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Impurity corrections to the thermodynamics in spin chains
using a transfer-matrix DMRG method
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Institute of Theoretical Physics, Chalmers University of Technology, S-41296 Go¨teborg, Sweden
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We use the density-matrix renormalization group for transfer matrices to numerically calculate impurity
corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain,
namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory
calculations and gives explicit results for the crossover behavior.@S0163-1829~99!01606-9#
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I. INTRODUCTION

The study of quantum impurities remains a large part
condensed-matter physics. The Kondo effect is maybe on
the most famous examples for impurity effects, but mo
recently much effort has been devoted to impurities in lo
dimensional magnetic systems in connection with hig
temperature superconductivity.1 For the particular case o
impurities in quasi-one-dimensional systems, much prog
has been made with field theory descriptions, e.g., for
Kondo model,2 quantum wires,3 and spin chains.4 In those
cases, the impurity behaves effectively as a boundary co
tion at low temperatures and the behavior can be describe
terms of a renormalization crossover between fixed point
a function of temperature.2

Numerically this renormalization picture has be
confirmed,4–6 but so far it was only possible to examine
limited number of energy eigenvalues in the spectrum. Wh
some efforts have been made to extract thermodyna
properties from the energy spectrum directly,7 such an ap-
proach is tedious and remains limited by finite system siz
Monte Carlo simulations appear to be well suited for det
mining thermodynamic properties, but for the particular ca
of impurity properties it turns out to be difficult to accurate
determine a correction which is of order 1/N, whereN is the
system size. We now apply thetransfer matrixdensity ma-
trix renormalization group~DMRG! to impurity systems.
This overcomes those problems by explicitly taking the th
modynamic limitN→`, while still being able to probe im-
purity corrections and local properties at finite temperatu
even for frustrated systems~which are not suitable for Monte
Carlo simulations due to the minus sign problem!.

There are two separate impurity effects that we wish
address. The first is the impurity correctionF imp to the total
free energy of a one-dimensional system

F imp5 lim
N→`

~F total2NFpure!, ~1!

whereFpure is the free energy per site for an infinite syste
without impurities. In other words, the impurity contributio
is that part of the total free energy that does not scale w
the system sizeN

F total5NFpure1F imp1O~1/N!. ~2!
PRB 590163-1829/99/59~9!/6301~8!/$15.00
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Therefore, the impurity free energyF imp is directly propor-
tional to the impurity density of the system, and it immed
ately determines the corresponding impurity specific h
and impurity susceptibility, i.e., quantities that can be m
sured by experiments as a function of temperature and
purity density. Despite the obvious importance of this imp
rity contribution we are not aware of any numerical stud
that considered this quantity for any nonintegrable impur
system. Traditional methods would require an extens
finite-size scaling analysis to track down the 1/N correction
to the total free energy per site, but our approach allows u
calculate F imp directly in the thermodynamic limit. We
would like to point out that in other studies the response
an impurity spin to alocal magnetic field is often termed
‘‘impurity susceptibility,’’ but we prefer to reserve this ex
pression for the impurity contribution

x imp52
]2

]B2
F imp , ~3!

whereB is a global magnetic field on the total system.
The second aspect of impurity effects arelocal properties

of individual sites near the impurity location, e.g., correlati
functions and the response to a local magnetic field. Lo
properties have been the central part of a number of wo
for many impurity models.5–10 Our approach is now able to
calculate these impurity effects directly in the thermod
namic limit and we get quick and accurate results to
tremely low temperatures. It turns out that the local impur
effects can be determined much more accurately and
lower temperatures than the impurity contributionF imp ,
which remains limited by accuracy problems even with t
method.

