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We present a brief review on the recent theoretical developement about boundary effects
in one-dimensional quantum spin systems focusing on the application of boundary conformal
field theory. We discuss about low-temperature behaviors of the boundary contributions of the
spin susceptibility and the specific heat coefficient. The anomalous behaviors at boundaries are
deeply related with finite-temperature corrections of the boundary entropy or the ground state
degeneracy, which yields a highly sensitive response of spin excitations in the vicinity of open

boundaries.
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1. Introduction

In the last decade, effects of open boundaries in quan-
tum one-dimensional (1D) spin systems have been exten-
sively studied in connection with impurity problems.! )
Open boundaries in 1D quantum systems are introduced,
for example, by a non-magnetic impurity which cuts a 1D
system into two semi-infinite chains. Elaborate theoret-
ical methods such as Bethe ansatz exact solutions and
boundary conformal field theory, as well as various nu-
merical simulations have been successfully applied to the
investigation of boundary effects, and elucidated a lot of
interesting features of boundary critical phenomena as-
sociated with open ends.® 2% In the present paper, we
review the recent developement on this issue with par-
ticular emphasis on the boundary conformal field thery
approach.

One important ingredient of boundary critical phe-
nomena is the emergence of boundary critical exponents
corresponding to boundary operators. This aspect has
been extensively studied so far.%810:21:22) Another in-
teresting feature is related to the existence of a zero-
temperature entropy Sgp = Ing, where g is the ground
state degeneracy. g is expressed as (0|B) in terms of
the ground state |0) and the boundary state |B). At
critical points, g is universal, and constant, character-
izing the universality class of boundary critical phe-
nomena.?3) However when a system is off-critical at fi-
nite temperatures, Sg may vary with temperatures. This
happens in the case that the system deviates from the
low-energy fixed point due to bulk irrelevant interac-
tions.23 24 These interactions together with the redun-
dant degrees of freedom may give rise to a non-trivial
behavior of boundary parts of thermodynamic quantities
such as the impurity spin susceptibility and the impurity
specific heat coefficient. It should be noted that these
quantities exhibit singular behaviors even at zero tem-
perature as a function of the magnetic field h. For exam-
ple, according to the Bethe ansatz solutions at zero tem-
perature for the spin-1/2 Heisenberg chains, the SUSY
t-J model, and the Hubbard model, the boundary sus-
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ceptibility behaves like, xg ~ 1/[4h{In(h)}?] in the case
with spin rotational symmetry.'' ™) This divergent be-
havior for a small magnetic field stems from the surface
energy perturbed by leading irrelevant interactions. It
was suggested in ref.'®) that at finite temperatures, in
addition to the surface energy, the boundary entropy per-
turbed by bulk irrelevant interactions also yields a sin-
gular contribution as a function of temperature. In the
case that the low-energy fixed point is the Tomonaga-
Luttinger liquid, namely, the Gaussian model with the
central charge ¢ = 1, the boundary entropy is given by
Sg = In(1/v2R) for the Dirichlet boundary condition,
where R is the radius parameter of the Gaussian model.
Thus at finite temperatures or with a magnetic field, the
presence of irrelevant interactions gives corrections to R
and Sp, leading the singular temperature or field depen-
dence of boundary quantities. This phenomenon is the
main topic of the present paper.

The organization of this paper is as follows. In the
sections 2 and 3, we give a pedagogic review on the low-
energy effective field theory for the spin-1/2 XXZ chain,
and some results of boundary conformal field theory rel-
evant to our argument. In the section 4, a brief historical
overview on this issue is presented. The recent results for
the low-temperature dependence of the spin susceptibil-
ity and the specific heat coefficient caused by boundary
effects are explained in the sections 5 and 6. The impli-
cation for experiments and a summary are given in the
last section.

2. Low-energy effective field theory

Before discussing boundary effects, we would like to
summarize the results of the bulk effective low-energy
theory for quantum Heisenberg spin chains with s = 1/2
which is the basis of our analysis. The Hamiltonian for
the spin-1/2 antiferromagnetic Heisenberg spin chains is
given by

Hxxz =JY [SISf +SYSY, + AS;Sq]. (1)

In the massless region, 0 < A < 1, the low energy fixed
point of (1) is the Tomonaga-Luttinger liquid, which be-
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longs to the universality class of the Gaussian theory
with the central charge ¢ = 1. In this case, the low en-
ergy effective Hamiltonian with the exact leading irrele-
vant interactions has been obtained by Lukyanov.?®) In
the case of 0 < A < 1/2 (K > 3/2), the low-temperature
anomalous behaviors at boundaries do not appear, as is
easily seen from the dimensional analysis. Thus we will
not consider this case.

