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We consider two species of hard-core bosons with density-dependent hopping in a one-dimensional optical
lattice, for which we propose experimental realizations using time-periodic driving. The quantum phase diagram
for half-integer filling is determined by combining different advanced numerical simulations with analytic
calculations. We find that a reduction of the density-dependent hopping induces a Mott-insulator to superfluid
transition. For negative hopping, a gauge-dressed superfluid state is found where one species induces a gauge
phase of the other species, which leads to a superfluid phase of gauge-paired particles. The corresponding
experimental signatures are discussed.
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I. INTRODUCTION

Recent developments for ultracold-atomic systems provide
useful platforms for quantum simulations in a wide window
of tunable parameters [1,2]. Interacting bosons in an optical
lattice show a quantum phase transition from a superfluid (SF)
to a Mott insulator (MI) [3,4], which has been experimentally
shown by “time-of-flight” measurements [5] of the momen-
tum distribution [6]. In a mixture of different species, the
interaction strengths for both inter- and intraspecies scattering
can be tuned via Feshbach resonances [7]. As a result, a
large variety of interesting new phases have been predicted
for spinor bosons [8–11], interacting multispecies bosons or
fermions [12–16], and Bose-Fermi mixtures [17–19].

Recently, time-dependent and driven optical lattices have
opened an era of exploring exotic dynamical quantum
states [20–46]. For instance, assisted Raman tunneling and
shaking were proposed to induce a density-dependent com-
plex phase in the hopping elements, which may allow the
experimental realization of anyonic physics [26–29]. On the
other hand, a fast time-periodic modulation of the interac-
tion [30,31] will lead to an effective hopping matrix element
depending on the density difference [32–37], which gives rise
to pair superfluidity in one dimension (1D) [32], while super-
fluidity is suppressed in higher dimensions [33]. Experimental
realizations of time-periodic driving [37–46] demonstrate that
signatures of interesting effective models can be observed
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before heating or decoherence destroys the so-called Floquet
states.

In this article, we propose a realization of a density-
dependent hopping model of two interacting bosonic species
in 1D via time-periodic driving, which results in a rich and
interesting quantum phase diagram. Using a combination of
advanced numerical methods, we find that a reduction of
the density-dependent hopping by driving, counterintuitively
causes a MI to SF quantum phase transition. For larger driv-
ing, we obtain negative effective hopping, which gives rise to
an exotic SF phase of gauge-dressed composite particles.

The paper is organized as follows: In Sec. II, we propose
the realization schemes of two different time-periodically
driven models of two-species hardcore bosons in experiments.
Both models result in effective density-dependent hopping,
which is derived in Sec. III using Floquet theory in the
high-frequency expansion. The effective model at half-filling
is analyzed in detail in Sec. IV, where we show interesting
behavior induced by the external driving in the quantum phase
diagram and discuss the physical implications. The conclusion
and outlook are presented in Sec. V.

II. EXPERIMENTAL REALIZATIONS OF
TIME-PERIODICALLY DRIVEN MODELS

In this section, we will provide two experimental proposals
to realize a hard-core Bose-Hubbard model with two inter-
acting species and occupation-dependent hopping, which is
achieved by periodically driven cold atoms in an optical lattice
in combination with Feshbach resonances.

Our starting point is an ultracold gas of bosons with two
hyperfine states a and b in a deep 1D optical lattice,

V (x) = V0 sin2 (krx), (1)
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with the lattice depth V0, wave vector kr = 2π/λL, and wave-
length λL. In the single-band approximation, the Hamiltonian
is given by hopping elements between neighboring sites,

ĤT = −
∑

l

(Jaâ†
l âl+1 + Jbb̂†

l b̂l+1 + H.c.), (2)

where âl (b̂l ) and â†
l (b̂†

l ) are the annihilation and creation
operators, Ja (Jb) is the hopping coefficient of atoms with
hyperfine level a (b), and the site index l runs over the
whole lattice. Obviously, Ja = Jb = J because the hopping
processes are independent of the hyperfine internal states
of the atoms [9]. Hereafter, we choose J = 1 as a unit. As
described in Ref. [16], it is possible to prepare the initial state
with an equal occupation of a and b states, which is assumed
in the following.

The depth of the optical lattice potential determines the
amplitude of the on-site repulsive interaction between the
ultracold atoms [9], which is independent of the hyperfine
states unless we are close to a Feshbach resonance point.
Therefore, increasing the lattice depth V0 will generate large
intra- and interspecies repulsive interactions independent of
the hyperfine states,

ĤL = UL

2

∑
l

(
n̂a

l + n̂b
l

)(
n̂a

l + n̂b
l − 1

)
, (3)

where n̂a
l = â†

l âl (n̂b
l = b̂†

l b̂l ) denote the particle-number op-
erator of the species a (b), and UL � J . To fulfill the hard-
core constraint, the lattice depth V0 must be chosen signif-
icantly larger than the recoil energy, Er = h2/2mλ2

L, with
atomic mass m and Planck constant h. We need s = V0/Er �
20 or larger [4], while the hopping is approximately J ∼
4Ers3/4 exp(−2

√
s)/

√
π [47]. For 87Rb, we therefore have

Er/h ∼ 3.5 kHz in a 400 nm lattice, which gives J/h ∼
17 Hz.

Furthermore, we suggest to add a static magnetic field
and tune its amplitude B to be very close to the Feshbach
resonance point B0, where two-species atoms form s-wave
bound states [7,48]. On the side of the negative scattering
length, an attractive interspecies interaction emerges, with an
additional energy,

ĤF = −UF

∑
l

n̂a
l n̂b

l , UF > 0. (4)

Here, UF can be tuned to large magnitudes comparable to UL,
so it can compensate the interspecies interaction in Eq. (3)
and result in a total finite repulsion U = UL − UF between na

and nb, which is assumed to be of the order of J . Meanwhile,
the intraspecies interaction is not close to resonance at this
field, so that the large intraspecies repulsion UL in the lattice
still leads to the hard-core constraint, which means more than
one atom from the same species is forbidden at the same
lattice site. Taking 87Rb atoms, for example, we can choose
the magnetic field to be a little smaller than the interspecies
Feshbach resonance point 1259.96 G and far away from
the intraspecies ones, which are located at 685.43 G for
|F = 1, mF = 1〉 (a) and 661.43 G for |F = 1, mF = 0〉
(b) [48].

FIG. 1. (a) The realization of time-periodically modulated inter-
species interaction by imposing a periodically modulated magnetic
field (see inset) near the Feshbach resonance. (b) Schematic picture
of the standard simulated Raman transition. An atom jumps from the
hyperfine state a to the intermediate state m by absorbing a photon
from a pump laser (red line, frequency ωP, fast rotating linearly
polarized, coupling strength �P). Similarly, an atom jumps from m
to b by emitting a photon from a Stokes laser (blue line, frequency
ωS , linearly polarized, coupling strength �S) [49]. One realization of
the pump laser is the output of a circularly polarized laser passing
a 1/4 wave plate which is connected to a fast rotating mechanical
motor (frequency ω sets several kHz).

A. Periodically modulated interspecies interaction

A straightforward, but technologically challenging time-
periodic driving can be realized by an oscillating magnetic
field B(t ) = B̄ + δB cos(ωt ) near B0, where B̄ denotes the
time-average strength of the magnetic field, δB represents the
oscillation amplitude of the magnetic field, and ω stands for
the oscillating frequency, as shown in Fig. 1(a). Thus, the
relevant s-wave scattering length can be written as

as(t ) = abg

[
1 − �

B̄ + δB cos(ωt ) − B0

]
, (5)

where � is the width of the Feshbach resonance and abg rep-
resents the background scattering length, which is determined
by the lattice depth. If we choose δB � |B̄ − B0|, we can
further perform a Taylor series expansion of as(t ) with respect
to a small value of δB/(B̄ − B0) and get

as(t ) = a(0)
s + a(1)

s cos(ωt ) + O
[(

δB

B̄ − B0

)2
]
, (6)

where the coefficients of the leading orders are a(0)
s =

abg[1 − �/(B̄ − B0)] and a(1)
s = abg�δB/(B̄ − B0). Note that

a pure cosine oscillation of as is, in principle, also possible for
larger amplitude δB if the waveform of the magnetic field is
adjusted correspondingly. The interspecies interaction energy
U (t ) is proportional to the related scattering length, which
means U (t ) = Ū + δU cos(ωt ), where the time-average en-
ergy Ū is proportional to a(0)

s and the oscillation amplitude
δU is proportional to a(1)

s if we neglect higher-order terms.
In this case, the system can be described by the following
Hamiltonian:

Ĥ1(t ) = − J
∑

l

(â†
l âl+1 + b̂†

l b̂l+1 + H.c.)