The density-matrix renormalization group11 ~DMRG! has
had a tremendous success in describing low-energy s
properties of many one-dimensional~1D! quantum systems
such as spin chains and electron systems. More rece
many useful extensions to the DMRG have been develop
Nishino showed how to successfully apply the densi
matrix idea to two-dimensional~2D! classical systems by
determining the largest eigenvalue of a transfer matrix12

Bursill, Xiang, and Gehring have then shown that the sa
idea can be used to calculate thermodynamic propertie
the quantum spin-1/2XY chain.13 The method has later bee
improved by Wang and Xiang14 as well as Shibata15 and
6301 ©1999 The American Physical Society
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6302 PRB 59STEFAN ROMMER AND SEBASTIAN EGGERT
been applied to the anisotropic spin-1/2 Heisenberg ch
with great success. In this paper we apply a generalizatio
the method to impurity systems, which is presented in S
II. In Sec. III we study two different impurity models in th
spin-1/2 chain and are able to confirm predictions from fi
theory calculations. Section IV concludes this work with
discussion of the results and a critical analysis of the ac
racy and applicability to other systems.

II. THE METHOD

The method of the transfer-matrix DMRG can, in pri
ciple, be applied to any one-dimensional system for whic
transfer matrix can be defined. As a concrete example
will consider the antiferromagnetic spin-1/2 chain, since t
model is well understood in terms of field theory treatme
and has direct experimental relevance. The Heisenb
Hamiltonian can be written as

H5(
i 51

N

hi , hi5Ji Si•Si 111Bi Si
z , ~4!

whereJi is the exchange coupling between sitesi and i 11,
andBi is an external magnetic field in thez direction at site
i. Periodic boundary conditions,SN11[S1 , are assumed
The partition function is defined by

Z5tr e2bH5tr e2b~Ho1He!, ~5!

whereb51/kBT and where we in the last step have par
tionedH into odd and even site terms,

Ho5(
i 51

N/2

h2i 21 , He5(
i 51

N/2

h2i . ~6!

A. The transfer-matrix method

The quantum transfer matrix for this system is defined
usual via the Trotter-Suzuki decomposition16

ZM5tr~e2bHo /Me2bHe /M !M, ~7!

where M is the Trotter number. This expression appro
mates the partition function up to an error of order (b/M )2

and becomes exact in the limitM→`. By inserting a com-
plete set of states between each of the exponentials in Eq~7!
and rearranging the resulting matrix elements, the parti
function can be written as a trace over a product of tran
matrices,13

ZM5tr )
i 51

N/2

TM~2i 21!, ~8!

where TM(2i 21) is the 22M322M dimensional quantum
transfer matrix from lattice site 2i 21 to site 2i 11. Note that
TM is in general not symmetric. However, if the two-si
Hamiltonianh2i 21 andh2i of Eq. ~4! is invariant under the
exchange 2i 21↔2i , and 2i↔2i 11, respectively, as is the
case unless we have applied a nonuniform magnetic fi
TM is a product of two symmetric transfer matrices, o
from site 2i 21 to site 2i and the other from site 2i to 2i
in
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11. For a uniform system, the transfer matrix is independ
of lattice site,TM(2i 21)[TM , and the partition function is
then given by

ZM5tr TM
N/2 . ~9!

In the thermodynamic limit of the uniform system,ZM is
given by

lim
N→`

ZM5lN/2, ~10!

wherel is the largest eigenvalue ofTM .
The largest eigenvaluel can be found exactly only for

small Trotter numbersM. As M increases, the dimension o
TM grows exponentially, and we have to use some appro
mation technique to findl. Analogous to the case where th
DMRG can be used to find a certain eigenstate of a Ham
tonian as the number of lattice sites increase, we can use
DMRG to find the largest eigenvalue ofTM as the Trotter
numberM increases. The strategy is thus to start with a s
tem blockTM /2

s , and an environment blockTM /2
e with a small

M. The superblock transfer matrixTM with Trotter number
M, is constructed by ‘‘gluing’’ together the system bloc
with the environment block. Periodic boundary conditions
the Trotter direction must be used. The reduced density
trix is constructed from the target state, i.e., the eigenstat
TM with the largest eigenvalue. Since the transfer matrix
nonsymmetric, the left and right eigenvectors will not
complex conjugates of each other.

