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We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The
system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical
lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas
featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling
strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase
diagram for such a system and compare our results with theoretical predictions. Because of the high
effective mass across the periodic potential and the increased 1D interaction strength, the phase transition
is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of
low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial
dimension such as coupled spin chains in magnetic insulators.
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The emergence of new properties from low-dimensional
building blocks is a universal theme in different areas
in physics. In the field of material science, systems with
reduced dimensions are of strong interest due to their
peculiar properties. Prominent examples include graphene,
carbon nanotubes, nanowires, and quantum dots. When
such low-dimensional systems are arranged in regular
patterns, the coupling between them has an additional
impact: Few coupled layers of graphene drastically change
the thermal conductivity [1], the transport properties of
granular electronic materials can be tuned by the dimen-
sionality [2], photonic metamaterials are governed by the
cooperativity of their low-dimensional building blocks [3],
and phase transitions can be modified by the effective
dimensionality [4]. The control of the coupling strength
between the low-dimensional subsystems is essential to
understand and predict the emerging properties [5,6].
However, in real materials this control is often limited.

The investigation of transitions between isolated and
coupled low-dimensional systems is also at the heart of
ultracold atom research. The extreme flexibility and the
high degree of control has lead to the first observation of a
Tonks-Girardeau gas in 1D [7,8], the superfluid to Mott
insulator transition in 1D [9], and the Berezinskii-
Kosterlitz-Thouless transition in 2D [10]. The tunability
of the tunnel coupling within an array of 1D or 2D quantum
gases residing in an optical lattice is also ideally suited to
explore the physics in the crossover between two dimen-
sionalities. Cold atoms experiments can therefore be used
to simulate real material devices where such tunability is
limited. Coupled spin ladders in a magnetic field [11] and
spin chain [12] materials constitute a paradigmatic exam-
ple. In these systems, the phase transition is closely linked
to the Bose-Einstein condensation of interacting bosons
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[13] and can be understood in terms of a transition from an
array of 1D Luttinger liquids to a 3D superfluid [14,15].
The knowledge gained by means of the cold atoms
simulator can thus be translated in a better control over
the solid state devices.

In order to realize this quantum simulator, we study ultra-
cold bosonic rubidium atoms which are loaded in a two-
dimensional optical lattice [Fig. 1(a)] [16,17]. By tuning
the depth of the optical lattice we control the coupling
between the lattice sites while we use high resolution in situ
imaging based on scanning electron microscopy (SEM)
[18,19] to probe the system [Fig. 1(b)].

In the thermodynamic limit, a single 1D Bose gas does
not show Bose-Einstein condensation at any temperature.
For coupled 1D gases, it has been shown that a condensate
phase exists for all coupling strengths at zero temperature
[20]. For finite temperature, a phase transition has been

FIG. 1 (color online). (a) Experimental setup: 1D Bose gases
(red) are trapped in a 2D optical lattice (blue) with finite tunnel
coupling and imaged with an electron beam (yellow). (b) In situ
image of the density distribution from which the line profiles are
extracted. (c) Corresponding analogon in real materials: Coupled
dimer spin triplet chains show Bose-Einstein condensation above
a critical magnetic field.
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predicted at a critical 1D density n.; as a function of
perpendicular coupling strength J based on a mean-field
argument in the weak coupling limit J < u [21,22]

Reig = f(K)JK/(l—ZK)T(4K—1)/(4K—2). (1)

Here | < K < oo is the Luttinger liquid parameter which
is given by K = 1 in the Tonks limit and K — oo for free
bosons. Generally the prefactor f(K) and K cannot be
determined analytically, but quantitative estimates can be
made [22]. Such a phase transition is analogous to the 3D
ordering of coupled spin ladder [11] and spin chain [12]
materials [Fig. 1(c)]. In a realistic setup for ultracold gases,
the system is not translationally invariant. However, the
inhomogeneous trapping potential can be turned into an
advantage. Performing a local density approximation [23],
the external potential is converted into an effective chemi-
cal potential according to (7, z) = o — V(r, z). Probing
the system in situ with a high spatial resolution therefore
allows us to find local indications of a phase transition,
making a thermodynamic analysis possible.