+U (t )
∑

l

n̂a
l n̂b

l . (7)
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B. Periodically modulated Rabi oscillation

The proposed fast oscillating magnetic fields are possible
but challenging, so an alternative experimental realization in
a static magnetic field is useful. To this end, we propose to
gradually switch on a pair of Raman laser beams, which are
coupled to the atomic cloud with the frequency difference
δωR. An atomic transition from the hyperfine state a to b by a
two-photon emission absorption has the standard � form [49],
shown in Fig. 1(b). One pump laser initiates that atoms
jump from the hyperfine state |a〉 to the intermediate state
|m〉 by absorbing a photon with frequency ωP and coupling
strength �P, while the other Stokes laser triggers atoms to
jump from |m〉 to |b〉 by emitting a photon with frequency
ωS and coupling strength �S [49]. With this, we obtain the
Hamiltonian for the Rabi transition,

Ĥ� = J�

∑
l

(â†
l b̂l + H.c.), (8)

where we neglect the small shift of the chemical potential δ

between two hyperfine levels.
In order to produce a time-periodic oscillating Rabi

coupling strength, we let the polarization direction of the
pump laser circulate in time, e.g., Ex = A cos(ωt ) and Ez =
A sin(ωt ), with the amplitude of the polarization A.

For realization, a circularly polarized pump laser may pass
through a 1/4 wave plate to get a linearly polarized laser
beam as output, the polarization direction of which is 45◦
shifted to the optical axis of the wave plate. Sequentially, the
wave plate is connected to a mechanical motor with rotating
frequency ω in the kHz range, which is much lower than
the laser frequency of several hundreds of THz (1012 Hz).
Therefore, the polarization of the pump laser is also rotating
and effectively provides a time-modulated Rabi coupling. In
order to avoid coupling to other magnetic sublevels when the
linear polarization is rotated, we assume a sufficiently strong
Zeeman splitting. Therefore, assuming dz = 0, we get

�P = 〈m|Adx cos(ωt )|a〉 = �0
P cos(ωt ), (9)

with �0
P = 〈m|Adx|a〉. As a result, the effective Rabi fre-

quency turns out to be time periodic,

J�(t ) = J0
� cos(ωt ), (10)

with the amplitude J0
� = �0

P�S/δm. We can use, for instance,
an acousto-optic modulator (AOM) to change both the ampli-
tude and the polarization of the pump laser [50,51]. Thus, the
full Hamiltonian reads

Ĥ2(t ) = − J
∑

l

(â†
l âl+1 + b̂†

l b̂l+1 + H.c.)

+ ĤŪ + J�(t )
∑

l

(â†
l b̂l + H.c.), (11)

where the time-independent on-site repulsion is ĤŪ =
Ū

∑
l n̂a

l n̂b
l .

The rotating frequency of the time-periodic driving for two
cases must be much larger than J and U , but not too large
to avoid “photon-assisted hopping” between different energy
bands of the optical lattice. In the following discussion of pos-
sible realizations, we therefore assume a rotating frequency ω

of the order of kHz, which will also be the order of magnitude
of the driving amplitude.

III. EFFECTIVE HAMILTONIAN

For a system with time-periodic Hamiltonian Ĥ (t ) =
Ĥ (t + T ) with period T , the steady state can be described
by Floquet theory, which is equivalent to a time-independent
eigenvalue problem. It is possible to derive an effective static
Hamiltonian using a high-frequency expansion [32–37]. We
will now demonstrate this procedure explicitly for the pro-
posed setups from the previous setups, also including rela-
tively large energy scales δU and J0

�, which may be of the
same order as ω. Therefore, we need to apply a rotation
V̂ at the preliminary step in order to eliminate these extra
terms by moving them to the phases of the respective hopping
terms [35],

Ĥr (t ) = V̂ †[Ĥ (t ) − ih̄∂/∂t]V̂ . (12)

In the following, we will calculate the effective Hamiltonian
for both driven cases separately; the so-called kick operator is
calculated in Appendix A.

A. Periodically modulated interspecies interaction

For the periodically modulated interspecies Hamil-
tonian (7), the rotation operator is given by V̂ (t ) =
exp(−iK̃U

∑
l n̂a

l n̂b
l ) with dimensionless modulation strengths

K̃U = KU sin(ωt ) and KU = δU/h̄ω. With this, the rotated
Hamiltonian becomes

Ĥr = − J
∑

l

(
â†

l eiK̃U (n̂b
l −n̂b

l+1 )âl+1

+ b̂†
l eiK̃U (n̂a

l −n̂a
l+1 )b̂l+1 + H.c.

) + ĤŪ . (13)

Here, Ĥr is again time periodic and can thus be expanded in a
Fourier series Ĥr = ∑∞

n=−∞ Ĥ (n)
r einωt , with

Ĥ (n)
r = − J

∑
l

{
â†

l Jn
[
KU

(
n̂b

l − n̂b
l+1

)]
âl+1

+ b̂†
l Jn

[
KU

(
n̂a

l − n̂a
l+1

)]
b̂l+1 + H.c.

} + δn,0ĤŪ , (14)

where Jn denotes the nth-order Bessel function of the first
kind.

Now we can calculate the effective Hamiltonian order by
order [35]. The zeroth-order effective Hamiltonian is

Ĥ (0)
e = Ĥ (0)

r , (15)

and the first-order effective Hamiltonian vanishes, i.e.,

Ĥ (1)
e =

+∞∑
n=1

1

nh̄ω

[
Ĥ (n)

r , Ĥ (−n)
r

] = 0, (16)

where we use the property Ĥ (n)
r = (−1)nĤ (−n)

r . All second-
order corrections consist of many terms, which are accom-
panied by the prefactor (J/h̄ω)2 and are not listed here. In
the limit J/h̄ω � 1, all higher-order corrections to the zeroth-
order effective Hamiltonian are small.
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B. Periodically modulated Rabi oscillation

We now deal with the Hamiltonian (11), which describes
a periodically modulated Rabi oscillation. In the case of
δU = 0 and U = Ū , the rotation transformation is given by
V̂ (t ) = exp[−iK̃�(â†

l b̂l + H.c.)] with dimensionless modula-
tion strengths K̃� = K� sin(ωt ) and K� = J0

�/h̄ω, so we get

V̂ †â†
l V̂ = cos K̃�â†

l + i sin K̃�b̂†
l

(
1 − 2n̂a

l

)
,

V̂ †âlV̂ = cos K̃�âl − i sin K̃�b̂l
(
1 − 2n̂a

l

)
. (17)

Thus, the rotated Hamiltonian results in

Ĥr (t ) = V̂ †(Ĥ − ih̄∂/∂t )V̂ = ĤT
r (t ) + ĤŪ , (18)

where we have

ĤT
r (t ) = − J

∑
l

{
cos

[
2K̃�

(
n̂b

l − n̂b
l+1

)]
â†

l âl+1

+ cos
[
2K̃�

(
n̂a

l − n̂a
l+1

)]
b̂†

l b̂l+1

− i sin
[
2K̃�

(
n̂a

l − n̂b
l+1

)]
b̂†

l âl+1

− i sin
[
2K̃�

(
n̂b

l − n̂a
l+1

)]
â†

l b̂l+1 + H.c.
}
. (19)

Also, here Ĥr (t ) is time periodic and can be expanded in a
Fourier series, namely, Ĥr (t ) = ∑+∞

n=−∞ Ĥ (n)
r einωt , with

Ĥ (2m)
r = − J

∑
l

{
J2m

[
2K�

(
n̂b

l − n̂b
l+1

)]
â†

l âl+1

+J2m
[
2K�

(
n̂a

l − n̂a
l+1

)]
b̂†

l b̂l+1

+ H.c.
} + δ2m,0ĤŪ ,

Ĥ (2m+1)
r = J

∑
l

{
J2m+1

[
2K�

(
n̂a

l − n̂b
l+1

)]
b̂†

l âl+1

+J2m+1
[
2K�

(
n̂b

l − n̂a
l+1

)]
â†

l b̂l+1 + H.c.
}

(20)

for even and odd orders, respectively, in which Jn is the nth-
order Bessel function of the first kind.

