
 
Übungen 7. Vorlesungswoche:  Bitte einreichen bis 12.6.2023, 10:00 Uhr in Kästen (5. Stock, Gebäude 46).  
 
 
8. (8 Punkte)  
Ein Massenpunkt gleitet reibungsfrei im Schwerefeld auf der inneren Oberfläche 
eines Kreiskegels. Nutze zwei geeignete generalisierte Koordinaten um die 
Lagrange Funktion zu beschreiben.  Bestimme die generalisierten Impulse und die 
Hamiltonfunktion.   Stelle die Hamilton’schen Bewegungsgleichungen auf.  Welche 
Erhaltungsgrößen gibt es? 
 
 
 
 
 
 
 
 
 
 
 
 
9. (7 Punkte)  

Betrachte einen Massenpunkt in Zylinderkoordinaten ),,( zr  in einem zylindersymmetrischen Potential 
b
raV ln  mit den 

Parametern a und b konstant.  Stelle die Hamilton’schen Bewegungsgleichungen auf.  Welche Erhaltungsgrößen gibt es?  Für 
welche Anfangsbedingung sind alle drei generalisierten Impulse erhalten? 
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Zusammenfassung Hamilton Formalismus 
 
1.) Bilde Hamilton Funktion  
                                         LH  qpqp ),(    
  
    
 
 
2.) Stelle Hamilton’schen Bewegungsgleichungen auf 
 

  
 
 
3.) Lösen  
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Beispiel:  Kleine Auslenkungen   
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Bewegungsgleichungen 
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Beispiel:  Starres Pendel 

Generalisierte Koordinate    
 
 

    
 
 

  
 
 

 
 
Phasenraumbahnen:  Alle Punkte im Phasenraum mit EH ),( qp  
 
 
 
 
 
 
 
Liouvilleschen Satz für sehr viele Massenpunkte:  
Die Dichte der Systempunkte im Phasenraum ist zeitlich konstant.



7. Vorlesungswoche: Anwendungen Hamilton Formalismus           4 
 
Wann ist die Hamiltonfunktion die Gesamtenergie? 
 
 

  
 
 
Kinetische Energie allgemein 

 
 
        

Generalisierte Impulse falls 0
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Beispiel: Keine Zwangsbedingungen im beliebigen konservativen Potential 
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Bewegungsgleichungen 
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Beispiel: Perle auf rotierendem Stab 
               
1.) Rheonome Zwangsbedingungen 
 
 
 
 
2.) Generalisierte Koordinaten und Transformation  

      
 
3.) Lagrange Funktion 

      
4. ) Generalisierter Impuls und Hamilton Funktion 
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5.) Bewegungsgleichungen 
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Beispiel: Geladenes Teilchen   
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