In our experiment, we adiabatically load a partially
condensed cloud of 7.5 x 10* 8’Rb atoms at 7 ~ 30 — 40nK
in a retro-reflected two-dimensional optical lattice at a
wavelength of 2 = 774 nm. In the lattice, the adjacent sites
are coupled by the Josephson tunnel coupling J(s) =
4E,s3/4e=2V5 [24], where s measures the depth of the optical
lattice in units of the recoil energy E, = h?/2A>my;,. After
the loading procedure we start the SEM imaging process,
providing a spatial resolution of 240(10) nm. The rectan-
gular scan pattern is oriented along the axial direction
of the condensate (i.e., along the lattice tubes). As the
overall trapping potential is rotationally symmetric, we
deconvolve the SEM images [Fig. 1(b)] by applying an
inverse Abel transformation [17]. This yields the 3D density
n3p(r, z), which is converted into an effective 1D density
(and vice versa) by the multiplication with the trans-
verse extension of a tube: nyp(r,z) = (1/2)*n3p(r, z).
Throughout this work, all densities are given as 1D densities.
The temperature 7 and the central chemical potential y,
are determined by Gaussian fits to the thermal wings [23]
and by comparison with the exact 1D thermodynamic theory
[25,26]. In addition to the density profile we perform
standard time of flight (TOF) absorption imaging.

We start the analysis with deep optical lattices (s > 20),
where the tunnel coupling between different tubes is
negligible. In this limit, our experimental system consists
of an array of independent 1D gases. The corresponding
TOF images show no interference pattern, signaling that no
phase coherence between the tubes is present. The mea-
sured density distributions n;p(r,z) are well described
within the exact thermodynamic 1D theory [see Fig. 2(a)].
Nevertheless, the finite coupling between the tubes leads
to a small perturbation. Because of the transverse band
structure the atoms slightly delocalize across the lattice
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FIG. 2 (color online).  Density profiles (blue points) for different
lattice depths [(a) s = 30, (b) s = 14, (c) s = 10] at a distance of
1.2 ym from the trap center. The red line is a fit with the 1D
theory, where only the outer parts of the profile (y > 2) were
included in the fit. The circles indicate the position, where the
experimental profiles deviate from the pure 1D behavior by more
than 1 standard deviation.

which reduces the effective 1D interaction strength.
This, however, can only renormalize the 1D interaction
strength and the density profiles can still be described by
the 1D theory. From the fit, we extract a temperature of
T =~ 35 £ 10 nK in this regime for all our data sets, which
is comparable to the initial temperature. This confirms
the adiabaticity of our loading procedure.

The situation changes, however, when we lower the
lattice depth further and allow for a larger tunnel coupling J
between the tubes. We find in the experiment an increase
in density relative to the 1D thermodynamic theory which
appears above a critical density ng; [Figs. 2(b) and 2(c),
marked with circles]. As we will discuss quantitatively later,
this density increase is a clear indication of a phase transition
to a 3D Bose-Einstein condensation. Qualitatively, it can be
understood as follows: When the transverse coupling is
strong enough, the 3D density of states can be fully explored
by the atoms and the atoms can condense in the ground state.
The condensed atoms are maximally delocalized and reduce
their interaction energy accordingly. The condensate phase
is therefore more compressible which in turn translates
into a density increase. Beyond this point any further
increase of the tunneling coupling or the chemical potential
feeds the condensate and a measurable density builds up,
which goes along with long-range delocalization and phase
coherence in the transverse direction. In a local density
approximation, the location where the excess density starts
to build up can be converted into a critical chemical
potential g

