Ubungen 7. Vorlesungswoche: Bitte einreichen bis 12.6.2023, 10:00 Uhr in Kasten (5. Stock, Geb&ude 46).

8. (8 Punkte)
Ein Massenpunkt gleitet reibungsfrei im Schwerefeld auf der inneren Oberflache
eines Kreiskegels. Nutze zwei geeignete generalisierte Koordinaten um die
Lagrange Funktion zu beschreiben. Bestimme die generalisierten Impulse und die
Hamiltonfunktion. Stelle die Hamilton’schen Bewegungsgleichungen auf. Welche
Erhaltungsgrofen gibt es?
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9. (7 Punkte)
Betrachte einen Massenpunkt in Zylinderkoordinaten (r», ¢, z) in einem zylindersymmetrischen Potential V=aln™ mit den

Parametern a und b konstant. Stelle die Hamilton’schen Bewegungsgleichungen auf. Welche ErhaltungsgrofRen gibt es? Fur
welche Anfangsbedingung sind alle drei generalisierten Impulse erhalten?
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Zusammenfassung Hamilton Formalismus

1.) Bilde Hamilton Funktion
H(p,q)=p-q-1L

2.) Stelle Hamilton’schen Bewegungsgleichungen auf
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Beispiel: Starres Pendel

x=1Ising; y=Icosq, v
Generalisierte Koordinate 1~ ¢ ¥=lgcosq. j=-lgsing .
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Liouvilleschen Satz fiir sehr viele Massenpunkte:
Die Dichte der Systempunkte im Phasenraum ist zeitlich konstant.




7. Vorlesungswoche: Anwendungen Hamilton Formalismus

Wann ist die Hamiltonfunktion die Gesamtenergie?

S
f‘f:f‘;‘(@']>@'2>-~,@'5,f) f’;—z af‘; qj ari

j=1 aq} at

Kinetische Energie allgemein

Zf’”z =3 ZTJ,':MHZ%%W

1—1 J1,!’—1

Generalisierte Impulse falls 2—,(]:0
q;

Py =7"= ZTﬂql

aqj ]

Zq,p, Z ;qul+Za 4,

H:Zq.jpj Z IQJQZ+V a
J




7. Vorlesungswoche: Anwendungen Hamilton Formalismus

Beispiel: Keine Zwangsbedingungen im beliebigen konservativen Potential
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Beispiel: Perle auf rotierendem Stab

1.) Rheonome Zwangsbedingungen 0
z=0,

y =X tan wt

2.) Generalisierte Koordinaten und Transformation

x=gqcoswt; y=gsinwt; z=0

3.) Lagrange Funktion

L=T-V-= T:%(p‘c2+j/2): %(q2+q2w2)
4.) Generalisierter Impuls und Hamilton Funktion
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5.) Bewegungsgleichungen
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L(r,i',f):%i‘2+q(i’-A)—qQo

Beispiel: Geladenes Teilchen
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