Similar to the first case, we obtain the high-frequency
expansion of the effective Hamiltonian [35] in the rotating
frame, namely, Ĥe = ∑+∞

n=0 Ĥ (n)
e . The zeroth-order effective

Hamiltonian is Ĥ (0)
e = Ĥ (0)

r and the first order in J/h̄ω also
vanishes. The second-order correction consists of many terms
proportional to (J/h̄ω)2 and will again be ignored in the limit
J/h̄ω � 1.

C. General effective model

In conclusion, in both cases, a time-independent effective
Hamiltonian with density-dependent hopping can be reached
by adiabatically increasing the driving amplitude,

Ĥ (0)
e =

L∑
l=1

(−Ĵa
l â†

l âl+1 − Ĵb
l b̂†

l b̂l+1 + Ū n̂a
l n̂b

l

)
, (21)

where the hoppings Ĵa/b
l are now operators depending on the

local densities of the opposite species,

Ĵb
l = J J0

[
K

(
n̂a

l − n̂a
l+1

)]
, (22)

FIG. 2. (a) Hopping processes of one species a (red filled circle)
in the effective model in Eq. (21). The other species b is denoted by
blue filled circles. Hopping between two neighboring single occupied
or double/empty sites is suppressed by J0[K]. (b) Quantum phase
diagram of the effective model in Eq. (21) at half filling.

with matrix elements

{
J for na

l − na
l+1 = 0

JJ0[K] for |na
l − na

l+1| = 1,
(23)

and analogously for Ĵa
l . Here, J0[K] denotes the zeroth-order

Bessel function of the first kind and the dimensionless driv-
ing amplitude K = δU/h̄ω or—alternatively—K = 2J0

�/h̄ω

gives the modulation strength in units of h̄ω. As illustrated in
Fig. 2(a), the effect of driving is therefore to suppress hopping
of hard-core type-a bosons by J0[K] if the occupation of
type-b bosons is different, and vice versa. The suppression
decreases with increasing driving K from J0[0] = 1 to the
negative minimum value of J0[3.8717] ≈ −0.4024.

Further tuning parameters of the model are possible, e.g.,
by an asymmetry in the pulse sequence [39], which makes this
setup an interesting general platform. In this article, we will
focus on the phase diagram of the model (21) at half filling,
〈n̂a

l 〉 = 〈n̂b
l 〉 = 1/2. In this case, the undriven system J0[0] =

1 is known to be in the Mott state for any Ū > 0 without a
quantum phase transition [52]. However, as we will see below,
the selective reduction of hopping elements by driving will
destroy the MI state.

IV. QUANTUM PHASE DIAGRAM AT HALF FILLING

A. Integrable point

An interesting point is reached at the zeros of the Bessel
function since for J0[K] = 0 the hopping between neigh-
boring double occupied and empty sites is not possible in
this case, as shown in Fig. 2(a). Because the Hamiltonian
no longer distinguishes between double occupied and empty
sites, we can denote both of them with pseudospin up |↑〉
(for na

l = nb
l ). Likewise, hopping between neighboring single

occupied sites is forbidden regardless of whether they are type
a or b, so both can be denoted with pseudospin down |↓〉 (for
na

l 
= nb
l ). The corresponding total occupation numbers for the

four different possible local states (a, b, double, empty) are
all conserved and the resulting Hamiltonian for half filling is
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expressed exactly as

Ĥ (0)
e =

L∑
l=1

[
−J (Ŝ+

l Ŝ−
l+1 + H.c.) + Ū

2

(
Ŝz

l + 1/2
)]

, (24)

where Ŝ+/−
l and Ŝz

l represent the respective pseudospin-1/2
operators. There is a macroscopic degeneracy 2L increasing
with the number of sites L, since each pseudospin state
represents two different but equivalent local states for each
site. The xy model in Eq. (24) is exactly solvable, where Ū
provides a Zeeman splitting between |↑〉 and |↓〉. For Ū > 4J ,
the system is saturated with only single occupied sites and
a finite charge gap corresponding to the MI phase. When
Ū � 4J , the ground state is in a gapless xy phase without
the SF response, indicated by a blue vertical line in Fig. 2(b).
Details of the solution and correlations at the degenerate line
are discussed in Appendix B.

B. Floquet-induced normal superfluidity

To obtain the full quantum phase diagram at half filling,
we now use a combination of three independent advanced
numerical simulation methods. The density matrix renormal-
ization group (DMRG) method [53–56] is used to measure
the properties of finite-size chains, such as the charge gap �c,
the superfluid density ρs, and correlation functions using up to
M = 4096 states. With the further development of the DMRG
to infinite systems (iDMRG) [57–59], we can moreover de-
termine the fidelity susceptibility χF and the entanglement
entropy S directly in the thermodynamic limit. Last but not
least, the stochastic series expansion algorithm of the quantum
Monte Carlo (QMC) method with parallel tempering [60–62]
is used to calculate the compressibility κ close to the zero-
temperature limit.

As shown in Fig. 3(a) for J = 0.4Ū , we now observe
signatures of a quantum phase transition at half filling as a
function of the effective hopping J0[K], which is reduced by
the driving amplitude K . Because the phase transition is of the
Berezinskii-Kosterlitz-Thouless (BKT) type [63], finite-size
effects are only logarithmically small. Therefore, measuring
the transition point numerically by physical observables is
very tricky and inaccurate, so we employ a combination of
methods. Only in the full thermodynamic limit, the charge
gap increases from zero, the global compressibility goes to
zero, the entanglement entropy drops from infinity to a fi-
nite value, and the fidelity susceptibility becomes extremely
sharp at the transition point. The superfluid density ρs can
be obtained using DMRG from the second-order response
[E0(θ ) − E0(0)]/θ2 of the ground-state energy E0 to a twist
angle θ [64]. The response ρs is finite and increasing for small
J0[K], which shows that the system is indeed in a superfluid
phase for this part of the phase diagram. The increase of ρs

with effective hopping J0[K] in Fig. 3(a) is not surprising
since for smaller J0[K] the hopping of type-a bosons is
blocked by a changing occupation of type b, and vice versa.
However, for larger J0[K], a maximum and sudden drop to
ρs → 0 as J0[K] → 1 signals a quantum phase transition to
the well-established Mott state in the undriven system [52,65].

To pinpoint the transition point, we consider the fidelity
susceptibility χF (x̄) = −2 ln F (x1, x2)/δ2, which is defined

FIG. 3. Different observables at J/Ū = 0.4. (a) Fidelity suscep-
tibility χF and entanglement entropy S from iDMRG (L = ∞);
charge gap �c and superfluid density ρs from DMRG (L = 100);
compressibility κ from QMC (L = 100). (b) Single-particle corre-
lation Gc(r) = 〈â†

0âr〉 (�) and density-hole-pair correlation Gs(r) =
〈â†

0b̂0âr b̂†
r〉 (�) as a function of distance r relative to L/4 for J0[K] =

0.4 (solid line) and 1 (dashed line) obtained by DMRG (L = 100).

via the overlap of ground states F (x1, x2) = 〈ψ0(x1)|ψ0(x2)〉
with δ = |x1 − x2| and x̄ = (x1 + x2)/2 for two close values
x1 and x2 of the parameter J0[K]. A peak in χF is a clear
signal of a quantum phase transition [66,67], which occurs
at J0[K]c = 0.624(6). In addition, the entanglement entropy
S = −Trρr ln ρr is obtained from the partial trace of the
reduced density matrix for half the system [68–70], which
shows a distinct drop in the vicinity of the transition point.
Using QMC, we find the compressibility κ = 〈N̂ 2〉 − 〈N̂ 〉2

for L = 100 sites at low temperatures, which vanishes in
the deep Mott phase. The charge gap �c = Ep + Eh − 2E0

is found by DMRG from the energies of systems with one
additional particle Ep and one additional hole Eh relative to
the ground state and becomes finite in the MI. After finite-
size scaling analysis on J0[K]c by the level-spectroscopic
technique discussed in Appendix C, we find that it matches
well with the maxima in χF within error bars, so we use the
latter to obtain the full phase diagram in Fig. 2(b).

