let us now consider spinless fermions in a on
dimensional box of lengthL with fixed boundary conditions
C(0)5C(L)50. After bosonization the fermion fields be
come exponentials of the boson operators in a linearized
gion around the Fermi points

cR~x,t !5
1

A2pa
eiA4p(afR(x,t)2bfL(x,t)), ~3!

cL~x,t !5
1

A2pa
e2 iA4p(afL(x,t)2bfR(x,t)), ~4!

where a is a short-distance cutoff parameter. The fix
boundary condition therefore relates the left- and rig
moving boson fieldsfR(x,t)52fL(2x,t)1f0 and deter-
mines the mode expansion in terms of ordinary boson c
ation and annihilation operators, and zero modes7,8
©2003 The American Physical Society01-1
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fL~x,t !5
f01f̃0

2
1Q

x1vt

2L

1 (
m51

`
1

A4pm
~e2 i (mp/L)(x1vt)am1H.c.!, ~5!

where @f̃0 ,Q#5 i and f05Ap/2g. The eigenvalues of the
zero modesQ5(n2n02 1

2 )Ap/g are quantized with the
number of electronsn, wheren05kFL/p corresponds to the
number of electrons in the ground state.

The Hamiltonian is given byH5(pv/L)(mmam
† am

1(v/2L)Q2, wherev is the renormalized Fermi velocity. W
see that the last term inH resembles a ‘‘charging’’ energy
proportional to the square of the excess number of fermio
but this will not affect our calculations since we always co
sider single-particle excitations with exactly one addition
fermion n5n011. In general there may also be an ad
tional capacitative energy with a corresponding sing
particle charging energyE0.

The boson excitations become highly degenerate with
creasing energy levels which are always quantizedvm
5m(pv/L). However, we are interested in the correspon
ing fermionwave function of a single-particle excitation o
the ground statê vmux&5^vmuC†(x)u0&. The probability
densityr(vm ,x) is given by the sum of the correspondin
degenerate wave functions^vmux& squared

r~vm ,x![(
l

u^vm ,luC†~x!u0&u2. ~6!

This is the local density of states which gives the experim
tal probability of tunneling an electron into the system
energy vm and positionx. This spectral density can b
readily evaluated for an equally spaced spectrum by the F
rier transformation of Green’s function

r~vm ,x!5
v

2LE0

2L/v
dt eivmt^C~x,t !C†~x,0!&. ~7!

After defining a ‘‘mixed wave’’ xm(x)5aeim(px/L)

1be2 im(px/L), we find

^cL~x,t !cL
†~x,0!&5cS sin

px

L D 2ab

3expF (
k51

`
e2 ik(pvt/L)

k
uxk~x!u2G ,

~8!

^cR~x,t !cL
†~x,0!&52cS sin

px

L D 2ab

3expF (
k51

`
e2 ik(pvt/L)

k
xk

2~x!G . ~9!

Here c5(42ab/L)(2pa/L)2b2
is a nonuniversal cutoff-

dependent renormalization parameter which sets the uni
our calculations and suppresses the spectral weight in
24130
s,
-
l
-
-

-

-

-
t

u-

in
he

presence of interactions. These correlation functions can
simplified to power laws of sine functions7–9 but the form
above avoids any singularities in the integral of Eq.~7! since
for a given levelvm we can truncate the sum in the exp
nential byk<m. For the first few levels we are even able
evaluater analytically:

r~v1 ,x!5cS sin
px

L D 2ab

2Im2@x1~x!eikFx#,

r~v2 ,x!5cS sin
px

L D 2ab

~ Im2@x1
2~x!eikFx#

1Im2@x2~x!eikFx# !,

r~v3 ,x!5cS sin
px

L D 2abS 1

3
Im2@x1

3~x!eikFx#

1Im2@x1~x!x2~x!eikFx#1
2

3
Im2@x3~x!eikFx# D .

~10!
The probability density shows an oscillation of 2kFx with

modulations according to the mixing of left- and righ
moving components inxm . As can be seen in Fig. 1, th
amplitude of the modulations increases with the interact
strength~smallerg) and the envelope shows a depletion ne
the edges with a characteristic power lawx2ab in agreement
with the notion of a boundary exponent.7–10 In the limit of
small level spacingL→` we recover the known Luttinge
liquid power law behavior of the integrated density of sta
r(v)}v2b2

~last panel of Fig. 1!. In Fig. 2 we see that the
modulations of levelvm always havem ‘‘nodes’’ and m11

FIG. 1. ~Color online! The wave function squared correspondin
to m51 andn0540 in units ofc. The modulations become mor
pronounced with increasing interaction strength~smallerg). Last
panel: the integrated probability density for the first 50 levels co

pared to the power law behaviorv2b2
.
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maxima with roughly equal spacing and height resemblin
standing wave with a small wave vectorvm /v, correspond-
ing to the density waves from the boson excitations rela
to the Fermi-energy. It is also instructive to consider t
noninteracting limitg51, for which we always recover a
normalized standing wave of wave vector 2(kF1vm /v)
without any modulations or depletion, even though a gen
single fermion excitation still corresponds to a superposit
of degenerate many-boson states~and vice versa!.

