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Abstract

Quantum computers and quantum simulators are two exciting �elds harnessing the extraordinary
properties of quantum-mechanical systems to solve problems which can practically not be computed
on classical computers and to understand fundamental physical models, respectively. Many di�er-
ent ideas exist for building quantum computers and simulators. One promising recent approach
is Rydberg quantum optics, a �eld combining the extraordinary control of light-matter coupling
established in quantum optics with the strong nonlinearities between highly excited Rydberg atoms.
The fundamental quasi-particles in this �eld, Rydberg polaritons, are suited for many applications
in quantum information science, for instance optical transistors or phase gates, that ultimately may
pave the way for all-optical quantum computation. Moreover, beyond these quantum information
applications Rydberg polaritons provide a promising platform for creating many-body states of
photons that may allow to investigate open problems of condensed-matter physics. Furthermore
they will allow to address entirely new questions beyond the standard realm of solid-state physics
such as the competition between interactions and single-particle dynamics with couplings to tailored
reservoirs.

In the present thesis I study few- and many-body physics of one-dimensional Rydberg polaritons. I
contribute to the understanding of the properties of interacting Rydberg polaritons and derive an
e�ective many-body theory of these. I propose and analyze a scheme to reach a regime of strongly
repulsive polaritons enabling the creation of correlated many-body states by a dynamical protocol.
Moreover, I investigate the regime of weak attractive interactions, where photonic molecules can be
observed.

The coherent control of light-matter interactions by electromagnetically induced transparency
(EIT) leads to the formation of slowly propagating quasi-particles, termed dark-state polaritons. Using
Rydberg states in this setup mediates strong interactions between individual photons, or interacting
Rydberg polaritons. In general, interacting Rydberg polaritons have to be described as open systems,
as the atomic interaction induces a coupling of dark states to a reservoir of bright states which are
subject to decay. In Chapter 2 I derive an e�ective master equation of Rydberg polaritons and analyze
conditions when the system can be described by a one-dimensional model. In an o�-resonant driving
scheme the open system can approximately be described by a unitary system, yielding many-body
theory of Rydberg polaritons. To verify this model I employ numerical wave-function simulations of
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Abstract

two excitations and compare them with exact diagonalization for two excitations.
In one spatial dimension the low-energy physics of a many-body Rydberg polariton system is

described by a moving-frame Luttinger liquid with strong repulsive interactions suggesting the
possibility of Wigner crystallization. I argue that this regime of strongly interacting polaritons
cannot be accessed in a typical continuous wave EIT setup. In Chapter 3 I show that a solution to
this limitation consists in using a time-dependent protocol, i.e., dynamically storing the Rydberg
polaritons in the medium. I employ numerical simulations to show that storage of Rydberg polaritons
is possible – despite the strong interactions. A time-dependent Luttinger liquid theory shows that a
dynamical protocol allows to generate a many-body state with quasi-long range correlations, i.e., a
crystalline order over a �nite length.

Finally, I consider the limit of weakly interacting Rydberg polaritons. Recent experiments have
shown the existence of bunching in this regime, indicating the existence of bound pairs of Rydberg
polaritons. Chapter 4 of the thesis contributes to the understanding of these experiments and
investigates the properties and time evolution of Rydberg polariton pair states by employing a Green’s
function approach and numerical wave-function simulations. The bunching can be explained by a
superposition of bound and scattering states. I investigate the interplay of these two contributions
giving rise to the possibility of �ltering bound and continuum states enabling the creation and
observation of photonic molecules.
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Kurzfassung

Quantencomputer und Quantensimulatoren sind zwei spannende Felder der Physik, die die außer-
gewöhnlichen Eigenschaften quantenmechanischer Systeme nutzbar machen, um Probleme zu lösen,
die praktisch nicht auf klassischen Computern berechnet werden können, bzw. um fundamentale
physikalische Modelle zu verstehen. Es existieren viele unterschiedliche Ideen, um Quantencomputer
und Quantensimulatoren zu bauen. Ein vielversprechender Ansatz ist die Rydberg-Quantenoptik,
ein Forschungsfeld, das die bemerkenswerte Kontrolle von Licht-Materie-Wechselwirkungen, die
in der Quantenoptik etabliert ist, mit starken Wechselwirkungen hochangeregter Rydberg-Atome
kombiniert. Die fundamentalen Quasiteilchen dieses Feldes, Rydberg-Polaritonen, eignen sich für viele
Anwendungen in der Quanteninformationstechnologie, z.B. optische Transistoren oder Phasengatter,
die letztendlich den Weg für rein-optische Quantencomputer bahnen könnten. Über Anwendungen
in der Quanteninformationstechnologie hinaus sind Rydberg-Polaritonen eine vielversprechende
Plattform, um Vielteilchenzustände von Photonen zu erzeugen, die es möglich machen, o�ene Pro-
bleme der Physik der kondensierten Materie zu untersuchen. Weiterhin werden sie erlauben, völlig
neue Fragestellungen über den Bereich der Festkörperphysik hinaus zu untersuchen, wie z.B. die
Konkurrenz von Wechselwirkungen und Einteilchen-Dynamik mit Kopplungen zu zugeschnittenen
Reservoirs.

In der vorliegenden Arbeit untersuche ich Systeme weniger Teilchen und Vielteilchensysteme
von Rydberg-Polaritonen. Ich trage zum Verständnis von Eigenschaften wechselwirkender Rydberg-
Polaritonen bei und leite eine e�ektive Vielteilchentheorie von Rydberg-Polaritonen her. Ich schlage
ein Schema vor, um ein Regime stark wechselwirkender Photonen zu erreichen, was es möglich
macht, mit einem dynamischen Protokoll korrelierte Vielteilchenzustände zu erzeugen. Weiterhin un-
tersuche ich das Regime schwacher attraktiver Wechselwirkungen, wo photonische Molekülzustände
beobachtet werden können.

Die kohärente Kontrolle von Licht-Materie-Wechselwirkungen durch elektromagnetisch induzierte
Transparenz (EIT) führt zur Bildung langsam propagierender Quasiteilchen, genannt Dunkelzustands-
polaritonen. Das Nutzen von Rydbergzuständen in diesem Setup vermittelt eine starke Wechselwir-
kung zwischen einzelnen Photonen, oder wechselwirkende Rydberg-Polaritonen. Im Allgemeinen
müssen wechselwirkende Rydberg-Polaritonen als o�ene Systeme beschrieben werden, da die atoma-
ren Wechselwirkungen eine Kopplung von Dunkelzuständen mit einem Reservoir von Hellzuständen
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Kurzfassung

erzeugt, welche zerfallen. In Kapitel 2 leite ich eine e�ektive Mastergleichung für Rydberg-Polaritonen
her und untersuche Bedingungen, wenn das System durch ein eindimensionales Modell beschrieben
werden kann. Unter nicht-resonantem Treiben kann das o�ene System näherungsweise durch ein
unitäres System beschrieben werden, was zu einer Vielteilchentheorie von Rydberg-Polaritonen
führt. Um das Modell zu veri�zieren, nutze ich numerische Wellenfunktions-Simulationen zweier
Anregungen, die ich mit exakter Diagonalisierung zweier Anregungen vergleiche.

In einer räumlichen Dimension wird die Niedrigenergie-Physik von Vielteilchen-Rydberg-Polariton-
Systemen durch eine Luttinger-Flüssigkeit mit starken repulsiven Wechselwirkungen beschrieben,
die die Möglichkeit einer Wigner-Kristallisation andeuten. Ich argumentiere, dass dieses Regime
stark wechselwirkender Polaritonen in einem typischen continuous wave-EIT-setup nicht erreicht
werden kann. In Kapitel 3 zeige ich, dass durch Nutzen eines zeitabhängigen Protokolls, d.h., durch
Speichern von Rydberg-Polaritonen im Medium, diese Limitierung überwunden werden kann. Ich
nutze numerische Simulationen, um zu zeigen, dass ein Speichern von Polaritonen trotz starker
Wechselwirkungen möglich ist. Eine zeitabhängige Luttinger-Theorie zeigt, dass ein dynamisches
Protokoll erlaubt, Vielteilchenzustände mit quasi-langreichweitigen Korrelationen zu erzeugen, d.h.,
eine kristalline Ordnung über eine endliche Distanz.

Im letzen Teil betrachte ich den Grenzwert schwach wechselwirkender Rydberg-Polaritonen. Neuere
Experimente zeigen, dass hier ein Bunching von Photonen existiert, was auf eine Existenz gebundener
Zustände von Rydberg-Polaritonen hinweist. Kapitel 4 trägt zum Verständnis dieser Experimente bei
und untersucht Eigenschaften und die Zeitentwicklung von Rydberg-Polariton-Paarzuständen durch
Anwenden eines Greensfunktions-Ansatzes und numerischen Wellengleichung-Simulationen. Das
Bunching kann durch eine Superposition von gebundenen und Kontinuumszuständen erklärt werden.
Ich untersuche die Wechselwirkung dieser zwei Beiträge, was es ermöglicht, photonische Moleküle
zu erzeugen und zu beobachten.
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Chapter 1

General introduction

The main subject of this thesis are Rydberg polaritons, interacting quasi-particles of propagating
light and stationary matter excitations. We investigate few- and many-body properties of Rydberg
polaritons. In this section we want to introduce the fundamental physical and theoretical concepts
underlying the results in the main text.

In Section 1.1 we will introduce the phenomenon of electromagnetically induced transparency
(EIT) [1], describing the lossless propagation of photons in a system of three-level atoms. In the case
of a (weak) quantized probe �eld, this can be explained in terms of dark-state polaritons [2, 3] as
a superposition of light and atomic excitation. These are massive quasi-particles and allow for an
explanation of slow light [4] and light storage [2]. In Section 1.2 we consider the interactions of
Rydberg states of atoms [5, 6]. By combining electromagnetically induced transparency with Rydberg
atoms, strong interactions between photons, respectively polaritons can be mediated [7]. These
so-called Rydberg polaritons, which will be introduced in Chapter 2, are the fundamental concept of
the present thesis giving rise to many interesting few-body e�ects, e.g. a strong suppression of the
correlation function at short distances [8]. In Chapter 2 we will derive a many-body theory of Rydberg
polaritons by a perturbative approach in tracing out the remaining degrees of freedom. This will be
done by following a standard approach of quantum optics to describe open systems [9]. In Section 1.3
we will introduce this approach and derive a master equation in Lindblad form by employing Born and
Markov approximations. Finally, Section 1.4 introduces the concept of bosonization [10], an e�ective
description of gap-less one-dimensional many-body systems, in particular photons propagating in
one dimension. This method will be employed in Chapter 3 to analyze the many-body dynamics in
Rydberg-polariton setups.

Remark. Throughout the thesis we set ~ = 1 unless otherwise noted.
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Chapter 1 General introduction

Ω
Ê

L

(a) Setup (b) Level scheme

Figure 1.1: (a) Schematic setup of an EIT experiment with a cloud of atoms of length L a control �eld
Ω and a probe �eld Ê . (b) E�ective atomic level scheme for EIT with Rydberg atoms in a
ladder con�guration. The probe �eld Ê is o�-resonantly coupled to the atomic transition
|g〉 ↔ |e〉 with a single-photon detuning ∆ and the (strong) control �eld Ω is driving the
transition |e〉 ↔ |r〉 with a resulting two-photon detuning δ.

1.1 Electromagnetically induced transparency and dark polaritons

The research �eld of quantum optics investigates the interaction of light �elds and atomic matter from
the quantum-mechanical single-particle level up to semi-classical descriptions. An important concept
of quantum optics is the e�ect of electromagnetically induced transparency (EIT) [1] describing
the lossless propagation of a light �eld in a medium of three-level atoms under the in�uence of an
additional control light �eld, rendering an otherwise opaque medium transparent.

In this section we �rst introduce the fundamental Hamiltonian governing the propagation of light
in a gas of three-level atoms dressed by a control �eld and derive equations of motion for electric
�eld and atomic operators. We will discuss the phenomenon of EIT and slow light for classical light
�elds in terms of the linear-response susceptibility and furthermore introduce the concept of dark-
and bright-state polaritons. These are light-matter quasi-particles that allow us to explain the e�ect
of light storage and, moreover, lead to an interacting many-body theory of photons by using Rydberg
interactions as will be subject of Section 2.2.

A more detailed derivation of the light-matter coupling will be given in appendix A.

1.1.1 Light-ma�er coupling and wave equation

In this section we want to derive the fundamental Hamiltonian describing the coupling of two light
�elds to three-level atoms as sketched in Figure 1.1. Speci�cally, we consider the propagation of a
probe �eld Êp in an ensemble of three-level atoms in ladder con�guration consisting of a ground state
|g〉, a (meta-) stable (Rydberg) state |r〉 and an excited state |e〉 that is subject to spontaneous decay
with rate γ. The probe �eld is a weak quantized �eld Êp(r, t) =

√
ωp

2ε0
εpÊ(r, t)ei(kpz−ωpt) + H.a.

with carrier frequency ωp and wave number kp. This �eld couples the atomic transition |g〉 ↔ |e〉
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1.1 EIT and dark-state polaritons

resonantly or o�-resonantly with a single-photon detuning ∆ = ωeg−ωp. Here ωµν = (Eµ−Eν)/~
denotes the transition frequency between atomic states |µ〉 and |ν〉. The control �eld is assumed
to be a classical coherent �eld Ec with carrier frequency ωc that is driving the transition |e〉 ↔ |r〉
with a single photon detuning ∆c = ωre − ωc. We denote the resulting two-photon detuning by
δ = ∆ + ∆c. The operators Ê†, Ê are normalized creation and annihilation operators of the probe
�eld and, in particular, we assume that they are slowly varying in time and space and obey bosonic
commutation relations, i.e.,

[Ê(r, t), Ê†(r′, t)] = δ(r− r′), (1.1)

cf. Eq. (A.4) in the appendix. The polarization and spin coherence are microscopically de�ned by spin
�ip operators σ̂µν = |µ〉 〈ν|. We assume that there are many atoms on length scales where the light
�eld varies. Consequently, we can introduce coarse-grained continuous atomic operators σ̂µν(r) by
averaging over a small volume centered at position r. These obey the commutation relations

[σ̂αβ(r), σ̂µν(r′)] =
δ(r− r′)
n(r)

[δβ,µσ̂αν(r)− δν,ασ̂µβ(r)], (1.2)

where n(r) denotes the continuous atomic density. See appendix A for details.

The interaction of an atom with a quantized or classical light �eld can in general be described
in dipole approximation by the Hamiltonian Ĥdipole = −d̂ · Ê, [11], where the dipole operator of
an atom is de�ned by d̂ =

∑
µ,ν ℘µν σ̂µν + H.a., with ℘µν being the dipole matrix element of the

transition |µ〉 ↔ |ν〉. Extending this interaction Hamiltonian to an ensemble of many three-level
atoms interacting with two �elds, a probe �eld and a classical control �eld and performing the
continuum limit and the rotating wave approximation [12] we arrive at the Hamiltonian

Ĥ =

∫
d3rn(r)

{
∆σ̂ee(r) + δσ̂rr(r)−

[
gÊ†(r)σ̂ge(r)e−ikpz + Ω∗σ̂re(r)e−ikcz + H.a.

]}
. (1.3)

Here we introduced the probe �eld coupling strength g =
√

ωp

2ε0
℘ge · εp and the control �eld Rabi

frequency Ω = ℘er · Ec. A more detailed derivation of (1.3) will be given in Appendix A. We
remark that the Hamiltonian (1.3) is a well established model of light-matter interactions in quantum
optics [11] and will together with the paraxial wave equation be the fundamental model for Chapters 2–
4 of the present thesis. The time evolution of the (quantized) probe light �eld is governed by Maxwell’s
wave equation, [

∂2

∂t2
− c2∇2

]
Êp(r, t) = − 1

ε0

∂2

∂t2
P̂ (r, t), (1.4)

where P̂ (r) = n(r)℘geσ̂ge(r) denotes the polarization of the medium in the continuum limit, where
we dropped the vectorial character of the �elds and considered only the polarization corresponding to
the |g〉 ↔ |e〉-transition, as can be justi�ed by a proper choice of probe and control �eld polarization,
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Chapter 1 General introduction

see appendix A for details. Making use of the fact that the probe �eld is almost monochromatic and
de�ning a slowly varying polarization P̂ = P̂ exp[i(kpz−ωpt)]+ H.a. leads to the truncated paraxial
wave equation [

∂

∂t
+ c

∂

∂z
− i

c

2kp
∇2
⊥

]
Ê(r, t) = i

√
ωp

2ε0
P̂(r, t) = ign(r)σ̂ge(r, t). (1.5)

Here we used the dispersion relation of the free probe �eld ωp = ckp and neglected the �rst and
second time derivatives of the slowly varying polarization P̂ . Furthermore, we absorbed a spatial
oscillation of σ̂ge with wave vector kp into the operator according to (A.32).

1.1.2 Heisenberg-Langevin equations

Let us now derive equations of motion for the atomic operators, where we want to include the
spontaneous decay of the excited atomic states. The state |r〉 is assumed to be a highly excited
Rydberg state throughout the remainder of the thesis, which typically is a metastable state. Thus the
decay of this state plays only a small role on typical experimental time scales and for simplicity we
neglect its decay in the following, unless otherwise mentioned. The probe �eld is a weak quantized
�eld, therefore we treat the equations of motion in linear response with respect to gÊ . To regard the
spontaneous decay of the excited state |e〉 we derive Heisenberg-Langevin equations of motion. After
a transformation of the operators σ̂ge and σ̂gr according to (A.32) to absorb a factor 1/

√
n(r) and

spatial oscillations with wave vector kp and kp − kc, respectively, we obtain �nally

∂

∂t
σ̂ge(r, t) = −Γσ̂ge(r, t) + ig

√
n(r)Ê(r, t) + iΩσ̂gr(r, t) + F̂ge(r, t),

∂

∂t
σ̂gr(r, t) = −iδσ̂gr(r, t) + iΩσ̂ge(r, t),

(1.6)

where Γ = γ + i∆ combines spontaneous decay rate and probe �eld detuning into an e�ective
complex detuning. F̂ge denotes a Langevin noise operator [13], which has to be added to preserve the
commutation relations of the decaying operators. This noise operator is δ-correlated in space and
time with zero expectation value,

〈F̂ge(r, t)〉 = 0,

〈F̂ †ge(r, t)F̂ge(r
′, t′)〉 = Dgeδ

3(r− r′)δ(t− t′),
(1.7)

where Dge is called di�usion coe�cient and can be determined using the dissipation-�uctuation
theorem [13]. Typically, the decay of the excited state |e〉 can be described by coupling to a thermal
(or vacuum) reservoir. In this case Dge ∝ γ. Since the noise results from excitation of the state |e〉,
which we have set 〈σ̂ee〉 = 0 in linear response, the Langevin noise operator can safely be neglected.
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1.1 EIT and dark-state polaritons

We note that in the derivation of equations (1.6) further approximations have been made that will
not be covered in detail here but will be presented appendix A.

1.1.3 Electromagnetically induced transparency

Electromagnetically induced transparency is a coherence e�ect that does not require quantum prop-
erties of the light �eld but can be explained with classical �elds. This makes it possible to under-
stand the e�ect in terms of the response of the medium, i.e. the susceptibility χ, that is de�ned
by the relation P = ε0χE. We get the equations of motion for the classical �elds readily from
the Heisenberg-Langevin equations of motion (1.6) by replacing the quantized probe �eld by a
classical �eld E = Ee−iωpt and the atomic spin-�ip operators by density-matrix coherences, i.e.,
σ̂µν → ρνµ = 〈ν|ρ̂|µ〉, for which we get the following equations of motion in linear response

∂tρeg = −Γρeg + idgeEe−iωpt + iΩρrg,

∂tρrg = −iδρrg + iΩρeg.
(1.8)

Solving these equations for the steady state and using the de�nition of the Polarization P = ndgeρeg

yields the susceptibility

χ(ωp) = −n|dge|2
ε0

δ

Ω2 + i(γ + i∆)δ
, (1.9)

as a function of the probe �eld frequency ωp, since both, the single photon detuning ∆ and the
two-photon detuning δ are dependent on ωp. In Figure 1.2 we display real and imaginary part of
the susceptibility as function of the probe �eld frequency in the case of zero and non-zero control
�eld detuning. In both cases the absorption vanishes for ∆ = −∆c, i.e. for δ = 0, indicating that the
medium becomes transparent.