At first sight, it is strange that the reduction in hopping
J0[K] can induce a SF state since normally weaker hopping
makes the MI more stable. However, in this case, the density-
dependent processes in Fig. 2 are responsible for a virtual
exchange, which reduces the energy of an alternating density
order ababab . . . to second order, 4J2J 2

0 [K]/Ū [14]. There-
fore, by selectively tuning away those processes via periodic
driving, the alternating order and the corresponding MI are
actually destabilized, which in turn enables a SF for finite Ū .
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FIG. 4. Superfluid density ρs per site calculated by DMRG with
L = 100 at J = Ū . Inset: Momentum distribution nb

k at J0[K] =
±0.35, which is normalized by its maximal value.

For J0[K] = 0, the system has no a-b-density correlations,
which leads to the degeneracy discussed above.

It is instructive to analyze the characteristic correlation
functions for the different phases as shown in Fig. 3(b) for J =
0.4Ū . The single-particle correlation Gc(r) = 〈â†

0âr〉 shows
a typical power-law decay in the SF phase, J0[K] = 0.4 <

J0[K]c, while an exponential decay is a signature of a MI
for J0[K] = 1 > J0[K]c. The particle-hole-pair correlation
Gs(r) = 〈â†

0b̂0âr b̂†
r〉, on the other hand, shows a slow power-

law decay in either phase.

C. Floquet-induced gauge-dressed superfluidity

We now turn to negative effective hopping J0[K] < 0. The
corresponding phase diagram and the superfluid density are
shown in Figs. 2(b) and 4, respectively. At first sight, the
results look perfectly symmetric around J0[K] = 0, which
would suggest that negative hopping has the same effect as
positive hopping. However, the underlying states for positive
and negative values are quite different, which becomes clear
by looking at the signature of the momentum distribution
(MD) nb

k defined by

nb
k = |w(k)|2

L∑
l,l ′=1

exp[ik(l − l ′)/h̄]〈b̂†
l b̂l ′ 〉, (25)

as a function of momentum k, where w(k) stands for the
Fourier transformation of the Wannier function in a 1D optical
lattice with lattice spacing equal to one [71]. As shown in
the inset of Fig. 4, the MD shows an interference pattern
with sharp peaks at k = 0 (modulo 2π ) for positive values
J0[K] = 0.35, which originates from the phase coherence of
bosons in the normal SF. However, in the region J0[K] < 0,
no sharp interference pattern is observed.

Both the symmetry in ρs and the difference in the MD
interference pattern can be explained by a gauge transfor-
mation which defines new quasiparticles of type β, β̂l =
b̂l exp(iπ n̂a

l ), and analogous for type α. We see that the

hopping terms in Eqs. (21)–(23) can then be written as

Ĵb
l b̂†

l b̂l+1 = J

(
1 + J0[K]

2
+ 1 − J0[K]

2
eiπ (n̂a

l +n̂a
l+1 )

)
b̂†

l b̂l+1

= J

(
1 + J0[K]

2
eiπ (n̂a

l +n̂a
l+1 ) + 1 − J0[K]

2

)
β̂

†
l β̂l+1,

(26)

and likewise for Ĵa
l â†

l âl+1. Since the densities are not af-

fected, n̂a/b
l = n̂α/β

l , a change of sign J0[K] → −J0[K] is
therefore equivalent to a transformation b̂l → β̂l and âl → α̂l

in Eq. (26). Accordingly, the energies and phase transition
lines are identical for positive and negative J0[K], but the
superfluid density for the negative sign corresponds to a
response of gauge-paired particles α̂, β̂ and is therefore called
a gauge-dressed SF with a different MD, as shown in the inset
of Fig. 3. The transition to such an exotic condensed density
can also be captured by a Gutzwiller mean-field argument,
which is discussed in Appendix D. Note that the symmetry
transformation to new gauge-paired particles in Eq. (26) is
independent of the dimensionality and geometry of the lattice.

Thus, the gauge-dressed SF is characterized by a lattice
gauge exp(iπ n̂a

l ) provided by one species (type a) which
couples to the hopping of the other species (type b), and
vice versa. As can be seen from Eq. (26), the gauge-dressed
hopping becomes dominant in the strongly driven region
J0[K] < 0, resulting in a superfluid response from gauge-
dressed particles. The quantum phase transition to a MI is
analogous to an ordinary SF and happens at exactly the
same critical value of J/Ū in Fig. 2(b) as for corresponding
positive J0[K] > 0 since the gauge does not change the
energy response to a twist angle θ . The gauge-dressed SF is
therefore different from pair superfluidity, where correlated
hopping is observed due to a strong coupling of the hopping
directly to the density [32,72]. The so-called counterflow SF is
another type of correlated hopping [13–15], where hopping of
particles of one species is facilitated by holes of the opposite
species. In contrast, in the new gauge-dressed SF, the hopping
is facilitated by gauges exp(iπ n̂a

l ), which can also be viewed
as particles that are their own antiparticles, analogous to a
Majorana description.

For the experimental realization of these phases, several
critical questions must be solved. First of all, accessing the
steady state by adiabatic ramping of the driving amplitude
from the ground state is only possible when no dense avoided
level crossing of the Floquet quasienergy takes place. Our
analysis of the quasienergy spectrum in Appendix E ensures
that there are no critical avoided level crossings in the relevant
parameter range. Second, a measurement can be affected by
the unitary transformation into the effective Floquet basis,
if the operators do not commute with the kick operator. For
stroboscopic measurements at times of integer multiples of
period T = 2π/ω that this effect is reduced by J/h̄ω in the
high-frequency limit. For a separate check of the predictions,
we also performed real-time simulations for a small lattice
L = 6, shown in Appendix F, which clearly show the stability
of the effective Hamiltonian and the feasibility of real-time
dynamic measurements on finite timescales and length scales.
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V. CONCLUSION AND OUTLOOK

In conclusion, we proposed a setup of a 1D lattice with two
species of hard-core bosons and time-periodically modulated
fields, which can be described by density-dependent tunneling
with an interesting quantum phase diagram. By controlling the
driving amplitude, density-dependent hopping processes are
selectively tuned away, which are responsible for an alternat-
ing density a-b order. This in turn leads to a transition from the
MI to a SF at half filling, in contrast to the undriven case. By
tuning away these terms completely at J0[K] = 0, a highly
degenerate state is obtained corresponding to an exactly solv-
able model without a-b correlations. For many-body systems,
the study of nearly degenerate points is a very active research
area, e.g., in the context of frustrated models, spin ice, and
spin liquids. Much theoretical activity is devoted to studying
novel quantum states, which are dominated by the quantum
fluctuations near degenerate points, but we are not aware of
any such studies for driving-induced degeneracy. In this case,
dynamical effects will likely dominate the quantum correla-
tions, which opens an interesting research field beyond our
current abilities. For even larger driving amplitudes, negative
hopping parameters J0[K] < 0 lead to a new gauge-dressed
SF with a type of pairing mechanism where an atom of one
species and a gauge phase of the other are bound to contribute
to a nonzero superfluidity. This gauge-dressed SF has different
correlations from an ordinary SF, as shown in Fig. 3 for
the momentum distribution. Nonetheless, an exact hidden
transformation to the positive hopping case can be found.

ACKNOWLEDGMENTS

We thank Youjin Deng, Shaon Sahoo, Oliver Thomas,
and Zhensheng Yuan for the useful discussion. This re-
search was supported by the Special Foundation from NSFC
for theoretical physics Research Program of China (Grant
No. 11647165), the Nachwuchsring of the TU Kaiser-
slautern. In particular, we gratefully acknowledge the com-
puting time granted by the John von Neumann Institute
for Computing (NIC) and provided on the supercomputer
JURECA at the Jülich Supercomputing Centre (JSC). S.E.,
A.P., and M.F. acknowledge support from the German Re-
search Foundation (DFG) through SFB/TR185, Project No.
277625399. X.-F.Z. acknowledges funding from Projects No.
2018CDQYWL0047 and No. 2019CDJDWL0005 supported
by the Fundamental Research Funds for the Central Universi-
ties, Grant No. cstc2018jcyjAX0399 by the Chongqing Natu-
ral Science Foundation, and from the National Science Foun-
dation of China under Grants No. 11804034, No. 11874094,
and No. 11847301.