It is now interesting to explore this modulation pattern f
the spinful case where we expect separate spin- and cha
like excitations. In this case the electron field with spins
56 is expressed in terms of spin and charge boson op
tors with two Luttinger liquid parametersgs andgc ,

cR,s~x!5
1

A2pa
eiA2p(acfR,c2bcfL,c)eisA2p(asfR,s2bsfL,s),

~11!

and the analogous expression forcL,s . The mode expan-
sions for the spin and charge bosons are the same as in
~5!, and the Hamiltonian is also given by the a simple s
H5(n5c,s((mn

(vnp/L)mnamn

† amn
1(vnQn

2/2L)). There-

fore, the spin and charge excitations are decoupled excep
the quantization conditions on the zero modesQs

5(Ap/A2gs) l , Qc5(Ap/A2gc)@n2122kFL/p# that
@ l ,n# must be either both even or both odd~@1,1# in our
case!. For the noninteracting case, spin and charge exc
tions are exactly degenerate, but now the excitations
classified by the product space of two evenly spaced bo
spectra with different energy spacingvs,vc . The partition
function and the electron Green’s function factorize. The
fore, the wave functions are products of spin and cha
modulations which are similar to the ones shown
Fig. 2 and Eq.~10!, except that the mixed wave is re

FIG. 2. The wave function squared of the first few levels
g50.7 andn0540 in units ofc.
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scaled xm,n(x)5(an /A2)eim(px/L)1(bn /A2)e2 im(px/L), n
5s,c, and the overall factor is given by
@sin(px/L)#asbs@sin(px/L)#acbc.

In Fig. 3 we show the square of the wave functions at
lowest energies in a spinful interacting electron system w
gs50.7,gc50.6, andvc52.3vs . Due to the different veloci-
ties, the degeneracy is lifted and many more levels appea
the energy is increased~see also Fig. 4 in Ref. 8!. Each level
is classified by a spin and a charge quantum numberms and
mc , respectively, which is reflected by the correspond
number of nodes and maxima in the wave functions. F
example, the levelms54,mc51 shows a superposition o
two charge maxima and five weaker spin maxima. The in
grated weight of the individual levels decreases with incre
ing energy, but the total~averaged! density of states increase

with the known power lawr(v)}vbs
2
1bc

2
. The superstruc-

tures survive even in the continuum limit and give rise to t
observed slow oscillations with wave vectorsv/vc andv/vs
near the edge of a semiinfinite Luttinger liquid.8,9,11,12In the
noninteracting limitgs5gc51, we recover again standin
waves with a fixed wave vector without any modulation
and remarkably all the many degenerate spin and charge

FIG. 3. ~Color online! The single-particle density of a spinfu
interacting electron system as a function of energy and posi
along a finite box forgs50.7, gc50.6, andvc52.3vs ~slightly
broadened, so that the fast oscillations are averaged out!. This may
resemble the outcome of adI/dV measurement in a STM exper
ment on a finite interacting wire. Top: fully resolved level forms

54,mc51, and (kFL/p)540. The two charge peaks and the fiv
weaker spin peaks are visible.
1-3
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son states at each energy level exactly sum up to an
grated normalized spectral weight of unity.

In Fig. 3 we have chosen values ofgs50.7 and gc
50.6, which emphasize the locations of both spin a
charge modulations, but in systems where the interact
are mostly spin independentgs is likely to be much closer to
unity and the spin modulations are less pronounced. No
theless, the level structure due tovs,vc as well as the
charge modulations are likely to be observable when cla
fying Luttinger liquid systems in real space with STM e
periments. In experimental systems there will be a numbe
complications that have to be taken into account. First of
in order to observe the features, the temperature has t
well below the characteristic energy scalepvF /L, which
corresponds to a few hundred degrees kelvin for a nanos
ture of about 100 Å. Second, nonuniversal higher order
erators in the field theory as well as long-range interacti
may alter the behavior near the edges and give correction
the depletion with the power lawx2ab, although the node
structure will be rather robost. Additional bands may also
observed by the STM at higher energies, which has to
.J.

.J
d

d
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taken into account depending on the individual system. C
bon nanotubes are one promising system, but unfortuna
in ordinary STM experiments the metallic substrate appe
to screen all interaction effects,1–3 while a less conducting
surface may impede the quality of the STM images. Ot
possible systems include metallic one-dimensional na
structures on cleaved surfaces13 and cleaved edge over
growth wires, where spectral properties can be detected
directly by a clever way of analyzing the tunneling betwe
adjacent wires as a function of voltage and magnetic fiel14

At this point we cannot speculate which experimental syst
is best suited, but given the rapid progress in STM imag
and nanostructured materials the predicted wave funct
are likely to be observable soon when classifying differe
kinds of potential Luttinger liquid systems.

In conclusion we have shown that the single-particle wa
functions of interacting fermions in a box can be used
visualize the true nature of the underlying boson excitatio

This research was supported in part by the Swedish
search Council and INFM.
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