A reduced density matrix for the system as part of t
superblock can be constructed by taking a partial trace
TM

N/2 over the environment degrees of freedom14

r5
1

ZM
trenvTM

N/2 . ~11!

In the thermodynamic limit only the state with the large
eigenvalue will contribute,

r ——→
N→`

trenvucR&^cLu, ~12!

whereucR& and^cLu are the right and left eigenvectors of th
superblock transfer matrix,TM , corresponding to the larges
eigenvalue,l. The matrix elements are given byr i 8,i

5( jc i 8, j
R c i , j

L , wherei and j label the degrees of freedom o
the system and the environment, respectively, and the ta
states are given by ^cLu5( i , jc i , j

L ^ i u^ j u and ucR&
5( i , jc i , j

R u i &u j &.
The left and right eigenvectors of the density matrix w

the largest eigenvalues are then used to define the proje
operators onto the truncated basis. After the first iterati
we will keep m states for the system and the environme
and the superblock will be 4m2 dimensional. More details on
the transfer-matrix DMRG algorithm for quantum system
have been presented in Refs. 13–15. Sincer is nonsymmet-
ric it is not obvious that the eigenvalues are real, but beca
r represents a density matrix we expect it to be posit
definite. However, because of numerical inaccuracies c
plex eigenvalues tend to appear in the course of iteratio
This is usually connected to level crossings in the eigenva
spectra of the density matrix asM is increased. In addition
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we also observe that just before the complex eigenva
appear, multiplet symmetries in the eigenvalue spectrumr
may split up ~often due to ‘‘level repulsion’’ from lower
lying states which were previously neglected!. To overcome
this problem it is important to keep all original symmetri
~i.e., eigenvalue multiplets ofr) even asM increases. For
that purpose it is often necessary to increase the numbe
statesm just before a multiplet tends to split up, whic
avoids the numerical error that leads to the symmetry bre
ing. In case of a level crossing of two multiplets that do n
split up, complex eigenvalues may still appear and it is th
possible to numerically transform the complex eigenst
pair into a real pair spanning the same space. Since the tr
formed real pair still is orthonormal to every other eigenve
tor, this transformation does not cause any troubles for l
iterations. With this method the eigenvalues stay comp
until the two levels have crossed and moved enough apa
which point the eigenvalues become real again. The re
malization procedure is therefore not as straightforward a
ordinary DMRG runs, since it is essential to trackall eigen-
values ofr and to dynamically adjust the number of statesm,
thereby sometimes repeating previous iteration steps.

B. Impurities and local properties

The renormalization scheme also allows the calculation
thermal expectation values of local operators. The magn
zation of the spin at sitei is determined by

^Si
z&5

1

Z
tr Si

ze2bH. ~13!

The operatorSi
z thus only has to be incorporated in the co

responding transfer matrix at sitei. For thepure system, we
then arrive at the formula14

^Si
z&5

^cLuTM
sz~ i !ucR&
l

, ~14!

whereTM
sz( i ) is defined similar toTM( i ) but with the addi-

tional operatorSi
z included in addition to the Boltzman

weights. To measure the local bond energy,h( i )5Si•Si 11 ,
a similar construction can be used.

Let us now assume that the system has a single impu
The systems we will study is the periodic spin-1/2 chain w
one weakened link or an external spin-1/2 coupled to
spin in the chain

H15H02dJ SN•S1 , ~15!

H25H01J8 S1•Sf , ~16!

where

H05 (
i 51

N21

JSi•Si 111JSN•S1 ~17!

is theperiodic chain andSf is the spin operator of an exte
nal spin-1/2. The models are depicted in Fig. 1.