For 1/2 < A < 1, the effective Hamiltonian is written

as,
H = Ho+ Hipy, (2)
_ L dx 9 9
mo= [ Fleer+@0 @
L
Hipe = a?%72) / d—mcos(\/SKqZ)). (4)
o 2m

Here L is the linear system size, and the constants K,
a, and \ are parametrized as, K = [1 — cos™1(A) /7] 7!,
a=2(K —1)/[JKsin(r/K)], and

AT(K) [ r(1+1/(2K —2)) r” )
I(1-K) | 2/a0(1+K/(2K — 2))

For this choice of the lattice constant a, the veloc-
ity of spinons is scaled to be unity. The boson fields
¢(z) and O(z) satisfy the canonical conjugate relation,
[6(x), 0,0(x")] = imd(x — a’). It is convenient to decom-
pose ¢(x) and 0(x) into the left-moving and right-moving
parts; ¢(z) = ¢r(z) + dr(x), O(x) = 0r(x) — Or(z). The
mode expansions of these fields are given by

A=

q 7w (P W
t = 4+ =-|l=4+— |
+ % lome_i¥(t+’c) (6)
n#0
q w (P W
t = = = - — t—
) 1 ;2T
+ % ~ e, (7)
n#0

The canonical conjugate relation leads the following com-
mutation relations,

[anyam} = [any@m} = n5n+m,0a [Oén,dm] = 07 (8)
[qap]:iv [Q»P]:iﬂ [P’ﬁ)]:ov 9)
G =im lgol=iY2E, (g0)=-YZE (o)

The last three commutation relations are required to en-
sure the anti-commutation relations of fermions related
to spin operators via the Jordan-Wigner transformation.
The eigenvalue of w is an integer w corresponding to the
winding number of the phase field ¢.

For the ¢ = 1 Gaussian theory, as will be shown later,
boundary states are constructed from the highest weight
state (the primary state) of the U(1) Kac-Moody algebra
|v, w) which is the eigenstate of the zero mode of a,, &,
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defined as,
P w P w
==+ —,  Gy=— — ——. 11
=5+ 5w =5 e (11)

The state |v,w) specified by integers v and w satisfies
the eigenvalue equations,
2Kv w )
aglv,w) = —+ — ||v,w), 12
o) = (4 Yo (2
2K
<—V” - L) vw).  (13)
2 V2K

Thus, |v,w) is an energy eigenstate of the Gaussian
model;

ap|v, w)

2T, 4 _ 1
H0|’U,’U)> - T(Avw + Avw - E)‘U’w>’ (14)
2
- (15)
2 2 V2K

Using the finite size scaling argument, we can read off the
conformal dimension A}, + Az for the primary field,

exp(ivV2K ¢(x, t) + iw/2/K0(z, t)). (16)

This primary field corresponds to the primary state
v, w).

At the isotropic point A = 1 (K = 1), the effective
low-energy theory is described by the level kK = 1 SU(2)
Wess-Zumino-Witten model with a marginally irrelevant
interaction:

H = Hwzw + Hp, (17)
L 3
dx _
H, = - — @ Y (x). 1
9 %;J ()] (). (18)

Here Hy zw is the Hamiltonian of the level k = 1 SU(2)
Wess-Zumino-Witten model, and J¢(z) (J%(z)) is the
left (right) moving current of the level £k = 1 SU(2)
Kac-Moody algebra. The running coupling constant g de-
pends on temperature T and an external magnetic field
h through the scaling equation,®)

g7+ 5 nlg) = ~Relp(1 + 5] +In(v/3re 4/ T),
(19)

with ¢ (z) the di-gamma function.

Generally, in 1D quantum systems with boundaries,
there may be boundary interactions in addition to bulk
interactions. However, as was pointed out in ref.,'®) in the
absence of symmetry-breaking external fields at bound-
aries, irrelevant boundary interactions do not give singu-
lar contributions to boundary quantities, and are negli-
gible in the following argument.

3. Boundary conformal field theory for thec =1
Gaussian model

Here we briefly review some results of boundary con-
formal field theory which will be used in the following
calculations.

