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Impurity corrections to the thermodynamics in spin chains
using a transfer-matrix DMRG method
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We use the density-matrix renormalization group for transfer matrices to numerically calculate impurity
corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain,
namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory
calculations and gives explicit results for the crossover behah\&@x163-182@9)01606-9

[. INTRODUCTION Therefore, the impurity free enerdyy, is directly propor-
tional to the impurity density of the system, and it immedi-
The study of quantum impurities remains a large part ofately determines the corresponding impurity specific heat
condensed-matter physics. The Kondo effect is maybe one @nd impurity susceptibility, i.e., quantities that can be mea-
the most famous examples for impurity effects, but moresured by experiments as a function of temperature and im-
recently much effort has been devoted to impurities in low-purity density. Despite the obvious importance of this impu-
dimensional magnetic systems in connection with high<ity contribution we are not aware of any numerical studies
temperature superconductivityFor the particular case of that considered this quantity for any nonintegrable impurity
impurities in quasi-one-dimensional systems, much progressystem. Traditional methods would require an extensive
has been made with field theory descriptions, e.g., for thdinite-size scaling analysis to track down thé1¢orrection
Kondo modef quantum wires, and spin chainé.In those  to the total free energy per site, but our approach allows us to
cases, the impurity behaves effectively as a boundary condgalculate Fiy, directly in the thermodynamic limit. We
tion at low temperatures and the behavior can be described imould like to point out that in other studies the response of
terms of a renormalization crossover between fixed points agn impurity spin to aocal magnetic field is often termed
a function of temperature. “impurity susceptibility,” but we prefer to reserve this ex-
Numerically this renormalization picture has beenpression for the impurity contribution
confirmed?~® but so far it was only possible to examine a
limited number of energy eigenvalues in the spectrum. While 92
some efforts have been made to extract thermodynamic Ximp:_g
properties from the energy spectrum directiguch an ap-
proach is tedious and remains limited by finite system sizesvhereB is aglobal magnetic field on the total system.
Monte Carlo simulations appear to be well suited for deter- The second aspect of impurity effects éweal properties
mining thermodynamic properties, but for the particular casef individual sites near the impurity location, e.g., correlation
of impurity properties it turns out to be difficult to accurately functions and the response to a local magnetic field. Local
determine a correction which is of ordeNl/whereN is the  properties have been the central part of a number of works
system size. We now apply theansfer matrixdensity ma-  for many impurity model$=*° Our approach is now able to
trix renormalization group(DMRG) to impurity systems. calculate these impurity effects directly in the thermody-
This overcomes those problems by explicitly taking the thernamic limit and we get quick and accurate results to ex-
modynamic limitN—c, while still being able to probe im- tremely low temperatures. It turns out that the local impurity
purity corrections and local properties at finite temperaturegffects can be determined much more accurately and to
even for frustrated systeni@hich are not suitable for Monte lower temperatures than the impurity contributiéi,,,

Fimpv (3)

Carlo simulations due to the minus sign probjem which remains limited by accuracy problems even with this
There are two separate impurity effects that we wish tomethod.
address. The first is the impurity correctig,, to the total The density-matrix renormalization grodgDMRG) has
free energy of a one-dimensional system had a tremendous success in describing low-energy static
properties of many one-dimensiondD) quantum systems
Fimp= lim (Fioa— NFpuo)., (1) such as spin chains and electron systems. More recently
N— oo many useful extensions to the DMRG have been developed.