For systems with such a local impurity, which is co
tained within two neighboring links, only one of theTM( i ) in
Eq. ~8! will differ from a commonTM
es
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ZM5tr ~TM
N/221Timp!, ~18!

whereTimp is the transfer matrix of the two links containin
the impurity andTM is the transfer matrix describing th
bulk. In the thermodynamic limit the partition function wi
still be dominated by the largest eigenvalue of the ‘‘pur
transfer matrix. From Eq.~18! we have

lim
N→`

ZM5lN/221^cLuTimpucR&, ~19!

wherel,^cLu and ucR& all correspond to the pure system
The generalization of Eqs.~18! and~19! to impurity configu-
rations ranging over more than two links is straightforwa
In this case more than one impurity transfer matrix has to
introduced and this could be used to study, e.g., multi
impurities and impurity-impurity interactions.

Let us definel imp[^cLuTimpucR&. The total free energy
of the system is then given by

F52
1

b
ln Z52

1

b
ln~lN/221l imp!

52
N

2b
ln l2

1

b
ln

l imp

l
. ~20!

By comparing with Eq.~2! we can retrieve the pure an
impure parts

Fpure52
1

2b
ln l, F imp52

1

b
ln

l imp

l
. ~21!

The impurity susceptibility can be found from the change
F imp in a small magnetic field from Eq.~3!

x imp52
]2

]B2
F imp . ~22!

Local properties such as the magnetization of the impu
spin can be determined by

^Simp
z &5

^cLuTimp
sz ucR&

l imp
. ~23!

The magnetization of spins close to the impurity is read
obtained by

^Sz&5
^cLuTM

sz~TM !xTimpucR&

lx11 l imp

, ~24!

where 2x is the number of sites between the impurity and t
spin of interest. Note that since a transfer matrix involve

FIG. 1. The impurity configurations considered in Eqs.~15! and
~16!. Note, that the left and right ends are joined with period
boundary conditions.
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6304 PRB 59STEFAN ROMMER AND SEBASTIAN EGGERT
total of three lattice sites,TM
sz can be constructed to measu

the spin at any of these sites~or the mean value!. The actual
site of the measurement in Eq.~24! is thus determined both
by x and howTM

sz is set up. The expectation value in Eq.~24!
is most easily calculated by first computing the vect
^cLuTM

sz andTimpucR&, then acting withTM on one of these
states, and finally calculating the inner product of the res
ing states. Equation~24! can be generalized to measure a
equal-time correlation function with or without an impurit
e.g., by replacingTimp by TM

sz.
The reduced density matrix for the impurity system c

be constructed by taking the thermodynamic limit of the i
purity version of Eq.~11!,

r5
1

ZM
trenv~TM

N/221Timp!, ~25!

with ZM as in Eq.~18!. In our calculations we have used th
same density matrix as for the pure case, i.e., Eq.~12!, and
we have found it to give good results. This form can m
easily be motivated by writing Eq.~25! on the form r
5trenv(TM

N/421TimpTM
N/4)/ZM . From a computational point o

view, this method is also very convenient; by storing
target states and projection operators from the DMRG
for the pure system, all local impurities can be studied b
simply using the same projection operators and target sta
This makes subsequent DMRG runs for different impur
parameters very fast.

There are also other choices of density matrices that
be made. The thermodynamic limit of Eq.~25! can also be
interpreted asr→ucR&^cLuTimp /l imp in which case the im-
purity transfer matrix would be taken into account in t
density matrix. This would in some sense be analogou
including an operator different from the Hamiltonian in th
density matrix of the ordinary ‘‘zero-temperature’’ DMRG
which is usually not necessary to measure, e.g., correla
functions in the ordinary DMRG. This approach would d
stroy the computational advantage of using the pure den
matrix, because the pure projection operators and ta
states could not be used but instead complete DMRG r
would have to be done for each impurity configuration a
coupling.

III. RESULTS

A. Field theory predictions

To make a meaningful analysis of the numerical resu
we first need to understand the spin-1/2 chain in the fra
work of the quantum field theory treatment. This turns out
give a good description of the impurity behavior in terms
a renormalization flow between fixed points, and we will
able to set up concrete expectations for the impurity susc
tibility in Eq. ~3! as well as local properties.