In general, for two-dimensional (or quantum 1D) crit-
ical field theories, any system is invariant under the con-
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formal transformation which is generated by the holo-
morophic and anti-holomorophic parts of the stress ten-
sor T(z), T(2). For a cylinder with perimeter 1/T, the
mode expansions are expressed as,

c

T(x+iy) = (2rT)* Y 2 (L, — —5,0),  (20)

24

= . 7T (x—i T ¢
T(x —iy) = (2nT)? 262 e (g, — ﬂ(snO)v (21)

where L,, and L,, are the Virasoro generators. For the
Gaussian model with ¢ = 1, the Virasoro generators have
the free boson representation,

Lo= 2,5 Fo= B4 S 6, (22
0—7+;a—nana 0—7+;a—nana ()
and,

Lo=13 iommams Lo=23 :an mim: (23)
n_2m~n7m mo* n_2m~n7mm
for n # 0.

For two-dimensional systems with a boundary at z = 0
(z = = + iy), a conformally invariant boundary condi-
tion is imposed by demanding that T'(z) = T(Z) on the
boundary.??) For the Gaussian model with ¢ = 1, we
see from eqs.(20)-(23) that this condition is fullfilled un-
der the following stronger constraint on the boundary

state,26-28)

(an +a_,)|B) =0, (24)

where the plus (minus) sign corresponds to the Neumann
(Dirichlet) boundary condition. The solution for (24) is
expressed in terms of the Ishibashi state.2'29) For the
Dirichlet condition, it is given by,26-2%)

1
K ZZOO VAR ZOO a_pG_p
1

V=—00 n=

(25)
Note that the prefactor (K/2)*/* is the boundary degen-
eracy at zero temperature, which is related to the bound-
ary entropy Sg = In(K/2)'/*. Sp is non-zero when non-
trivial bulk correlations exist; i.e. K # 2. The constant
¢g is the eigenvalue of the boson field ¢ at the boundary.
The boundary state for the Neumann condition is,26-28)

1
I\ w N O,
M= (55 ) 30 e VIR e (3 T Yo ),

w=—00 n=1

(26)
where 6 is the boundary value of the dual field, §(z). The
prefactor (1/2K)'/* is also the boundary degeneracy for
this boundary condition.

4. Boundary effects in the s = 1/2 spin chains
— A brief overview

As mentioned before, non-magnetic impurities in
quantum spin chains can be effectively regarded as free
open boundaries provided that the interaction between
two open ends separated by a non-magnetic impurity is
negligible. In such a case, non-trivial boundary effects
emerge in the thermodynamic limit N > J/T, where
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N is the system size. In contrast, in the oppsite limit
T/J < 1/N the behavior is trivially described by the
ground state, which is a singlet for even N with expo-
nentially small susceptibility as T — 0 and a doublet
for odd N with a Curie law behavior. In the present pa-
per, we mainly consider the thermodynamic limit 1/N <
T/J < 1, which highlights intriguing boundary correla-
tion effects.

The application of the boundary conformal field theory
to impurity issues in the s = 1/2 quantum spin chains
was first considered by Eggert and Affleck a decade ago.?)
As was discussed in that paper, the free open bound-
ary condition at = 0 for spin chains is that the mag-
netization current at the boundary J#(x = 0,¢) must
vanish, though the boundary magnetization at x = 0
is not fixed to a particular value. In terms of the low-
energy effective field theory, this condition is expressed
as ¢r(z = 0,t) + ¢r(z = 0,t) = 0, which allows us to
define ¢r(x,t) as the analytic continuation of ¢r,(z,t) to
the negaitive axis: ¢gr(x,t) = —¢r(—x,t). We can easily
see that this relation actually fulfill the above-mentioned
requirement; ie. S*(z = 0,t) o 0y¢r(x,t)|y=0, and
J*(x = 0,t) = 0;¢1(0,t) + 0rpr(0,t) = 0. Then, the
effective field theory is expressed only in terms of the
left-moving part ¢r..

Boundary critical phenomena appear in the long-time
behavior of boundary correlation functions. At the zero-
temperature fixed point described by the free boson, the
above boundary condition does not affect the uniform
part of the spin-spin correlation functions, but change
the staggered part drastically. Neglecting the irrelevant
interaction (4) or (18), Eggert and Affleck obtained the
impurity part of the spin structure factor which behaves
Simp(k ~ m) o< v/T at low temperatures, reflecting en-
hanced antiferromagnetic correlation in the vicinity of
the open boundaries. No singular temperature behav-
ior of the impurity uniform suscepetibility was predicted
however.