Using the susceptibility (1.9) we can calculate the transmission coe�cient for the transmission of
probe light through a medium of length L under EIT conditions. According to Beer’s absorption law
the transmission coe�cient, de�ned as the ratio of input and output intensity, |E(0)|2 and |E(L)|2,
respectively,

T =
|E(L)|2

|E(0)|2
= e−2=[χ]kL ≈ 1− 2kL

nd2
ge

ε0

γδ2

(Ω2 − γ∆)2 + γ2δ2
, (1.10)

where in the last step we approximated the exponential function for small arguments, i.e. for small
=[χ]. Here we can directly read o� that the transmission coe�cient becomes unity, if the two-photon
detuning δ goes to zero and hence the absorption of the probe �eld vanishes. This phenomenon is
called electromagnetically induced transparency (EIT) and can be explained by an interference e�ect
of di�erent excitation paths. Note that this is a purely classical e�ect [14]. It has �rst been observed
by [15].
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Figure 1.2: Imaginary (solid blue lines) and real part (dash-dotted red lines) of the EIT susceptibility χ
as function of single-photon detuning ∆/γ. (a) Resonant driving, no control �eld detuning.
(b) Control �eld detuning ∆c = 2γ, the two-photon resonance is shifted to ∆ = 2γ. In
both cases the imaginary part vanishes on two-photon resonance, i.e. the medium becomes
transparent.

For zero control �eld detuning, we can rewrite Eq. (1.10) in the form

T (∆ ≈ 0) ≈ 1− ∆2

∆ω2
tr

, (1.11)

where ∆ωtr denotes the spectral width of the EIT transparency feature, the so-called EIT transparency
window,

∆ωtr =
1√
d

Ω2

γ
(1.12)

with d = 3
8πnλ

3kL being the resonant optical depth in absence of EIT.

Not only the imaginary part of the susceptibility becomes strongly modi�ed by the control �eld but
also the real part of the susceptibility, which is connected to the imaginary part by the Kramers-Kronig
relations [16]. As can be seen in Figure 1.2 the real parts of the susceptibility become very steep and
show for the resonant case a linear dispersion. Since the group velocity of the probe �eld is de�ned by
vg = c/(1 + ω

2
∂<χ
∂ω ) the real part of the susceptibility becomes very steep corresponding to a strong

reduction of the group velocity of the probe �eld, i.e. vg � c. This phenomenon is called slow light,
pointed out in [4] and observed in [17, 18] and led to the observation of a light speed reduction of
17 m s−1 [19].
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Figure 1.3: Dispersion relation of electromagnetically induced transparency obtained by diagonalizing
the matrix in Eq. (1.13) for g

√
n = Ω, γ = ∆ = δ = 0. The branch corresponding to the

dark-state polariton is given by the blue solid curve in the middle, which is exhibits a slow,
linear dispersion in the vicinity of k = kp, as indicated by the dashed red line.

1.1.4 Dark-state polaritons

As we have seen in the previous section, the dressing of an ensemble of three-level atoms with a
control �eld results in a strongly modi�ed optical response for a probe �eld. In particular, the group
velocity of light propagating in such a medium can become very small compared to the vacuum
speed of light, giving rise to slow light and even allowing for the storage of light pulses, which will
be introduced in the next section. These e�ects can be understood by introducing quasi-particles
consisting of light and matter excitation, the so-called dark-state polaritons. The strong coherent
admixture of massive and stationary atomic excitation to the propagating light �eld then leads to a
strong reduction of the group velocity. In the following we want to introduce these quasi-particles.
See appendix A for details.

For simplicity we will assume a perfectly one-dimensional setup of light-�elds propagating through
a cloud of atoms as sketched in Figure 1.1(a). Then the truncated paraxial wave equation (1.8) and
the Heisenberg-Langevin equations (1.6) reduce to one spatial dimension and the transversal mass
term in the wave equation vanishes. Together these equations form a closed set of equations for the
electromagnetic and atomic �eld operators, the so-called Maxwell-Bloch equations (see also Eq. (A.33)
in Appendix A), that can be written in the form of a Schrödinger equation with a non-Hermitian
Hamiltonian,

i
d

dt

 Êσ̂gr

σ̂ge

 =

 −ck 0 −g√n
0 δ −Ω

−g√n −Ω −iΓ


 Êσ̂gr

σ̂ge

 , (1.13)
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Chapter 1 General introduction

where we applied a Fourier transform of the space coordinate z according to f(z) =
∫

dk e−ikzf(k).
Next, we make a canonical transformation, rotating Ψ̂ = cos θÊ − sin θσ̂gr and Φ̂ = sin θÊ +

cos θσ̂gr, [2]. As can easily be calculated, Ψ̂ is a zero energy eigenstate of the matrix in Eq. (1.13) in
the case ck = δ = 0, i.e., de�nes a dark-state polariton of the system. Φ̂ on the other hand denotes a
bright state polariton. The mixing angle θ = atan(g

√
n/Ω) characterizes the mixture of Ê and σ̂gr

in the polaritons. We now want to analyze the e�ect of k and δ on the dynamics of the dark-state
polariton and treat them as a perturbation. Furthermore, we want to allow for a time-dependence of
the mixing angle, which introduces a coupling between Ψ̂ and Φ̂, when transforming the equation of
motion Eq. (1.13) and can also treated as perturbation. In second order perturbation theory we get
the result

i
d

dt
Ψ̂ =

(
−vgk + δ sin2 θ

)
Ψ̂

− i[∂tθ + sin θ cos θ(ck + δ)]2

[
Γ

Ω2
e�
− 4γ

|Γ|2 + 4Ω2
e� + |Γ2 − 4Ω2

e�|

]
Ψ̂,

(1.14)

see Appendix A for details. vg = c cos2 θ denotes the group velocity of the dark state polariton. As in
k-space this is only an ordinary di�erential equation, it can easily be solved by integrating the time
variable. Considering the case, where θ(t) = const. and δ = 0, the �rst order perturbation yields the
result Ψ̂(k, t) = Ψ̂(k, 0) exp{ivgkt}, which transforms to the equation

Ψ̂(z, t) = Ψ̂(z − vgτ, t− τ), (1.15)

in real space, i.e., that the dark-state polaritons propagate form-stable with the group velocity vg.
A �nite two-photon detuning leads to further corrections that we consider in greater detail in the
appendix or can be found in the literature, see e.g. [20, 21]. In the case ∆ � γ we can simplify
Eq. (1.14) to the form

i
d

dt
Ψ̂ =

[
δ sin2 θ

(
1 +

δ∆ cos2 θ

Ω2
e�

)
− kvg

(
1− 2 sin2 θ

δ∆

Ω2
e�

)
+
vgc∆ sin2 θ

Ω2
e�

k2

]
Ψ̂, (1.16)

i.e., a Schrödinger equation with unitary time-evolution. Here the �rst term is a constant energy
o�set, the second term a drift term with a modi�ed group velocity and the last term describes a kinetic
energy with an e�ective mass

m‖
−1 = 2c2 sin2 θ cos2 θ∆

Ω2
e�

≈ 2vgLabs
∆

γ
, (1.17)

where Labs = cγ/g2n denotes the resonant absorption length of the medium in absence of electro-
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1.1 EIT and dark-state polaritons

magnetically induced transparency.

Length scale.
In deriving the result (1.16) using perturbation theory we assumed that

c|k| � Ω2
e�
|Γ| (1.18)

has to be ful�lled for all relevant k modes of the polariton �eld Ψ̂. We note that this condition sets a
lower limit for the characteristic length scale of the dark-state polaritons

ldsp � c
|Γ|
Ω2

e�
≈ |∆|

γ
Labs, (1.19)

where in the second step we assumed |∆| � γ and Labs denotes the resonant absorption length of
the medium in absence of EIT.

1.1.5 Light storage

In the previous chapter we have derived an e�ective Schrödinger equation for the time evolution
of dark-state polaritons under constant EIT driving conditions. However, Eq. (1.14), describes also
time-dependent driving and explains dynamics of EIT light storage [3]. Recalling the de�nition of
the dark-state polariton, namely Ψ̂ = cos θÊ − sin θσ̂gr, we see that changing the mixing angle θ(t)
dynamically, allows to turn an initial light pulse continuously into a stationary spin wave. Doing this
adiabatically, the pulse is at all times described by the ground-state of the model, i.e., the dark-state
polariton. To illustrate this, we show a numerical solution of Eq. (1.13) for a single excitation wave
function in Fig. 1.4. As can be observed, an initial polariton consisting mostly of photonic excitation
that propagates with the velocity vg, gets turned into a stationary spin excitation and then back
to photonic excitation. The rightmost picture clearly shows that the dynamics is at all times well
described by a dark-state polariton wave function.

In a storage protocol, the corrections arising due to ∂tθ become relevant. Considering the simple
case δ = ∆ = 0, i.e., single- and two-photon resonance, Eq. (1.14) becomes

∂

∂t
Ψ̂ = ivgkΨ̂− γ

2g2n
sin2 θ[(∂tθ)

2 + sin θ cos θck∂tθ + sin2 θ cos2 θc2k2]Ψ̂. (1.20)

This equation describes the time evolution of the dark polaritons with losses induced by non-adiabatic
storage. Introducing a characteristic time Tstor for the storage process, setting a bound for the relative
change of the mixing angle, Tstor ≤ θ/∂tθ allows to determine an adiabaticity condition from Eq. (1.20).
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Figure 1.4: Numerical simulation of storage of a dark-state polariton pulse. Intensity of (a) electric �eld
Ê , (b) atomic coherence σ̂gr and (c) dark-state polariton Ψ̂ = cos θÊ −sin θσ̂gr components
in arbitrary units. The initial group velocity is vg(0) = 0.8 c.

If we assume slow light, i.e., θ ≈ cos θ, sin θ ≈ 1 and set ∂tθ = θ/Tstor, adiabaticity requires

Tstor �
{
Labs
c
,
vg

c

}
, (1.21)

where Labs denotes the resonant absorption length in absence of EIT. In the case of a setup with a
�nite single-photon detuning |∆| � γ, this condition has to be multiplied by |∆|/γ, see also the
condition (1.19).

1.2 Rydberg atoms

In this section we want to give a brief introduction into Rydberg states of atoms, in particular their
extraordinary properties and strong interactions compared to low-lying states of atoms. Detailed
reviews about Rydberg atoms and their application in physics can be found in [5, 6]. We focus on
alkali atoms like Rb and Cs as they possess only single valence electrons and are widely used in the
relevant experiments. The term Rydberg atom denotes atoms with a highly excited valence electron
which approximately behave like hydrogen atoms, i.e., their energies for a state with principal and
angular quantum numbers n and l, respectively, are given by the Rydberg formula for the hydrogen
atoms

En,l = − R∞
(n− δl(n))2

. (1.22)
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1.2 Rydberg atoms

|nP〉

|nS〉

|n′P〉
atom A atom B

Vdd(r)

EnP

EnS

En′P

En′P + ∆

(a) Sketch of dipole-dipole interaction. (b) Two-body interaction strengths.

Figure 1.5: (a) Sketch of dipole-dipole interaction between two Rydberg atoms A and B with single
interaction channel. (b) Two-body interaction strengths for ion, ground state atom, 100s
Rb atom. Taken from [6].

Here R∞ denotes the Rydberg constant 1 and δl(n) the quantum defect that is a slowly varying
function of the principal quantum number n [6]. The dipole moments of Rydberg atoms scale as
∼ n2 and the lifetime as ∼ n3, resulting in long-lived states suitable for applications in quantum
information, slow light and light storage, as will be considered in this thesis. Moreover, as they are
highly excited states one would need UV light to directly excite Rydberg levels from the ground state.
For EIT setups we are interested in two-photon excitation schemes that are typically in the visible
light range [23]. The dipole matrix elements for transitions between the ground state |φ0〉 and a
Rydberg state |φr〉,

〈φ0|eri|φr〉 = 〈n0, l0, j0,m0|er|n, l, j,m〉 (1.23)

become smaller with increasing n, as the overlap between the ground state and the spatially extended
Rydberg state becomes smaller. As can be seen from Fermi’s golden rule this results in an increasing
radiative lifetime of the Rydberg state, scaling as τ ∼ n3. Hence, the Rydberg states are very long-lived
metastable states and we assume them to be stable on the time scales considered throughout the
present thesis.

The dipole matrix element between neighboring Rydberg states, i.e., states of the same principle
quantum number n, scales as

〈nP|er|nS〉 ∝ n2 (1.24)

leading to very large polarizabilities scaling as α ∼ n7. The large polarizabilities of Rydberg atoms
make them strongly susceptible to electrical �elds and leads to strong mutual interactions between
Rydberg states in the absence of external �elds. At large inter-atomic distances, |r| � n2a0, of two

1R∞ = 10 973 731.568 508(65) m−1, [22]
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Chapter 1 General introduction

Rydberg atoms A and B, the dipole-dipole interaction is given by

V̂dd(r) =
e2

4πε0

1

|r|3
[ra · rb − 3(ra · r̂)(r̂ · rb)] , (1.25)

where r̂ = r/|r| and ra and rb denote the distances of the respective electrons from the atomic
cores. We are interested in the coupling of a Rydberg pair state |φ〉 = |nlj, nlj〉 to other pair states
|ψ〉 = |na, la, ja, nb, lb, jb〉 with the coupling energy 〈ψ| V̂dd |φ〉 as sketched in Figure 1.5(a). We do
not want to consider state exchange processes between |φ〉 and |ψ〉 but rather the energy shift acting
on the pair state |φ〉 in presence of neighboring states |ψ〉 due to dipole-dipole interaction. While in
general a manifold of neighboring levels contributes to this level shift, it has been shown [24] that
the shift is dominated by only two neighboring states, i.e., a single channel. To derive the interaction
potential we choose a Rydberg state |φ〉 = |nS, nS〉 with the neighbors nP and (n− 1)P, such that
we can write the pair state |ψ〉 = 1√

2
(|nP, (n− 1)P〉 + |(n− 1)P, nP〉) as shown in Figure 1.5(a),

when choosing n′ = n− 1. For simplicity we neglect the degeneracy of these states, a more rigorous
derivation can be found in [6, 25]. We denote the energy mismatch of these states (for r = ∞) by
∆ = Ena,la + Enb,lb − 2En,l. In this single-channel approximation the interaction Hamiltonian is
given by the operator (

∆ Vdd(r)

V †dd(r) 0

)
, (1.26)

acting on the vector of states (|φ〉 , |ψ〉)t. Diagonalizing this operator leads to the eigenenergies

E± =
∆

2
±
√

∆2

4
+ V̂ †dd(r)V̂dd(r) (1.27)

Two regimes can be distinguished. If V̂dd(r) � ∆, i.e., for small distances (or the special case of
vanishing ∆) the interaction energy is given by V̂dd ∼ |r|−3, which is the regime of the so-called
Förster resonance. We are, however, interested in a second regime, where V̂ (r)� ∆, the so-called
van der Waals regime. Here the relevant pair-state energy is approximately

E(r) = −Vdd(r)2

∆
= −C6

r6
, (1.28)

scaling as |r|−6where C6 denotes the van der Waals interaction strength. As Vdd(r) ∼ n4 and
∆ ∼ n−3 the interaction strength scales like n11, i.e., becomes very strong for large n. This is shown
in Figure 1.5(b). For our choice of states the interaction is isotropic, which is the relevant case for
the present thesis, however, in general the interaction can be anisotropic as has been considered for
binary interactions in [24].

Finally, when neglecting coupling between di�erent Rydberg states, the interaction Hamiltonian of
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1.3 Open systems

two atoms at positions r1 and r2 can be written as

Ĥ = σ̂(1)
rr V (r1 − r2)σ̂(2)

rr , (1.29)

where σ̂(j)
rr = |r〉j 〈r|j denotes the projector onto the Rydberg state of atom j.

1.3 Open systems

Time evolution of quantum mechanical systems, as described by the Schrödinger equation, are unitary
processes and reversible in time [26]. However, real systems have vast numbers of degrees of freedom
such that it is impossible to track all of them microscopically and irreversible processes can be
observed in many experiments. For instance, spontaneous decay of an excited atom or absorption
of a photon are of interest in quantum optics [11]. These and other irreversible processes can be
described by introducing the concept of open systems [9], i.e., systems that are in contact with an
environment or reservoir, that has a very large or even in�nite number of degrees of freedom. Under
certain assumptions these degrees of freedom can be traced out leading to an equation of motion
describing the e�ective non-unitary time evolution of the system. This equation is called master
equation [9].

1.3.1 System-plus-reservoir approach

The standard approach in quantum optics to describe an open system starts in splitting the full Hilbert
space into a system, the degrees of freedom of interest, and a reservoir, containing all degrees of
freedom of the environment. These environment degrees of freedom will subsequently be traced out,
leading to an e�ective equation of motion for the system [9].

We start with the Hamiltonian in the Schrödinger picture, that has been split into a term containing
the system degrees of freedom, a term containing the reservoir degrees of freedom and a term that
contains the coupling of both,

Ĥ = ĤS + ĤR + ˆ̃Hsr (1.30)

The dynamics of the full system is governed by the von Neumann equation of the density operator
χ̃ of the full system. We transform to an interaction picture with respect to ĤS + ĤR, according to

χ(t) = e
i
~ (ĤS+ĤR)tχ̃(t)e−

i
~ (ĤS+ĤR)t (1.31)

Ĥsr(t) = e
i
~ (ĤS+ĤR)t ˆ̃Hsre

− i
~ (ĤS+ĤR)t, (1.32)
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leads to the von Neumann equation in the interaction picture

∂

∂t
χ(t) = − i

~

[
Ĥsr(t), χ(t)

]
. (1.33)

Formally integrating this equation yields

χ(t) = χ(0)− i

~

∫ t

0
dτ
[
Ĥsr(τ), χ(τ)

]
(1.34)

and reinserting this into Eq. (1.33) leads to

∂

∂t
χ(t) = − i

~

[
Ĥsr(t), χ(0)

]
− 1

~2

∫ t

0
dτ
[
Ĥsr(t),

[
Ĥsr(τ), χ(τ)

]]
. (1.35)

This seems to be a more complex form of Eq. (1.33) but its form allows us to derive a simpli�ed
e�ective equation of motion for the system part of the density matrix only, when making certain
assumptions.

First, we assume that initially for t = 0 system and reservoir are uncorrelated, i.e., χ(0) = χ̃(0) =

ρ(0) ⊗ ρR(0) and, moreover, that the expectation value of the coupling Hamiltonian with respect
to the initial reservoir state vanishes at all times, i.e., trR[ρRĤsr(t)] ≡ 0. The latter assumption is
not essential to the derivation but is usually ful�lled in typical systems and simpli�es the further
discussion.

Applying a partial trace over the reservoir degrees of freedom yields an equation of motion for the
density matrix of the system operator, ρ(t) = trR χ(t),

∂

∂t
ρ(t) = − 1

~2

∫ t

0
dτ trR

{[
ĤRS(t),

[
ĤRS(τ), χ(τ)

]]}
. (1.36)

To simplify this equation we perform the Born approximation and Markov approximation. Typically
the reservoir has a large (in�nite) number of degrees of freedom such that the coupling of system and
reservoir only a�ects system degrees of freedom. The reservoir degrees of freedom are thus stable
and we can assume that the reservoir stays in its initial equilibrium-state ρR(t) ≈ ρR(0). Note that
the free evolution of the reservoir has been transformed away by transforming to the interaction
picture. This is called the Born approximation. If additionally the initial state has no system-reservoir
correlations, as assumed above, the full state can be written as χ(t) = ρ(t)⊗ ρR(0).

Equation (1.36) is still an integro-di�erential equation. A substantial simpli�cation arises, if we
assume that the reservoir coupling destroys the memory of the system. Then we can replace ρ(τ) by
ρ(t) in Eq. (1.36). This is called the Markov approximation and leads �nally to the master equation in
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Born-Markov approximation,

∂

∂t
ρ(t) =

1

~2

∫ t

0
dτ trR

{[
ĤRS(t),

[
ĤRS(τ), ρ(t)⊗ ρR(0)

]]}
. (1.37)

As will be exempli�ed in the following, the Markov approximation is justi�ed, if reservoir correlations
decay on time scales that are much shorter than the characteristic time scale governing the time
evolution of the system.

1.3.2 Master equation

We consider now a simple example of a system described by bosonic operators âi coupled to a
reservoir with operators b̂j by a coupling Hamiltonian with the interaction picture representation

ĤSR(t) = ~
∑
j

â†j b̂j + H.c. (1.38)

Inserting this into the master equation and using cyclic permutations in the trace yields

∂

∂t
ρ(t) =

∑
ij

∫ t

0
dτ
[
〈b̂ib̂j〉R (â†jρâ

†
i − â

†
i â
†
jρ) + 〈b̂†i b̂

†
j〉R (âjρâi − âiâjρ)

+ 〈b̂†i b̂j〉R (â†jρâi − âiâ
†
jρ) + 〈b̂ib̂†j〉R (â†jρâ

†
i − â

†
i âjρ) + H.c.

