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Übungen 9. Vorlesungswoche:  Bitte einreichen bis 19.6.2023, 10:00 Uhr in Kästen (5. Stock, Gebäude 46).  
 
 
10. (10 Punkte)  
 
Wir betrachten ein-dimensionale Bewegungen im (q,p) Phasenraum. 
 
Gegeben sei eine Region im Phasenraum bei t=0,  die durch eine 
maximale Auslenkung q0 und einen maximalen Impuls p0 begrenzt wird: 

00 0,0 ppqq  .   
 
 
 
Berechne und skizziere die Entwicklung dieser Region nach einer Zeit t>0 
für die folgenden Fälle: 
 
a) Freies Teilchen 0V  
 
 
b) Teilchen im homogenen Schwerefeld mgqV   
 

c) Harmonischer Oszillator 22

2
1 qmV   

 
 
 
Argumentiere, dass die Fläche der Region in allen Fällen erhalten bleibt. 
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Darstellungsräume und Anfangsbedingungen 
 
Koordinatendarstellung  ),,,,,,,,,( 222111 NNN zyxzyxzyx   
 
 
 

Konfigurationsraum (Transformation kann auf verschiedene Arten definiert werden)   

 
 
 
 
 
Ereignisraum 

 
 
 
 
Phasenraum 

 
 
 
 
 
Zustandsraum 
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Zustandsgröße 
 
Eine Größe die für jeden Zustand eindeutig bestimmt werden kann:   
 
Observable  
 
 
 
 
 
 
 
 
Zeitliche Änderungen einer Zustandsgröße 
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Definition der Poisson-Klammer zwischen zwei beliebigen Observablen  
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Formelle Eigenschaften: 
 

- Unabhängig von der Wahl der kanonischen Variablen ),( pq   
 
 

- Antisymmetrisch  
 
 

- Linear     
 
 

- Produktregel  
 
 

- Jacobi Identität  
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Allgemeine Beschreibung der Zeitentwicklung:        

      Insbesondere: 

               
 
 
 
 
 
 
 
 
 
 
 
Weitere Eigenschaften 
 

 
 
 
 
 
 
 
Fundamentale Poisson-Klammern 
 

   ),( ii pq  nennt man kanonisch konjugiert  
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Eine Phasentransformation ),,(~ pqq ),(~ pqp  heißt kanonisch, falls die fundamentalen Poisson-Klammern erhalten sind  
 
 
 
 dann sind die kanonischen Bewegungsgleichungen gegeben durch die transformierte Hamilton Funktion: 
    )~,~(),~,~(~,~~ pqppqqpq HH   
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Beispiele:  
 
Vertauschung von Ort und Impuls 
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Harmonischer Oszillator    
 
 

 
 
 

 