On the other hand, the Bethe ansatz exact solution
at T = 0 predicts that the boundary uniform suscep-
tibiltiy behaves xg = 1/[4h(In(h))?] for small magnetic
field, implying the singular temperature dependence of
the uniform part, in contrast to the above field theoreti-
cal result. Since boundary irrelevant interactions merely
give small corrections to the spin susceptibility, the ori-
gin of the singular behavior may be attributed to bulk
interactions ignored in the analysis of ref.?) The impor-
tance of the bulk irrelevant interactions for boundary
critical phenomena was also discussed before by Affleck
and Qin,'® and Brunel et al.'® in connection with log-
arithmic corrections to the nuclear relaxation rate 1/7;
at the boundary. For the isotropic spin chain, it is given
by, 1/T1 o T[In(Tp/T)]?, which makes a sharp con-
trast to the behavior of the system without boundaries,
1/T; o [In(Ty/T)]"/2. This result is due to the interplay
between the existence of the boundary entropy and the
surface energy, and the bulk marginally irrelevant inter-
action.

As will be explained in the next sections, a similar
effect crucially controls the low temperature behaviors
of the boundary spin susceptibility and the boundary
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5. Boundary conformal perturbation theory for
spin-1/2 chains

In this section, using the results from sections 2 and
3, we show that boundary quantities exhibit a singular
temperature dependence, which stems from the bound-
ary entropy and the surface energy perturbed by bulk ir-
relevant interactions. For this purpose, following the idea
of Cardy and Lewellen,?!) we consider the geometry of a
semi-infinite cylinder with perimeter 1/7. Interchanging
space and time coordinates, we define the phase field on
this geometry as,

t
¢°(x,t) = Q + 7T Px + 9T —

V2K

. 1 _ 4

+ % Z E(ane—z27rTn(m+t) + O—éne—z27rTn(:c—t)). (27)
n#0

Then, the Hamiltonian on the semi-infinite cylinder is

written as,

HE = Hg+ Hi, (28)
YT gt

mo= [ e @R ()
2K -2 yr dt

HE, = a?K72) /0 %COS(\/8_K¢C). (30)

We express the partition function by using the trans-
fer matrix exp(—LH¢) and the boundary state |B). The
lowest order terms of the free energy are given by,

T
F= —a—l (0]e=LH5 | B)

0] exp( LHO) exp(mHO)Hmt exp(— mHé)\B)

ol (1 |
*T/o e (Ol exp(—L15)|B)
+e (31)

where |0) is the ground state of Hg. The first term of
the right-hand side of (31) is the free energy of the
¢ = 1 Gaussian model. The second term, which is de-
noted by dFg in the following, is the 1/L correction that
emerges as a result of boundary effects. 6 Fp is expressed
in terms of the one-point function of the primary field
®(z,7) = exp(iv8K ¢(x, 7)) which has the conformal di-
mension 2K,

2K—1p 1/T
st = 2 [ [ Car(@(w e + he)/2
0 0

2L

(32)
At this stage, the effect of a magnetic field is incorporated
by shifting the boson field ¢¢(z) to ¢°(x) = ¢°(x) —
\/K/2hz. Following Cardy and Lewellen,?") we apply the
conformal transformation from the cylinder z = = + it
to the semi-infinite plane Imz’ > 0: z = (277) ! In[(1 —
2")/(1+iz’)]. Then, the boundary term is rewritten as,

@2K-1 l/T
5k = / /

’/TT 2K
‘1 +Z’2|2K
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X (B2, 7)) g + h.c.)/2.