]
(1.39)

where all operators with index i are to be evaluated at time t and operators with index j at time τ ,
respectively, and 〈·〉R denotes the expectation value with respect to the reservoir. In the following
we assume for simplicity that the reservoir operators ful�ll bosonic commutation relations, i.e.,
[b̂i, b̂

†
j ] = δij , and, moreover, that all anomalous reservoir correlation functions vanish at all times,

i.e., 〈b̂ib̂j〉R = 0. The Markov approximation is justi�ed, if the reservoir operators are δ-correlated in
time, i.e., if

〈b̂†i (t)b̂j(τ)〉R := tr
{
ρR(0)b̂†i (t)b̂j(τ)

}
= Γijδ(t− τ)

〈b̂†j(τ)b̂i(t)〉R = Γ∗ijδ(t− τ).
(1.40)

Then we can replace the upper limit of integration in Eq. (1.39) by∞. Setting

Γij = γij + i∆ij = γji + i∆ji (1.41)

we get �nally the equation of motion

∂

∂t
ρ(t) = − i

2

∑
ij

∆ij

[
â†i âj + H.c., ρ(t)

]
+

1

2

∑
ij

γij

[
2âiρâ

†
j − â

†
j âiρ− ρâ

†
j âi

]
. (1.42)
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This is the Born-Markov master equation in Lindblad form. This form of the master equation is of
special interest, as it has certain properties as follows. First, throughout a time evolution according to
Eq. (1.42) the total probability is conserved, i.e., tr ρ(t) = 1 at all times, which can be shown easily by
using the invariance of the trace under cyclic permutations. Second, if γij ≥ 0, the positivity of the
density operator is conserved at all times, i.e.,

〈ψ|ρ(t)|ψ〉 ≥ 0 (1.43)

for all times t and states |ψ〉. These properties ensure that the time evolution of a density operator
always yields a density operator. Lastly, the Lindblad dynamics conserves the complete positivity of
the density operator, i.e., not only ρ(t), but in addition the extended density matrix upon an arbitrary
completion with an ancillary system remains positive.

A master equation in Lindblad form can be derived for many well-known problems of quantum
optics. Prime examples are the coupling of an harmonic oscillator to a reservoir representing the
coupling of an optical cavity to external light �elds or the coupling of a two-level atom to a harmonic
oscillator. Generalizing Eq. (1.42) we write

d

dt
ρ = −i[Ĥ, ρ]− 1

2

∑
µ

{
L̂†µL̂µρ+ ρL̂†µL̂µ − 2L̂µρL̂

†
µ

}
, (1.44)

for L̂µ denotes an arbitrary system operator, called Lindblad operator. These are the generators of
the dissipative dynamics.

1.3.3 �antum trajectories

Instead of solving the Lindblad master equation (1.44) with the density matrix formalism, which is
describing an ensemble average over many individual realizations of a quantum system, one can
also calculate the time evolution of pure states such that it reproduces the master equation as a
stochastic average. This is the principle of the quantum trajectory (or Monte-Carlo wave function)
approach [27–29]. The time evolution is governed by the master equation (1.44), which can be written
in the form

d

dt
ρ = −i

(
Ĥe�ρ− ρĤ†e�

)
+
∑
µ

L̂µρL̂
†
µ, (1.45)

with a non-Hermitian e�ective Hamiltonian

Ĥe� = Ĥ − i
∑
µ

L̂†µL̂µ. (1.46)
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Here the L̂µ are Lindblad operators, generating the dissipative dynamics. Evolving a pure state |ψ〉
under this non-Hermitian Hamiltonian for a time dt leads to a decay of the norm of the wave function,
in �rst order in dt given by

〈ψ(t+ dt)|ψ(t+ dt)〉 ≈ 1− dp, dp = dt
∑
µ

〈ψ(t)|L̂†µL̂µ|ψ(t)〉 , (1.47)

where dt is chosen, such that dp � 1. The probability 1 − dp gives the probability that the state
remains in |ψ(t+ dt)〉 evolved under the e�ective Hamiltonian. Then with a probability of dp the
state does not remain but undergoes a projection,

|ψ〉 =
L̂µ |ψ〉
||L̂µ |ψ〉 ||

, (1.48)

i.e., a quantum jump [30]. Particularly, for multiple Lindblad operators L̂µ, dp =
∑

µ dpµ is a
probability distribution, summing up all probabilities of the di�erent jumps. In the limit of dt→ 0

the time evolution appears as the continuous time evolution of the state ψ interrupted by jumps.
Performing this time evolution many times while calculating the expectation values of observables
throughout the time evolution and stochastically averaging these lead to the same result.

A direct numerical implementation of this algorithm by evolving with a �xed step size dt and
evaluating the probabilities at every step is quite cumbersome. In typical implementations thus, the
time at which a jump occurs is randomly selected [31] and well-established numerical methods can
be used to calculate the time evolution under the e�ective Hamiltonian (1.46) between two jumps.

Note that using this method has the advantage that instead of the density matrix only the time
evolution of wave functions has to be calculated. Thus a much larger system size can be calculated,
when storage is the limiting factor in a numerical implementation. However, that comes at a cost of
computational time, as the stochastic averaging requires many individual trajectories.

1.4 Bosonization

In this section we want to introduce the mathematical technique of Bosonization, a method that allows
to solve any gapless interacting quantum system in (1+1) dimensions by mapping it to a system of
massless, noninteracting bosons, called the Luttinger liquid. Extensive introductions can be found in
the literature, for example in the book by Giamarchi [10] as well as [32–34] among many others. In
this section we follow the notation of [10] building on the phenomenological derivation introduced
in [35].

One-dimensional quantum many-body systems with a gapless spectrum can be described in terms
of their low-energy excitations, by using the technique of bosonization. This method is an approach
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Chapter 1 General introduction

describing the low-energy physics of a one-dimensional model by linearizing the spectrum around
the Fermi energy and mapping the model to a quadratic bosonic model, called the Luttinger liquid
model. This makes it possible to solve interacting problems nonperturbatively. The Luttinger liquid is
fully characterized by two parameters, the speed of sound vs, i.e., the characteristic velocity of the
system and the dimensionless Luttinger parameter K , that depend on the microscopic model. The
Luttinger liquid Hamiltonian is given by

ĤLL =
1

2π

∫
dx vsK

[
∇θ̂(x)

]2
+
vs

K

[
∇φ̂(x)

]2
. (1.49)

Here the �eld Π̂ = 1
π∇θ̂ is the canonically conjugate momentum to φ̂, i.e., they obey the commutation

relation [
φ̂(x), Π̂(y)

]
= iδ(x− y), (1.50)

where, phenomenologically,∇φ̂ describes density �uctuations while Π̂ describes phase �uctuations.
Hamiltonian (1.49) is the most general Hamiltonian describing the low-energy properties of a massless
one-dimensional system. The bosonization method maps a one-dimensional model to the Hamil-
tonian (1.49). The parameters vs and K are dependent on the microscopic model. Introducing an
interaction only leads to a renormalization of the parameters. A representation of the original physical
�elds in terms of the new bosonized �elds can be given by

Ψ̂†(x) =
√
ρ̂(x)e−iθ̂(x), (1.51)

ρ̂(x) =

[
ρ0 −

1

π
∇φ̂(x)

]∑
p

ei2p(πρ0x−φ̂(x)), (1.52)

where p is an integer.

The correlation functions of the Luttinger liquid are universally determined by the K parameter.
For the ground state of a Luttinger liquid the �rst-order correlation function is given by

〈Ψ̂†(x)Ψ̂(0)〉 = ρ0A1

(
1

x

) 1
2K

(1.53)

and the density-density correlation function is given by

〈ρ̂(x)ρ̂(0)〉 = ρ2
0 −

K

2π2

1

x2
+A2ρ

2
0 cos(2πρ0x)x−2K + ρ2

0A4 cos(4πρ0x)x−8K + . . . (1.54)

Comparing both correlation functions one �nds that the asymptotic behavior of the Green’s function
is a power law with exponent 1

2K while the density-density correlation function is a power law with
exponent 2K . Thus, the point K = 1/2 marks a special point, indicating a cross-over from a regime
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K

CDW

1/2 1

hard-core SF

∞

free bosons

Figure 1.6: Sketch phase diagram for Luttinger liquid of bosons, cf. [10].

dominated by super�uid (SF) correlations forK > 1/2 to a charge-density wave (CDW) forK < 1/2.
The limits of these regimes are the limit of free bosons for K →∞ and a Wigner crystal for K → 0.
The point K = 1 corresponds to the case of hard-core interacting bosons, the so-called Tonks gas,
which is dual to free fermions. These observations can be put into a sketch phase-diagram, which we
show in Figure 1.6. Note that these correlation functions get modi�ed for non-zero temperature [34].
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Chapter 2

Few-body quantum physics of Rydberg
polaritons

Photons are well established as qubits, i.e. carriers of information in quantum science. Their noninter-
acting nature on the one hand makes them ideally suitable for quantum communication applications
but on the other hand makes it hard to perform computational operations directly with photonic
qubits. Instead one has to use di�erent physical realizations, for instance superconducting qubits [36],
for computation operations and convert them to photonic qubits for communication [37]. However,
these conversion steps are di�cult to be made e�cient and lead to loss of �delity.

From this perspective it seems desirable to take another path and engineer interactions between
photons leading towards an all-optical realization. The high speed of an all-optical information
processing is moreover of large importance, also in classical communication.

One possible approach to engineer interactions is used in Rydberg quantum optics [7], an emerging
research �eld in physics that utilizes the theoretical knowledge and experimental expertise of quantum
optics allowing for an extraordinary control of light-matter coupling and applies it to work with
Rydberg states of atoms which give access to strong interaction potentials [5]. The long life-times
and strong, non-local interactions make Rydberg states well suited for use in quantum information
science [6]. Including these states in a setup of electromagnetically induced transparency [1] allows
to mediate strong and long-range interactions between photons [38]. This so-called Rydberg EIT

paves the way to address problems ranging from quantum communication to quantum computation
and even beyond quantum information.

The �rst experiment to implement Rydberg EIT was done by Pritchard et al., [39] and was quickly
understood theoretically [40] using Monte-Carlo sampling of atom dynamics and explained by
introducing interacting superatoms [41].

While these �rst publications considered the attenuation of a classical probe �eld propagating
through an atomic medium with Rydberg states, subsequent experiments extended the research
to quantized light �elds. On a quantum level, i.e., for a quantized probe �eld of few photons, the
interactions lead to an extension of the fundamental model of dark-state polaritons [2, 3] to a theory
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Chapter 2 Few-body quantum physics of Rydberg polaritons

of interacting quasi-particles termed Rydberg polaritons. These have been shown to exhibit spatial
correlations, a strongly avoided volume for short relative distances [8], as has been predicted by
Gorshkov et al. using two-photon wave function simulations [42]. These �rst results showed that
Rydberg polaritons are a promising setup for building optical quantum-computation devices and
since then a single-photon switch [43] and all-optical transistors have been demonstrated by multiple
groups [44, 45] and a CZ-gate [46] has been proposed leading to the possibility of all-optical quantum
computation [47].

In this chapter we consider few-body quantum physics of Rydberg polaritons. We rigorously
analyze the experimental setup of sending a quantized probe light �eld through a three-dimensional
atomic Rydberg medium under conditions of EIT. We derive conditions, when the setup can be
described by a one-dimensional model, which is the case when the size of the Rydberg blockade
becomes larger than the transversal beam parameter. For this one-dimensional model we employ
a perturbative system-plus-reservoir approach to trace out the bright state degrees of freedom to
derive a theory that allows to describe the model in terms of a single quantum �eld, namely Rydberg
polaritons. In doing so we arrive at a master equation governing the time evolution of Rydberg
polaritons. We discuss the individual contributions to the dynamics described by the master equation
and �nd conditions where the dissipative dynamics can be approximated by a unitary dynamics, i.e.,
by an e�ective Hamiltonian.

Finally, we use numerical simulations to compute the time evolution of few-body wave-functions
under the full Heisenberg-Langevin equations to verify the e�ective polariton picture.

The results presented in this chapter are summarized in reference [Moos2015], which was a collabo-
ration of Razmik Unanyan, Michael Fleischhauer and myself, with contributions from Michael Höning
and numerical DMRG results provided by Dominik Muth. In particular all analytical calculations and
the wave-function simulations were done by me.

2.1 Rydberg polaritons in one dimension

One-dimensional systems are of great interest, as the reduced dimensionality typically corresponds to
an enhancement of quantum �uctuations due to correlations [10]. Typically, perturbative descriptions
break down and non-classical states beyond mean-�eld description become relevant. Propagating
photons can be created in single laser modes [48], and thus can be described by one-dimensional mod-
els. This holds true for polaritons due to their large transversal mass [49, 50]. This changes, however,
when interactions have to be taken into account, which is the case for Rydberg polaritons [41]. Here,
a coupling between di�erent transversal modes is induced by photon-photon scattering. Although a
restriction of transversal modes and a con�nement to one dimension can be achieved by performing
the experiment inside hollow core �bers [51–53], where excited transverse modes are energetically
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2.1 Rydberg polaritons in one dimension

separated, so far most Rydberg polariton experiments use three-dimensional atomic clouds [8, 39, 44,
45]. In the following we analyze the propagation of Rydberg polaritons in such three-dimensional
setups and derive conditions where the descriptions by a one-dimensional model remains valid, even
in the interacting case.

2.1.1 Paraxial light propagation

As introduced in Section 1.1, the propagation of a weak monochromatic quantized probe light �eld
in an atomic medium under conditions of EIT is described by the truncated paraxial wave equation,
Eq. (1.5), (

∂

∂t
+ c

∂

∂z
− i

c

2kp
∇2
⊥

)
Ê(r, t) = ig

√
nσ̂ge(r, t). (2.1)

To derive a one-dimensional model we assume a cylindrical symmetry of the experimental setup. In
a cylindrical setup the transverse mode functions of laser beams are the Laguerre-Gaussian modes,
typically denoted TEMµν modes [48, 54]. The width w(z) of the Gaussian beam pro�le is given
by [54]

w(z) = w0

√
R(z)

z
, R(z) = z

(
1 +

z2

z2
R

)
, (2.2)

measured in distance z from the focus point of the laser, R(z) gives the radius of curvature along z
and zR = πw2

0/λp denotes the Rayleigh length, indicating the distance from the focus point, where
the beam width is a factor of

√
2 larger compared to the beam waist w0 = w(0).

We decompose the probe �eld into the transverse mode functions, denoted by upl(r, ϕ, z), as

Ê(r, t) =
∑
pl

upl(r, ϕ, z)Êpl(z, t). (2.3)

The mode functions upl(r, ϕ, z) are eigensolutions of the transverse Laplace’s equation in two dimen-
sions, ∇2

⊥upl(r, ϕ, z) = 0, for �xed z given by [55]

upl(r, ϕ, z) =
Cpl
w(z)

s|l|(r, z)e−r
2/w2(z)+ilϕe−ikpr2/2R(z)ei(2p+|l|+1)ζ(z)L|l|p [s2(r, z)], (2.4)

where s(r, z) ≡
√

2r/w(z) and ζ(z) = arctan(z/zR) denotes the so called Gouy phase of the
beam [48, 54]. The functionsLlp are the associated Laguerre polynomials [56, 57],Cpl is a normalization
constant and p and l denote the radial and azimuthal indexes of the mode functions, respectively. In
Figure 2.1 we show a cross-section for z = 0 of some Laguerre-Gauss to illustrate the spatial structure
of the modes. The associated Laguerre polynomials Llp(x) form an orthogonal set over the interval
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Chapter 2 Few-body quantum physics of Rydberg polaritons

Figure 2.1: Examples of di�erent Laguerre-Gauss modes. Plotted are normalized cross-sections
|upl(x, y)|2 in the plane z = 0 in arbitrary units.

x ∈ [0,∞) with respect to the weighting function e−xxl, i.e. it holds∫ ∞
0

dx e−xxlLlp(x)Llq(x) =
(p+ l)!

p!
δp,q. (2.5)

Moreover, the functions exp{ilϕ} form a complete orthogonal set on ϕ ∈ [0, 2π) and therefore, when
choosing the appropriate normalization constants given in Eq. (2.4), namely Cpl = π

2
(p+|l|)!
p! (see

Appendix B for details), the mode functions upl form a complete orthonormal set in two dimensions
(i.e., for �xed z), with the completeness relation∫ ∞

0
rdr

∫ 2π

0
dϕupl(r, ϕ, z)u

∗
qm(r, ϕ, z) = δpqδlm. (2.6)

Thus we can conclude that the decomposition (2.3) is well-de�ned. Moreover, the orthogonality of the
mode functions leads to the commutation relations of the normalized one-dimensional �eld operators,

[Êpl(z), Ê†qm(z′)] = δp,qδl,mδ(z − z′). (2.7)

We decompose the atomic �eld operators analogously,

σ̂ge(r) =
∑
pl

upl(r, ϕ, z)σ̂
pl
ge(z), σ̂gr(r) =

∑
pl

upl(r, ϕ, z)σ̂
pl
gr(z), (2.8)

into one-dimensional operators that ful�ll similar commutation relations as (2.7).
Note that the original three-dimensional operators, σ̂ge(r) have a di�erent physical dimension

than the operators corresponding to single modes, σ̂µνge (z).
By using the decomposition of electromagnetic and atomic �eld operators and the completeness
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2.1 Rydberg polaritons in one dimension

relation of the mode functions we obtain from the paraxial wave equation (2.1)(
∂

∂t
+ c

∂

∂z

)
Êpl(z, t) = ig

∑
α,β

[∫∫
rdr dϕ

√
n(r)u∗pl(r, ϕ, z)uαβ(r, ϕ, z)

]
σ̂αβge (z, t). (2.9)

Thus, for a general atomic density distribution n(r), the paraxial wave function couples all transversal
modes. However, due to cylindrical symmetry, n(r) becomes independent of the ϕ-coordinate. We
may furthermore assume that n(r) is only slowly varying in the radial coordinate, r, compared to
the lower order mode functions upl(r, ϕ), e.g. given by a Gaussian distribution that falls o� much
slower than the transverse mode functions. Then we can safely neglect the r-dependence of n(r) in
the integral in Eq. (2.9), i.e. replace it by n = n(0) and the orthogonality of the modes yields a set of
one-dimensional, decoupled paraxial wave equations for each of the transversal modes,(

∂

∂t
+ c

∂

∂z

)
Êpl(z, t) = ig

√
nσ̂plge(z, t). (2.10)

The same arguments can be made for the Heisenberg-Langevin-equations (1.6), when assuming that
the control �eld Rabi frequency Ω is independent of ϕ as well as slowly varying in r, leading also to a
decomposition of the Heisenberg-Langevin equations for the di�erent transversal modes,

∂

∂t
σ̂plgr(z, t) = −iδσ̂plgr(z, t) + iΩσ̂plge(z, t),

∂

∂t
σ̂plge(z, t) = −Γσ̂plge(z, t) + ig

√
nÊpl(z, t) + iΩσ̂plgr(z, t),

(2.11)

with no coupling to other transversal modes.
In particular, this means that the propagation of the light �eld is reduced to a set of decoupled

equations for each transversal mode that is described by one-dimensional equations of motion. We
note, however, that this is only correct as long as the time evolution of the photons is described by
the linear Maxwell-Bloch equations. Including nonlinearities, e.g. interactions between photons into
the system changes the result in general. This will be subject of the next section.

2.1.2 Interactions

In a nonlinear medium, i.e., in the presence of interactions between polaritons, the result of the
previous section holds no longer true. The interactions between Rydberg states of matter mediating
interactions between photons lead in general to a scattering between di�erent transverse Laguerre-
Gaussian modes upl(r, ϕ, z). Thus the propagation of dark-state polaritons in a Rydberg medium has
in general to be considered as a three-dimensional problem. However, as can intuitively be guessed
from the sketch in Figure 2.2, we expect the scattering between di�erent transverse modes to be
negligible, if the Rydberg blockade radius RB is su�ciently large compared to the beam waist w0 and
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RB

z

w(z)

Figure 2.2: Sketch of a focused probe beam with beam waist w(z) propagating through a medium of
Rydberg atoms. Rydberg polariton excitations blockade further excitations in a radius of
RB. If the blockade radius is su�ciently large then only a single excitation is allowed for
a certain z and the setup becomes e�ectively one-dimensional.

only single excitations are allowed to exist for a certain z-interval of the light beam because of the
Rydberg blockade [58]. In the following we will derive conditions where this is ful�lled and also the
propagation of polaritons in a Rydberg gas of atoms can be reduced to an e�ective one-dimensional
description.

