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Phase transition and critical phenomena 
 

- order to disorder transition occur discontinuous 
 
 
 

-   may be first order or continous 
 
 
 

 
- universal behavior near continuous phase transitions  
 
 
 
 

 
- depend on (broken) symmetries, range of interactions, lattice/dimension 

 
 
 
 

-  Spin models are useful “minimal” description 
 
 
Heisenberg Model   XY-Model       Ising-Model 
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Free energy is minimized    F=E–TS 
 
 
 
 
Ordered phase       Disordered phase 
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Order parameter:   
measurable quantity with characteristically different value for each phase. 
 
 
 
 
 
 
 
 
 
 
 
Examples: 
 
“density”  
 
 
“structure factor” 
 
 
“condensate fraction”  
 
 
“superfluid density” 
 
 
“magnetization” 
 



14th  lecture week: Magnetism and phase transitions       4 
 
Ehrenfest classification: 
 
A first order phase transition shows a discontinuity in the derivative of the free energy and in the order parameter as a 
function of temperature, pressure (and/or another control parameter). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A continuous phase transition has no discontinuity in the derivative of the free energy, but may be discontinuous in 
second or higher order.   The change of order parameter is continuous, but (often) non-analytically. 
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Critical exponents: Power-laws near continuous phase transitions 
 

Specific heat:          
 || cV TTc  

 

Order parameter:  TTm c   
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Order parameter:  
/1|| Bm  

 
 
 
 
Hyper-Scaling laws 
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General energy with two-body interaction U 
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Partition function 
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Discretized approximation: Hard-core with potential box:   
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Phase transition as function of chemical potential 
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Phase transition in the Ising model 
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Domain walls 
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Scale invariance:  Numerical simulations  
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Fractal dimensions 
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Scaling dimension:   
near critical point, each quantity changes with a characteristic powerlaw under rescaling with λ 
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Free energy is self-similar function of  cTTt   and  cBBh   
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Scaling for 0h  and/or 0t   
 
 
 

        
 
 
 
 
 
 
 
Hence: 
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Mathematical tool for scale invariance: The renormalization group (RG) 
 
 

- Changing length or energy scales will result in self-similar model 
 
 
 
- Microscopic details become less important as length scales are increased 

 
 
 

- At very long length scales, short wave length excitations are “lost” 
 
 
 
 

- Integrating out:  partial sum over lost degrees of freedom gives new effective model  
 
 
 
 
Renormalization group equations:  rescaling of parameters under change of “cut-off” 
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Example:  The 2D Ising model at B=0    
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Ansatz 
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Critical point  )4ln(cosh
8
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Flow near fixed point: Linearization
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Generalized description of the RG approach: 
  

- rescale energy, momentum or distance cutoff:   
 
 

- Scale invariant functions are rescaled according to scaling dimension 
 
 

- All coupling constant are redefined under rescaling.    

- Repeated transformation form are possible (“group”)  
 

- Finally, find RG flow equations   where         

 
 


