

Lectures:

Monday, 29.4.: Review. Phonon specific heat, structure factor.

Thursday, 2.5.: Neutron scattering, anharmonic effects.

Monday, 6.5.: Electron wavefunction and “second quantization”.

Exercises: to be handed in by **Tue. 14.5.** noon in box on 5th floor of Building 46 or electronically to laschwar@rptu.de

4) In the lecture it was claimed that for thermal expectation values of an arbitrary linear combination of bosonic operators $F = \sum_{\alpha, \vec{k}} (f_{\alpha, \vec{k}} a_{\alpha, \vec{k}} + g_{\alpha, \vec{k}} a_{\alpha, \vec{k}}^\dagger)$ the following equality

$$\text{holds: } \langle e^F \rangle = e^{\langle F^2 / 2 \rangle}.$$

- a) Show this equality for a single oscillator mode $F = f a + g a^\dagger$ for $T=0$ (ground state expectation).
- b) Evaluate $e^{\langle F^2 / 2 \rangle}$ in terms of f and g for the finite temperature case.
- c) Argue that $\langle e^F \rangle = e^{\langle F^2 / 2 \rangle}$ is valid for any number of phonon modes if they are independent and express $\langle F^2 / 2 \rangle$ as a sum over the 1BZ.

5.) Consider the Debye-Waller factor e^{-2W} with $2W = \langle (\bar{q} \cdot \vec{X}_j)^2 \rangle$.

- a) Evaluate $2W = \langle (\bar{q} \cdot \vec{X}_j)^2 \rangle$ explicitly by inserting the expression of \vec{X}_j in terms of normal phonon modes (see lecture 2-10). The final results should correspond to a sum over the 1BZ.
- b) The Debye approximation replaces the sum over the 1BZ by an integral over the sphere $k < k_D$ and assumes a constant velocity independent of direction $\alpha = x, y, z$. Use this approximation to simplify the expression for $2W = \langle (\bar{q} \cdot \vec{X}_j)^2 \rangle$. Find an analytic expression for the integral for the low and the high temperature behavior as a function of T/T_D .