To begin with, we extend the interaction Hamiltonian (1.29) between two Rydberg atoms considered
in Section 1.2 to an ensemble of many atoms, yielding the microscopic Hamiltonian

Ĥ =
1

2

∑
i,j 6=i

σ̂irrV (ri − rj)σ̂
j
rr, V (r) =

C6

|r|6
, (2.12)

where the exact form of the potential V depends on the speci�c setup. We will assume a van der Waals
potential V (r) = C6/|r|6 with an interaction strength C6 in the following. σ̂irr denotes the projection
operator onto the Rydberg state of an atom at position ri. If the density of Rydberg excitations
is much smaller than the density of atoms, we can make the continuum limit as in Section A.1.2
and replace the sum over operators σ̂irr of individual atoms by an integral over coarse-grained
operators σ̂gr(r). Furthermore, we make the assumption that σ̂ee ≈ 0 and apply a Holstein-Primako�
transformation [59], which allows us to replace the continuous operators σ̂rr(r) ≈ σ̂rg(r)σ̂gr(r).
Finally, we transform the spin-�ip operators to their slowly varying form σ̂gr → n−1/2σ̂gre

i(kp−kc)z ,
see (A.32), leading to the continuous van der Waals interaction Hamiltonian,

Ĥint =
1

2

∫∫
d3r d3r′ V (r− r′)σ̂†gr(r)σ̂†gr(r

′)σ̂gr(r
′)σ̂gr(r). (2.13)

Inserting the decomposition (2.8) of the operators into Laguerre-Gaussian modes into this interaction
Hamiltonian, we can write the interaction as a sum over all kinds of e�ective interaction potentials
between the di�erent transversal modes,

Ĥint =
1

2

∫∫
dz dz′

∑
p,l

Ṽpl(z, z
′)(σ̂p1l1

gr (z))†(σ̂p2l2
gr (z′))†σ̂p3l3

gr (z′)σ̂p4l4
gr (z), (2.14)
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Êp1l1(z)

Êp2l2(z′)

Êp4l4(z)

Êp3l3(z′)

Ṽpl(z, z
′)

Figure 2.3: Diagrammatic representation of the scattering of two ingoing photons in modes (p3, l3)
and (p4, l4) into two outgoing photons in modes (p2, l2) and (p1, l1).

where we de�ned the multi-indexes p = (p1, p2, p3, p4) and l = (l1, l2, l3, l4). Ṽpl(z, z′) denotes
scattering matrix elements between di�erent transversal modes as sketched in Figure 2.3, which are
in general dependent on the positions z, z′ of two interacting atoms. These can be obtained from the
three-dimensional interaction potential by integrating over the transversal degrees of freedom, r, r′

and ϕ,ϕ′,

Ṽpl(z, z
′) := C6

∫∫ ∞
0

rdr r′dr′
∫∫ 2π

0
dϕdϕ′

u∗p1l1
(r)u∗p2l2

(r′)up3l3(r′)up4l4(r)

[r2 + r′2 + 2rr′ cos(ϕ− ϕ′) + (z − z′)2]3
. (2.15)

To get a reduction of the three-dimensional interacting Rydberg dark-state polariton model to one
spatial dimension, the e�ective potentials Ṽpl have to become diagonal. This is of course not possible
to ful�ll in general, but an approximate reduction of the model to one dimension is possible, as we
show in the following. Let us �rst consider the integration over the angles ϕ,ϕ′ in (2.15). Let us
assume that the Rydberg blockade prevents photons to exist at zero mutual distance, i.e., z = z′

does not contribute to the interaction Hamiltonian. For z 6= z′ the integrand of Eq. (2.15) is non-
vanishing. In this case the integration over ϕ,ϕ′ can be performed analytically by means of residue
integration, [60, 61], yielding

I lϕ : =

∫∫ 2π

0
dϕdϕ′

e−i(l2−l3)ϕ′e−i(l1−l4)ϕ

[r2 + r′2 + (z − z′)2 + 2rr′ cos(ϕ− ϕ′)]3

= 2π2δq,−q′

(√
α2 − β2 − α

β

)|q|
(q2 + 2)α2 − (q2 − 1)β2 + 3|q|α

√
α2 − β2

(α2 − β2)5/2
, (2.16)

where we introduced α = r2 + r′2 + (z − z′)2, β = 2rr′ and q = l1 − l4, q′ = l2 − l3 denote
the change of angular momentum in the scattering. A more detailed derivation of this is given in
Appendix B. We observe that Eq. (2.16) is proportional to δq,−q′ = δl1+l2,l3+l4 , restricting the allowed
processes to those conserving the sum of angular momentum. This conservation rule is expected, as
we assumed a rotational symmetry of the model.

We are interested in the propagation of polaritons in the Gaussian, so-called TEM00 mode and the
interaction between these as well the scattering from these modes into higher order modes. Thus
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Figure 2.4: Two-dimensional plots of the absolute value of the e�ective potentials/scattering matrix
elements |Ṽpl(z, z′)| between photons initially in modes p3 = p4 = 0, l3 = l4 = 0 and
�nal modes l1 = l2 = 0 and di�erent angular mode numbers p1, p2. The dashed white
rhombuses denote the region (|z|+ |z′|) ≤ 2zR, where the approximation Ṽpl(z, z′) ≈
Ṽpl(|z − z′|) is justi�ed.

we restrict ourselves to in-going modes of this type, i.e., we set p3 = p4 = 0 and l3 = l4 = 0 in the
following. Further integration of (2.16) in the radial directions r1, r2 has to be done numerically.
To this end we choose the ratio of the parameters zR and w0 as in typical experimental setups,
see e.g. [62], namely zR ≈ 32w0 and performed the numerical integration for di�erent outgoing
modes with radial and azimuthal indexes (p1, p2, l1, l4) in dependence of z and z′. The integration
was done in Matlab [63] using the Chebfun package [64]. In Figure 2.4 we show the resulting
scattering potentials between initial Gaussian and di�erent �nal modes. Before we analyze and
compare these potentials in greater detail, we note that from these �gures one recognizes that the
assumption |Ṽpl(z, z′)| ≈ |Ṽpl(|z − z′|)| is justi�ed inside the region (|z|+ |z′|) ≤ 2zR, indicated by
a dashed rhombus, although in general the scattering potentials depend on z, z′. Because of the Gouy
phase of the Laguerre-Gaussian modes we can make this statement only for the absolute value of
the scattering potentials. However, this is su�cient for comparison with the diagonal interaction
elements, i.e. between identical ingoing and outgoing Laguerre-Gauss modes. For these, speci�cally,
the relation Ṽpl(z, z

′) ≈ Ṽpl(|z − z′|) holds exactly, as can easily be observed from Eq. (2.15).
In Figure 2.5 we show a log-log plot of di�erent interaction and scattering potentials for ingoing
Gaussian two-polariton modes as function of mutual distance. For di�erent distances, three regimes
are distinguishable. First, for small distances, |z − z′| ≤ w0, of the polaritons all potentials run in
parallel, i.e., decay as a power law with a common exponent. At a distance w0 there is a crossover to a
regime where the potentials decay also as power laws, but with di�erent exponents that depend on the
azimuthal and radial mode numbers of the out-going modes. Finally, for distances |z − z′| & 2zR the
potentials all behave di�erently, e.g. show zero crossings or approach again the diagonal interaction
potential. In the regime of intermediate distances, where z − z′ is larger a few w0 but smaller 2zR

we can derive an approximate solution, by making a series expansion of the full integral (2.16) for
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Figure 2.5: Interaction potentials Ṽp1,p2;l1,l2 for ingoing Gauss modes into di�erent out-going Laguerre-
Gauss modes. Shown is a log-log plot of the absolute values of the potentials for z′ = −z
and zR = 32w0, indicated by the vertical dashed black line. Plotted are numerically
integrated exact potentials as well as approximate solutions according to Eq. (2.17). Note,
that the approximate solution for the two higher order potentials is identical, as here
|z| = |z′|.

r, r′ � |z − z′| yielding in leading order

Ṽpl(z, z
′) ≈ δl1,−l2(−1)lC6

(l + p1 + p2 + 2)!

l! 2l+p1+p2+1

√
(l + p1)!(l + p2)!

p1!p2!

w(z)2p1+lw(z′)2p2+l

(z − z′)6+2(l+p1+p2)
, (2.17)

where we de�ned l = |l1|. In Figure 2.5 we have plotted these approximate potentials for the shown
numerically integrated potentials, displaying a very good agreement for intermediate distances.
Speci�cally, we can use Eq. (2.17) to read o� the exponents of the power laws in the intermediate
regime, which is given by 6 + 2(l + p1 + p2). That means, that higher order scattering potentials fall
o� much quicker than the interaction between Gaussian modes. In Figure 2.6 we show the ratio of
higher order potentials Ṽp1,p2;l1,l2 compared to Ṽ0,0;0,0. As can be seen, for inter-particle distances
|z − z′| larger ≈ 5w0 the potential Ṽ1,0;0,0 is more than an order of magnitude smaller than Ṽ0,0;0,0.
All potentials describing scattering to higher order modes have an even smaller value, as can be
seen from the inset in Figure 2.6, where the absolute value of di�erent potentials is shown for �xed
z = w0 = −z′.

From these results we conclude that in the intermediate regime the dominant e�ective potential
for in-going TEM00 modes is the interaction between the two modes, which allows to restrict the
interaction Hamiltonian (2.14) to a single channel. Omitting the indexes p, l that are zero, we arrive at

Ĥint =
1

2

∫∫
dz dz′ V (z − z′)σ̂†gr(z)σ̂

†
gr(z

′)σ̂gr(z
′)σ̂gr(z), (2.18)
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Figure 2.6: (a) Comparison of interaction potentials Ṽp1,p2;l1,l2 for in-going Gauss modes into di�erent
out-going Laguerre-Gauss modes and the repulsive interaction potential Ṽ0,0;0,0. Shown is
a log-log plot of the absolute values of the ratio of the potentials for zR = 32w0, indicated
by the dashed black line. (b) Comparison of interaction potentials Ṽp1,p2;l1,l2 for �xed
|z − z′| = 2w0 and di�erent combinations (p1, p2; l1, l2) of the out-going modes.

where V (z − z′) = C6/(z − z′)6 and σ̂gr(z) = σ̂00
gr (z). Note, that these 1D-operators have a

di�erent physical dimension as the original 3D-operators σ̂gr(r). As a repulsive van der Waals
interaction leads to an avoided volume, where only single excitations can exist, polaritons keep a
minimal distance. Hence, if the interaction is su�ciently strong, the physics is restricted to the
regime of intermediate distances, |z − z′| � w0, where the coupling to higher Laguerre-Gauss modes
is suppressed. Together with Eqs. (2.11) this yields an e�ective model in the sub-manifold of only
TEM00-mode, i.e., a one-dimensional model.

2.1.3 Rydberg polaritons

In Section 2.1.1 we showed that the propagation of photons through an EIT medium can, under
certain conditions, be restricted to the physics of a single transversal mode with negligible coupling
to other modes, i.e., by a one-dimensional model, governed by Eq. (2.9) and Eq. (2.11) in terms of
�elds Ê , σ̂ge, σ̂gr.

As derived in the introduction the fundamental quasi-particles of the non-interacting system are a
superposition of light and matter excitation, the Rydberg polariton Ψ̂ and the bright-state polariton
Φ̂, de�ned by the rotation (

Ψ̂

Φ̂

)
=

(
cos θ − sin θ

sin θ cos θ

)(
Ê
σ̂gr

)
. (2.19)

The coherence σ̂ge can safely be eliminated under conditions of electromagnetically induced trans-
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2.2 Master equation for Rydberg polaritons

parency, see Section A.2.4 in the Appendix.
In the previous section we showed that additional interactions in general require a three-dimensional

description, but for su�ciently small excitation densities and su�ciently strong repulsive interactions,
the one-dimensional model is still a valid description. In that case, the interaction is governed by the
Hamiltonian (2.18). This Hamiltonian changes the properties of the atomic medium in the polariton
setup considered in the previous section. In particular, in a ladder-type EIT setup with the upper state
|r〉 being a Rydberg state the interactions between atoms mediate an interaction between photons,
which is the basis for many interesting experiments and phenomena, e.g. the Rydberg blockade [8,
42] or bunching of photons [65, 66]. Consequently these Rydberg polaritons are promising candidates
for applications in quantum information processing [6, 7, 44, 45] and beyond [67].

Let us now add these results up in a simple way. Elimination of the bright-state polariton from
the paraxial Heisenberg Langevin equations (2.11) in one spatial dimension leads to the Schrödinger
equation (1.16) describing the time-evolution of the Rydberg polariton. When assuming two-photon
resonance, i.e., δ = 0, it is straightforward to construct the Hamiltonian which is the generator of this
equation in real space, see supplemental material to [Otterb2013] at [68]. Combining this Hamiltonian
with (2.18) transformed to the polariton basis (2.19) we �nd in lowest non-vanishing order in cos θ

Ĥ =

∫
dz Ψ̂†(z)

[
p̂2
z

2m
− vgp̂z

]
Ψ̂(z) +

C6

2

∫∫
dz dz′

Ψ̂†(z)Ψ̂†(z′)Ψ̂†(z′)Ψ̂(z)

|z − z′|6
, (2.20)

where we set sin θ = 1, p̂z = −i∂z and m−1 = 2vgLabs∆/γ. The interaction leads to an avoided
volume, called the Rydberg blockade de�ned by the interaction strength being equal to the EIT
linewidth, i.e., V (RB) = C6/|RB|6 = Ω2

|Γ| [42, 58, 69], such that

RB =

( |Γ|C6

Ω2

)1/6

. (2.21)

The e�ective Hamiltonian (2.20) describes propagating massive Rydberg polaritons subject to van der
Waals type interaction. In the following section we want to make a strict derivation of this model.

2.2 Master equation for Rydberg polaritons

In the previous section we considered the propagation of photons coherently coupled to an atomic
three-level medium with Rydberg interactions and derived conditions for describing the system by a
one-dimensional model. It is well known that the photon propagation under conditions of EIT can be
described by a �eld theory of light-matter quasi-particles, dark-state polaritons [3]. Particularly, this
holds true, even when incorporating interactions between three-level atoms as shown in the previous
section.

39



Chapter 2 Few-body quantum physics of Rydberg polaritons

In this section we attempt to derive a �eld theory for the Rydberg polaritons in one dimension
by an elimination of the bright polaritons. To this end we identify multiple loss mechanisms for
the bright polaritons depending on the detuning between electrical �elds and atomic transitions.
Treating the bright polaritons as a reservoir for the Rydberg polaritons in an open-system approach
and performing perturbation theory in the coupling of the two �elds, allows us to derive a Markovian
master equation describing the time evolution of the Rydberg polaritons as an e�ective theory of a
single-component �eld.

2.2.1 Maxwell-Bloch equations

The dynamics of photons propagating in a medium of Rydberg atoms is governed by a set of equations
of motion, consisting of the Heisenberg-Langevin equations (2.11) for the atomic operators and
the paraxial wave-equation (2.10) for the electric �eld operator. After adiabatic elimination of the
coherence σ̂ge this set of equations is given in the polariton basis (2.19) by

d

dt
Ψ̂ = −c cos2 θ

∂

∂z
Ψ̂− c sin θ cos θ

∂

∂z
Φ̂

d

dt
Φ̂ = −Γe�Φ̂− c sin2 θ

∂

∂z
Φ̂− c sin θ cos θ

∂

∂z
Ψ̂

(2.22)

where Γe� = Ω2
e�/Γ = (Ω2 + g2n)/(γ+ i∆) and we assumed time-independent driving, i.e., ∂tθ = 0.

We note that in the derivation of Eq. (2.11) and subsequently Eq. (2.22) we have dropped Langevin
noise operators. See Appendix A.2.4, for details on the derivation. It is easy to construct an e�ective
Hamiltonian Ĥ0 which generates the equations of motion (2.22). Taking the interactions (2.18) into
account the full interacting problem is described by

Ĥ = Ĥ0 + Ĥint = ĤΨ + ĤΦ + ĤΨΦ, (2.23)

which consists of three parts describing the time evolution of the dark and bright polaritons, respec-
tively, as well as the coupling between the two �elds. The full coupling Hamiltonian between dark
and bright state polaritons is given by

ĤΨΦ = −
∫

dz
{

ic cos θ sin θΨ̂†(z)∂zΦ̂(z) + H.c.
}
− sin θ cos θ

×
∫∫

dz dz′ V (z − z′)Ψ̂†(z)Φ̂†(z′)
[
sin θΨ̂(z′)− cos θΦ̂(z′)

][
sin θΨ̂(z)− cos θΦ̂(z)

]
+ H.c.,

(2.24)

consisting of terms arising from the Maxwell-Bloch equations as well as from the interaction. Note
that in the case of time-dependent driving �elds an additional coupling arises ∝ ∂tθ(t).
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2.2 Master equation for Rydberg polaritons

Neglecting the coupling Hamiltonian and the interaction between Rydberg polaritons, the time
evolution of the Rydberg polariton �eld Ψ̂ is simply described by

d

dt
Ψ̂(z, t) = −c cos2 θ∂zΨ̂(z, t), (2.25)

As already discussed in the introduction, see Eq. (1.15), this di�erential equation has the solution

Ψ̂(z, t) = Ψ̂(z − c cos2 θτ, t− τ), (2.26)

i.e., the free Rydberg polariton propagates lossless with a velocity vg = c cos2 θ that is much smaller
than the vacuum speed of light c, while keeping its spatial shape. Analogously, the free time evolution
of bright-state polaritons Φ̂ is governed by

d

dt
Φ̂(z, t) = −c sin2 θ∂zΦ̂(z, t)− Γe�Φ̂(z, t) (2.27)

Φ̂(z, t) = e−Γe�τ Φ̂(z − c sin2 θτ, t− τ). (2.28)

Assuming slow light conditions, we observe that the bright polaritons propagate with the velocity
c sin2 θ, which is much larger than vg and are moreover subject to decay with the rate <{Γe�} =

γΩ2
e�/|Γ|2, i.e., bright polariton excitations either decay or propagate out of the atomic medium, if we

assume that the system has open boundaries. Hence, if there is no external driving of bright polariton
excitations, their steady state is given by

ρΦ = |vac〉Φ〈vac|Φ , (2.29)

i.e., the vacuum density matrix. Therefore, the coupling of Rydberg (dark) polaritons and bright
polaritons via the Hamiltonian (2.24) constitutes an e�ective loss channel for the Rydberg polaritons.
Making the assumption that 1/|Γe�| de�nes the fastest time scale of the system, we can eliminate the
bright polariton excitations from the dynamics, giving rise to a description of the Rydberg polariton
Ψ̂ as an e�ective �eld theory of an open system.

2.2.2 Master equation

Let us now consider the coupling (2.24) between bright- and dark-state polaritons and also take the
interactions into account to derive an �eld theory for the Rydberg polariton Ψ̂. Instead of calculating
the corrections by performing perturbation theory in the momentum space, see Eq. (1.14), and adding
the interaction term in lowest non-vanishing order cos θ, as lead to Eq. (2.20), we here use a systematic
approach. Speci�cally, we employ the system-plus-reservoir approach, introduced in Section 1.3, to
derive this �eld theory and the losses and corrections arising from the coupling to bright polaritons.
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Chapter 2 Few-body quantum physics of Rydberg polaritons

This approach is a standard procedure to describe open quantum systems, see e.g. [9, 11, 70–72]. We
treat the bright polaritons Φ̂ as a reservoir for the dark polaritons, which will subsequently be traced
out leading to a theory solely for Ψ̂. We note that this approach allows us to treat both kinds of
corrections to the free polariton evolution, arising from non-adiabatic as well as interaction-induced
couplings between bright polaritons and Rydberg polaritons in an equal fashion.

We calculate the correlation functions of reservoir operators Φ̂ with respect to their steady state ρΦ

from the solution (2.28). The correlation function of lowest non-vanishing order in bright polariton
operators is the anti-normal ordered �rst-order correlation function, given by

〈Φ̂(x, t)Φ̂†(y, t− τ)〉 ≈ e−Γe�τδ(x− y), τ > 0, (2.30)

where the expectation value 〈·〉 = tr{ρΦ·}Φ is de�ned as partial trace with respect to bright po-
lariton degrees of freedom. The �rst-order correlation function (2.30) is δ-correlated in space and
exponentially decaying in time. Apart from this correlation function, only the anti-normal ordered
four-operator correlation function

〈Φ̂(x, t)Φ̂(x′, t)Φ̂†(y, t− τ)Φ̂†(y′, t− τ)〉
≈ e−2Γe�τ

[
δ(x− y − c sin2 θτ)δ(x′ − y′ − c sin2 θτ)

+ δ(x′ − y − c sin2 θτ)δ(x− y′ − c sin2 θτ)
]
, τ > 0 (2.31)

is non-vanishing while all other correlation functions of reservoir operators Φ̂ are zero for the vacuum
steady state ρΦ.