Nishino showed how to successfully apply the density-
whereF . is the free energy per site for an infinite systemmatrix idea to two-dimensional2D) classical systems by
without impurities. In other words, the impurity contribution determining the largest eigenvalue of a transfer matrix.
is that part of the total free energy that does not scale wittBursill, Xiang, and Gehring have then shown that the same

the system sizé&l idea can be used to calculate thermodynamic properties of
the quantum spin-1/XY chain®® The method has later been
Fota= NF puret Fimp+ O(LIN). (2)  improved by Wang and Xiart§ as well as Shibata and
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been applied to the anisotropic spin-1/2 Heisenberg chair-1. For a uniform system, the transfer matrix is independent
with great success. In this paper we apply a generalization adf lattice site,T,(2i —1)=Ty,, and the partition function is
the method to impurity systems, which is presented in Seahen given by
II. In Sec. Il we study two different impurity models in the
spin-1/2 chain and are able to confirm predictions from field Zy=trTy2. 9
theory calculations. Section IV concludes this work with aI the th d ic limit of th i terd |
discussion of the results and a critical analysis of the accu!] the thermodynamic imit of the unitorm Systery, IS
racy and applicability to other systems. given by

lim Zyy=\N?, (10

Il. THE METHOD N—oe

The method of the transfer-matrix DMRG can, in prin- where\ is the largest eigenvalue @, .
ciple, be applied to any one-dimensional system for which a The largest eigenvaluge can be found exactly only for
transfer matrix can be defined. As a concrete example wemall Trotter number$1. As M increases, the dimension of
will consider the antiferromagnetic spin-1/2 chain, since thisTy, grows exponentially, and we have to use some approxi-
model is well understood in terms of field theory treatmentamation technique to find. Analogous to the case where the
and has direct experimental relevance. The HeisenberPMRG can be used to find a certain eigenstate of a Hamil-
Hamiltonian can be written as tonian as the number of lattice sites increase, we can use the
DMRG to find the largest eigenvalue @i, as the Trotter
N , numberM increases. The strategy is thus to start with a sys-
H :Zl hi, hi=3S-S.1+B§, (4 tem blockT$,,, and an environment block:, , with a small

- M. The superblock transfer matriky, with Trotter number
whereJ; is the exchange coupling between sitendi+ 1, M, is constructed by “gluing” together the system block
andB; is an external magnetic field in theedirection at site with the environment block. Periodic boundary conditions in
i. Periodic boundary conditionsy,,=S;, are assumed. the Trotter direction must be used. The reduced density ma-

The partition function is defined by trix is constructed from the target state, i.e., the eigenstate of
T\ with the largest eigenvalue. Since the transfer matrix is
Z=tre Al=tre AHotHe), (57  nonsymmetric, the left and right eigenvectors will not be

complex conjugates of each other.
where 3=1/kgT and where we in the last step have parti- A reduced density matrix for the system as part of the
tionedH into odd and even site terms, superblock can be constructed by taking a partial trace of
TN over the environment degrees of freedém

N/2 N/2
Ho:Zl hai—1, He:,Zl ha; . (6) 1 N2
a o p= E envTm - (13)
A. The transfer-matrix method In the thermodynamic limit only the state with the largest
The quantum transfer matrix for this system is defined a&igenvalue will contribute,
usual via the Trotter-Suzuki decompositién Neoe
p———™ trenvl '//R><¢L|u (12
ZM:tr(e_’BHO/Me_'BHe/M)M, (7)

where|R) and(y'| are the right and left eigenvectors of the
where M is the Trotter number. This expression approxi- superblock transfer matrix;,, , corresponding to the largest
mates the partition function up to an error of ordg/ )2  eigenvalue,\. The matrix elements are given by, ;
and becomes exact in the linlif — . By inserting a com- =2j¢//iR, ,—ll/iL,j , Wherei andj label the degrees of freedom of
plete set of states between each of the exponentials if7EQ. the system and the environment, respectively, and the target
and rearranging the resulting matrix elements, the partitiotates are given by (y=3,; - (i[(j| and |47

. . (RN
function can be written as a trace over a product of transfer o jlﬂilei>|j)-

matrices,’ The left and right eigenvectors of the density matrix with
the largest eigenvalues are then used to define the projection
operators onto the truncated basis. After the first iterations
we will keep m states for the system and the environment
and the superblock will berd? dimensional. More details on
where Ty (2i —1) is the ZMx22M dimensional quantum the transfer-matrix DMRG algorithm for quantum systems
transfer matrix from lattice sitei2- 1 to site 2+ 1. Note that  have been presented in Refs. 13—-15. Sinég nonsymmet-

