14™ lecture week: Magnetism and phase transitions

Phase transition and critical phenomena

order to disorder transition occur discontinuous

may be first order or continous

universal behavior near continuous phase transitions

depend on (broken) symmetries, range of interactions, lattice/dimension

Spin models are useful “minimal” description

Heisenberg Model XY-Model Ising-Model
H=>)J5,-S, H=YJ.(S-S:+S/-S7) H=YJ,-S;
(i.j) (i.j) (i)
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Free energy is minimized F=E-TS

Ordered phase Disordered phase
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Order parameter:
measurable quantity with characteristically different value for each phase.

Examples:

“density”
“structure factor”
“condensate fraction”

“superfluid density”

“magnetization”
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Ehrenfest classification:

A first order phase transition shows a discontinuity in the derivative of the free energy and in the order parameter as a
function of temperature, pressure (and/or another control parameter).

A continuous phase transition has no discontinuity in the derivative of the free energy, but may be discontinuous in
second or higher order. The change of order parameter is continuous, but (often) non-analytically.
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Critical exponents: Power-laws near continuous phase transitions

Specific heat:

Order parameter:

Response:

Order parameter:

Hyper-Scaling laws
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TaBLE 12.1. THE VALUES OF THE CRITICAL INDICES (compiled on
the basis of a review article by Kadanoff et al. (1967), in which
a detailed bibliography of the original works is also given)*

Thgoretical values Experimental values
Criti-
cal | mean Ising model
index field | ferromagnetic| gas-liquid
approxi- . ) transition | transition
mation | 2-dim. 3-dim.
B % : 0.313 £0.004 0.33+£0.03 | 0.346+0.01
Y 1 ? 1.250+0.001@) | 1,334+0.03 | 1.37 +0.2
y' 1 % 1.31 +0.05 (1.0+0.H)®| 1.0 40.3
o 3 15 52 015 4.1£0.1 44 104
o =0]9 - 01@| 01 +0.1 < 0.16 0.2 +0.2
¢ |=0 -0 0.071%38 < 0.16 0.12 £0.12
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General energy with two-body interaction U

Z +ZZU(r—r)

j=l i#j

Partition function

1 3= 13
Zy= m](nd dp,]exp( PE)
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Discretized approximation: Hard-core with potential box:
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Phase transition as function of chemical potential
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Phase transition in the Ising model

H=YJ,S -S:-B) §:

(i.J) J

Domain walls
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Scale invariance: Numerical simulations
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Fractal dimensions
_logV
log L

V=1L" D

Scaling dimension:
near critical point, each quantity changes with a characteristic powerlaw under rescaling with A
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Free energy is self-similar function of = I'-T, and h=B-B,

G(t, h) = AG(X*t, X" R)

m = —2C_ \r+lm(A%t, ATh)
X(Eh) = XNTHx(A%E, ATh)
Cr(t,h) = A*T1C (A%t ATh)

12
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Scaling for #=0 and/or t =0

Ch(t,0) = |¢|~@*D/5 0, (+1.0)
m(t,0) = (—t)" T/ sm(—1, 0)
x(t,0) = [t|7@e (11, 0)

m(0,h) = |b]~"T" im0, +1)
Hence:

a+28+y=2

y=p(6-1).

13

2541

r+1

2r+1

r+1
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Mathematical tool for scale invariance: The renormalization group (RG)

Changing length or energy scales will result in self-similar model

Microscopic details become less important as length scales are increased

At very long length scales, short wave length excitations are “lost”

Integrating out: partial sum over lost degrees of freedom gives new effective model

Renormalization group equations: rescaling of parameters under change of “cut-off”
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Example: The 2D Ising model at B=0

Partition function £ = Z eXp(ﬂJZ S§:55)

{S;3

(i)

HIsing - _JZ SiSj
(i.7)

A and B sublattices

15
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Ansatz

Z= Z H2COSh IBJ(SH)C +Si—x + Si+y + Si—y) = Z HeXp(_ﬂH'(Si—x’Si—x’Si+y’Si—y))

{Sj}A ip {Sj}A ip

'

H'(S,,S,,S,,5,) = g'+§(sls2 +5,8,+8,8, +5,85,)+J,'(S,S, +8,5,)+ M'(S,S,S,S,)

Solution
,BJ':%ln(cosh 4B))+ pJ, +

P, = %ln(cosh 457T)

/
24
/ | L
. K(KS, LY
o\
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g . J _ 31 h 4 J 08 r

Critical point A/, = 3 n(cosh 44J,)
06 |

04 r

02 t

06 08

Flow near fixed point: Linearization




14™ lecture week: Magnetism and phase transitions 18

Generalized description of the RG approach: A
T A
- rescale energy, momentum or distance cutoff: T
Sk — bk, ©»— 7
- Scale invariant functions are rescaled according to scaling dimension o) — b2 o(x)
So(k) — 2o (k)
- All coupling constant are redefined under rescaling. 7—9 = ¢ =R

Repeated transformation form are possible (“group”) F(F(d.b),t") = R(g, bi')

dg

— R(q - . -
Finally, find RG flow equations d! (9) where b=n(b)  dj=g ~3