As in Section 1.3 we can now derive an e�ective equation of motion for the Rydberg polaritons by
tracing out the bright-state degrees of freedom. To this end, we start from the von Neumann equation
of the full density matrix, ∂tχ = −i[Ĥ, χ] and transform to an interaction picture with respect to
ĤΨ + ĤΦ. The Rydberg polariton degrees of freedom are described by a reduced density matrix
that can be obtained from the full density matrix by tracing out the bright-state degrees of freedom,
ρ = trΦ(χ). The e�ective equation of motion for this operator is in Born approximation given by the
integro-di�erential equation

d

dt
ρ(t) = −

∫ ∞
0

dτ trΦ

{
[ĤΨΦ(t), [ĤΨΦ(τ), ρ(τ)⊗ ρΦ]]

}
. (2.32)

Starting from this equation we use the correlation functions (2.30) and (2.31) of reservoir operators to
derive an e�ective di�erential equation for the reduced system density matrix. This we will do in
the following. In particular, since the reservoir correlation functions are exponentially fast decaying,
the major contribution to the integrand comes from t ≈ 0 and thus we can perform the Markov
approximation and replace ρ(τ) → ρ(t). For convenience let us introduce the nonlinear system
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operator (i.e., Rydberg polariton operator)

L̂(z) := − sin3 θ cos θ

[∫
ds V (z − s)Ψ̂†(s)Ψ̂(s) + i

c∂z

sin2 θ

]
Ψ̂(z), (2.33)

which allows us to write the Hamiltonian ĤΨΦ for the coupling between system and reservoir
operators, i.e., between Rydberg and bright polaritons, in the interaction picture in the form

ĤΨΦ(t) =

∫
dz
(

Φ̂†(z)L̂(z) + L̂†(z)Φ̂(z)
)

+

∫∫
dz dz′ V (z − z′) sin2 θ cos2 θ

(
Φ̂†(z, t)Φ̂†(z′, t)Ψ̂(z′, t)Ψ̂(z, t) + H.a.

)
+ . . . (2.34)

We omitted terms that are cubic in bright polaritons as they do not modify the e�ective dynamics of
dark-state polaritons since the corresponding correlations functions are not of the form (2.30) or (2.31)
and thus vanishing. By inserting this coupling Hamiltonian into the master equation, Eq. (2.32),
performing the Markov approximation, i.e., replacing ρ(τ)→ ρ(t) and transforming back to a frame
co-moving with the group velocity we �nally arrive at the master equation in Lindblad form,

d

dt
ρ = i

∆

Ω2
e�

∫
dz
[
ρ, L̂†(z)L̂(z)

]
+ i

sin4 θ

2

∫∫
dz dz′ V (z − z′)

[
ρ, Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z)

]
+ i

∆

Ω2
e�

sin6 θ cos2 θ

∫∫∫
dz ds ds′ V (z − s′)V (z − s)

[
ρ, Ψ̂†(z)Ψ̂†(s)Ψ̂†(s)Ψ̂(s′)Ψ̂(s′)Ψ̂(z)

]
+

γ

Ω2
e�

∫
dz [2L̂(z)ρL̂†(z)− {ρ, L̂†(z)L̂(z)}] +

γ sin4 θ cos4 θ

Ω2
e�

×
∫∫

dz dz′ V 2(z − z′)
[
2Ψ̂(z′)Ψ̂(z)ρΨ̂†(z)Ψ̂†(z′)− {ρ, Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z)}

]
, (2.35)

where {·, ·} denotes the anti-commutator. The master equation (2.35) governs the e�ective time
evolution of dark-state polaritons with non-adiabatic and interaction induced corrections arising
from coupling to the bright-state polariton vacuum. It consists of unitary terms proportional to the
single-photon detuning ∆, an interaction term, and dissipative terms proportional to the decay rate
γ. In the following we will discuss the unitary and dissipative terms in detail to get some insight into
the di�erent processes contributing to the dynamics and analyze their interplay.

2.3 Discussion of the master equation

The master equation, Eq. (2.35) derived in the previous section denotes an e�ective �eld theory for
the Rydberg polariton �eld Ψ̂ taking into account interactions between Rydberg polaritons as well as
corrections arising from coupling the Rydberg polaritons to a vacuum of bright polaritons. These
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Chapter 2 Few-body quantum physics of Rydberg polaritons

corrections can be divided into two types, unitary terms given by an e�ective Hamiltonian and
dissipative terms given by a Lindbladian, which we want to analyze in the following. The terms
in the master equation arising from coupling to bright polaritons are generated by the operator L̂
we introduced in Eq. (2.33). To keep track of the individual contributions to the dynamics we split
L̂ = L̂1 + L̂2 with

L̂1(z) = − sin3 θ cos θ

∫
ds V (z − s)Ψ̂†(s)Ψ̂(s)Ψ̂(z),

L̂2(z) = −i sin θ cos θc
∂

∂z
Ψ̂(z).

(2.36)

L̂1 corresponds to corrections to the time evolution due to a coupling of Rydberg and bright polaritons
due to interaction, while L̂2 is due to non-adiabatic coupling.

Wave-function approach. The operator L̂1(z) and thus the nonlinear terms in the master equa-
tion cannot be treated in mean-�eld approximation by replacing Ψ̂†(s)Ψ̂(s) with its expectation value
〈Ψ̂†(s)Ψ̂(s)〉, since the integral over this single-particle density matrix multiplied with the potential
diverges for z = s. To analyze the nonlinear terms and get insight into the few-body physics of
Rydberg polaritons, we consider the time evolution of the simplest possible state showing nonlinear
e�ects, a wave function consisting of two Rydberg polariton excitations. This two-excitation wave
function is de�ned by

|Ψ2(t)〉 =

∫∫
dz dz′ ψ2(z, z′, t)Ψ̂†(z)Ψ̂†(z′) |0〉 , (2.37)

with the normalized two-excitation amplitude ψ2(z, z′, t) = 〈0|Ψ̂(z)Ψ̂(z′)|Ψ2(t)〉.

2.3.1 Unitary dynamics

The unitary dynamics of the master equation (2.35) is generated by an e�ective Hamiltonian

Ĥe� =
∆

Ω2
e�

∫
dz L̂†(z)L̂(z)+

sin4 θ

2

∫∫
dz dz′ V (z−z′)Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z)+Ĥ3-body, (2.38)

that consists of a term generated by L̂†(z)L̂(z) and an interaction term, where Ĥ3-body denotes
the three-body interaction. Expanding the product L̂†(z)L̂(z) yields three di�erent terms, namely
a kinetic energy of the massive Rydberg polaritons, a drift term and corrections to the two-body
interaction. In the following we will consider these terms separately and discuss them in greater
detail.
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Kinetic energy

The �rst term we consider is the kinetic energy contribution, given by the Hamiltonian

Ĥkin =
∆

Ω2
e�
c2 sin2 θ cos2 θ

∫
dz [∂zΨ̂

†(z)][∂zΨ̂(z)]. (2.39)

The existence of this term means that Rydberg polaritons are massive quasi-particles with an e�ective
mass that can be read o� as

m−1 = 2
c2∆ sin2 θ cos2 θ

Ω2
e�

= 2vgLabs
∆

γ
sin4 θ. (2.40)

This mass is equal to the real part of the mass derived in [49]. This comes about, since the losses are
treated separately in the master equation (2.35). In the limit of large single-photon detuning |∆| � γ

the expressions coincide. For a typical slow light setup the factor sin4 θ ≈ 1 and we �nd that the
polariton mass becomes comparable to the electron rest mass1. By adjusting the group velocity vg or
the ratio of detuning and decay rate, the magnitude of the mass can be tuned. Moreover, the sign
of the e�ective mass can be changed by changing the sign of the single-photon detuning ∆ and
thus, depending on the sign of the interaction the Rydberg polaritons can be made attractively or
repulsively interacting.

Dri� term

The second contribution to the e�ective Hamiltonian is given by the product of L̂†1 and L̂2 and vice
versa, i.e., by the terms linear in the interaction potential and in the derivative. This Hamiltonian is
given by

Ĥdrift = −vg∆

Ω2
e�

sin4 θ

∫∫
dz ds V (z − s)

{
Ψ̂†(z)Ψ̂†(s)Ψ̂(s)[∂zΨ̂(z)]− H.c.

}
. (2.41)

This Hamiltonian describes a drift term, i.e., the propagation of polaritons. As our frame of reference
is co-moving with the particles with group velocity vg this can be translated to a correction of the
group velocity. This correction depends on the interaction, i.e., a�ects two polariton excitations
depending on their relative distance r. For a two-excitation wave function ψ2 this e�ect can be
calculated leading to the equation of motion

∂tψ2(R, r, t) =
2∆vg

Ω2
e�

sin4 θ V (r)∂Rψ2(R, r, t), (2.42)

1Using for instance realistic values of ∆/γ = 5 and vg = 500 m/s and reintroducing ~, we �nd a value of m =
1 × 104 s/m2 × ~, which is comparable to the electron rest mass [22].
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where we introduced the coordinates R = (x+ y)/2 and r = x− y for center-of-mass and relative
distance, respectively. Eq. (2.42) shows that for �nite ∆, i.e., under o�-resonant driving conditions the
center-of-mass propagation velocity of two polaritons gets strongly modi�ed at small distances in the
presence of interactions. This can be understood by a simple argument as follows. The interaction
shifts the energy of the upper level |r〉 of the three-level atoms, i.e., induces a large two-photon
detuning. If additionally a large single-photon detuning is present this leads to a complete decoupling
of an incident probe �eld Ê from the atoms, i.e., the medium becomes transparent and thus the probe
�eld propagates with a large velocity up to the vacuum speed of light.

Interaction

The �nal contribution to the e�ective Hamiltonian is the interaction between Rydberg polaritons
given by a combination of two- and three-body interaction,

Ĥint =
1

2

∫∫
dz dz′ Ve�(z − z′)Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z), (2.43)

where the e�ective two-body interaction potential Ve� is given by the bare van der Waals interaction
potential and corrections that are of second order in cos θ,

Ve�(r) ≈ sin4 θ

[
V (r) +

∆

Ω2
e

cos2 θV 2(r)

]
. (2.44)

For large distances r = |z − z′| between polaritons the bare van der Waals potential dominates,
while for small distances r the correction term dominates, as it diverges like r−12. We observe that
the sign of the correction term can be tuned independently from the bare interaction by changing the
sign of the single photon detuning ∆. This behavior is illustrated in Figure 2.7, where we show linear
and double logarithmic plots of the potential (2.44) for negative as well as positive single photon
detuning ∆. We can identify a length scale

r0 = (|C6∆| cos2(θ)/Ω2
e)

1/6 = cos2/3(θ)RB, (2.45)

where the second order correction becomes irrelevant for r � r0 and dominating for r � r0,
respectively. Here RB denotes the (o�-)resonant blockade radius, de�ned in Eq. (2.21). In the case of
an repulsive interaction potential V (r) the interaction leads to a blockade, i.e., a vanishing two-photon
amplitude for distances smaller RB. Hence, the correction term is negligible in the limit of slow
light, where r0 � RB. However, in the case of an attractive potential V (r) Rydberg polaritons the
correction term becomes important. Since the sign of the second order correction is only determined
by the sign of the single-photon detuning ∆, as is the sign of the e�ective mass (2.40), the interaction
between Rydberg polaritons is always a repulsive interaction at small distances, leading to a blockade
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Figure 2.7: Illustration of the e�ective two-body interaction potential Ve�(r) de�ned in Eq. (2.44). (a)
Potential with linear axis scaling and (b) the absolute value of the potential in double-
logarithmic axis scaling. The red dotted and yellow dash-dotted lines show the e�ective
potential for negative and positive detuning, respectively and positive van der Waals
interaction strength C6.

of polaritons.

2.3.2 Dissipative dynamics

The dissipative dynamics is described by the remaining terms in Eq. (2.35). These terms are given
in Lindblad form [9], see also Section 1.3. In particular the dissipative terms are proportional to
the decay rate γ of the intermediate atomic state which is the only decay process in the system.
As the free Rydberg polaritons propagate lossless, cf. (1.14), all dissipative channels in the master
equation originate from coupling to bright polaritons, which are subject to decay. This coupling is
either induced by interaction or non-adiabatic coupling and get generated by the operators L̂ and the
higher order interaction processes. Therefore, the dissipative terms in the master equation have a
structure similar to the unitary, which we discussed in the previous section, but generate dissipative
time evolution. We proceed as with the unitary terms and consider the di�erent processes separately.

Imaginary mass term

The term generated by the operator L̂2 is in Lindblad-form given by

Lρ =
γ

Ω2
e�
c2 sin2 θ cos2 θ

∫
dz
[
2∂zΨ̂(z)ρ∂zΨ̂

†(z)−
{
ρ, ∂zΨ̂

†(z)∂zΨ̂(z)
}]

. (2.46)

This term can be considered as an imaginary mass term. This can be seen evaluating the adjoint
equation for some operator. For instance, when only considering the dynamics generated by Eq. (2.46),
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we �nd for the expectation value 〈Ψ̂†(x)Ψ̂(x)〉 the equation of motion

d

dt
〈Ψ̂†(z)Ψ̂(z′)〉 = vgLabs sin4 θ

(
∂2
z + ∂z′z′

)
〈Ψ̂†(z)Ψ̂(z′)〉 , (2.47)

where ∂xx = ∂2

∂x2 . This result can also be achieved by transforming the e�ective polariton mass (2.40)
to a complex quantity as

m−1 →
(

1 + i
γ

∆

)
m−1. (2.48)

Note that including the imaginary part in the Hamiltonian makes it a non-hermitian Hamiltonian
that has to be applied using a generalized von Neumann equation. This complex mass coincides with
the complex mass derived in [49].

Nonlinear decay term

The operator L̂1 and the last term in the master equation (2.46) lead to non-linear losses. While the
latter simply describes a two-excitation decay which leads to a loss of two excitations, the former term
can be interpreted as a non-linear single-excitation decay. This non-linear loss term gets generated
by the Lindblad operator L̂ =

√
Γ̂(z)Ψ̂(z), where Γ̂ denotes an operator valued loss rate given by

Γ̂(z) =
γ cos2 θ sin6 θ

Ω2
e

[∫
dz′ V (z − z′)Ψ̂†(z′)Ψ(z′)

]2

. (2.49)

Note that it is not possible to simplify this loss mechanism by replacing Γ̂ with its expectation value,
i.e., performing a mean �eld approximation, since V (r) diverges for r → 0. Even if a cuto� would be
introduced for the interaction potential the mean �eld expression L̂ = 〈Γ̂(z)〉Ψ(z) would describe a
strong single-excitation loss process which is not physical.

2.3.3 Trajectory approach

In general the state of an open system is a mixed state, i.e., has to be described by a density matrix ρ.
To analyze the time evolution of an observable Ô, one has to evaluate

∂t〈Ô〉 = tr{ρ∂tÔ} = tr{Ô∂tρ}. (2.50)

Note that the middle expression of (2.50) is in the Heisenberg picture of quantum mechanics while
the rightmost expression is to be taken in the Schrödiger picture. The equality can easily be seen
utilizing the invariance of the trace under cyclic permutations. The evaluation of (2.50) can be done
using an adjoint equation, i.e., writing equations of motion for the expectation values leading to a
coupled set of equations. For instance, this can be done for the single- and two-excitation density

48



2.4 Wave-function simulations of the Maxwell-Bloch equations

matrices, ρ1(x, y) = 〈Ψ̂†(x)Ψ̂(y)〉 and ρ2(x, y, y, x) = 〈Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)〉, respectively, see
Appendix C. The master equation generates a set of coupled equations, as the decay leads to a
coupling of two-photon observables to single-photon observables and so forth, leading to a hierarchy
of equations, terminating at the total number of excitations that are considered. However, the speci�c
form of L̂ in the master equation leads to another hierarchy of equations, coupled by derivatives, that
are di�cult to solve.

Thus we choose a di�erent route to investigate the master equation dynamics. As introduced in
Section 1.3.3, the time evolution can be calculated using trajectories, i.e., considering wave functions
evolving under a non-Hermitian Hamiltonian Ĥe� with random projections due to the jump operators,
for instance L̂, and performing a stochastic average over these trajectories. Here these jumps
correspond to projections of the two-polariton wave function onto the single-photon wave function,
i.e., the loss of a polariton. In the o�-resonant regime, where |∆| � γ, the time-scales on which these
jumps occur are large compared to the time-scales governing the unitary time evolution. Consequently,
we can �nd an approximate solution by neglecting the projections and considering only the non-
Hermitian Hamiltonian. This allows us to consider only the wave function ψ2 of two polaritons. We
recall the de�nition

|Ψ2(t)〉 =

∫∫
dz dz′ ψ2(z, z′, t)Ψ̂†(z)Ψ̂†(z′) |0〉 , (2.51)

with the two-excitation amplitude ψ2(z, z′, t) = 〈0|Ψ̂(z)Ψ̂(z′)|Ψ2(t)〉.
Note that the norm of ||ψ2|| is not conserved when evolving under a non-Hermitian Hamiltonian,

but gives the probability of remaining in the two-excitation subspace, i.e., the probability that no
projection occurred.

2.4 Wave-function simulations of the Maxwell-Bloch equations

In this section we want to employ numerical methods to calculate the propagation of two photons in
a gas of Rydberg atoms [8, 42]. The idea is to simulate the full Maxwell-Bloch equations to understand
the propagation of photons inside the medium, especially under o�-resonant driving conditions.
The Maxwell-Bloch equations were the starting point for the derivation of the e�ective �eld theory
of Rydberg polaritons which lead to the master equation in the previous section. Hence, we use
the results in this section as a benchmark to validate the master equation. The simulation of the
full Maxwell-Bloch equations is numerically challenging even with the restriction to one spatial
dimension as one has to deal with the time evolution of strongly interacting particles propagating in
continuous space and which are moreover subject to losses. Thus we have to restrict the simulations
of the full equations to two particles and use approximations and simpli�cations of the problem to
achieve further reduction of the complexity.

In the following we start with a brief introduction of the numerical methods. Then we simulate

49



Chapter 2 Few-body quantum physics of Rydberg polaritons

how a pair of particles propagates through a boundary into a medium with Rydberg interactions and
back into free space. Next we analyze the propagation inside the medium by making use of periodic
boundary conditions and reducing the dimensionality and thus the computational complexity by
considering the relative dynamics only.

2.4.1 Methods and observables

The full time-evolution of our model is described by the Maxwell-Bloch equations (1.13) for the
operators Ê , σ̂ge, σ̂gr and additional interaction processes between the coherences σ̂gr. As these
equations are not exactly solvable, one has to apply approximations and simpli�cations to get an
solution and use numerical methods. We use wave-function methods to map the equations of motion
of the operators to equations for complex valued functions describing the amplitudes and phases of
the di�erent wave-function components. Restricting ourselves to a certain number of excitations
leads to a closed set of equations that can be integrated numerically. In general the state vector of a
few-photon pulse with contributions from electrical �eld Ê optical σ̂ge and atomic σ̂gr coherences is
given by a superposition,

|Ψ(t)〉 = |0〉+ |ψ1〉+ |ψ2〉+ . . . (2.52)

= |0〉+

∫
dz1

∑
α

ψ(1)
α (z1, t)Ô

†
α(z1) |0〉

+

∫∫
dz1 dz2

∑
α,β

ψ
(2)
αβ (z1, z2, t)Ô

†
α(z1)Ô†β(z2) |0〉+ . . . , (2.53)

of vacuum, one-, two-, and higher number states. The sums over α, β run over all possible n-particle
wave functions, i.e., the operators are Ôα ∈ {Ê , σ̂ge, σ̂gr} corresponding to excitations in the electrical
�eld Ê , optical polarization σ̂ge and spin coherence σ̂gr. The amplitudes

ψ(1)
α = 〈ψ(t)|Ô†α|0〉 ,

ψ
(2)
αβ = 〈ψ(t)|Ô†αÔ†β|0〉 ,

...

(2.54)

give the probability of �nding 1, 2, . . . excitations Ôα or Ôβ at positions z1 or z1, z2, respectively,
and similar for higher number of particles. For simplicity we absorb the normalization of the wave
function into the components ψ(1), ψ(2), . . . , ψ(n). In the following we consider only states of �xed
excitation numbers. In particular we are interested in two-excitation states, as the vacuum state is
trivial and the single-excitation state is not interesting due to the lack of interaction e�ects. Moreover,
under o�-resonant driving conditions dissipation is negligible, and thus the number of particles

50



2.4 Wave-function simulations of the Maxwell-Bloch equations

should be almost conserved.
To solve the equations we introduce a discretization of the space coordinates,

ψ2(z1, z2)→ ψ2(z1,j , z2,j) (2.55)

and use a combination of di�erent methods to e�ciently calculate the time propagation for a �nite
time step dt. We use a �nite di�erence scheme to calculate the partial derivatives. To simulate the
propagation of a two-photon pulse from free space into the medium, we use adaptive boundary
conditions, using a nonuniform spatial grid to account for the EIT pulse compression [1].

2.4.2 Simulation of full Maxwell-Bloch equations

We start with the simulation of the full Maxwell-Bloch equations of two interacting photons. For a
wave function with exactly two excitations they assume a Schrödinger-like form that can be written
for the vector Ψ2 with components ψ(2)

αβ

i
∂

∂t
Ψ2(z1, z2, t) = Ĥ(z1, z2)Ψ2(z1, z2, t), (2.56)

where the Hamiltonian Ĥ is given by

Ĥ(z1, z2) = Ĥ0(z1)⊗ Ĥ0(z2) + V (z1 − z2)P̂SS . (2.57)

Here, Ĥ0(z) is the real space representation of the matrix in Eq. (1.13) and P̂SS denotes the projector
onto the component 〈ψ(t)|σ̂grσ̂gr|0〉 as the interaction only a�ects this component of two Rydberg
excitations. To large energies we introduce a cuto� a into the van der Waals interaction potential

Ve�(r)→ sin4 θC6

r6 + a6
. (2.58)

To verify that the cuto� has no in�uence onto the simulation results we performed benchmark
simulations showing that the results are independent of the cuto�.