More insight can be gained by analyzing the correspond-
ing time of flight images. For lattice depths s < 20, the TOF
images show the appearance of sharp interference peaks,
signaling the presence of a condensate fraction (see the
inset in Fig. 3). We fit a multipeak Gaussian function to the
interference pattern and determine the condensate fraction
as the ratio between the number of atoms contributing
to the interference peaks and the total number of atoms. As
has been pointed out by several authors (see [27] and
references therein), the appearance of interference peaks
is not unambiguously connected to the existence of a
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FIG. 3 (color online). Condensate fraction derived from TOF
images (blue points, the inset shows the corresponding TOF
absorption images) and excess atoms derived from the in situ
density distribution (red points). For s > 20 no signatures of a
condensate fraction or an excess density are found in the
experiment.

condensate: In the vicinity of the critical point of the 3D
superfluid to Mott insulator transition less sharp interfer-
ence peaks can be observed even above the critical temper-
ature. However, the comparison between experiment and
numerical simulations [27] has revealed that for weak
interactions, such as those present in our study, this effect
is not relevant and the interpretation as a condensate
fraction is justified.

In order to verify whether the deviation from the 1D
density profiles coincides with the formation of a con-
densate we determine the total number of “excess” atoms
Neye With n > n.y, and compare it with the condensate
fraction found in time of flight. We first note that the central
part of each line profile is well described by an inverted
parabola. We therefore make a Tomas-Fermi approximation
and assume a linear equation of state, 4 = g.in, where g
is an effective interaction strength. For a weakly interacting
condensate, the atoms fill the trap up to the critical chemical
potential. In a parabolic potential, the fraction of excess
atoms to the total number of atoms is then given by
Nexe/Niot = 171(1 = nge/no )%, independent of the interac-
tion strength. Here, n, denotes the density in the trap center.
The normalization factor 7 = 0.8 accounts for the fact that
in the absence of the lattice, where n;/ny is close to 0, we
observe not more than 80 percent condensate fraction. In
Fig. 3 we compare both results. Throughout the full range
of lattice depths, we find good agreement within the error
bars. Hence, the total number of excess atoms is compa-
rable the total number of condensed atoms. We therefore
take the appearance of an excess density as a marker for the
onset of Bose-Einstein condensation and take p; as the
critical chemical potential at which the phase transition
takes place. Quantum Monte Carlo simulations which were
carried out on a simplified model [28], show that the
appearance of an excess density coincides with the onset of
macroscopic phase coherence. We eventually arrive at the

following picture: With increasing coupling strength, a
condensate fraction first develops in the center of the trap
and then grows over the whole cloud. Within the con-
densate part, the system is three dimensional, while in the
outer parts of the cloud, the individual tubes are effectively
decoupled. In this regime, the temperature determines the
relevant correlation length in each tube and the influence
of the transverse coupling can be neglected. The system
is therefore effectively one dimensional. Taking the system
as a whole, it is a hybrid system, simultaneously hosting
both dimensionalities.

Analyzing the critical chemical potential for all data
sets allows us to draw the phase diagram in the s-u plane.
This is shown in Fig. 4. It is clearly visible that the phase
transition is shifted to large positive values of the chemical
potential with increasing lattice depth. The right border of
the diagram displays the maximum value of the chemical
potential we can reach in the experiment.

To understand the physical nature of the phase transition
in more detail, we compare our results with two theoretical
predictions. The first one is directly taken from Ref. [22]
[see Eq. (1)], where the Luttinger parameter must be
determined from the density and g = g1p(s)neq- Here,
gip(s) = 2haw (s) is the 1D interaction strength, where
w | () denotes the transverse oscillation frequency, and a is
the 3D scattering length. In this model, the condensation
occurs because the coherence which is induced from
one tube to a neighboring tube is strong enough to stabilize
the condensate wave function of the global system in a
self-consistent way. The result is plotted as black dashed-
dotted line in Fig. 4. While the trend of the experimental
data is well captured by the theory, it systematically
underestimates the critical chemical potential. This might
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FIG. 4 (color online). Phase diagram in the s-y plane. The points
mark the critical chemical potential at which the phase transition
takes place; the dashed line is a guide to the eye. The dashed-dotted
black line is the prediction of Ref. [22]; the solid red line is the
prediction of a 3D treatment of the system (see text).
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have its origin in the chain mean-field treatment, which
overestimates the ordered phase.