APPENDIX A: KICK OPERATOR AND OBSERVABLE IN
LABORATORY FRAME

The dynamics of the system is not only determined by
the effective Hamiltonian, but also the kick operator. If one
prepares the system in the ground state of the nondriven
Hamiltonian, then adiabatically turning on the driving has the
consequence that the ground state of the system will follow the
instantaneous stroboscopic Floquet Hamiltonian [35]. Thus
the time-evolving wave function consists of the ground state

|ψe〉 of the effective Hamiltonian (15) and a phase factor from
the kick operator K̂(t ), namely,

|ψ (t )〉 = e−iK̂(t )|ψe〉. (A1)

We also calculated the kick operator up to first order:

K̂(0)(t ) = 0, (A2)

K̂(1)(t ) = 1

ih̄ω

∑
n 
=0

einωt

n
Ĥ (n)

r ≈ 2Ĥ (1)
r cos(ωt )

ih̄ω
. (A3)

So we get K̂(nT ) = K̂(1)(nT ) = 2Ĥ (1)
r /ih̄ω. The expectation

value 〈Ô〉 of an observable Ô then results in

〈ψ (nT )|Ô|ψ (nT )〉 = 〈
e2Ĥ (1)

r /h̄ωÔe−2Ĥ (1)
r /h̄ω

〉
e, (A4)

where 〈Q̂〉e ≡ 〈ψe|Q̂|ψe〉.
Thus, the expectation value of an observable in the

laboratory coincides with that of the dressed observable
exp(2Ĥ (1)

r /h̄ω)Ô exp(−2Ĥ (1)
r /h̄ω), which is determined by

the effective Hamiltonian. As J/h̄ω is small, we only need
to keep the two lowest orders,

〈Ô〉 = 〈Ô〉e − 2J

h̄ω

〈( ∑
l

{
â†

l J1
[
KU

(
n̂b

l − n̂b
l+1

)]
âl+1

+ b̂†
l J1

[
KU

(
n̂a

l − n̂a
l+1

)]
b̂l+1 + H.c.

}
, Ô

)〉
e

, (A5)

for the driven interaction case, or

〈Ô〉 = 〈Ô〉e − 2J

h̄ω

〈( ∑
l

{
b̂†

l J1
[
KU

(
n̂a

l − n̂b
l+1

)]
âl+1

+ â†
l J1

[
KU

(
n̂b

l − n̂a
l+1

)]
b̂l+1 + H.c.

}
, Ô

)〉
e

, (A6)

for the driven Rabi case. As a concrete example, we take the
expectation value of â†

k âq in the driven interaction case, which
has been used for calculating the momentum distribution,
〈â†

k âq〉 = 〈â†
k âq〉e + 2J1[KU ]〈Â〉eJ/h̄ω, with

Â = D̂b
k−1,k

(
1 − 2n̂a

k

)
â†

k−1âq − X̂ b
k−1,k â†

k âq

+ D̂b
k,k+1

(
1 − 2n̂a

k

)
â†

k+1âq + X̂ b
k,k+1â†

k âq

+ D̂b
q−1,q

(
2n̂a

q − 1
)
â†

k âq−1 + X̂ b
q−1,qâ†

k âq

+ D̂b
q,q+1

(
2n̂a

q − 1
)
â†

k âq+1 − X̂ b
q,q+1â†

k âq, (A7)

with D̂b
l1,l2

= n̂b
l1

− n̂b
l2

and X̂ b
l1,l2

= b̂†
l1

b̂l2 + H.c. We read off
that the correction operator Â includes finite local terms.
Note that one can always reduce the effect of the correction
by tuning the value of J/h̄ω. In the driven Rabi case, the
calculation is similar and the correction could be diminished
by decreasing J/h̄ω.

At last, the effective Hamiltonian and the kick operator
calculated above are defined in the rotating frame, but we
are interested in observables in the laboratory frame. The
link between both frames is provided by the fact that the
time-evolving operators Û (t2, t1) in the laboratory frame and
Ûr (t2, t1) in the rotating frame are connected by a rotation
transformation, namely, Û (t2, t1) = V̂ (t2)Ûr (t2, t1)V̂ †(t1). In
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this paper, we are only interested in the stroboscopic dynamics
at the moment t = nT , so we conclude Û (t2, t1) = Ûr (t2, t1)
and any observable turns out to be the same in both frames.

APPENDIX B: INTEGRABLE POINT

For the effective Hamiltonian given by Eq. (21) in the main
text, the hopping term of the hardcore species a consists of two
parts, Ĥa = −JĤ(1)

a − JJ0[K]Ĥ(2)
a + H.c., where

Ĥ(1)
a =

L∑
l=1

â†
l âl+1

[
n̂b

l n̂b
l+1 + (

1 − n̂b
l

)(
1 − n̂b

l+1

)]
,

Ĥ(2)
a =

L∑
l=1

â†
l âl+1

[
n̂b

l

(
1 − n̂b

l+1

) + (
1 − n̂b

l

)
n̂b

l+1

]
. (B1)

Here we use the hardcore constraint âl â
†
l + â†

l âl = 1. The
second part depends on the J0[K] modulated by the normal-
ized driven amplitude, while the first one does not. Similarly,
the hopping term of the species b reads Ĥb = −JĤ(1)

b −
JJ0[K]Ĥ(2)

b + H.c., where

Ĥ(1)
b =

L∑
l=1

b̂†
l b̂l+1

[
n̂a

l n̂a
l+1 + (

1 − n̂a
l

)(
1 − n̂a

l+1

)]
,

Ĥ(2)
b =

L∑
l=1

b̂†
l b̂l+1

[
n̂a

l

(
1 − n̂a

l+1

) + (
1 − n̂a

l

)
n̂a

l+1

]
. (B2)

At zeros of the zeroth-order first-kind Bessel func-
tion, namely, J0[K] = 0, Ĥa = −JĤ(1)

a + H.c. and Ĥb =
−JĤ(1)

b + H.c. On the l site, we can define the number
operators of the single a (a), single b (b), hole (h), and ab
pair (p), respectively, namely,

N̂ a
l = n̂a

l

(
1 − n̂b

l

)
, N̂ b

l = (
1 − n̂a

l

)
n̂b

l ,

N̂ h
l = (

1 − n̂a
l

)(
1 − n̂b

l

)
, N̂ p

l = n̂a
l n̂b

l , (B3)

and thus the total number operators naturally read

N̂ a(b,h,p)
t =

L∑
l=1

N̂ a(b,h,p)
l . (B4)

Because [Ĥa(b,Ū ), N̂ a(b,h,p)
t ] = 0, the total numbers of the

single a, single b, hole, and ab pair are all conserved in any
eigenstate of the Hamiltonian. Furthermore, hopping terms of
the species a and b can be divided into four individual and
equivalent exchanging processes, that is,

Ĥa = −J
L∑

l=1

(
Ŝpb,+

l Ŝ pb,−
l+1 + Ŝha,+

l Ŝha,−
l+1 + H.c.

)
,

Ĥb = −J
L∑

l=1

(
Ŝpa,+

l Ŝ pa,−
l+1 + Ŝhb,+

l Ŝhb,−
l+1 + H.c.

