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Interactions:  additional energy if two quantum numbers are occupied 
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General two-body operators: 
 
 
 
 
 
 
 
Product of single particle operators: 
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Define fermionic field operators )(ˆ † r  to create particle at position  r
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Operators in continuous real space 
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Expressed in terms of field operators: 
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Momentum space  
 
 
 
Momentum states are plane waves: 
 
 
Define momentum creation operators: 

 
 
 

 
 
 
 
 
 
 
 
Kinetic energy becomes “diagonal” 
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Potential )(rU 

: scattering in  k-space  
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Periodic Potential )()( RrUrU
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Scattering in reciprocal space: Extended Zone Scheme 
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Reduced Zone Scheme 
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Bloch solution for each k

 in 1BZ:  Bands
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For solution: 
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Find superposition of plane waves: 
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Solution are plane waves as 0U  
Start with only reduced basis of superposition of few plane waves: 
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The Fermi surface 
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Wavefunction of the solution:  Bloch theorem 
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Define Wannier functions 
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Example:   “Free” 1D Fermions U=0 
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Hamiltonian in terms of Wannier orbitals:  Hopping 
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