The effective low-energy spectrum of the spin-1/2 ch
is well described by a free-boson Hamiltonian density

H5
v
2

@~Pf!2 1 ~]xf!2#, ~26!

plus a marginal irrelevant operator cosA8pf and other
higher-order operators which we have neglected. HerePf is
s

t-

-

t
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n
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d

,
e-
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the momentum variable conjugate tof. In the long-
wavelength limit the spin operators can be expressed
terms of the bosonic fields using the notation of Ref. 4:

Sj
z'

1

A2p

]f

]x
1~21! jconst cosA2pf,

Sj
2'eiA2pf@const cosA2pf1~21! jconst#. ~27!

At this point we can introduce the impurities in Eqs.~15! and
~16! in a straightforward way as perturbations. The fie
theoretical expressions for these perturbations can then
analyzed in terms of their leading scaling dimensions. Lo
perturbations with a scaling dimension ofd.1 are consid-
ered irrelevant, while perturbations with a small scaling
mensiond,1 are relevant and drive the system to a differe
fixed point. Hence, we can predict a systematic renormal
tion flow towards or away from the corresponding fixe
point, respectively.

Such an analysis has been made in Ref. 4 and the re
malization flows have been confirmed by determining
finite-size corrections to the low-energy spectrum.4 In par-
ticular, a small weakening of one link in the chain

H15H02dJ SN•S1 ~28!

has been found to be a relevant perturbation described by
operator sinA2pf with scaling dimensiond51/2, so that
the periodic chain (dJ50) is an unstable fixed point. Th
open chain (dJ5J), on the other hand, is a stable fixed poi
where the perturbation is described by the leading irrelev
operator]xf(N)]xf(0) with a scaling dimension ofd52.
Hence, we expect a renormalization flow between the t
fixed points as the temperature is lowered, and the temp
ture dependence of the impurity susceptibility as well as
cal properties will be described by a crossover function. B
low a certain crossover temperatureTK this crossover
function describes the behavior of the stable fixed point~the
open chain!, while aboveTK the system may exhibit a com
pletely different behavior. The crossover temperatureTK it-
self is determined by the initial coupling strengthdJ

lim
dJ→0

TK→0,

lim
dJ→J

TK→`. ~29!

In other words, close to the unstable fixed point the crosso
temperature is very small, indicating that we have to go
extremely low temperatures before we can expect to obs
the behavior of the stable fixed point.

A similar scenario holds for the impurity model with on
external spinSf ,

H25H01J8 S1•Sf . ~30!

In this case, the periodic chain (J850) is also the unstable
fixed point, while the open chain with a decoupled sing
(J8→`) is the stable fixed point.4,5

As mentioned above, the renormalization flow has be
confirmed for the energy corrections of individual eige
states, but we now seek to extend this analysis to thermo
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namic properties, which will allow us to determine the cro
over behavior andTK directly.

B. One weak link

Our first task is to establish the renormalization behav
from a periodic chain fixed point to the open chain fix
point as a function of temperature. To examine the effec
boundary condition on the spin operators, it is instructive
look at the correlation functions at spin sites close to
impurity. For periodic boundary conditions, the leading o
erator for the spinS1

z operator is given by cosA2pf with
scaling dimensions ofd51/2 according to Eq.~27!. On the
other hand, open boundary conditions restrict the allow
operators and the leading operator forS1

z is found to be
]xf(0) with scaling dimension ofd51. Hence, the autocor
relation function at the impurity behaves differently, depen
ing on the effective boundary condition

^S1
z~t!S1

z~0!&}H 1/t periodic b.c.,

1/t2 open b.c.
~31!

Therefore, a useful quantity to consider is the responsex1 to
a local magnetic field given by the Kubo formula

x1~T!5E1/T

^S1
z~t!S1

z~0!& dt

——→
T→0 H 2 ln T periodic b.c.,

const1O~T! open b.c.
~32!