Ty is in general not symmetric. However, if the two-site ric it is not obvious that the eigenvalues are real, but because
Hamiltonianh,; _; andh,; of Eq. (4) is invariant under the p represents a density matrix we expect it to be positive
exchange P—1+2i, and 4+ 2i+ 1, respectively, as is the definite. However, because of numerical inaccuracies com-
case unless we have applied a nonuniform magnetic fielchlex eigenvalues tend to appear in the course of iterations.
Ty is a product of two symmetric transfer matrices, oneThis is usually connected to level crossings in the eigenvalue
from site 2—1 to site 2 and the other from sitei2to 2i spectra of the density matrix &8 is increased. In addition,

N/2
zMzur]j[1 Tw(2i—1), (8)
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we also observe that just before the complex eigenvalues D I- &

appear, multiplet symmetries in the eigenvalue spectrum of - e
may split up (often due to “level repulsion” from lower N2 N N ! 2 3 4
lying states which were previously neglectetio overcome of

this problem it is important to keep all original symmetries 3t

(i.e., eigenvalue multiplets gb) even asM increases. For 2 :

that purpose it is often necessary to increase the number of
statesm just before a multiplet tends to split up, which
avoids the numerical error that leads to the symmetry break- FIG. 1. The impurity configurations considered in E($) and
ing. In case of a level crossing of two multiplets that do not(16). Note, that the left and right ends are joined with periodic
split up, complex eigenvalues may still appear and it is therboundary conditions.

possible to numerically transform the complex eigenstate

pair into a real pair spanning the same space. Since the trans- Zy=tr (TN? Timp), (18
formed real pair still is orthonormal to every other eigenvec- . . . -
tor, this transformation does not cause any troubles for Iate\fyhe.reTimP. is the tran_sfer matrix of the twp links cpr)talnmg
iterations. With this method the eigenvalues stay comple}® impurity andTy, is the transfer matrix describing the
until the two levels have crossed and moved enough apart, QHIk. In the _thermodynamlc limit th_e partition functlo‘r) WI||”
which point the eigenvalues become real again. The renostll be domlr_1ated by the largest eigenvalue of the “pure
malization procedure is therefore not as straightforward as iffansfer matrix. From Eq18) we have

ordinary DMRG runs, since it is essential to traak eigen- ; \N2—=1y LT R

values ofp and to dynamically adjust the number of states ,\I,ILTLZM » (W Timl 475, 19
thereby sometimes repeating previous iteration steps.

N-2 N-1 N 1 2 3 4

where \,(*| and|¢%) all correspond to the pure system.

The generalization of Eq$18) and(19) to impurity configu-

rations ranging over more than two links is straightforward.
The renormalization scheme also allows the calculation ofn this case more than one impurity transfer matrix has to be

thermal expectation values of local operators. The magnetintroduced and this could be used to study, e.g., multiple

zation of the spin at siteis determined by impurities and impurity-impurity interactions.

Let us define\ im,={(y"| Timpl ¥7). The total free energy

B. Impurities and local properties

1 . .
(%)= Ztr Ste . (13) of the system is then given by
. . — 1 — 1 N/2—1
The operatoiS/ thus only has to be incorporated in the cor- F=- E'” Z=- E“"O‘ Nimp)
responding transfer mat}réx at siteFor thepure system, we
then arrive at the formu N 1 A\
=——InA—=In—", (20)
T o PR
(Sh= + (14 By comparing with Eq.(2) we can retrieve the pure and
impure parts

whereTy(i) is defined similar toT (i) but with the addi- 1 1
tional operatorS’ included in addition to the Boltzmann Fpuem — 55NN, Figp=— = n—mp (21)
weights. To measure the local bond energfi)=S-S .1, 2B B A
a similar construction can be used. The impurity susceptibility can be found from the change of