For the semi-infinite plane, the average of the local op-
erator close to a boundary is computed by the standard
method,

(¥'(z',2)p =

(33)

(@7 (z")PR(Z))B ~ (®1()PL(Z)) 5
Ag

(2Imz’)2K” (34)

with <I>’L(R) the (anti-)holomorphic part of ®’(2’, z’), and
Ag the coefficient of the operator product expansion.
Regulating the ultra-violet divergence of eq. (34) via
point-splitting procedure, and transforming back to the
z-coordinate, we have

ABN(raT)?E [F cos(2K hx)
0Fp = ——"——"— .
2malL a [sinh(27T'z)]2K

By using the point-splitting procedure, we have dis-
carded a non-universal divergent term which is not im-
portant for the low-energy properties. The constant A%
is obtained by considering the long distance behavior of
(®(z,7))p for large z,
(0]2|®){®|B)
(@ (7)) ~
(01B)
Here |®) is the primary state corresponding to the con-
formal field ®(x, 7). Comparing egs. (33), (34), and (36),
and using (0|®|®) = (27T)%*, we end up with,
(®|B)
(0/B)

(35)

xp(—4rTKx). (36)

Af = (37)

The matrix element between |0) and |B) that appears
in (37) can be computed by using (25) and (26). We see
from egs. (15) and (16) that |®) is the primary state
|2,0). (®|B) is non-vanishing, only if |B) contains |2,0).
The Neumann boundary state (26) does not satisfy this
condition, leading (®|N) = 0. On the other hand, (®|D)
gives a finite contribution. The averaged value of the
phase ¢y at the boundary is set to ¢g = 0, which is
consistent with the free open boundary condition for the
boundary magnetization. Then, from eq. (25), we have
(2,01D)/{0|D) = 1.

The Dirichlet boundary condition corresponds to the
absence of the spin current leaking from the open ends.
This is easily seen as follows. From eq. (27), the spin
current operator at the boundary = = 0 obeys,

Jo = i0:¢%(x =0,7) =irT > (o — a_p)e 277",
(38)
The boundary condition (24) leads Js|B) = 0 for the
Dirichlet condition. We would like to stress that since the
time and space coordinates are interchanged in eq. (27),
the canonical conjugate field of ¢¢ is not 0.¢¢, but
0, ¢¢. Thus, we can fix the boundary average values of
¢¢(x = 0) and 9, ¢°(x = 0) simultaneously for the Dirich-
let condition. This implies that the average value of the
local magnetization at the boundary ~ 9,¢°(z = 0) is
not fixed to a particular value, fulfilling the free open
boundary condition with which we are concerned.
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5.1  Field theoretical results for boundary quantities
5.1.1 The anisotropic case 1/2 < A < 1

The corrections to the boundary free energy caused by
the irrelevant interaction is computed from egs. (35) as,

0Fp = —l(QwaT)QK*IRe[B(K -l—iﬁ

ArL 27T’ 1= 2K)],

(39)
where B(z,y) = I'(x)I'(y)/T(x + y). In the case that the
system has two open boundaries, the boundary term of
the free energy is given by twice Fg.

Usng eq. (39), we calculate the leading temperature de-
pendence of the boundary spin susceptibility contributed
from two open ends,

Aa K2
XB =
2

B(K,1-2K)[x® — 2¢/(K)](2maT)* =3,

(40)
with ¢/(z) = di(x)/dx. Note that for 1 < K < 3/2
(1/2 < A < 1), the boundary spin susceptibility xp
shows a divergent behavior ~ 1/7372K  as temperature
decreases. This anomalous temperature dependence is
also observed in the boundary part of the specific heat
coefficient given by,

% = 2ma\(2K — 1)(2K —2)B(K,1 — 2K)(2raT)** 3.

(41)
We would like to stress that in the formulas (40) and
(41) there is no free parameter, and the prefactors are
exactly obtained. The divergent behaviors can physically
be understood as follows. In contrast to the bulk Heisen-
berg chains in which the ground state is a spin singlet
state, spin singlet formation in the vicinity of boundaries
is strongly disturbed by thermal fluctuation, because of
the enhanced correlation at the boundaries which stems
from the ground state degeneracy. It should be empha-
sized again that the singular behaviors are not due to
the presence of boundary operators, but interpreted as a
consequence of finite-temperature corrections of the sur-
face energy and the boundary entropy In(0|B) caused by
bulk irrelevant interactions.

