
 
Übungen 2. Vorlesungswoche (10 Punkte):  Bitte einreichen bis 2.5.2023, 10:00 Uhr in Kästen (5. Stock, Gebäude 46) 
 
3.)  Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft 
auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem 
Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt. 
 
a) Wie lautet die Lagrange-Funktion L(φ, s, φ, s)? 
b) Zeigen Sie, dass eine Lösung φ(t) = φ(0) = const existiert (Gleichgewichtsposition). 
c) Geben Sie eine geschlossene Differentialgleichung für φ an. Lösen Sie diese für 
M ≫ m und kleine Winkelausschläge (φ ≈ α). 
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Behauptung: Bei holonomen Zwangsbedingungen lauten die Bewegungsgleichungen für generalisierte Koordinaten 
 
Definition: Lagrange Gleichungen 

 
 
 
wobei die kinetische und potentielle Energie als Funktion der generalisierten Koordinaten durch die Transformation 
bekannt sind  
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Zusammenhang mit allgemeinen Minimierungsproblemen:  Variationsrechnung und Extremwertaufgabe 
 
Gesucht ist eine Funktion y(x), so dass folgendes „Funktional“ minimal wird: 
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Minimal wenn jede Änderung von der optimalen Funktion y0(t) zu einer Erhöhung von S führt  
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Notwendige Bedingung für Minimum  Erste Ableitung verschwindet. 
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Nutze partielle Integration:   
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Daher:  
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Euler-Lagrange Gleichung 
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Historischer Exkurs:  Brachistochrone ist die Bahn auf der ein Massenpunkt von a nach b am schnellsten reibungsfrei „rutscht“ 
 
 
1.) Stelle ein Funktional auf, das die Zeit als Abhängigkeit der Bahn y(x) berechnet 
 
Nutze: τ   wobei  
 
 
und    ∆ 
 
 
 
 
Somit τ  
 
 
 
 
2.) Bestimme Differentialgleichung 
 
 
 
Nach Umformungen:          = 
 
 
 
 
 
 

3.) Bestimme Lösung aus Erhaltungsgröße der Bewegung 
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Parametrische Lösung: Zykloide  
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Bernoulli 1696 
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Definition: Lagrange Funktion 
 
 
 

Gegeben: Transformation  
 
 
 
 
 
Definition: Wirkung 
 
 
 
 
 
 
Definition: Hamiltonsches Prinzip 
 
 
 
 
 
 
Definition: Euler-Lagrange Gleichungen 
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1. Beispiel: Keine Zwangsbedingungen im beliebigen konservativen Potential 
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2. Beispiel: Perle auf rotierendem Stab 
               
1.) Rheonome Zwangsbedingungen 
 
 
 
 
2.) Generalisierte Koordinaten und 3.) Transformation  

      
 
4.) Lagrange Funktion 

      
 
5.) Euler Langrange Gleichung und Lösung 
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6.) Rücktransformation und Diskussion 
 

 
 
 
 
 
  