Let us now assume that the system has a single impurity:imp in a small magnetic field from Ed3)
The systems we will study is the periodic spin-1/2 chain with

one weakened link or an external spin-1/2 coupled to one 92
spin in the chain Ximp= — EFimp- (22)

Hi=Ho—dJ Sy Sy, (15 Local properties such as the magnetization of the impurity

spin can be determined by
Ho,=Hy+J' S-S, (16)
(UM Thmel v
where (Stp) = % (23
imp
N—1
_ The magnetization of spins close to the impurity is readily
Ho= 21 JS'S+1+‘]SN'81 (17) obtained by

is the periodic chain andS; is the spin operator of an exter- , (UM TR TM) Timpl 7
nal spin-1/2. The models are depicted in Fig. 1. (8= , (24)

X+1y
For systems with such a local impurity, which is con- A Nimp

tained within two neighboring links, only one of thg,(i) in  where X is the number of sites between the impurity and the
Eq. (8) will differ from a commonT), spin of interest. Note that since a transfer matrix involves a
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total of three lattice sites[y; can be constructed to measure the momentum variable conjugate t¢. In the long-

the spin at any of these sitésr the mean valde The actual wavelength limit the spin operators can be expressed in
site of the measurement in E(4) is thus determined both terms of the bosonic fields using the notation of Ref. 4:

by x and howT}/ is set up. The expectation value in Eg4)

is most easily calculated by first computing the vectors 1 9¢

-SC—————— s/
(M| Ty and Timp| ), then acting withTy, on one of these S 27 X (= 1)constcos/2m 4,
states, and finally calculating the inner product of the result-
ing states. Equatio_(fz4) can _be ge_neraliz_ed to measure any S]fmei V“ﬂd’[const cos2mp+(—1)iconsl. (27
equal-time correlation function with or without an impurity,
e.g., by replacing’iy, by Ty . At this point we can introduce the impurities in Eg$5) and

The reduced density matrix for the impurity system can(16) in a straightforward way as perturbations. The field-
be constructed by taking the thermodynamic limit of the im-theoretical expressions for these perturbations can then be
purity version of Eq.(11), analyzed in terms of their leading scaling dimensions. Local

perturbations with a scaling dimension @f>1 are consid-
N/2—1 ered irrelevant, while perturbations with a small scaling di-
P= Etrenv(TM Timp)» (25 mensiond<<1 are relevant and drive the system to a different
fixed point. Hence, we can predict a systematic renormaliza-
with Z, as in Eq.(18). In our calculations we have used the tion flow towards or away from the corresponding fixed
same density matrix as for the pure case, i.e.,(#8), and  point, respectively.
we have found it to give good results. This form can most Such an analysis has been made in Ref. 4 and the renor-
easily be motivated by writing Eq(25) on the formp malization flows have been confirmed by determining the
= trend TN TimpTh )/Zy . From a computational point of finite-size corrections to the low-energy spectrtiin. par-
view, this method is also very convenient; by storing allticular, a small weakening of one link in the chain
target states and projection operators from the DMRG run
for the pure system, all local impurities can be studied by Hi=Ho— 8IS S (28
simply using the same projection operators and target state

This makes subsequent DMRG runs for different impurityoperator sin27 ¢ with scaling dimensiord=1/2, so that

parameters very fast. o ! oy . !
There are also other choices of density matrices that catnhe periodic chain §J=0) is an unstable fixed point. The

be made. The thermodynamic limit of E@®5) can also be open chain §J=J), on the other hand, is a stable fixed point
interpreted ap— | /%) (Y| Tymp/Nimp in Which case the im- where the perturbation is described by the leading irrelevant

. : . : operatord,¢(N) d,(0) with a scaling dimension ofi=2.
purity transfer matrix would be taken into account in the H%nce er(béxr))e)((:(tﬁ(a )renormalizatior? flow between the two
Qensn_y matrix. This WO.U|d In Some Sense b? analogous tﬂxed points as the temperature is lowered, and the tempera-
including an operator different from the Hamiltonian in the . . ne

; . . " ” ture dependence of the impurity susceptibility as well as lo-
density matrix of the ordinary “zero-temperature” DMRG, : ; . .