In Fig. 2 we have presented the results ofx1 for different
impurity strengthsdJ on a logarithmic temperature scal
For the periodic chain (dJ50) we clearly observe the loga
rithmic scaling, but for any finitedJ a turnover to a constan
behavior is observed asT→0, i.e., the behavior of the ope
chain. The turnover temperatureTK occurs at larger and
larger values as we approach the stable fixed point@see Eq.
~29!#. An interesting aspect is that the curves actually cro
At very high-temperatures the high temperature expans
always dictates a larger response for a weakened link, w
at very low temperatures this relation is reversed
quantum-mechanical effects and the renormalization flow

We now turn to the true impurity susceptibility of Eq.~3!
which is the experimentally more relevant quantity. May

FIG. 2. The local responsex1 of the spinS1 next to a weak link
for different coupling strengthsdJ/J50,0.2,0.4,0.6,0.8,1. The
crossover to the open-chain behavior occurs at different temp
turesTK depending on the coupling strength.
-
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the simplest nontrivial case to consider is the open ch
dJ5J. At low temperatures the impurity susceptibility ca
be calculated from the leading irrelevant local opera
which is allowed in the Hamiltonian. This operator turns o
to be@]xf(0)#2 which gives a constant impurity susceptib
ity with a logarithmic correction similar to the pur
susceptibility17 as follows from a dimensional analysis.~In
fact this operator can be absorbed in the free Hamiltonian
a defining a velocityv that depends on the system size.18 An
explicit calculation of integrals over the correlation functio
also comes to the same conclusion.!

x imp
open~T! →

T→0
const1O@1/ln~T/T0!#. ~33!

While it is possible to calculate the impurity susceptibili
numerically according to Eq.~21!, the use of a second de
rivative in Eq.~22! causes large problems with the accura
at lower temperatures since it involves taking the differen
of large numbers. Luckily, the excess local susceptibi
x local of the first site under aglobal magnetic field turns out
to give a good estimate of the true impurity susceptibility10

x local 5
d^S1

z&
dB

2xpure } x imp1const, ~34!

whereB is aglobal magnetic field and the constant is due
the alternating part.10 The results for this quantity are show
in Fig. 3 which are consistent with Eq.~33!. The second
derivative in Eq.~22! has a similar behavior in the interme
diate temperature range, but is not accurate enough to
trapolate to theT→0 limit as explained above.

Now we are in the position to consider the impurity su
ceptibility of one weak link in the chain. By reducingdJ it is
possible to tune the system all the way from the open ch
fixed point to the periodic chain. The operator@]xf(0)#2,
which was responsible for the open-chain impurity susce
bility is thereby reduced continuously. However, it is an e
tirely different operator corresponding toSN•S1 , which is
responsible for the renormalization. This operator chan
scaling dimension as we go from periodic boundary con
tions towards the open chain

a- FIG. 3. The impurity susceptibility for an open chain, which
approximated by the excess susceptibility at an open endx local

~dots!. At moderately low temperatures our data fit~solid line! is
consistent with the behavior in Eq.~33!. The fit is x local51.895
118.6/ln(T/T0), with ln(T0)510.
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6306 PRB 59STEFAN ROMMER AND SEBASTIAN EGGERT
SN•S1}H sinA2pf d51/2 periodic b.c.,

]xf~N!]xf~0! d52 open b.c.
~35!

Since we wish to study the effect of this renormalization,
choose to subtract the open contribution systematically fr
x imp , so we obtain exactly the part which will exhibit th
crossover of the renormalization

x imp~dJ!2dJ x imp
open 5 f ~T/TK!/TK . ~36!

