
 
Keine Übungen diese Woche.   Übungen 8 und 9 von letzter Woche bitte bis 12.6. einreichen.  
 
Verständnisfragen für die Vorlesungen 5 bis 8 (z.B. für Klausurvorbereitung) 
 
Vorlesung 5 
29. Wie müssen die Euler-Lagrange Gleichungen erweitert werden, wenn es (dissipative) Kräfte gibt, die keinem Potential entsprechen. 
30. Wie kann man die Dissipation berechnen?  Was ist die Rayeigh’sche Dissipationsfunktion und für welche Reibung gilt sie? 
31. Stelle die Bewegungsgleichung für ein Teilchen im Gravitationspotential mit Stokes’sche Reibung auf und finde eine Lösung. 
32. Stelle die Lagrangefunktion für ein Doppelpendel auf, bei dem an der Masse m1 eines starren Pendels ein zweites Pendel mit Masse m2  schwingt.  
 
Vorlesung 6 
33. Leite eine allgemeine Form der Lagrangefunktion her für kleine Auslenkungen von s generalisierten Koordinaten um eine Gleichgewichtsposition q0. 
34. Wie lauten die Bewegungsgleichungen für eine Langrangefunktion die bilinear in den Geschwindigkeiten und den Orten ist?  
35. Erläutere die Lösungstrategie zum Finden von Normalmoden für allgemeine gekoppelte linearisierte Bewegungsgleichungen um das Gleichgewicht.  
36. Erläutere eine Legendre Transformation für eine Funktion von zwei Variablen. Was wird mit der Legendre Tranformation erreicht? 
37. Leite die Hamiltonschen Bewegungsgleichungen für eine generalisierte Koordinate und Impuls in einem allgemeinen konservativen Potential her. 
38. Gebe eine Zusammenfassung für den Hamilton Formalismus für s generalisierte Koordinaten und Impulse.  Was sind Unterschiede/Vorteile/Nachteile zur Lagrange Methode? 
 
 
Vorlesung 7  
39. Wende den Hamilton Formalismus für kleine Auslenkungen aus der Gleichgewichtsposition an, dh. für ein bilineares Model.  Leite die Eigenwertgleichung her. 
40. Wende den Hamilton Formalismus auf ein ebenes starres Pendel der Länge l an.  Gebe die Gleichungen für Phasenraumbahnen p(q) an.  
41. Drücke die kinetische Energie in generalisierten Koordinaten aus für eine allgemeine Transformation . 
42  Unter welchen Bedingungen entspricht die Hamiltonfunktion der Energie? 
43. Wende den Hamilton Formalismus für N Teilchen in einem konservativen Potential ohne Zwangsbedingungen an. 
44. Wende den Hamilton Formalismus auf das Problem eines rotierenden Stabes mit einer frei gleitenden Perle an.  Was sind die Gleichungen für Phasenraumbahnen p(q)?  
 
Vorlesung 8 
45. Wende den Hamilton Formalismus auf ein geladenes Teilchen in einem Vektorpotential an. 
46. Was versteht man unter dem Vektorfeld der Phasenraumgeschwindigkeiten?  Zeige, dass es divergenzfrei ist. 
47. Was besagt der Liouvillesche Satz? 
48. Wie kann man die Durchlaufzeit für eine Phasenraumbahn in einer Koordinate berechnen? 
49. Stelle das Integral zur Berechnung der Umlaufzeit für ein mathematisches Pendel auf. 
 



8. Vorlesungswoche: Bewegungen im Phasenraum           1 

Beispiel: Geladenes Teilchen   

Generalisierte Impulse    

Hamilton Funktion     qq
m

qmLH  2
2

)(
2
1

2
Aprpr


  

  

Bewegungsgleichungen m
Aqp

p
Hx xx

x








 

 




















xx

q
m

q
x
Hpx

AAp )(1


 
FAZIT Hamilton Formalismus:  

j
j p

Hq





 

j
j q

Hp





 
 



8. Vorlesungswoche: Bewegungen im Phasenraum           2 

3 2 1 1 2 3

2

1

1

2

Betrachtungen im Phasenraum ),( pq      
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- Der 

 
Phasenraum ist  2s dimensional 

 
 
- Jeder Punkt ),( pq  im Phasenraum entspricht einer Anfangsbedingung 

 
 

- Man kann auch Bereiche von Punkten oder  
     eine Wahrscheinlichkeitsverteilung ),( pq betrachten. 

 
 
 
 
 
 
 
 
 
 

- Die Bahnen können periodisch, offen, gedämpft, oder chaotisch verlaufen 
 

 
 
 Zeitentwicklung  )(),( tptq jj :  
Jedem Punkt wird eine Phasenraumgeschwindigkeit zugewiesen 
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Beispiel:  Starres Pendel 

qmgl
ml
pEH cos

2
),( 2

2

pq  

 



8. Vorlesungswoche: Bewegungen im Phasenraum           3 

3 2 1 1 2 3

2

1

1

2

 

Bei konservativen Systemen ist das Vektorfeld 


















jj

jj q
H

p
Hpq ,),( 

 
der Phasenraumgeschwindigkeiten divergenzfrei 
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Das Vektorfeld ist quellenfrei und senkenfrei.
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Satz von Liouville 
 
Die Dichte der Systempunkte im Phasenraum ist zeitlich konstant. 
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Integration der Bewegung im Phasenraum 
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Definiere Umkehrpunkte: maximale Auslenkung 
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