A . _cal properties will be described by a crossover function. Be-

which is usually not necessary to measure, e.g., correlatio

: : X : fbw a certain crossover temperatuig this crossover
functions in the ordinary DMRG. This approach would de'function describes the behavior of the stable fixed p¢itmes

stroy the computational advantage of using the pure den3|t§|Den chaily, while aboveT, the system may exhibit a com-

matrix, because the pure projection operators and targ . . ;
states could not be used but instead complete DMRG runi etgly d'fferef“ behawor..T_h'e crossover temperaffjett-
elf is determined by the initial coupling strengti

would have to be done for each impurity configuration and®
coupling.

fas been found to be a relevant perturbation described by the

lim TK—>O,
8J—0
. RESULTS
A. Field theory predictions ;;TJTK_’OO- (29)

wenz)rsrpﬁléi dat;nﬁﬂgggs];:lngntﬂgsslzigff/gec?]imeiﬂcﬂer?rs;rgsel_n other words, close to the unstable fixed point the crossover
work of the quantum field theory treatment. This turns out totemperature is very small, indicating that we have to go to

: _ ; : > extremely low temperatures before we can expect to observe
give a good description of the impurity behavior in terms of . : i
a renormalization flow between fixed points, and we will bethe be_ha_wor of the_ stable fixed point. ,
. . : A similar scenario holds for the impurity model with one
able to set up concrete expectations for the impurity SUSCeR;, tarnal SpirS;
tibility in Eqg. (3) as well as local properties. '
The effective low-energy spectrum of the spin-1/2 chain Hy=Ho+J' S-S (30)
is well described by a free-boson Hamiltonian density
In this case, the periodic chaid'(=0) is also the unstable
v ) ) fixed point, while the open chain with a decoupled singlet
H=51(L,)" + (971, (26) (3’ =) is the stable fixed poirt®
As mentioned above, the renormalization flow has been
plus a marginal irrelevant operator cg8m¢ and other confirmed for the energy corrections of individual eigen-
higher-order operators which we have neglected. Heggs  states, but we now seek to extend this analysis to thermody-
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FIG. 2. The local responsg; of the spinS; next to a weak link In(T)

for different coupling strengths§J/J=0,0.2,0.4,0.6,0.8,1. The

crossover to the open-chain behavior occurs at different tempera- FIG. 3. The impurity susceptibility for an open chain, which is

turesTy depending on the coupling strength.

approximated by the excess susceptibility at an open apd,
(dotg. At moderately low temperatures our data(blid line) is

namic properties, which will allow us to determine the cross-consistent with the behavior in E¢33). The fit is xjoca=1.895

over behavior and ¢ directly.

B. One weak link

+18.6/In(T/Ty), with In(Tg)=10.

the simplest nontrivial case to consider is the open chain
6J=J. At low temperatures the impurity susceptibility can

from a periodic chain fixed point to the open chain fixedhich is allowed in the Hamiltonian. This operator turns out
point as a function of temperature. To examine the effectivgg pe[ g, 4(0)]2 which gives a constant impurity susceptibil-
boundary condition on the spin operators, it is instructive toy with a logarithmic correction similar to the pure
look at the correlation functions at spin sites close to thesysceptibility” as follows from a dimensional analysién
impurity. For periodic boundary conditions, the leading op-fact this operator can be absorbed in the free Hamiltonian by

erator for the spirS: operator is given by cog2m¢ with
scaling dimensions ofl=1/2 according to Eg(27). On the

a defining a velocity that depends on the system st?e\n
explicit calculation of integrals over the correlation functions

other hand, open boundary conditions restrict the allowed|so comes to the same conclusjon.

operators and the leading operator 8 is found to be

d,¢(0) with scaling dimension ofl=1. Hence, the autocor-
relation function at the impurity behaves differently, depend-

ing on the effective boundary condition

1/
172

periodic b.c.,

<Si(T)Si(0)>°<[ (31

open b.c.