Propagation through boundary

To capture the physics when the photons propagate from free space, where they propagate with
vacuum speed of light, into the medium, where they are much slower with the velocity vg � c

and the pulse experiences EIT compression as well as interaction due to the coupling to Rydberg
atoms, we split the space into two regions inside the medium and in free space. This is illustrated
in Figure 2.8. Using this method to calculate the time evolution for two-photons according to the
Maxwell-Bloch equations we �nd that the pulse gets split into two parts, avoiding a region of small
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Chapter 2 Few-body quantum physics of Rydberg polaritons

Figure 2.8: Illustration of the adaptive grid. As the pulse propagates in free space with vacuum speed
of light c and in the medium under conditions of EIT with the group velocity vg � c and
moreover gets spatially compressed, we split the space into two parts and discretize free
space and the medium separately with di�erent step size. (a) illustrates this in one spatial
dimension and (b) for two spatial dimensions.

relative distance. In Figure 2.9 we show snapshots of the simulation for o�-resonant and resonant
EIT driving conditions. For both cases the �gures show the formation of an avoided volume for
small distances, which is the well-known e�ect of Rydberg photon blockade [8, 42] and allows us
to compare resonant and o�-resonant propagation. While in the resonant case the interaction leads
to decay of polaritonic excitation and loss of amplitude, in the resonant case a much slower decay
seems to be present and a repulsion of the two photons can be observed.

On the basis of the master equation we showed in the previous section that the dissipative terms
play no role in the dynamics when the single photon detuning is large, but two photons inside a
blockade distance propagate at the vacuum speed of light through the medium and thus escape
from the wave packet. Moreover, polaritons interact repulsively inside which prevents photons from
getting inside the blockade region.

Periodic boundary conditions

In the previous section we used adaptive boundary conditions to simulate the transition of a two-
photon pulse from free space to a gas of Rydberg atoms. As this calculation is numerically challenging,
we want to �nd simpli�cations that allow us to capture the important physics. As a �rst step we
assume an atomic medium with periodic boundary conditions. In this case we can use a uniform grid
for spatial discretization. This allows us to calculate the derivative propagator in the Fourier space,
where it is diagonal. Using a Suzuki-Trotter decomposition and utilizing a Fast-Fourier-Transform
implementation [63] allows to calculate the time evolution much faster and furthermore allows us to
use a higher precision or simulate longer evolution times. A drawback of this method is that we have
to make an ansatz for the initial state that is not an eigenstate and thus essentially have to perform a
quench initially.
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Figure 2.9: Electrical �eld component of Rydberg polariton propagating through a boundary at z = 0
into a gas of Rydberg atoms. Simulation of two-excitation wave equation using the full
Maxwell Bloch equations, Eqs. (1.13) and interactions. (a) and (b) show snapshots of |EE|2
the propagation of a two-photon pulse under o�-resonant EIT conditions and (c) the
resonant case. The propagation time t is given in units of the time T = L/vg, where t = 0
denotes the time, when the center of the pulse is at z1 = z2 = 0 and L denotes the length
of the medium. The parameters of the simulation are g = 10γ, Ω = 0.5γ. The dashed
lines indicate the blockade distance |z1 − z2| = RB. The color scale of the �gure is set to
the maximal value of |EE|2 in (a).
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Figure 2.10: Electrical �eld component of Rydberg polariton propagating in a gas of Rydberg atoms.
Simulation of two-excitation wave equation equation under o�-resonant EIT-conditions
using the full Maxwell-Bloch equations, Eqs. (1.13). (a) shows the result of the previous
�gure after propagation through boundary as comparison for (b) where we quench a
non-interacting Rydberg polariton pulse inside the medium at t = 0 and calculate the
propagation inside the medium with periodic boundary conditions. This allows us to
extend the time evolution to larger times as shown in (c). The propagation time t is given
in units of the time T = L/vg, where t = 0 denotes the time, when the center of the
pulse is at z1 = z2 = 0 and L denotes the length of the medium. The parameters of the
simulation are ∆ = 4γ, g = 10γ, Ω = 0.5γ. The dashed lines indicate the blockade
distance |z1 − z2| = RB. The color scale of the �gure is set to the maximal value of |EE|2
in (a).

In Figure 2.10 we compare the result of the adaptive boundary calculation (a) with a simulation of a
two-polariton pulse inside the medium with periodic boundary conditions (b). For these simulations
we choose initially a non-interacting two-polariton wave packet with a Gaussian shape and perform
an interaction quench. As can be seen by comparing the two methods, they yield a very good
agreement. The main di�erence is that the “full” simulation shows an increasing repulsion with
increasing center-of-mass coordinate R = (z1 + z2)/2, i.e., along the anti-diagonal axis. This is due
to the fact that the parts with larger R are for a longer time inside the medium. In contrast to this, for
the simulation inside the medium with periodic boundary conditions all parts are propagating in the
medium for the same amount of time.

The periodic boundary conditions allow us to simulate larger time scales which is shown in
Figure 2.10(c), where we show a snapshot of the electrical �eld component after twice as long
propagation time.
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Figure 2.11: Simulation of Rydberg polariton propagation in a gas of Rydberg atoms using full Maxwell-
Bloch equations. (a) Time evolution of the two-photon wave function ψ2(r,K = 0, t)
in the relative coordinate r = z1 − z2 up to a time of t = 4T , where T = L/vg.
Shown is the component |EE(r, t)|2 in arbitrary units. (b) Cross section of two-excitation
wave equation. Simulation of the full Maxwell-Bloch equations. The solid lines show
|EE(r, t)|2 for �xed times t/T = 0.5, 1, 2, 4 calculated using only relative time evolution,
i.e., horizontal cross-sections of (a). The dashed lines show for times t/T = 0.5, 1 cross-
sections along the line x + y = 0 of the simulation in both coordinates z1, z2 using
periodic boundary conditions, which are cross-sections of the simulations shown in
Figure 2.10(b)-(c). The plots are normalized to the maximal value at t = 0. Parameters of
the simulations are as in Figure 2.10.

2.4.3 Relative dynamics

Due to its symmetry we expect the interaction between two excitation solely to a�ect the dynamics
in the relative coordinate r = z1 − z2 of the wave packet. This matches the behavior seen in the
simulation in the previous section which gives subsequently rise to a further possibility to reduce
the complexity of the numerical simulation. Namely, we transform to relative and center-of-mass
coordinates r = z1 − z2 and R = 1

2(z1 + z2), respectively. We perform a Fourier transform from R

to K and assume that only K = 0 has a relevant contribution to the dynamics. Then the problem
is reduced to a one-dimensional equation of motion of the wave function ψ2(r,K = 0, t), which is
a computationally much simpler problem. In Figure 2.11(a) we show the dynamics in the relative
coordinate only and in (b) we compare these results to cross sections of the full two-dimensional
simulations in coordinates z1, z2.
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2.5 E�ective Hamiltonian

In the case of large single-photon detuning |∆| � γ as simulated in the previous section the
fundamental physics is governed by an interplay of repulsive interaction and a kinetic energy with an
almost real mass, i.e., we expect a unitary time evolution. The simulation of two-photon wave packets
using Maxwell-Bloch equations con�rms this expectation mainly, although some small remaining
decay can be observed.

In this case the decay processes in the master equation can be neglected, leading to a unitary time
evolution governed by an e�ective Hamiltonian for the Rydberg polaritons. In leading order in cos(θ)

the Hamiltonian simpli�es to

Ĥ = −
∫

dz Ψ̂†(z)
∂2
z

2m
Ψ̂(z) +

1

2

∫∫
dz dz′ Ve�(z − z′)Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z), (2.59)

in a frame co-moving with the group velocity vg.
We can calculate eigenstates of this Hamiltonian by using again a discretization of the space

coordinates and numerical exact diagonalization methods. We take a box of length L corresponding
to the medium length used in the propagation simulations and impose open boundary conditions. We
�nd the spectrum and lowest energy eigenstate shown in Figure 2.12, where we plotted a symmetric
superposition |gs〉 = (|ψ0〉 + i |ψ1〉)/

√
2 of the two degenerate ground states |ψ0〉 and |ψ1〉. In (c)

we compare a cross section of this state to the ground state calculated for the relative coordinate only,
i.e., for numerically only one dimension, where we �nd a disagreement between the spatial shapes of
these two states.

However, we �nd that the eigenstate calculated for relative coordinate restricted to a box of half
the size agrees very well with a cross-section of the time evolved state from Figure 2.10(c).

From this result we conclude that the wave function of two Rydberg polaritons evolves into state
close to the ground state of the e�ective Hamiltonian.

2.6 Conclusion

In this chapter we investigated the propagation of photons under conditions of electromagnetically
induced transparency in a gas of Rydberg atoms. We showed that the dimensionality of the model
can be reduced from three to one if the transverse beam diameter of the probe �eld is smaller than the
Rydberg blockade radius. We showed that under paraxial propagation conditions and for su�ciently
small densities of excitations the system can be described by an e�ective �eld theory of a single
species of quasiparticles called Rydberg polaritons. This theory is in general an open system that can
be described by a master equation. We employed numerical wave-function simulations to �nd the
state of two Rydberg polaritons inside the medium and to compare the time evolution described by
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Figure 2.12: Numerical diagonalization of e�ective Hamiltonian (2.59). We use numerical diagonaliza-
tion to calculate the eigenstate of the Hamiltonian Ĥ for two Rydberg polaritons on a
discretized spatial grid with open boundary conditions. (a) shows the numerical spectrum
we �nd for ∆ = −4γ, g

√
n = 10γ, Ω = 0.5γ and a calculation in two dimensions as

shown in (b) where we plot a symmetric superposition of the two degenerate ground
states. (c) shows a cross section of (b) along the axis z1 +z2 = 0 (solid blue line) compared
to a ground state calculated in one dimension along the relative coordinate r = z2 − z1

(dashed red line) using the same medium length as the propagation calculations above.
Both curves are normalized to 1. The dash-dotted violet line shows the cross section of
Figure 2.10(c) of a polariton pulse propagating inside the medium for a time t = L/vg

after an initial interaction quench. This cross section is compared to a rescaled eigenstate
calculated inside a one-dimensional box of length L/2 (dotted yellow line).
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the e�ective �eld theory with a simulation of the full paraxial Maxwell-Bloch equations. We showed
that under o�-resonant driving conditions and for su�ciently large inter-particle separation the
Rydberg polaritons behave like massive Schrödinger particles with repulsive interactions. For shorter
distance there is a coupling of Rydberg polaritons to decaying and fast propagating bright polaritons.
Correspondingly the dissipative time evolution reduces to a unitary time evolution described by
an e�ective Hamiltonian. We used numerical exact diagonalization to calculate the two-excitation
ground-state of this e�ective Hamiltonian and found very good agreement with the two-excitation
state from the wave-function simulation. This result allows to analyze many-body physics of Rydberg
polaritons described by the e�ective Hamiltonian. This will be the subject of the following chapter.
Under o�-resonant driving conditions with �nite single-photon detuning also bound two-particle
states exist. Since, these states cannot be excited for large blockade distances as considered in the
current chapter but will be considered in Chapter 4.

58



Chapter 3

Many-body physics of Rydberg polaritons

Photons propagating in a gas of Rydberg atoms under conditions of electromagnetically induced
transparency form massive quasi-particles, termed Rydberg polaritons, interacting with a van der
Waals-type interaction potential. Under certain conditions the dimensionality of this system e�ectively
reduces to one. In the case of o�-resonant driving conditions, i.e., with a single-photon detuning that
is large compared to the atomic decay rate, the Rydberg polaritons behave like massive Schrödinger
particles with a unitary time evolution described by an e�ective Hamiltonian. The mass and the
interaction strength are independently tunable parameters. In the case of repulsive interactions the
polaritons repel each other leading to an avoided volume. In the previous chapter we showed that
a pair of photons propagating from free space into a gas of Rydberg atoms forms a state that has a
large overlap with a two-excitation ground state of the e�ective Hamiltonian.

In the present chapter we want to generalize these results to many particles and larger length
scales. Here the properties and results of our model suggest that the setup can be used to convert
an initial wave-packet of photons into a train of single photons. As the time evolution inside the
medium is a unitary process with repulsive interactions, the photonic state may build long-range
correlations, leading to the formation of a quasi-crystalline state, a so-called Wigner crystal. This
state has been predicted for electrons a long time ago [73]. Such a state has potential applications in
all-optical (quantum) communication and information. For instance, a regular train of photons can
provide high bit rates for quantum repeater protocols and multiplexing of photons. Note that this is
opposed to the dissipative case where an initial wave-packet evolves into a superposition of photon
states with di�erent particle numbers [42].

In the following, we want to address these questions and calculate the ground state in the many-
particle case [74],[Otterb2013] and analyze its properties and correlation length in terms of a Luttinger
liquid theory. We investigate the possibilities to reach a regime of strongly interacting Rydberg
polaritons. This regime turns out to be inaccessible under stationary driving conditions. However,
this can be overcome by changing the EIT driving conditions in time, i.e., performing a storage of
polaritons into a stationary spin wave [3, 75, 76]. Using a time-dependent Luttinger liquid theory [77,
78] allows us to calculate the correlation functions during this time-dependent protocol.
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The results presented in the following are summarized in references [Otterb2013], which was a col-
laboration of Johannes Otterbach, Razmik Unanyan, Michael Fleischhauer and myself and [Moos2015],
which was a collaboration of Razmik Unanyan, Michael Fleischhauer and myself with contributions
by Michael Höning. The density-matrix renormalization-group simulations used in the chapter and
as well as the publications were provided by Dominik Muth, see also [74].

3.1 Wigner crystal of Rydberg polaritons

In the case of large single-photon detuning the physics of Rydberg polaritons is described by the
Hamiltonian (2.59) in a co-moving frame,

Ĥ = −
∫

dz Ψ̂†(z)
∂2
z

2m
Ψ̂(z) +

1

2

∫∫
dz dz′ Ve�(z − z′)Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z),

with a real mass m and a repulsive interaction potential Ve�. In the following we investigate many
body properties of this Hamiltonian.

3.1.1 Many-body ground state

We are interested in the many body ground state of the Hamiltonian (2.59). For su�ciently small
group velocity and small excitation densities, the e�ective potential reduces to a van der Waals
potential, which we modify by introducing a cuto�

Ve�(r) ≈ sin4 θC6

r6
→ sin4 θC6

a6 + r6
, (3.1)

i.e., a screening of the short distance interaction at the length a to account for a potential regularization
at short distances [42]. This screening is physically always present, e.g., in our model due to the
�nite distances of Rydberg atoms in a dilute gas. However, for su�ciently strong interactions the
results are independent of the cuto�, cf. Figure 3.2, and thus we neglect a in the remainder of this
chapter. Then the Hamiltonian can be described by a single, dimensionless parameter Θ, given by
the interaction strength at average distance 1/ρ0 between excitations compared to the Fermi energy
generalized to the bosonic system, [74].

Θ =
1

2π
ρ4

0m sin4 θC6. (3.2)

Ground states of bosonic systems with polynomially decaying interactions ∼ r−β can numerically be
calculated. In [74] the author employed the density matrix renormalization group (DMRG) method [79]
to calculate ground states of van der Waals-type interacting bosons for periodic as well as open
boundary conditions. In Figure 3.1 we show �rst-order and normalized density-density correlation
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Figure 3.1: First and second order correlation function calculated by DMRG. Shown are results taken
from [74],[Otterb2013] for 10 particles on 100 lattice sites with periodic boundary con-
ditions for di�erent interaction strengths. (a) First order correlation function and (b)
normalized second order correlation function. The main �gures show double logarithmic
plots of the correlation function and the deviation of the correlation function from one,
respectively. The insets show linear plots of the correlation functions. See also Figure 3.3.

functions in double-logarithmic and linear representation taken from [Otterb2013]. The correlation
functions were calculated using DMRG on a discretized lattice with 10 particles on 100 sites and
periodic boundary conditions. The Figure contains results for three di�erent interaction strengths
Θ, corresponding to a parameter K as shown in Figure 3.2. We observe that for decreasing K the
density-density correlations 〈ρ(x)ρ(0)〉 develop pronounced peaks at distances that are multiples of
the inverse density ρ−1

0 , indicating the formation of a charge density wave. Note that the correlation
function around x = 0 is more suppressed than for free fermions, which is the strongest possible for
point-like interactions [80, 81].

3.1.2 Lu�inger liquid approach

To explain the structure of the correlation functions in Figure 3.1 we use Luttinger liquid theory [10],
see also Section 1.4. This approach allows for a semi-analytical treatment of one-dimensional in-
teracting models in the limit of low energy and can also be applied to bosons with polynomially
decaying interactions [82]. In particular, Luttinger liquid theory provides means to generalize the
DMRG results and extract a correlation length.

To this end we assume a �xed excitation density ρ0 and follow the standard Luttinger liquid
approach to construct an e�ective low-energy Hamiltonian,

ĤLL =
1

2π

∫
dz vsK

[
∇θ̂(z)

]2
+
vs

K

[
∇φ̂(z)

]2
. (3.3)
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Figure 3.2: DMRG results by [74],[Otterb2013] for 10 particles on 100 lattice sites with periodic
boundary conditions. Luttinger K parameter as function of Θ from (3.2) extracted from
DMRG calculations for di�erent short-distance cuto�s a of the interaction potential, the
unscreened interaction potential (a = 0) and the formula (3.8), [83], for comparison.

Here, φ̂ and Π̂ = 1
π∇θ̂ are canonically conjugate �elds with [φ̂(x), Π̂(y)] = iδ(x− y). The Luttinger

liquid is determined by two constants, the speed of sound vs and the dimensionless Luttinger parameter
K . The latter constant universally governs the asymptotic behavior of the �rst order and density-
density correlation functions, which are in leading order power laws with exponents −1/2K and
−2K , respectively. Thus, for K � 1 the dominant long-range correlations are super�uid order,
while for K � 1 a charge-density wave dominates, where K = 1/2 marks the crossover point. This
expected behavior is matched by the results in the Figures 3.1, as can be directly observed from the
logarithmic representations.

We can extract the K-parameter from the DMRG simulation. To this end we note that the ratio

K/vs = πρ2χ, (3.4)

can be determined from the compressibility χ−1 = ρ2 ∂µ
∂ρ [10]. Furthermore, for Galilean invariant

systems the relation
vsK =

πρ

m
(3.5)

holds [35]. Combining both relations allows to determine the K parameter, as a function of Θ

from (3.2), the single free parameter of our microscopic model. In Figure 3.2 we show the resulting
relation for di�erent screening lengths a and the unscreened case. Using the independently determined
value for K , we can determine the agreement of the correlation functions with the Luttinger liquid
theory. To this end we use the formulas given in [34] for the correlation functions of a Luttinger liquid
constrained to a box of length L with periodic boundary conditions. Including higher harmonics the
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Figure 3.3: DMRG results by [74],[Otterb2013] for 10 particles on 100 lattice sites with periodic
boundary conditions. Solid lines: density-density correlation functions shown also in
Figure 3.1(b) for di�erent interaction strengths. Dashed lines: �ts of the density-density
correlation functions by Eq. (3.7). Note that K is not a �t parameter but extracted from
the DMRG calculation as described in the main text.

�rst order correlation function is given by the expression

〈Ψ̂†(x)Ψ̂(0)〉 = ρ0
1

[ρ0d(x, L)]1/2K

{
B0 +

∞∑
n=1

B2n
1

[ρ0d(x, L)]2m2K
cos(2πnρ0x)

}
(3.6)

and the density-density correlation function by

〈ρ(x)ρ(0)〉 = ρ2
0

{
1− K

2π2

[
1

ρ0d(x, L)

]2

+
∞∑
n=1

A2n[ρ0d(x, L)]−2n2K cos(2πnρ0x)

}
(3.7)

where d(x, L) = L|sin(πx/L)|/π. We �t the formula (3.7) to the density-density correlation functions
obtained by DMRG with the non-universal coe�cientsA2n as �t parameters. Additionally, we restrict
the �t to a domain 0.5 ≤ xρ0 ≤ Lρ0 − 0.5, as the smaller (and larger) x correspond to high energy
contributions that are not well described by Luttinger liquid theory. In Figure 3.3 the density-density
correlation functions obtained by DMRG are displayed together with the corresponding �tting results.
The coe�cients A2n obtained by the �tting are displayed in Table 3.1. We recognize a very good
agreement between numerical results and the �tted Luttinger liquid correlation function, proving that
the low-energy physics of the Rydberg polariton model (2.59) is well described by Luttinger liquid
theory (3.3). Moreover, the �tting results show that for weak interactions the density correlations are
determined solely by the second harmonic with coe�cient A2, while for the stronger interacting case
with K = 0.109 the fourth and sixth harmonic become increasingly important. However, as they fall
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Chapter 3 Many-body physics of Rydberg polaritons

K A2 A4 A6

0.782 0.1011 0 2.59× 10−6

0.442 0.3639 0 5.2× 10−5

0.109 1.3116 0.3485 0.0317

Table 3.1: Coe�cients A2n of the Luttinger harmonics in (3.7) extracted from a �t of the DMRG
density correlation functions on the interval 0.5 ≤ xρ0 ≤ Lρ0 − 0.5.