We see that this difference is zero at either fixed point. Af
subtractingdJx imp

open the impurity susceptibility comes onl
from the operator in Eq.~35!, which allows us to postulate
the scaling form in Eq.~36!. Below TK the difference in Eq.
~36! will asymptotically go to a constant for a very weak lin
dJ;J, which comes from thed52 operator in Eq.~35!.
Indeed we observe in Fig. 4 that this difference isnegative
and proportional toJ2dJ;1/TK and largely temperature in
dependent asT→0. On the other hand, asdJ becomes smal
enough, the behavior is much different: The expression
Eq. ~36! even decreases withdJ and the turn-over to con
stant behavior happens at much lower temperatures~outside
the plot range!.

Interestingly, this results in a highly nontrivial behavior
a function ofT andTK close to the unstable fixed point

lim
T→0

lim
TK→0

f ~T/TK!/TK } TK /T2 } dJ2 → 0,

lim
TK→0

lim
T→0

f ~T/TK!/TK } 1/TK } 1/dJ2 → 2`. ~37!

This means that at T50 a minute perturbationdJ results in
an extremely large negativex imp}1/dJ2 ~although this be-
havior occurs in an ‘‘unphysical’’ limit!. The reason that the
two limits do not commute is of course because one
scribes the behavior of the stable fixed pointT!TK , while
the other one describes the behavior at the unstable fi
point. While our numerical results cannot show the en
crossover of Eq.~36!, the increase belowTK for small J
2dJ is clearly observed as well as the decrease and cha
of curvature aboveTK for small dJ. Therefore, our data in
Fig. 4 supports the renormalization scenario and the n
trivial behavior of Eq.~37!.

FIG. 4. The part of the impurity susceptibility which is attrib
uted to the effects of the weakened link. For a very weak linkdJ
;J the magnitude increases linearly withJ2dJ and saturates
quickly, while the magnitude decreases again as we approach
periodic chaindJ!J, but does not saturate asT→0.
e
m

r

in

-

ed
e

ge

n-

C. One external spin

The model of an external spin antiferromagnetica
coupled to the chain in Eq.~16! is maybe a little more exotic
but is still of great interest in a number of studies.4–9,19 In
Ref. 4 it was first shown that the stable fixed point cor
sponds to open boundary conditions with a decoupled
glet. This was confirmed numerically,6 but more recently Liu
postulated a completely different behavior using some n
local transformations on fermion fields which mysterious
were rearranged to form a solvable model.19 While we can-
not trust or understand many of his calculations, the pred
tions are in strong contrast to any previous expectations
should be tested explicitly. In particular, he predicted t
response of the impurity spin to a local magnetic field

x f~T!5E1/T

^Sf
z~t!Sf

z~0!& dt ~38!

to be proportional toT5/2 at the Heisenberg point. We pre
dict, however, that this response is described by the auto
relation function of the leading operator forSf . By a sym-
metry analysis we find that for open boundary conditions t
operator is given by]xf(0) with scaling dimensiond51.
The local response is, therefore, a constant asT→0 with a
linear term

x f~T! ——→
T→0

const1O~T!. ~39!

This also agrees with the findings in Ref. 5 which had simi
reservations about Ref. 19. We now explicitly calculatex f
for several coupling strengthsJ8 as shown in Fig. 5. Our data
fits well to the predicted form and we can certainly rule o
any T5/2 behavior. Moreover, we find a scaling behavi
which holds for all coupling strengths

x f~T!5g~T/TK!/TK . ~40!

he

FIG. 5. The upper figure shows the local response of the im
rity spin x f for different coupling strengths J8/J
50,0.3,0.6,0.9,1.2,1.5. The lower figure shows the data colla
according to Eq.~40!. In the inset the corresponding crossover te
peratureTK is shown, which is expected to beTK}J82 for J8!J
andTK}J8 for J8@J.
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A similar scaling relation was observed before.8 Our results
are consistent with previous numerical studies,7 but distinctly
larger in the low-temperature region. We attribute this to
finite-size method used in Ref. 7, which becomes unrelia
when the temperature falls below the finite-size gap of
system. At largeJ8 our results can be compared to that
two coupled spins forming a singlet. Note, that the respo
to a local magnetic field on one spin in a singlet is finite
T→0 and proportional to 1/J8 ~and doesnot show activated
behavior as a simple calculation shows!. Therefore, our find-
ings are completely consistent with the expectation that
impurity spin is locked into a singlet at the stable fixed poi