Therefore, a useful quantity to consider is the respgnse
a local magnetic field given by the Kubo formula

T
xi(T= [ (Si(7)S{(0))dr

T-0 (—InT periodic b.c.,
(32

const-O(T) open b.c.

In Fig. 2 we have presented the resultsxaf for different

T—0
Ximp L T) — const- O[1/In(T/Ty)]. (33
While it is possible to calculate the impurity susceptibility
numerically according to Eq21), the use of a second de-
rivative in Eq.(22) causes large problems with the accuracy
at lower temperatures since it involves taking the differences
of large numbers. Luckily, the excess local susceptibility
Xlocal Of the first site under global magnetic field turns out
to give a good estimate of the true impurity susceptibifity

&(Sp)
Xlocal = “dB — Xpure © Ximp™T const, (34
whereB is aglobal magnetic field and the constant is due to
the alternating part The results for this quantity are shown
in Fig. 3 which are consistent with Eq33). The second

impurity strengthséJ on a logarithmic temperature scale.
For the periodic chainddJ=0) we clearly observe the loga-
rithmic scaling, but for any finiteé8J a turnover to a constant
behavior is observed a—0, i.e., the behavior of the open
chain. The turnover temperatuB occurs at larger and ceptibility of one weak link in the chain. By reduciiy it is
larger values as we approach the stable fixed dee¢ Eq. possible to tune the system all the way from the open chain
(29)]. An interesting aspect is that the curves actually crossfixed point to the periodic chain. The operafar¢(0)]?,
At very high-temperatures the high temperature expansiowhich was responsible for the open-chain impurity suscepti-
always dictates a larger response for a weakened link, whilbility is thereby reduced continuously. However, it is an en-
at very low temperatures this relation is reversed bytirely different operator corresponding ®-S;, which is
guantum-mechanical effects and the renormalization flow. responsible for the renormalization. This operator changes
We now turn to the true impurity susceptibility of E@®)  scaling dimension as we go from periodic boundary condi-
which is the experimentally more relevant quantity. Maybetions towards the open chain

derivative in Eq.(22) has a similar behavior in the interme-
diate temperature range, but is not accurate enough to ex-
trapolate to thel—0 limit as explained above.

Now we are in the position to consider the impurity sus-
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FIG. 4. The part of the impurity susceptibility which is attrib- T,
uted to the effects of the weakened link. For a very weak Bdk
~J the magnitude increases linearly with- 5] and saturates 0.05
quickly, while the magnitude decreases again as we approach the
periodic chain6J<J, but does not saturate as-0. 0.00 ) ) ) ‘ ) ‘
T3 2 -1 0 1 2 3
. - In (T/T
siny2w¢ d=1/2 periodic b.c., n (T
(39 FIG. 5. The upper figure shows the local response of the impu-

.Sloc B
Ixp(N)dx¢(0) d=2 openb.c. rity spin x; for different coupling strengths J'/J
Since we wish to study the effect of this renormalization, we=0.0.3,0.6,0.9,1.2,1.5. The lower figure shows the data collapse

choose to subtract the open contribution systematically frondccording to Eq(40). In the inset the corresponding crossover tem-

so we obtain exactly the part which will exhibit the PeratureTy is shown, which is expected to bgJ'? for J'<J

Ximp and Ty’ for J'>J.