)
, (B5)

where

Ŝpa,+
l = (â†

l b̂†
l )âl , Ŝhb,+

l = (âl b̂l )â
†
l ,

Ŝpb,+
l = (â†

l b̂†
l )b̂l , Ŝha,+

l = (âl b̂l )b̂
†
l ,

Ŝpa,−
l = â†

l (âl b̂l ), Ŝhb,−
l = âl (â

†
l b̂†

l ),

Ŝpb,−
l = b̂†

l (âl b̂l ), Ŝha,−
l = b̂l (â

†
l b̂†

l ). (B6)

The natural basis of a configuration consists of the single
a, single b, hole, and ab pair on the different sites. From
each configuration, we can extract two subsequences: one sab

is built up by single occupations and the other sph contains
all holes and ab pairs. To suppose that we have an ini-
tial configuration with two subsequences, hopping processes
preserve these two sequences if no exchanging happens at
edges. For example, an initial configuration for L = 4 sites
is |a1 p2b3h4〉 with subsequences sab = {|a〉, |b〉} and sph =
{|p〉, |h〉}. We get a new configuration |a1b2 p3h4〉 under the
exchanging process between the ab pair on the site-2 and the
single b on the site-3. However, the new configuration has
the same subsequences sab = {|a〉, |b〉} and sph = {|p〉, |h〉}.
And thus we consider them as two hidden conserved quan-
tities to distinguish degenerate states.

The Hilbert space with certain N a(b,h,p)
t can be blocked into

C(N a
t + N b

t ,N a
t )C(N p

t + N h
t ,N p

t ) subspaces with a bino-
mial coefficient C(n, k), where we do not need to distinguish
either a from b or the vacuum from the ab pair. Furthermore,
we find the structure of subspaces is invariant if we replace
either a (b) by b (a) or replace the vacuum (ab pair) by the
ab pair (vacuum), which maintains N a

t + N b
t and N p

t + N h
t

unchanged. That means when Ū = 0, the Hamiltonian has
a larger hidden symmetry, D = ZL

2 . Therefore, let us play a
trick of preserving the hidden symmetry D as an inner one
and regrouping four states: both a and b belong to the group
“spin-down ↓,” while both the vacuum and ab pair belong to
the group “spin-up ↑,” and the Hamiltonian becomes

Ĥa + Ĥb = ID ⊗ Ĥr, (B7)

where Ĥr = −J
∑L

l=1(Ŝ+
l Ŝ−

l+1 + H.c.) and Ŝ+(−)
l is the flip-up

(-down) operator of the normal spin-1/2.
Usually, the on-site interacting term with finite Ū breaks

exchanging symmetry D, where the vacuum is inequivalent to
the ab pair. However, the symmetry can be recovered in the
case of the integer-1 filling,

∑L
l=1(n̂a

l + n̂b
l ) = L, where

ĤŪ = Ū
L∑

l=1

n̂a
l n̂b

l

= Ū

2

L∑
l=1

[
2

(
n̂a

l − 1

2

)(
n̂b

l − 1

2

)
+ 1

2
+ n̂a

l + n̂a
l − 1

]

= Ū

2

L∑
l=1

[
2

(
n̂a

l − 1

2

)(
n̂b

l − 1

2

)
+ 1

2

]
. (B8)

Both the vacuum and ab pair contribute Ū/2, while neither
a nor b has a contribution. And thus the Ū term can be
considered as an effective external magnetic field applied to
the redefined spin-1/2, and the effective Hamiltonian in the
reduced Hilbert space reads

Ĥ (0)
e =

L∑
l=1

[
− J (Ŝ+

l Ŝ−
l+1 + H.c.) + Ū

2

(
Ŝz

l + 1/2
)]

, (B9)
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where Ŝz
l =2(n̂a

l −1/2)(n̂b
l −1/2). By using the

common Jordan-Wigner transformation, it becomes
an integrable model in the language of spin-
less Fermi. We know the ground-state energy is

−2J
∑N a

t +N b
t

l=1 cos[lπ/(L+1)]+(Ū/2)(N p
t +N h

t ) with degen-
eracy equal to 2L. That means the ground state has a finite
residual entropy of ln 2.

When we consider exchanging processes at the edges
(e.g., with the periodic or twisted boundary conditions), the
situation becomes a bit complicated. From an initial con-
figuration with certain sab and sph, under the exchanging
processes at edges we certainly get a new configuration with
the other s′

ab and s′
ph. We also take L = 4 as an example:

the initial configuration |a1 p2b3h4〉 transits into |h1 p2b3a4〉
under the exchanging process between the single a on the
site-1 and the hole on the site-4. At the same time, subse-
quences sab = |ab〉 and sph = |ph〉 change to s′

ab = |ba〉 and
s′

ph = |hp〉. Therefore, we have groups of relevant Hilbert
subspaces with a periodic boundary condition. In one group
consisting of Ns subspaces, the hopping process between
two Hilbert subspaces only happens at edges and provides
a phase shift Qq = 2qπ/Ns after a renormalization group
manipulation, where q = 0, 1, 2, . . . ,Ns − 1. And thus the
single-particle spectrum is equal to em,q = −2J cos[2mπ/L +
(N a

t + N b
t )π/L + Qq/L].

In the following paragraphs, we will see the physical
properties of the integrable point. Let us first have a look at the
single-particle correlation function of the species a, namely,

〈â†
l âl ′ 〉 = 〈â†

l (b̂l b̂
†
l + b̂†

l b̂l )âl ′ (b̂l ′ b̂
†
l ′ + b̂†

l ′ b̂l ′ )〉
= 〈(

Ŝva,−
l + Ŝpb,+

l

)(
Ŝva,+

l ′ + Ŝpb,−
l ′

)〉
= 〈

Ŝva,−
l Ŝva,+

l ′ + Ŝpb,+
l Ŝ pb,−

l ′
〉
,

where both of the mixing terms 〈Ŝva,−
l Ŝ pb,−

l ′ 〉 and 〈Ŝpb,+
l Ŝva,+

l ′ 〉
are missing because none of them holds the total number of
the single a, single b, vacuum, and ab pair at the integrable
point. When we choose balanced filling

∑L
l=1 n̂a

l = ∑L
l=1 n̂b

l ,
the possibilities of exchanging processes between the single a
(b) and vacuum (ab pair) are always equal and thus the above
single-particle correlation function becomes

〈â†
l âl ′ 〉 = 1

4 〈Ŝ−
l Ŝ+

l ′ + Ŝ+
l Ŝ−

l ′ 〉r = 1
2 〈Ŝ+

l Ŝ−
l ′ 〉r,

where we use the relation 〈Ŝ+
l Ŝ−

l ′ 〉r = 〈Ŝ−
l Ŝ+

l ′ 〉r because the
effective Hamiltonian is a real matrix.

Next we investigate the superfluid density at the integrable
point. We use the original definition of superfluid density (or
“spin stiffness”), which is the second-order response to the
twisted phase on the edge bond. To suppose the twisted angle
is θ , the hopping terms in the Hamiltonian become

Ĥa(θ ) = − J
L−1∑
l=1

(
Ŝpb,+

l Ŝ pb,−
l+1 + Ŝva,+

l Ŝva,−
l+1 + H.c.

)
− Jeiθ

(
Ŝpb,+

L Ŝpb,−
1 + Ŝva,−

L Ŝva,+
1 + H.c.

)
,

Ĥb(θ ) = −J
L−1∑
l=1

(
Ŝpa,+

l Ŝ pa,−
l+1 + Ŝvb,+

l Ŝvb,−
l+1 + H.c.

)
− Jeiθ

(
Ŝpa,+

L Ŝpa,−
1 + Ŝvb,−

L Ŝvb,+
1 + H.c.

)
, (B10)

where the exchanging process between the single a (b) and ab
pair carries a positive phase, while the one between the single
a (b) and vacuum carries a negative phase. The hidden inner
symmetry D disappears and thus the model cannot be mapped
to the effective spin-1/2 XY model. The on-site interacting
term is invariant. The ground-state energy with infinitesimal
twisted angle θ � 1 can be expanded in the vicinity of θ = 0,
namely,

Eg(θ ) = Eg(0) + 1
2ρsθ

2 + o(θ3), (B11)

where the first-order term disappears because when θ = 0, the
system holds the time-reversal symmetry and has no residual
“current.”

In fact, we can prove that the energy response is equal to
zero for the case of integer-1 filling. From the effective model,
the ground state occurs when N a

t + N b
t = N p

t + N h
t = L/2.