IV. DISCUSSION

To accurately calculate impurity properties we have
determine not only the largest eigenvalue of the transfer
trix TM , but also the corresponding eigenvectors to h
accuracy. To estimate the error of the impurity properties
difficult. Errors come both from the finite Trotter numberM
and from the finite number of statesm in the DMRG. The
scaling of pure properties withM andm usually turn out to
be simpler than the scaling of impurity properties, whi
show a less clear form of the errors.

We have used the valueb/M50.05 for all calculations
presented in this article. With this value, the error due to
finite M should be small, which is also confirmed by te
runs.

We have tested the error due to the finite Trotter num
M by doing separate DMRG runs for different values
b/M . For the pure case at moderate temperatures we
that the eigenvaluel scales as 1/M2, as is expected, while a
the lowest temperatures, the error due to the finitem is larger
making it difficult to see the expected 1/M2 scaling. For the
impure case, the convergence ofl imp with M is more com-
plicated, but the overall scaling is, however, still rough
1/M2.

We have also tested the convergence with the numbe
basis statesm. For both the pure and the impure cases
find a rapid convergence with increasingm. We have used a
maximum of m565 for the calculations on the weakene
link impurity andm538 in the external spin case. We foun
however no noticeable difference betweenm538 and m
565 down toT50.02 in a test run for the external spin.

The truncation error, i.e., 12( i 51
m wi , wherewi are the

largest eigenvalues of the density matrix, is less than ab
1025 for m565 at the lowest temperatures. Note that t
truncation error is determined during the pure sweep
which also the projection operators and target states are
termined. It could thus be used as an estimate of an up
limit of the error of the pure properties, but it is difficult t
ev
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say how good an estimate it yields for the impurity prop
ties.

To test our results we have also done quantum Mo
Carlo ~QMC! simulations for a few temperatures and co
plings. The DMRG data was well within the error bars of t
QMC results.

Local properties converge much faster withm than the
impurity susceptibility. This fact might be explained by th
difficulty to numerically take a second derivative, since w
have to subtract two large numbers to finddF in Eq. ~22!.
This is, however, not the case for local properties, since
know that the local magnetization is zero in the absence
magnetic field. Another source of inaccuracy inl imp comes
from the error of the target states. Let us assume that
target state is determined up to some errore;uc&exact
5uc&DMRG1ue&. Since the target state is, to numerical acc
racy, an eigenstate ofTM , the eigenvalue will be determine
to order e2. Expectation values of other operators, for e
ample, the impurity transfer matrix, will however in gener
only be accurate to ordere. The local properties do not seem
to suffer too much from this effect, the reason might be t
there is some cancellation of errors in the quotie
^cLuTimp

sz ucR&/l imp .
While the accuracy of the second derivative is go

enough for the pure susceptibility down to aboutT50.01,
we cannot trust the impurity susceptibility below tempe
tures roughly an order of magnitude larger. Local impur
properties, on the other hand, seem to be well represe
down to aboutT50.02.

In summary we have shown that the transfer-mat
DMRG is a useful method for calculating finite-temperatu
impurity properties of a spin chain in the thermodynam
limit. We have considered two impurity models: One wea
ened link and one external spin, but the method can be
plied to other impurity configurations and electron system
We find that the local response of the spin next to a we
ened link always crosses over to a constant below someTK ,
i.e., to the behavior of the open chain fixed point. Accordi
to our calculations, the impurity susceptibility shows an e
otic crossover behavior with noncommuting limits. For t
external spin impurity, we have found that the data for t
local response shows the expected crossover to open c
behavior as the temperature is lowered. The response h
scaling form in Eq.~40! and we can explicitly show the dat
collapse and determineTK ~Fig. 5!.
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