crossover of the renormalization

Ximp( 3) — 8 Xion’”)lpe)n = F(TIT/Tk. (36) C. One external spin
hat this diff . ither fi . The model of an external spin antiferromagnetically
We see that this difference is zero at either fixed point. Aﬁercoupled to the chain in EG16) is maybe a little more exotic,

subtractingJ xim," the impurity susceptibility comes only ¢t s still of great interest in a number of studfe&2® In

from the operator in Eq(35), which allows us to postulate Ref, 4 it was first shown that the stable fixed point corre-
the scaling form in Eq(36). Below Ty the difference in EQ.  sponds to open boundary conditions with a decoupled sin-
(36) will asymptotically go to a constant for a very weak link glet. This was confirmed numericafiyput more recently Liu
6J~J, which comes from thel=2 operator in Eq.(35).  postulated a completely different behavior using some non-
Indeed we observe in Fig. 4 that this differencenegative  |ocal transformations on fermion fields which mysteriously
and proportional td — ]~ 1/Ty and largely temperature in- \yere rearranged to form a solvable motfeWhile we can-
dependent ag— 0. On the other hand, a&) becomes small not trust or understand many of his calculations, the predic-
enough, the behavior is much different: The expression ifjons are in strong contrast to any previous expectations and
Eq. (36) even decreases with) and the turn-over to con- should be tested explicitly. In particular, he predicted the

stant behavior happens at much lower temperat(oetside  response of the impurity spin to a local magnetic field
the plot rangg

Interestingly, this results in a highly nontrivial behavior as (YT ,
a function of T and Ty close to the unstable fixed point xi(T)=] (Si(7)S{(0))dr (38)
lim lim f(T/T)/Tg = Tc/T? « 8> — 0, to be proportional tor®? at the Heisenberg point. We pre-
T—0 Tx—0 dict, however, that this response is described by the autocor-

relation function of the leading operator f& . By a sym-
lim lim f(T/Te)/ T o« LTy o« 1/63%> — —oo. (37) metry analysis we find that for open boundary conditions this
Tk—0 T—0 operator is given by, ¢(0) with scaling dimensiod=1.
The local response is, therefore, a constanT-as0 with a

This means that at ¥0 a minute perturbatiorJ results in .
linear term

an extremely large negativgimpoc1/5\]2 (although this be-
havior occurs in an “unphysical” limjt The reason that the T—0

two limits do not commute is of course because one de- Xt(T) ——— const+ O(T). (39
scribes the behavior of the stable fixed pol€ Ty, while  Thjs also agrees with the findings in Ref. 5 which had similar
thg other one descnbes the behavior at the unstable f'_)(%servations about Ref. 19. We now explicitly calculgte
point. While our numencql results cannot show the entirgq, several coupling strengtki as shown in Fig. 5. Our data
crossover of Eq(36), the increase below for small J  fits well to the predicted form and we can certainly rule out

— 0] is clearly observed as well as the decrease and changg,y 152 pehavior. Moreover, we find a scaling behavior
of curvature above for small 6J. Therefore, our data in \yhich holds for all coupling strengths

Fig. 4 supports the renormalization scenario and the non-
trivial behavior of Eq.(37). xi(T)=g(TIT/Tk. (40



PRB 59 IMPURITY CORRECTIONS TO THE THERMODYNAMIG . . . 6307

A similar scaling relation was observed befr@ur results say how good an estimate it yields for the impurity proper-

are consistent with previous numerical studiésit distinctly ~ ties.

larger in the low-temperature region. We attribute this to the To test our results we have also done quantum Monte
finite-size method used in Ref. 7, which becomes unreliablé&arlo (QMC) simulations for a few temperatures and cou-

when the temperature falls below the finite-size gap of thélings. The DMRG data was well within the error bars of the

system. At large)’ our results can be compared to that of QMC results. )

two coupled spins forming a singlet. Note, that the response Local properties converge much faster withthan the

to a local magnetic field on one spin in a singlet is finite asMPUrity susceptibility. This fact might be explained by the

