

Lectures:

Monday, 8.7.:	Magnetism of independent particles
Thursday, 11.7.:	Coupled models

Exercises:

All solutions must be handed in by **Tue. 16.7.** noon in box on 5th floor of Building 46 or electronically to laschwar@rptu.de

Consider a spin-1/2 in a magnetic field $H=-g\mu_B S_z B$ with quantum numbers $S_z = \pm \hbar/2$.

We use units so that $g\mu_B \hbar/2 = 1 = k_B$ (i.e. temperature, energy and field have the same units).

20) The specific heat is defined as $c_V = T \left(\frac{\partial S}{\partial T} \right)_V$. Show that $c_V = B^2 \chi / T$, where χ is the susceptibility (Note, that this may be shown in general by use of derivatives without actually calculating c_V .) Plot the result for c_V as a function of $y = T/B$ for the case that $M = \tanh B/T$.

21) Determine the Entropy $S(y)$ als Funktion von $y = T/B$. Plot the result as a function of y . Give the expansion to lowest order for low temperatures $y \ll 1$ and for high temperatures $y \gg 1$.