Therefore, N p
t = N h

t = L/4. We have L/2 relevant Hilbert
subspace: L/4 subspaces are connected by the exchanging
processes between single occupations on the site-1 and holes
on the site-L carrying a twisted phase exp(iθ ), while the
other L/4 subspaces are connected by ones between single
occupations on the site-1 and pairs on the site-L carrying a
twisted phase exp(−iθ ). As a result, the residual twist phase
in this group is equal to zero under the gauge transformation.
The ground state has no energy response to the twisted phase
on the boundary. In other words, their superfluid densities are
all zero.

APPENDIX C: FINITE-SIZE SCALING

Because of the logarithmic corrections, it is a challenge
to derive the accurate position of the BKT-type transition
point from the Mott-insulator to superfluid phase by the
finite-size scaling of the charge gap at zero temperature or
compressibility χ at low temperature. In Fig. 5, curves L�c

collapse to one for small J0[K], which means the charge gap
�c scales like 1/L in the deep superfluid region. In the deep
Mott-insulating region when J0[K] is large, �c remains finite
in the thermodynamical limit. On the anticipated critical point
J0[K]c = 0.624(6), we find that curves L�c with different
system sizes get close to each other slowly but have no level
crossings. Similarly, at low temperature β/Ū = 2L, the com-
pressibility is convergent to finite value and zero in the deep
superfluid and Mott-insulating regions, respectively. However,
the turning points for the finite system are slowly approaching
J0[K]c.

Under the Jordan-Wigner transformation, our model can
be mapped to a density-dependent hopping Fermi-Hubbard
model. And thus with the help of operator analysis in the
level-spectroscopic technique several decades ago [73], we
can choose the level crossing of two representative excited
states to be the quasicritical point for the finite system. In
the superfluid region, the representative excitation is a particle
or hole if you add in or remove an atom. Whereas in the
Mott-insulting region the lowest excitation is a pair made up
of a particle a together with a hole b, or vice versa. The former
has a gap �+

c = Ep − E0 + Ū/2 measured from the energy
of the system where we put one more particle Ep relative
to the ground-state energy E0. The latter has a pseudospin
gap �0

s = E1 − E0 with the first-excitation energy E1 in the
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FIG. 5. Finite-size scaling of the (a) charge gap and (b) com-
pressibility for the case of J = 1 and Ū/J = 0.4. In DMRG, we
choose the maximal truncation dimension m = 4096 for various
system size L = 20 (black �), 40 (red �), 80 (blue �), 100 (magenta
�), 160 (cyan �), 320 (orange �), and 640 (green ∇) with open
boundary condition. In QMC, the inverse temperature β/Ū = 2L
with L = 50 (black �), 100 (red �), 150 (blue �), 200 (magenta �),
250 (cyan �), 300 (orange �), and 400 (green ∇).

same Hilbert space Na = Nb = L/2 for the ground state. In
Figs. 6(1b) and 6(2b), the curves of two excitation gaps have
level crossings for various finite system sizes. They scale very
well as a linear function of 1/L in the insets and give us the
position of BKT-type critical points in the thermodynamical
limit. The extrapolation values also remain consistent with the
investigation indicated by the peaks of fidelity susceptibility
from iDMRG calculations.

APPENDIX D: GUTZWILLER MEAN FIELD

Here we exhibit the details of the Gutzwiller mean-field
(GWMF) method. Because of Na = Nb = L/2 and the hard-
core constraint, the possibilities of the occupation by a pair or
a hole, as well as that by a single atom a or b, are the same.
Under the condition of normalization, we have an ansatz of
the wave function in a uniform product matrix state, which
reads

|ψg〉 =
L⊗

l=1

1√
2

[eiφ0,0 sin ϕ|0, 0〉 + eiφ0,1 cos ϕ|0, 1〉

+ eiφ1,0 cos ϕ|1, 0〉 + eiφ1,1 sin ϕ|1, 1〉], (D1)

where |na, nb〉 is for the local bases in a site, na and nb are the
numbers of species a and b, respectively, and ϕ and φna,nb are
the variational parameters. Thus, the average energy per site
yields

eg = 1

L
〈ψg|Ĥ0

e |ψg〉 = Ū

4
(1 − cos 2ϕ)

− J

2
(1 − cos2 2ϕ)(1 + J0[K] cos δφ), (D2)

FIG. 6. Determinant on BKT-type transition points from the
Mott-insulator to superfluid phase. (1a),(2a) The peaks of fi-
delity susceptibility measured from iDMRG indicate the transition
points (1a) J0[K]c = 0.285(3) for J/Ū = 0.28, and (2a) J0[K]c =
0.624(6) for J/Ū = 0.4. (1b),(2b) We adopt the level-spectroscopic
technique to achieve finite-size scaling. In the first step, we calculate
excitation gaps �+

c = Ep − E0 + Ū/2 (red hexagon) and �0
s = E1 −

E0 (black pentagon), where E0 and E1 are the ground state and the
first-excited state in the Hilbert space Na = Nb = L/2, respectively,
and Ep is the lowest energy of the system where we add in one
more particle relative to the ground state. Obviously, we find a
level crossing between them called quasicritical points such as (1b)
J0[K]qc = 0.415 for L = 16 and J/Ū = 0.28, and (2b) J0[K]qc =
0.924 for L = 24 and J/Ū = 0.4. In the second step, we plot the
quasicritical points as a function of 1/L in the inset and find that they
can be linearly extrapolated to the thermodynamical limit very well.
We get the best extrapolation value J0[K]c = 0.287 for J/Ū = 0.28
and J0[K]c = 0.630 for J/Ū = 0.4, which remains consistent with
the results from the iDMRG calculations in (1a) and (2a).

in which δφ = φ0,0 − φ1,0 − φ0,1 + φ1,1. Minimization of the
energy gives the wave function of the ground state. Because
(1 − cos2 2ϕ) is always larger than zero, the choice of the
value of δφ in the ground-state wave function depends on
the sign of J0[K]. In the region of J0[K] > 0, δφ = 0, and
cos 2ϕ = Ū/[4J (1 + |J0[K]|)], the condensed density ρ>

c =
|〈â〉| = | sin 2ϕ(1 + eiδφ )/4| = | sin 2ϕ|/2 > 0 when J/Ū >

1/4, while in the region of J0[K] < 0, |J0[K]| � 1,
and J/Ū > 1/4, we get δφ = π . The condensed density
ρ>

c = |〈â〉| = | sin 2ϕ(1 + eiδφ )/4| = 0, while ρ<
c = |α̂〉| =

|âeiπ n̂b
l | = | sin 2ϕ|/2 > 0. That suggests a gauge-dressed su-

perfluid phase in the region of J0[K] < 0.
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APPENDIX E: AVOIDED LEVEL CROSSINGS

After a cloud of ultracold gases has been confined in the
optical lattice and equilibrium in the ground state, relevant
parameters (KU , K�, and Ū ) are adiabatically switched on in
order to obtain the ground state of the effective Hamiltonian
in the specified parameter regime. In previous studies, Eckardt
et al. found that the request to the adiabatic modulation is
not achievable if avoided level crossings between different
Floquet bands emerge [74].

In this section, we investigate avoided level crossings in
the quasienergy spectrum for a small system as a function
of K and U , respectively. Besides the perturbative treatment
in the last section, for the small system size, we can exactly
diagonalize the general Floquet Hamiltonian Ĥ(t ) = Ĥ (t ) −
ih̄∂/∂t , which obeys the general eigenequation

Ĥ(t )|φα (t )〉 = εα|φα (t )〉, (E1)

where the Floquet mode |φα (t )〉 is a many-body state instead
of local Fock bases. The Floquet modes live in the Hilbert
space of real dimensions DP . Because |φα (t )〉 = |φα (t + T )〉,
each Floquet mode can be expanded by Fourier modes,

|φα (t )〉 =
+∞∑

m=−∞
exp(imωt )

∣∣φα
m

〉

=
+∞∑

m=−∞

∑
{na

l nb
l }

�α,m
{na

l nb
l }

exp(imωt )
∣∣{na

l nb
l

}〉

=
+∞∑

m=−∞

∑
{na

l nb
l }

�α,m
{na

l nb
l }
∣∣m,

{
na

l nb
l

}〉
. (E2)