T—0 and proportional to I/ (and doesiot show activated difficulty to numerically take a second dgrlvatlve, since we

behavior as a simple calculation showgherefore, our find- 12Ve to subtract two large numbers to fififl in Eq. (22).

ings are completely consistent with the expectation that th his is, however, not the case for local properties, since we

impurity spin is locked into a singlet at the stable fixed point. < o% that the local magnetization is zero in the absence of a
purity sp 9 P ‘magnetic field. Another source of inaccuracyNp,, comes

from the error of the target states. Let us assume that the
IV. DISCUSSION target state is determined up to some er@fy)eyact
To accurately calculate impurity properties we have to:|‘/’>DMRG,+|E>' Since the target state is, tp numerical accu-
determine not only the largest eigenvalue of the transfer md 2y, an eigenstate diy , the eigenvalue will be determined

trix Ty, but also the corresponding eigenvectors to highto order €2. Expectation values of other operators, for ex-

accuracy. To estimate the error of the impurity properties i¢MPI€, the impurity transfer matrix, will however in general
difficult. Errors come both from the finite Trotter numbdr ~ ©Nly be accurate to order The local properties do not seem
and from the finite number of states in the DMRG. The to suffer too much from this effect, the reason might be that
scaling of pure properties with andm usually turn out to theLre > some cancellation of errors in the quotient
be simpler than the scaling of impurity properties, which{% | Tinpl ")/ Nimp- o
show a less clear form of the errors. While the accuracy of the second derivative is good

We have used the valug/M =0.05 for all calculations €nough for the pure susceptibility down to abdut0.01,
presented in this article. With this value, the error due to théVe cannot trust the impurity susceptibility below tempera-
finite M should be small, which is also confirmed by testtures roughly an order of magnitude larger. Local impurity
runs. properties, on the other hand, seem to be well represented

We have tested the error due to the finite Trotter numbeflown to aboufr=0.02. .
M by doing separate DMRG runs for different values of [N Summary we have shown that the transfer-matrix
BIM. For the pure case at moderate temperatures we findMRG is a useful method for calculating finite-temperature
that the eigenvaluk scales as M2, as is expected, while at Impurity properties of a spin chain in the thermodynamic
the lowest temperatures, the error due to the fimiis larger  limit. We have considered two impurity models: One weak-
making it difficult to see the expectedM? scaling. For the €ned link and one external spin, but the method can be ap-
impure case, the convergence)qf,, with M is more com- plied to other impurity configurations and electron systems.
plicated, but the overall scaling is, however, still roughly e find that the local response of the spin next to a weak-
1/M2. ened link always crosses over to a constant below sbge

We have also tested the convergence with the number df¢-, t0 the behavior of the open chain fixed point. According
basis statesn. For both the pure and the impure cases wel® our calculations, the impurity susceptibility shows an ex-
find a rapid convergence with increasing We have used a ©Otic crossover behavior with noncommuting limits. For the
maximum of m=65 for the calculations on the weakened €xternal spin impurity, we have found that the data for the
link impurity andm=38 in the external spin case. We found local response shows the expected crossover to open chain
however no noticeable difference between=38 andm behavior as the temperature is lowered. The response has a
=65 down toT=0.02 in a test run for the external spin. scaling form in Eq(40) and we can explicitly show the data

The truncation error, i.e., 23™ ,w;, wherew; are the collapse and determinig (Fig. 5.
largest eigenvalues of the density matrix, is less than about
10 ° for m=65 at the lowest temperatures. Note that the
truncation error is determined during the pure sweep in We would like to thank H. Johannesson, A."Kiper, T.
which also the projection operators and target states are délishino, I. Peschel, S. €&lund, N. Shibata, and X. Wang for
termined. It could thus be used as an estimate of an uppemaluable contributions. This research was supported in part
limit of the error of the pure properties, but it is difficult to by the Swedish Natural Science Research Couin#R).
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