.

Ω

Ê

(i) input �eld (ii) Rydberg medium (iii) correlated photon train

Figure 3.4: Idea sketch: creation of a regular train of photons.

o� with much larger exponents −2m2K , the second harmonic remains the dominant contribution
for larger distances. We note that the �rst-order correlation functions can be �tted analogously with
comparable goodness of the �t, but are of minor interest for the following, as they decay very quickly
for K � 1.

3.1.3 Strongly interacting regime under stationary EIT conditions

We turn now to our microscopic model of propagating Rydberg polaritons. We estimate the driving
conditions needed to reach the strongly interacting regime, i.e., K � 1, under stationary conditions
of EIT.

In the case of the unscreened van der Waals interaction potential an approximate formula for the
K parameter has been given by [83],

K =
1√

1 + π4

45 Θ
, (3.8)

which is asymptotically correct in the case of small and large interaction strengths, as can also be
observed from Figure 3.2. Using the de�nition of the e�ective mass (2.40) and the blockade radius (2.21)
we can rewrite the de�nition (3.2) of Θ in terms of system parameters,

Θ ≈ 1

4π
(ρ0RB)4

( γ
∆

)2
d2

B, (3.9)

where we assumed slow light, i.e., vg � c and dB = RB/Labs denotes the optical depth per blockade
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Figure 3.5: Log-log plot of Luttinger parameter K as a function of optical depth per blockade dB.
Shown for |∆|/γ = 5 and three di�erent excitation densities ρ0RB = 1, 1
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Solid lines: interpolation of the DMRG results from [Otterb2013] presented in Figure 3.2.
Dashed lines: Corresponding analytical approximation according to Eq. (3.10).

radius. Approximating Eq. (3.8) in the case of strong interactions and inserting the expression (3.9)
yields the relation

K ≈ 2.410
|∆|
γ

1

(ρ0RB)2

1

dB
. (3.10)

Here, ρ0RB compares the excitation density to the blockade radius. In a stationary setup there can at
most a single excitation exist per blockade radius, thus the density is limited by

ρ0RB ≤ 1. (3.11)

For larger densities excitations will be converted to bright state polaritons and subsequently decay or
propagate out of the medium. Moreover, to realize the unitary model we require |∆|/γ � 1. The
remaining free parameter in Eq. (3.10) is the optical depth per blockade. In Figure 3.5 we display the
approximate relation (3.8) as well as the exact result obtained from interpolating the DMRG results
shown in Figure 3.2 for di�erent values of ρ0RB. and ∆/γ = 5. We �nd that even for large excitation
densities (ρ0RB ≈ 1) the optical depth per blockade required for reaching the strongly interacting
regime (K � 1) is orders of magnitude larger than experimentally feasible values that are on the
order of 10 [8]. Furthermore, changing the optical depth per blockade dB by changing the blockade
radius while keeping ρ0RB �xed requires smaller excitation densities with increasing dB.

An typical experimental setup, see e.g. [8], uses a Rydberg medium of a certain, �nite length L on
the order of a few 10 microns. Condition (3.11) then limits the number of excitations in the medium
to N ≤ dL/RBe. Thus, for su�ciently large dB, the maximal number of excitations in a �nite system
reduces to a single excitation, when the blockade radius RB becomes larger L. Hence, it is impossible
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Chapter 3 Many-body physics of Rydberg polaritons

to reach a regime of arbitrary large interactions under stationary driving conditions. We remark,
that a charge density wave could still be observed for not too strong interactions, as its amplitude
can become quite large in �nite systems [84]. An alternative may also be given by exciting Rydberg
atoms in hollow core �bers, as has recently been realized [52, 53], see also [81].

3.2 Dynamical storage of Rydberg polaritons

We have shown that a stationary slow-light setup of polaritons propagating in a gas of Rydberg atoms,
the interactions between the polaritons can lead to strong, long-range density-density correlations
corresponding to a Wigner crystal of dark-state polaritons, i.e., a train of photons moving with the
slow-light group velocity. However, the limit of long-range correlations is attained only for diverging
blockade distance, which makes it impossible to create such a state in a �nite system under stationary
driving conditions.

In the following section we propose and investigate a possible solution to this problem by us-
ing a time-dependent protocol, i.e., dynamically changing the parameters from an initially weakly
interacting to the strongly interacting regime. This protocol corresponds to a dynamical slowing
down of polaritons or light storage [3, 75, 76] inside the medium by turning o� the control �eld and
thereby turning propagating polaritons into a stationary spin-wave. During storage the dimensionless
interaction strength is dynamically increased, leading to a divergent blockade distance. We show that
despite this fact a storage of Rydberg polaritons is possible and con�rm that by numerical simulations.

3.2.1 Frequency pulling

Storing light in an EIT setup is performed by decreasing the control �eld strength Ω and thus the
group velocity, the propagation speed of the polaritons. During that process the EIT transmission
spectrum T (ω), see Eq. (1.10), becomes smaller. Nevertheless, storage of polariton works as in a
dynamical protocol the spectrum S(z, ω) of a polariton pulse becomes narrower and thus stays inside
the transparency window [1], as opposed to a spatial change of the group velocity. The picture seems
to change, when taking interactions into account. The interaction energy between two Rydberg
polaritons can be interpreted as a shift of the atomic levels, i.e., a space-dependent two-photon
detuning δ, or, a shift of the pulse spectrum relative to the atomic resonance. Under stationary
conditions, a �nite two-photon detuning is allowed, if the shifted pulse spectrum �ts inside the
transmission spectrum. If the transmission spectrum tends to zero, however, this is no longer the case
and the pulse gets absorbed or decoupled from the medium. As has been shown [20], this argument
is too naive and the storage of Rydberg polaritons is possible despite the interactions. This can be
seen as follows.

Let us consider the time evolution of a dark-state polariton pulse during storage. We assume that
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3.2 Dynamical storage of Rydberg polaritons

Figure 3.6: EIT transmission spectrum and normalized pulse spectrum during time-dependent slow-
down of a light pulse.

initially the pulse propagates with a �xed two-photon detuning δ0 = ωp(0) + ωc − ωrg. As has been
shown in [20], this small two-photon detuning leads to a time-dependent phase shift of the dark-state
polariton during storage,

Ψ̂(z, t) = Ψ̂

(
z − c

∫ t

0
dτ cos2 θ(τ), 0

)
exp

{
iδ0

∫ t

0
dτ sin2 θ(τ)

}
. (3.12)

If the mixing angle only changes slowly this causes a time-dependent modi�cation of the spectrum
S(z, ω) of the probe light �eld Ê(z, t) = cos θ(t)Ψ̂(z, t), that is given by

S(z, ω) =

∫ ∞
−∞

dτ e−iωτ 〈Ê†(z, t)Ê(z, t− τ)〉 (3.13)

=
cos2 θ(t)

cos2 θ(0)
S

(
0,

1

cos2 θ(t)
[ω + δ0 sin2 θ(t)]

)
. (3.14)

The equation shows two e�ects, that are illustrated in Figure 3.6. First, there is a spectral narrowing
of the pulse spectrum S proportional to cos2 θ(t) which corresponds to the narrowing of the EIT
transmission spectrum T during light storage and therefore guarantees that the spectral width of the
pulse stays inside the EIT window at all times, if it did so initially [3]. Secondly and most importantly
for the storage of interacting polaritons, there is a pulling of the central frequency of the pulse
spectrum, i.e., the two-photon detuning δ(t) is shifted towards two-photon resonance,

δ(t) = ωp(t) + ωc − ωrg = δ0 cos2 θ(t)→ 0. (3.15)

These e�ects have been observed experimentally [85]. It can be concluded that the two-photon
linewidth of EIT light storage is determined by the collective Rabi frequency Ωe� by

δ2,ph(t) =
Ω2

e�(t)

|Γ| , (3.16)
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rather than by the control �eld Rabi frequency Ω(t). As a consequence, the minimal distance of
Rydberg polaritons is determined by (3.16) leading to the critical distance ac,

ac = max

{
RB(0) = 6

√
|C6Γ|
Ω2(0)

, 6

√
|C6Γ|
Ω2

e�(t)

}
. (3.17)

This length is bounded in a dynamical light storage protocol as opposed to the instantaneous blockade
distanceRB(t). We note that in the case of slow light Ω0 ≤ Ωe�(t) holds at all times and consequently
we get ac = RB(0). We conclude that the minimal distance of Rydberg polaritons does not diverge
in a light storage protocol, making it possible to reach the strongly interacting regime with a �nite
number of excitations – at least dynamically.

3.2.2 Wave function simulation of storage

The result we derived above can be veri�ed numerically, using two-excitation wave function simula-
tions as introduced in Section 2.4. The two-excitation wave function is de�ned as in the previous
chapter. As we have shown in Section 2.1, the relative and center-of-mass dynamics are decoupled,
such that it is su�cient to simulate only the evolution in the relative coordinate r for center-of-
mass coordinate R = 0. This can e�ciently be done by using the split-operator approach with a
time-dependent control �eld Ω(t). Speci�cally, we use a Gaussian protocol

Ω(t) = Ω0 exp{−(t/τ)2} ⇒ vg(t) ≈ vg(0) exp{−2(t/τ)2}, (3.18)

where we assumed Ω2
0 � g2n. In Figure 3.7(a) we show the time-dependence of Ω and the time-

dependence of the instantaneous blockade distance RB(t) ∝ Ω(t)−1/3. We choose initial conditions
of Ω0 = 0.5γ, g

√
n = 10γ and a detuning of ∆ = 4γ. We determine the switching time τ by the

condition
∫

ds vg(s) = L, with L being the medium length, i.e.,

τ =
2L√
πvg(0)

. (3.19)

We calculate the simulation up to a time of t = 3τ , as vg(3τ) is su�ciently small compared to vg(0)

and only small changes happen in the time evolution for larger times. The time evolution of the
components EE = 〈0|Ψ̂(r/2)Ψ̂(−r/2)|Ψ2〉 in relative coordinates and analogously de�ned SS of the
wave function are displayed in Figure 3.7(b) and 3.7(c), where we plot the intensities |EE|2 normalized
by cos4 θ(0) and |SS|2 normalized by sin4 θ ≈ 1. We observe that initially the wave-packet begins to
spread as in the time-independent propagation, cf. Figure 2.11, but then the dispersion stops and the
amplitude of the electrical �eld component gets shifted to the spin component. Note that the latter
is only a small e�ect, since the initial state already is a slow light pulse. This is illustrated better in
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Figure 3.7: Simulation of storage of two-photon wave function propagating in a gas of Rydberg atoms
using full Maxwell-Bloch equations, restricted to relative coordinate. In (a) the protocol for
the simulation is displayed, namely Ω(t)/Ω(0) and the diverging instantaneous blockade
radius RB(t)/RB(0) ∝ Ω(t)−1/3. (b) and (c) show the time evolution of the electric-�eld
EE and spin component SS of the wave function, respectively. Shown is the amplitude
squared normalized by cos4 θ(0) and sin4 θ(0) to make them comparable. (c) Shows the
total amplitude squared integrated over r of the components EE , ES and SS normalized
by N1 = cos2 θ(0), N2 = cos θ(0) sin θ(0), and N3 = sin2 θ(0) as well as the integrated
amplitude squared of the two-excitation Rydberg polariton, ΨΨ. Finally, (d) shows cross
section of the polariton wave function for di�erent times during the storage protocol (solid
lines) and for comparison the cross section of a wave function propagating under stationary
EIT conditions (dashed line), cf. Figure 2.11. The times are chosen such that the traveled
distances of the propagating pulse and the stored pulse are equal. The vertical dashed
lines indicate the blockade radius ±RB. Parameters of the simulation were g

√
n = 10γ,

Ω(0) = 0.5γ and ∆ = 4γ. The characteristic storage time τ was chosen as in Eq. (3.19).
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Figure 3.7(d), where we show the integrated intensities of the components EE , ES and SS normalized
by appropriate combinations of cos θ(0) and sin θ(0) as well as the combination of the three into the
dark polariton ΨΨ, where the two-polariton amplitude is given by

ΨΨ(r, t) = cos2 θ(t)EE(r, t)− sin θ(t) cos θ(t)[ES(r, t) + SE(r, t)] + sin2 θ(t)SS(r, t). (3.20)

We observe that the intensities containing electric �eld components are quickly turned to zero, while
the spin-component is initially decaying and then saturates. The integrated intensity of the dark-state
wave function is in very good agreement given by the spin amplitude as expected in the case of slow
light.

Figure 3.7(e) �nally shows snapshots of the relative wave function at di�erent times during storage in
comparison to the wave function propagating under stationary EIT conditions, taken from Figure 2.11.
Speci�cally, we choose the propagating time of the latter such that the distance the wave packet
travels during propagation is equal to the distance the stored wave packet travels. We observe that
the wave function during storage evolves into a time-independent state with a shape similar to the
propagating pulse. This con�rms our result of the previous section, that the relevant length scale
governing the avoided volume during storage is given by the initial blockade radius RB(0). Therefore
it is feasible to store a pulse of interacting Rydberg polaritons.

3.3 Time-dependent Lu�inger liquid

As we have seen in the previous section the minimal distance of Rydberg polaritons stays �nite
during a light storage protocol. Thus, a pulse of Rydberg polaritons gets turned into a stationary
density-wave of atomic Rydberg excitations during storage. As in a dynamical protocol the mass
and consequently the dimensionless interaction strength get increased this hints to the possibility of
reaching the strongly interacting regime with a dynamical protocol.

To investigate this, we will calculate the correlation functions during and after an storage protocol
in this section. Therefore we employ a time-dependent Luttinger liquid theory [78, 86, 87]. An
important �eld of research is non-equilibrium dynamics of closed interacting quantum systems [88].
Recently, Luttinger liquid theory has been applied to study the time evolution of closed quantum
systems and speci�cally their correlation functions during and after quenches. In particular, sudden
as well as �nite time quenches have been investigated [77, 86, 89–91]. While the former case is always
diabatic, i.e., brings the system out of equilibrium, a smooth or �nite-time quench can in general be
adiabatic, if it is slow compared to the slowest time scale in the system. However, this limit cannot be
reached for a Luttinger liquid, as the system is gapless. Here, a smooth quench leads to a crossover
in the system between adiabatic and diabatic regimes [77]. As we will show in the following this
makes it possible to create su�ciently long-range correlations in a system of �nite length, i.e., a
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3.3 Time-dependent Luttinger liquid

charge-density wave correlated on a length scale on the order of a typical sized atomic cloud in an
experimental setup.

Let us now calculate the time evolution of the density-density correlation functions (1.54). To this
end we assume a Galilean invariant system which is described by a Luttinger Hamiltonian (3.3). The
system is initially in its ground state, which, for instance, can for interacting Rydberg polaritons
be prepared under stationary slow light conditions. In the time-independent case the Hamiltonian
can simply be diagonalized by rescaling the Luttinger liquid �elds φ̂, θ̂ [10]. In the time-dependent
case this is no longer the case, and a more sophisticated approach involving numerical simulations is
needed in general.

3.3.1 Time-independent case

Let us �rst discuss the time-independent case. We introduce standard bosonic operators [b̂p, b̂
†
q] = δp,q ,

transforming the Luttinger liquid �elds φ̂, θ̂ in the thermodynamic limit L→∞ as

φ̂(x) = −i
π

L

∑
p 6=0

(
L|p|
2π

)1/2 1

p
e−α|p|−ipx(b̂†p + b̂−p) (3.21)

θ̂(x) = +i
π

L

∑
p 6=0

(
L|p|
2π

)1/2 1

|p|e
−α|p|−ipx(b̂†p − b̂−p) (3.22)

with α being a short-distance cuto�. If the system is not in the thermodynamic limit, topological
excitations are important and additional terms have to be taken into account [10]. The Luttinger
Hamiltonian (3.3) transforms into [10]

ĤLL =
vs

2

∑
p 6=0

|p|
[
wb̂†pb̂p −

g

2

(
b̂†pb̂
†
−p + b̂−pb̂p

)]
, (3.23)

where the coe�cients are w, g = K ±K−1, respectively. This Hamiltonian can be diagonalized by a
Bogoliubov transformation, (

b̂p

b̂†−p

)
=

(
cosh ζ sinh ζ

sinh ζ cosh ζ

)(
γ̂p

γ̂†−p

)
, (3.24)

where e2ζ = K . The resulting Hamiltonian expressed in terms of the new variables is

Ĥ = vs

∑
p 6=0

|p|γ̂†pγ̂p (3.25)
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corresponding to free bosons with linear dispersion. The only nonvanishing correlation function in a
thermal state at temperature T reads

〈γ̂pγ̂†q〉 = δp,q coth(vs|p|/2T ), (3.26)

where we set kB = 1. Note that, in the limit T → 0 the coth-factor becomes unity.
We are interested in density-density correlations 〈ρ(x)ρ(0)〉. In leading order they are describe

by a charge-density wave, given by a spatial oscillation period given by the inverse of the density
ρ0 multiplied by a function e−Gφφ(z) determining the spatial behavior of the amplitude. In the
ground-state this is a power law like decay. Following (1.52), we �nd,

Gφφ(z) = 〈[φ(x)− φ(0)]2〉 =
2π

L

∑
p>0

e−αp
1− cos px

p
〈(b̂†p + b̂−p)(b̂

†
−p + b̂p)〉 (3.27)

→
∫ ∞

0
dp p−1e−αp(1− cos px) 〈(b̂†p + b̂−p)(b̂

†
−p + b̂p)〉

in the thermodynamic limit [10]. Hence, the spatial envelope of the density correlations is determined
by phase correlations. Consequently, to to determine the correlation function (3.27) we need to �nd
〈(b̂†p + b̂−p)(b̂

†
−p + b̂p)〉. With Eq. (3.26) we �nd

〈(b̂†p + b̂−p)(b̂
†
−p + b̂p)〉 = K coth(vs|p|/2T ) (3.28)

for the correlation functions of a thermal state.

3.3.2 Time-dependent case

Now we turn to the case of an explicit time dependence of the system parameters, which translates
into a time-dependent speed of sound vs and Luttinger K parameter

vs → vs(t), K → K(t). (3.29)

We assume that the time variation is su�ciently slowly, such that the Luttinger-liquid approximation
still holds and, furthermore, non-adiabatic corrections of the underlying polariton model are negligible,
cf. Section 3.5 for an estimation. In this case the system can still be described by Hamiltonian, Eq. (3.23),
where the total energy scale of as well as the ratio between particle-number conserving and non-
conserving terms become time-dependent

ĤLL =
vs(t)

2

∑
p6=0

|p|
[
w(t)b̂†pb̂p −

g(t)

2

(
b̂†pb̂
†
−p + b̂−pb̂p

)]
, (3.30)
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3.3 Time-dependent Luttinger liquid

with w(t), g(t) = K(t)±K(t)−1. The Heisenberg equations of motion for the bosonic modes b̂, b̂†

under this Hamiltonian are given by

i
d

dt

(
b̂p

b̂†−p

)
=
vs(t)|p|

2

(
w(t) −g(t)

g(t) −w(t)

)(
b̂p

b̂†−p

)
=: Mp(t)

(
b̂p

b̂†−p

)
, (3.31)

where we introduced the time-dependent coupling Matrix Mp. These are di�erential equations
coupling modes with momenta±p. To solve these equations we perform a time-dependent Bogoliubov
transformation [92]

b̂p = up(t)b̂p(0) + v∗p(t)b̂
†
−p(0), (3.32)

b̂†p = u∗p(t)b̂
†
p(0) + vp(t)b̂−p(0), (3.33)

which maps the time dependence of the operators to the coe�cients, for which we introduce the
notation Rp = (up(t), vp(t))

t. In this way, the Heisenberg equations of motion get mapped to coupled
di�erential equations for R, that can be written in the form

i∂tRp(t) = Mp(t)Rp(t), Rp(0) = (1, 0)T . (3.34)

In general these equations cannot be solved analytically, since diagonalizing the time-dependent
matrix Mp(t) always creates non-adiabatic corrections that are o�-diagonal, i.e., the transformed
equations will again be coupled. Let us consider the matrix Sp such that S−1

p MpSp is diagonal
and use this to transform the equations of motion, where the transformed equations of motion for
R

(1)
p = S−1

p Rp are given by

i
d

dt
R(1)
p (t) = S−1

p (t)Mp(t)Sp(t)R
(1)
p (t) + Ṡ−1

p (t)Sp(t)R
(1)
p (t), (3.35)

with initial condition R
(1)
p (0) = S−1

p (1, 0)T . Thus, the diagonalization of the time-dependent matrix
Mp(t) does not diagonalize the equations of motion as a new o�-diagonal coupling arises, proportional
to Ṡ−1

p Sp. Consequently, the initial value problem (3.34) can in general only be solved numerically.
Assuming that a solution Rp(t) exists we can calculate the time dependent correlation function of

the bosonic operators,

〈[b̂†p(t) + b̂−p(t)][b̂
†
−p(t) + b̂p(t)]〉 =

〈{
[u∗p(t) + v∗p(t)]b̂

†
p(0) + [up(t) + vp(t)]b̂−p(0)

}
×
{

[u∗p(t) + v∗p(t)]b̂
†
−p(0) + [up(t) + vp(t)]b̂p(0)

}〉
= [u∗p(t) + v∗p(t)]

2 〈b̂†p(0)b̂†−p(0)〉+ [up(t) + vp(t)]
2 〈b̂−p(0)b̂p(0)〉

+ |up(t) + vp(t)|2 〈b̂†p(0)b̂p(0) + b̂−p(0)b̂†−p(0)〉 . (3.36)
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Chapter 3 Many-body physics of Rydberg polaritons

Making use of the correlation function (3.28) at t = 0 this can be simpli�ed to

〈[b̂†p(t) + b̂−p(t)][b̂
†
−p(t) + b̂p(t)]〉

= coth(vs(0)|p|/2T )×
{
K0<[up(t) + vp(t)]

2 +
1

K0
=[up(t) + vp(t)]

2

}
, (3.37)

where K0 = K(t = 0).
We note that a correction Ṡ−1

p Sp in Eq. (3.35) appears that again is an o�-diagonal matrix pro-
portional to K̇/K . For su�ciently small K̇(t), one can �nd a perturbative solution which re�ects
the gaplessness of the Luttinger liquid. Comparing the o�-diagonal terms to the di�erence of the
diagonal terms we �nd that the o�-diagonal coupling can be neglected, if

|vs(t)p| �
∣∣∣∣∣14 K̇(t)

K(t)

∣∣∣∣∣ . (3.38)

To be fully adiabatic this condition has to be ful�lled at all times and for all relevant momentum
modes p. However, this is impossible to achieve for small momenta p, since the Luttinger model is
gapless. Consequently, a dynamical protocol cannot be used to transform a ground state of weakly
interacting Rydberg polaritons adiabatically to the strongly interacting regime.