The new bases |m, {na
l nb

l }〉 satisfies the relation of super-
orthogonalization,〈〈

m,
{
na

l nb
l

}∣∣m′,
{
na

l nb
l

}′〉〉
= 1

T

∫ T

0
dt

〈{
na

l nb
l

}∣∣{na
l nb

l

}′〉
e−i(m−m′ )ωt

= δm,m′δ{na
l nb

l },{na
l nb

l }′ . (E3)

Equation (E1) can be interpreted as an eigenproblem defined
in the enlarged Hilbert space DP ⊗ DT with number of fre-
quencies DT = ∞. And thus we can also write the Floquet
Hamiltonian in the enlarged Hilbert space,

Ĥm;m′ = 〈〈m|Ĥ|m〉〉

= δm,m′ (ĤT + ĤŪ ) + 1

2
(δm,m′+1 + δm,m′−1)

×
[

J0
�

∑
l

(â†
l b̂l + H.c.) + δU

∑
l

n̂a
l n̂b

l

]
. (E4)

In principle, we get the full quasienergy spectrum by exactly
diagonalizing the Floquet Hamiltonian. However, it is im-
possible to numerically handle an infinitely large matrix. In
practice, because the spectrum has a repeating structure in
energy axis, we only need to target DP quasienergy levels
in the vicinity of the zero-energy axis with 2ND + 1 cutting
frequencies m = −ND, . . . , ND. Then we use their translation
invariant copies to cover the whole spectrum space. In this

FIG. 7. Quasienergy spectrum of the Floquet Hamiltonian (E1)
as a function of KU , K�, and Ū , respectively. Here, L = 6, ω = 20
and Na + Nb = 6. (a),(b) Na = Nb = 3. (a) K� = 0 and Ū/J = 1,
(b) K� = 0 and KU = 1, (c) KU = 0 and Ū/J = 1, and (d) KU = 0
and K� = 1.

way, we can obtain the full quasienergy spectrum and find
out the position of the avoided level crossings, and the valid
parameter regime by investigating the position of the avoided
level crossings, and thereby determine the valid regime which
we can reach through the adiabatic switch-on.

In Fig. 7, we exhibit the quasienergy spectrum of the 6-sites
as a function of KU , K�, and U , respectively. We choose the
integer-1 filling Na + Nb = 6 and relatively high-frequency
ω = 20 in general. In particular, Na = Nb = 3 when K� = 0.
When Ū/J = 1 is fixed in Figs. 7(a) and 7(c), there is no
problem in generating the adiabatic modulation of KU or
K�. No extremely dense level avoided crossings are found.
When KU = 1 is fixed in Fig. 7(b) and K� = 1 in Fig. 7(d),
we find several dense avoided level crossings occurring in
the vicinity of Ū/J ≈ 18. This is in comparison with the
ground-state phase diagram where the main interesting phases
happen when Ū/J < 4, and the avoided level crossings does
not appear in this region. Thus, all the phases can be achieved
by adiabatic modulation of Ū .

APPENDIX F: REAL-TIME DYNAMICS

In the following, we check the real-time dynamics for
a small system and answer the question of whether it is
feasible to complete the preparation of the sample and the
measurement before the thermalization sets in. To this end,
we consider two steps for switching on K , i.e., KU or K�,
and Ū , respectively. At the first step, we initialize the system
staying at the ground state of the nondriven model with a
small on-site repulsion Ū i. Then, for t > 0, the amplitude
of the time-periodic linearly polarized Raman laser beams is
gradually switched on following a linear function of time t ,

K (t ) =
{
vKt, 0 < t � t1
K f , t > t1,

(F1)

where the modulation lasts for the duration of t1 = n01T until
K reaches a desired value K f so that the effective speed
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FIG. 8. Real-time dynamics for the model (7). Here we choose L = 6, h̄ω/J = 20, K� = 0, and Na = Nb = 3. Initially, we prepare the
system in the ground state of the nondriven model with Ū i = 1. KU linearly grows until t1 and persists as a working Rabi oscillation. At the
moment t1, we start to linearly increase Ū to a desired value Ū f by t2 and persist until the measurement. We consider two cases: (1)–(4)
t1 = 100T and t2 = 200T for the fast switching-on, (5)–(8) t1 = 300T and t2 = 600T for the slow switching-on. For each case, we show the
time-evolving behavior related to four different sets of parameters: (1) and (5) for K f

U = 1 and Ū f = 2, (2) and (6) for K f
U = 4 and Ū f = 2,

(3) and (7) for K f
U = 1 and Ū f = 6, and (4) and (8) for K f

U = 4 and Ū f = 6. For each scheme, we show (a) modulated KU (black lines) and Ū
(red lines) as a function of time t/T , (b) time-evolving overlap P and energy e0, and (c),(d) structure factors of ñb

k and ñβ

k at the moment t = 0
(blue circles), t = t1 (magenta squares), and t = t2 (green diamonds), respectively.

vK = K f /t1. It persists as a working Rabi oscillation before
the measurement. In the second step, we turn on the on-site
interaction gradually as a linear function of time t ,

Ū (t ) =
⎧⎨
⎩

Ū i, 0 < t � t1
Ū i + vŪ t, t1 < t � t2
Ū f , t > t2,

(F2)

where the modulation lasts for the duration of t2 − t1 = n12T
until the on-site interaction reaches a desired value Ū f so the
effective speed vŪ = (Ū f − Ū i )/(t2 − t1).

After the modulation duration, we expect that the low-
energy behavior of the system can be described by the ef-
fective Hamiltonian with the desired parameter values. Then
the state should persist for a while in order to complete the
measurement. Here we exploit the fourth-order Runge-Kutta
method to solve a time-dependent Schrödinger equation and
get the time-evolving wave function |ψ (t )〉. To understand
how it is close to the desired one |ψe〉 (the ground state of the
effective Hamiltonian with a desired parameter Ū f and K f ),
we measure a time-dependent overlap of them, namely,

P = |〈ψ (t )|ψe〉|. (F3)

Furthermore, we measure the time-dependent energy,

e0(t ) = 〈ψ (t )|Ĥ0|ψ (t )〉, (F4)

and structure factors,

ñb
k = 1

L2

L∑
l,l ′=1

exp[ik(l − l ′)/h̄]〈b̂†
l b̂l ′ 〉, (F5)

ñβ

k = 1

L2

L∑
l,l ′=1

exp[ik(l − l ′)/h̄]〈β̂†
l β̂l ′ 〉, (F6)

in comparison where β̂l = b̂l exp(iπ n̂a
l ) and β̂

†
l =

b̂†
l exp(−iπ n̂a

l ) are the annihilation and creation operators,
respectively, for the gauge-dressed particles.

In Figs. 8 and 9, we systematically study the real-time
dynamics for six sites in two cases of fast and slow switching-
on. Although the middle process is complicated, the time-
evolving overlap is close to 1 in company with an almost
constant energy e0 at the end of the modulations. That
means that we can obtain the ground state of the effective
Hamiltonian with the desired physical parameters follow-
ing our scheme of sample preparation. In addition, slow
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FIG. 9. Real-time dynamics for the model (11). Here we choose L = 6, h̄ω/J = 20, KU = 0, and integer-1 filling Na + Nb = 6. Initially,
we prepare the system in the ground state of the nondriven model with Ū i = 1. K� linearly grows until t1 and persists as a working Rabi
oscillation. At the moment t1, we start to linearly increase Ū to a desired value Ū f by t2 and persist until the measurement. We consider two
cases: (1)–(4) t1 = 100T and t2 = 200T for the fast switching-on, (5)–(8) t1 = 300T and t2 = 600T for the slow switching-on. For each case,
we show the time-evolving behavior related to four different sets of parameters: (1) and (5) for K f

� = 0.5 and Ū f = 2, (2) and (6) for K f
� = 2

and Ū f = 2, (3) and (7) for K f
� = 0.5 and Ū f = 6, and (4) and (8) for K f

� = 2 and Ū f = 6. For each scheme, we show (a) modulated K�

(black lines) and Ū (red lines) as a function of time t/T , (b) time-evolving overlap P and energy e0, and (c),(d) structure factors of ñb
k and ñβ

k

at the moment t = 0 (blue circles), t1 (magenta squares), and t2 (green diamonds), respectively.

switching-on always works better than the fast one and
thus we suggest that the experimentalist needs to tune the

parameters as slowly as possible before the thermalization
happens.
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