Alternatively, we can start from an ideal Bose gas in 3D
and calculate the critical density at which the phase transition
takes place. We approximate the dispersion relation in the
lattice with E(k,. k. k,) = #?k?/2m + 2J[2 — cos(k,d) —
cos(k,d)] and calculate the critical density by numerical
integration over the Bose-Einstein distribution N =
(' =1)""+ [Vdk(2n) 7 (7 exp|BE(k,., k. k)] — 1)
This corresponds to the standard picture that condensation
occurs when the population in the excited states is saturated.
We restrict our calculation to the lowest band. Without a
lattice, the interaction between the atoms leads only to a small
shift of the phase transition to positive values of the chemical
potential. But now, the transverse confinement in the tubes
has a twofold influence. On the one hand, the 1D interaction
strength within each tube increases with the confinement.
On the other hand, the transverse band structure leads to a
higher effective mass and a shortening of the thermal de
Broglie wavelength in this direction. This results in a higher
density necessary for achieving the condition for Bose-
Einstein condensation. For the resulting critical chemical
potential [y = g1p($) R, both effects magnify each other
and the phase transition is shifted significantly. The pre-
diction is plotted as solid red line in Fig. 4. Despite the
approximative character of the model, it describes the data for
small values of s rather well, while for larger values of s it
overestimates the critical chemical potential.

Within the condensate phase, no exact solution is known
at finite temperature. We can now use our data to extract the
effective interaction strength for our range of parameters,
where the chemical potential is comparable to the thermal
energy. To this end, we fit the condensate part of the density
with a Thomas Fermi profile and compare it to a Thomas
Fermi fit of the 1D thermodynamic theory. In Fig. 5 we
show the ratio between the effective interaction strength
and the corresponding interaction strength of the isolated
1D system. For large tunnel coupling the effective inter-
action is reduced by almost a factor of 2 compared to the
uncoupled system, while for decreasing coupling strength,
the difference gets smaller. This has its origin in the
delocalization of the atoms in the lowest Bloch state which
is absent for an isolated tube. We can give a rough
estimation of this reduction by integrating out the two
transverse directions for the lowest Bloch state and com-
paring the resulting interaction strength to the result of an
isolated tube, g;p(s) = 2haw | (s). The ratio between the
two is shown as a black curve in Fig. 5 and follows the
trend of the data. This exemplifies how a cross-dimensional
phase transition combines properties from both dimension-
alities: While the system above p;; is a 3D condensate, the
effective interaction strength of this phase is partially
inherited from the underlying 1D geometry.

Our experiments reveal the coherence properties, the
phase diagram, and the effective interaction strength of
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FIG. 5 (color online). Ratio between the effective interaction
for the coupled system and that for an isolated tube. Blue points
are the experimental data and the black curve is the theoretical
prediction (see text).

coupled one-dimensional quantum systems. The crossover
from one-dimensional to higher dimensional behavior is a
universal phenomenon, which can be observed in a plethora
of coupled low-dimensional systems, such as spin ladders
[11,14,15], spin chains [12,29], and quantum wires [30],
which are all described by quasi-one-dimensional interact-
ing effective boson systems. In these systems, a systematic
analysis of the phase transition and the order parameter as a
function of transverse coupling J relied so far on mean-
field theoretical arguments. The ability to perform thermo-
dynamic studies on coupled 1D ultracold gases now allows
us to map out the phase diagram as a function of coupling
strength and chemical potential. The theoretical models
provide a corridor for the experimental data, demonstrating
qualitative agreement, but at the same time reveal the need
for further investigation. Our results can help to benchmark
numerical simulations of a coupled one-dimensional sys-
tem, providing also a better description of real materials.
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