At zero temperature with a finite magnetic field, a sim-
ilar singular behavior appears in the field dependence of
the boundary spin susceptibility given by,

/\(CLK)QK_ 1
xs(T'=0) = 2ma

We have checked that this result coincides with that ob-
tained from the Bethe ansatz exact solution.

sin(nK)T'(3 — 2K)h*5 =3, (42)

5.1.2  The isotropic case A =1

Now let us consider the isotropic case K = 1. The free
energy correction (39) possesses poles for K = 1. To deal
with these singularities, we follow the procedure consid-
ered by Lukyanov for bulk spin systems.??) We rewrite
H;p,; in terms of the SU(2) current operators,
The exact expressions for the running coupling constants
g and g are given in ref.2>3%) On the other hand, for
the value of K close to 1, eq. (39) can be expanded in
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power series of 1 — 1/K. Comparing the expansion of
eq. (39) with the expression for g and g, we can write
the free energy correction (39) as a power series expan-
sion in terms of g and g, . Then, taking the limit K — 1
and gj, 91 — g, we end up with,

_TIg _ R
2N 24NT

for h <« T. The running coupling constant g obeys
eq. (19). From eq. (44), we obtain the leading term of
the boundary spin susceptibility and the specific heat

coeflicient,
n ) |
Inln(a/T)

Cg _ 1 B
T‘QT(m(a/TW( n(a/T) +> (46)

where o = /m/2 exp(1/4++) with « the Euler constant.
At zero temperature, the boundary spin susceptibility for
a small magnetic field is also derived from the opposite
limit A > T of eq. (39), The result coincides completely
with that obtained from the Bethe ansatz exact solu-
tions. 't 14

In an independent work, Furusaki and Hikihara have
also derived the results (40), (45), (41), and (46) using
conventional bosonization methods.2%)

20Fp = (9+9%) + ... (44)

Inln(a/T)

~ 2In(a/T) (45)

B 1
XB = 19T In(a/T) (

6. Comparison with numerical results

In this section, we present a comparison between the
field theoretical results obtained in the previous sections
and numerical calculations based upon the density ma-
trix renormalization group for transfer matrices (TMRG)
applied to impurity problems.'”) This method is suitable
for the calculation of local expectation values and the im-
purity free energy in the thermodynamic limit N — oo.
When we compute the impurity susceptibility, we need to
take the second derivative of the impurity free energy and
therefore subtract two large numbers, which turns out to
be inaccurate for very low temperatures. For the lowest
temperatures (7' < 0.1J) we have instead summed over
the excess local responses in a range around the open
ends, which yielded more accurate results. This method
agrees with taking the second derivative for higher T and
should also be a good approximation for T < 0.1.J. As
shown in Fig. 1 (upper panel), the numerical results ob-
tained by this method agree well with the field theoretical
results without any adjustable parameters.

7. Discussion and Summary

The Curie-like temperature dependence with logarith-
mic corrections of the boundary spin susceptibility (45)
may be relevant to experimental observations. Accord-
ing to experimental measurements of the spin suscepti-
bility for the Heisenberg spin chains such as SroCuOs, a
Curie-like behavior at low temperature region is always
observed, but has been regarded as an extrinsic impu-
rity effect.??) Since the Curie contribution is strongly
reduced by careful annealing,3%3%) this Curie tail can-
not be due to magnetic impurities in the sample. For
extremely low temperatures T/J < 1/N such a Curie
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TXan

0.03
0.02 - L - L - L
0.0 0.1 0.2 0.3
T
Fig. 1. Upper panel: the boundary susceptibility xg as a function

of T obtained from the TMRG calculations (black points). The
solid line is the plot of the field theoretical result eq. (45). Lower
panel: approximate temperature dependence of the average Curie
constant per impurity for an impurity density of p = 0.1%

behavior can be explained by the trivial size effect of
finite chains with odd N that have locked into their dou-
blet ground state.'® For higher temperatures, however,
a Curie-like behavior may be attributed to non-trivial
boundary effects given by eq. (45). The crossover between
these two different regions occurs when the tempera-
ture becomes comparable to the finite size energy gap
T ~ wv/N. For a carefully annealed sample of SroCuQOsg
with p ~ 0.013%3?) the ground state contribution is only
significant for T" < 0.001J ~ 2K. Thus the averaged
Curie constant varies with temperatures showing a min-
umim around the crossover temperature. The approxi-
mate behavior of the averaged Curie constant for the
impurity susceptibility TXavg is shown in Fig. 1 (lower
panel) for p = 0.1% by averaging over all chain lengths
and assuming a sharp crossover from ground state to
thermodynamic behavior.

In summary, we have given a short review on boundary
critical phenomena related to 1D quantum spin chains
with open ends with emphasis on the application of the
boundary conformal field theory, and the role of the zero-
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temperature boundary entropy.
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