Nevertheless we can assume that the time scale on which K(t) changes is bounded, giving rise
to a critical momentum pc, such that all momentum modes with |p| > pc obey (3.38) at all times.
Then we expect a crossover between modes with p being larger and smaller pc from an adiabatic
following (p� pc) of the storage protocol to a diabatic following, i.e., a sudden quench (p� pc). The
momentum scales are related to length scales of the correlation functions. Large momenta correspond
to small distances and small momenta to large distances. That means, the crossover momentum scale
pc can be related to a crossover length scale Lc ∼ 1/pc.

From this simple argument we conclude that correlation functions can adiabatically follow a
su�ciently slow quench over a �nite distance, while correlation functions on large scales always
exhibit diabatic behavior. Consequently, true long-range order cannot be obtained in a Luttinger
liquid model.

3.4 Reaching the strongly interacting regime

In the Luttinger model true long-range order can not be achieved, due to the gaplessness of the model,
but very slowly decaying correlation functions can be achieved by a slow quench. However, so far
we neglected the fact that we employed the Luttinger model in a moving frame and the underlying
microscopic model is propagating in space. As experimental realizations require a �nite medium
length L, the characteristic storage time has to be restricted such that the Rydberg polaritons get
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Figure 3.8: Pulse propagation and spreading of correlations during storage. (a) The time dependent
control �eld Ω(t) ∝ cos2(πt/2τ) de�nes the protocol. (b) Group velocity vg(t) and speed
of sound vs(t) during the protocol in units of vg(0). (c) Light-cone like spreading of
correlations of a propagating pulse during storage. We set vs(0) = vg(0) = 0.01c for the
initial velocities2.

stored before leaving the medium. This condition can be put in the form

Lstor =

∫ ∞
0

ds vg(s) < L, (3.39)

where Lstor denotes the distance a pulse travels inside the medium during the storage. This condition
sets a limit on the characteristic storage time, and thus the question arises, if long-range correlations
inside the medium can be achieved. As the correlations propagate with the speed of sound vs we can
analogously to (3.39) de�ne a correlation length during storage by

Lcorr =

∫ ∞
0

ds vs(s). (3.40)

Then states with long-range correlations are experimentally accessible, if Lcorr > L, or, alternatively,
Lcorr � Lstor. That is the case, if the speed of sound is large compared to the group velocity. To
answer the question if this holds true, we note that in any Galilean invariant system1 the speed of
sound is determined by the relation vs = πρ0/(mK) where the mass m and the Luttinger parameter
K are both time-dependent. The mass is inverse proportional to the group velocity, cf. Eq. (2.40) and

1And approximately for the bulk of su�ciently large �nite systems.
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Chapter 3 Many-body physics of Rydberg polaritons

furthermore K is a unique function of m, which in the strongly interacting limit can be approximated
by K(t) ∝ [m(t)]−1/2, which can be derived from Eq. (3.8) together with (3.2). Combining these
relations, we can determine the time-dependence of the speed of sound by

vs(t) = vs(0)×
√
vg(t)

vg(0)
. (3.41)

In the case of slow light we can assume vs(0) ≈ vg(0) for the initial velocities2. Thus the speed of
sound tends slower to zero as the group velocity during storage, allowing correlations to spread faster
as the pulse propagates and consequently allows to create a correlated state during storage of a pulse
of Rydberg polaritons. This is illustrated in Figure 3.8 for a storage protocol Ω(t) ∝ cos2(πt/2τ),
(a) shows the protocol, (b) the time-dependence of the velocities and (c) illustrates the spreading of
correlations of a propagating pulse.

Note, that the approximate relation K ∝ 1/
√
m overestimates the Luttinger parameter and

subsequently underestimates the speed of sound, i.e., the result is further improved when taking the
correct relation.

3.4.1 An exactly solvable case

As argued in the previous section, the equations of motion, Eq. (3.31), for the bosonic modes of the
Luttinger model can, in general, not be solved analytically for time-dependent parameters. Moreover,
we showed that no perturbative solution exists for arbitrary momenta, as the Luttinger Hamiltonian
is gapless. One possible way to solve the equations of motion is in using numerical methods, which
we will employ in the next section. The form of the transformed Equations of motion (3.35), however,
gives rise to another, analytical way to solve the equations, which we will discuss now.

We want to solve an initial value problem (IVP) with a system of linear di�erential equation given
in vector-matrix form by

i
d

dt
R(0)(t) = M (0)

p (t)R(0)(t), R(0)(0) = R0. (3.42)

We try to �nd a solution of this IVP by performing a series of n linear transformations, where S(n)

denotes the nth transformation matrix as follows. First, starting from the original problem (3.42), we
�nd the matrix S(1)(t), such that

D(1)(t) = [S(1)(t)]−1M (0)
p (t)S(1)(t) = diag. (3.43)

2This assumption is reasonable, as under the assumption of vg(0) � c the ratio of both velocities is given by vs(0)/vg(0) =√
π5/45(ρ0RB)3 with ρ0RB ≤ 1.
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3.4 Reaching the strongly interacting regime

is a diagonal matrix. Applying this transformation to the IVP by multiplying with [S(1)]−1 and
inserting 11s yields

i[S(1)(t)]−1 d

dt

[
S(1)(t)[S(1)]−1R(0)(t)

]
= [S(1)(t)]−1M (0)

p (t)S(1)(t)R(0)(t), R(0)(0) = R0

This can be rearranged to

i
d

dt
R(1)(t) =

{
D(1)(t)− i[S(1)(t)]−1∂tS

(1)(t)
}

R(1)(t)

=: M (1)
p (t)R(1)(t), R(1)(0) = [S(1)(0)]−1R0. (3.44)

We observe that the diagonalization of the time-dependent matrix M (1)
p (t) requires a second time-

dependent diagonalization matrix S(t) and this leads subsequently to new o�-diagonal couplings
in the di�erential equation. An exact diagonalization of the di�erential equation can thus not be
achieved in general. Neglecting these second order coupling corresponds to a so-called super-adiabatic
approximation [93].

To get a better approximation we can iterate the above procedure n times which has been investi-
gated [93] and leads to a transformed initial value problem of

i
d

dt
R(n)(t) = M (n)

p (t)R(n)(t), R(n)(0) = [S(n)(0)]−1 · · · [S(1)(0)]−1R0. (3.45)

Dropping now the o�-diagonal corrections of nth order gives a higher order adiabatic approximation.

Typically one �nds, that the accuracy of the deviation of the nth order adiabatic solution from the
exact solution �rst decreases with n but at a certain n this behavior changes and the further iterations
make the approximation again worse. However, there exist special cases where the equations get
diagonalized by n iterations and thus an exact solution can be found. Such a super-adiabatic solution
can also be found for Eq. (3.31) as follows. We repeat the diagonalization procedure with Eq. (3.35) by
calculating the Matrix S(1)

p (t) that diagonalizes the Matrix M (1)
p (t). This step again preserves the

structure of the equations of motion, i.e., results in an equation with the same form as the original
equation, with o�-diagonal coupling by the matrix

[
Ṡ(1)
p

]−1
S(1)
p =

d

dt

[
∂tK(t)

K(t)vs(t)

](
0 1

−1 0

)
. (3.46)

Expressing the speed of sound by vs = πρ0/mK and employing the unique relation of Luttinger
parameter K and e�ective polariton mass m, cf. Figure 3.2, we can �nd a special time-dependence of
K(t), such that expression (3.46) vanishes at all times. With the approximation for small K , where
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Figure 3.9: Blue, solid line: function K(t) for the super-adiabatic protocol, Eq. (3.47) for K0 = 0.679;
red, dashed line: asymptote for large t.

vs(t) ∝ K(t), this yields a di�erential equation for K(t) that has the solution

K(t) = e− acosh(t/τ+C), (3.47)

where C = 1
2(K0 + 1/K0) and τ is the characteristic time of the smooth quench. In the limit of

large time, t� τ , the leading order term is given by K(t) ≈ τ/2t, as indicated by the dashed line in
Figure 3.9. Note that it is a very slow decay, thus it takes long times to reach the limit of K � 1. For
the time-dependence (3.47) of the Luttinger parameter, the o�-diagonal couplings, Eq. (3.46) vanish,
i.e., a second iteration of the diagonalization transformation diagonalizes the Eqs. (3.35) and they can
be solved analytically. This corresponds to exact super-adiabaticity.

Before we discuss this solution in detail, let us calculate the crossover and correlation lengths
Lc and Lcorr, respectively, to get some insight into the solution. As by construction for the special
solution (3.47) the derivative in Eq. (3.46) vanishes at all times, the critical momentum pc becomes a
constant of time, given by

pc =

∣∣∣∣∣ K̇(t)

K(t)vs(t)

∣∣∣∣∣ =
η

τ
= const., (3.48)

where η−1 = 1
2(ρ0RB)5dB

γ
∆vg(0) is de�ned by the relation ηvs = (KΘ)−1, cf. Eq. (3.5). The inverse

of momentum scale pc de�nes the crossover length between adiabatic and diabatic correlations,

Lc =
1

pc
=

1

2
(ρ0RB)5vgdB

γ

∆
τ, (3.49)

where the constants RB, vg, dB on the right-hand side have to be taken at the initial time. The
crossover length is proportional to the characteristic quench time τ , the initial group velocity vg and
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3.4 Reaching the strongly interacting regime

the optical depth per blockade dB. It is very sensitive to the initial excitation density per blockade
ρ0RB. This length scale appears in the exact super-adiabatic solution of the equations of motion,
which assumes the form

Rp(t) =

(
e−iξ(t)/Lc 0

0 eiξ(t)/Lc

)
R(2)
p (0), (3.50)

where ξ(t) = 1
2Lcorr(t)

√
p2L2

c − 1 and R
(2)
p (0) =

[
S

(1)
p

]−1
S−1
p Rp(0). We observe that for increasing

p at the critical momentum scale p = pc the square root changes from an imaginary to a real, positive
quantity, i.e., the character of the solution changes qualitatively. How this a�ects the correlation
functions, we will analyze in the following paragraph. The correlation length is de�ned by the
integral (3.40), which can be calculated for the time dependence (3.47), yielding

Lcorr(t) =

∫ t

0
ds vs(s) =

Lc

2
ln

(
K(0)

K(t)

)
. (3.51)

Lcorr denotes the maximal distance, where correlations can built up during storage. This length is
given by Lc/2 times logarithmic corrections and diverges logarithmically for K(t)→ 0. For large
times the K-parameter vanishes like K(t) ∝ τ/2t, thus in this special protocol it takes very long
times to reach small K parameters.

3.4.2 Correlation functions in the super-adiabatic case

With the super-adiabatic solution derived in the previous section it is now straightforward to invert
the transformations and obtain the time evolution of the operators b̂†p(t) and b̂p(t) and then correlation
functions of these. In Chapter 2 we performed numerical simulations of two polaritons propagating
under stationary slow light conditions in the weakly interacting regime and found that after an initial
transient they evolve into a state close to the two-polariton ground state, see Figure 2.12(c). Thus
it is reasonable to assume that the initial state of the many-body model is close to the many-body
ground state or a low-temperature thermal state and we choose such a state for the calculations
of the time-dependent Luttinger model as initial state. The initial LL-Hamiltonian for t ≤ 0 is
time-independent, and can be diagonalized by a rescaling of the parameters [10], or by a Bogoliubov
transformation [92]. The p-dependent matrix generating the Bogoliubov transformation is equal to
S = Sp(0), we introduced in Eq. (3.35). The resulting diagonal Hamiltonian reads

Ĥ = vs(0)
∑
p 6=0

|p|γ̂†pγ̂p. (3.52)
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To begin with, let us consider the case of zero Temperature, T = 0. In this case the correlations
functions in the operators γ̂†p, γ̂p are given by

〈γ̂pγ̂†q〉 = δp,q. (3.53)

After obtaining the corresponding initial state of the operators b̂†p, b̂p we can calculate arbitrary
time-dependent correlation functions during a light storage protocol with the solution (3.50). In
particular, we can calculate the equal time density-density correlations, which are in Luttinger liquid
theory of the universal form [10],

〈ρ(z)ρ(0)〉 = ρ2
0 −

K

2π

1

z2
+A2ρ

2
0 cos(2πρ0z)e

−2GΦΦ(z) + . . . , (3.54)

i.e., determined by the correlation function Gφφ(z, t) = 〈[φ(z)− φ(0)]2〉. This can be derived
from (1.52), see also (3.27). For the time-independent ground state the density-density correlation
function reduces to the expression (1.54). For the protocol (3.47) we can derive this time-dependent
correlation function with Eq. (3.36) and (3.50), leading to

Gφφ(z, t) =

∫
dp

1− cos(pz)

p
〈(b̂†p + b̂−p)(b̂

†
−p + b̂p)〉

= K(t)

∫
dp

e−αp

p
[1− cos(pz)]

{
1− sin[2ξ(t)/Lc]√

L2
cp

2 − 1
+

1− cos[2ξ(t)/Lc]

L2
cp

2 − 1

}
, (3.55)

where we introduced the cuto� α to treat high-momentum divergences. For the integral (3.55) no
closed expression exists, i.e., further integration can only be done numerically. However, for the
limiting cases for small and large momentum modes p, compared to pc, we can derive asymptotic
results. These correspond to large and small distances z, respectively, as compared to Lc. Since
the correlation length Lcorr is growing logarithmically with K according to (3.51), i.e., only slowly,
we assume that Lc / Lcorr(t). In the regime p � pc the terms cos(2ξ(t)/Lc) and analogously
sin(2ξ(t)/Lc) oscillate quickly in p and thus average to zero in the integral. Within this approximation
we �nd a closed expression for (3.55),

Gφφ(z, t) = −K(t) ln
(α
z

)
+ const., (3.56)

in the limit of small α. The correlation function has the form of ground state correlation function
with a power law in the density-density correlations, where the exponent is given by 2K(t). Hence,
for distances z � Lc the correlations follow adiabatically the (moving-frame) ground state in the
light storage protocol and become long-range for K(t) → 0, indicating a quasi-crystalline order.
However, in the regime of large distances z � Lc, corresponding to momenta p� pc, the function
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Figure 3.10: Spatial envelope exp{−2GΦΦ(z, tmax)} of the density-density correlations after a smooth
quench according to the storage protocol (3.47) with K0 = 0.5, τ = 4/ρ0vg(0) and a
total time of tmax = 24ρ0vg(0). (a) Log-log representation normalized to the value at
zρ0 = 0.1 and (b) linear representation normalized to the value at zρ0 = 1 show the
semi-analytical solution (3.55) (blue, dashed line) compared to a numerical integration of
the equations of motion with Θ(K) as in Eq. (3.8) as a benchmark (red, dash-dotted line)
and Θ(K) obtained from interpolating the DMRG results displayed in Figure 3.5 (yellow
solid line). The black dash-double-dotted line shows the initial spatial envelope of the
density-density interactions given by a power law with exponent −2K0. Finally, the
vertical dashed lines indicate the length scales Lstor and Lcorr obtained from integrating
vg(t) and vs(t), respectively.

ξ(t) becomes purely imaginary and can be approximated by i ln(K(0)/K(t)). Then the integral (3.55)
has the same form as Eq. (3.56), but we have to replace K(t) → K(0). That means that for large
distances the storage is diabatic, i.e., the initial correlation functions get frozen and decay spatially
with the initial exponent 2K(0). This agrees with the crossover from an adiabatic to a diabatic regime
which we expected in the previous section.

3.4.3 Numerical integration

A full expression for the density-density correlations after the storage can be obtained numerically by
integrating Eq. (3.55). In Figure 3.10 we show the resulting curves in log-log and linear representation.
For comparison we show a power law with the exponent of the initial correlations.

In the derivation of this semi-analytic result we obtained the relation between the Luttinger
parameter K and the system parameters from Eq. (3.8), which allowed us to �nd the super-adiabatic
solution (3.55). However, this relation is only asymptotically correct. As we have an exact relation
available, obtained by interpolating the data points calculated by DMRG shown in Figure 3.2, we can
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Chapter 3 Many-body physics of Rydberg polaritons

also calculate the correlation function using this relation. To this end, we integrate the initial value
problem (3.34) numerically with a time-dependent Luttinger parameter K given by (3.47) and the
speed of sound determined by Eq. (3.5) and the relation between mass and K obtained by DMRG, see
Figure 3.2.

The resulting curves are shown in Figure 3.10. Both results show the expected crossover at a
length scale Lcorr from an adiabatic to a diabatic regime. For large distances the correlation function
decays as a power law with the initial exponent 2K0. Note that this exponent is di�erent for the
numerical solution and the semi-analytical solution, which comes about due to the fact that for equal
dimensionless interaction strength Θ0 the relations yield di�erent K0, cf. Figure 3.2. Consequently,
the numerically calculated correlation function exhibits slower decaying correlations. In the case of
short distances an approximation by a power law with the adiabatic exponent Kf does not make
much sense, as this behavior is only asymptotically assumed for z → 0. We �nd that a much better
�t can be obtained by a Gaussian function e−z2/2σ2 with a FWHM3 of σ which agrees well with
the correlation functions almost up to a length of z = Lcorr. Moreover, this �t allows to extract a
correlation length, which will be considered in the following in greater detail.

In conclusion, this result shows that the strongly interacting regime can be reached with correlations
up to a certain distance.

3.4.4 Thermal excitations

Now we want to consider corrections onto the �nal correlation functions of the created charge-density
wave, when the initial state of Hamiltonian (3.52) exhibits thermal excitations. For a temperature T
the correlations (3.53) get modi�ed to (3.26),

〈γ̂pγ̂†q〉 = δp,q coth
(
vs|p|/2T

)
.

The argument of the coth de�nes a thermal length LT ∼ πρ0/(mTK) marking a crossover from a
power law decay of the spatial correlation function to an exponential decay [34].

Let us now derive the time evolution of this initial state under a polariton storage protocol. As we
have shown numerically and used in the previous section, the initial state created under stationary
propagation of a two-photon pulse into a Rydberg medium is close to the ground state. As the
Rydberg polaritons can only be excited inside the EIT window, we can estimate the maximal allowed
momentum �uctuations by

|k| ≤ |kmax| =
Ω2

e�
c|Γ| . (3.57)

Excitations with a kinetic energy corresponding to k > kmax couple to bright-state polariton degrees
of freedom which are subject to losses, cf. Section 2.1.3, and thus quickly disappear. Hence, when

3Full width at half maximum
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Figure 3.11: Log-log plot of the correlation function e−2Gφφ(z) after storage of an initial state with
initial excitations for di�erent temperatures T characterized by the thermal length LT .
LT =∞ corresponds to the case T = 0, i.e., an initial ground state. The dashed vertical
line indicates the correlation length Lcorr obtained in the case T = 0 by integrating the
sound velocity vs in time.

modeling excitations of the initial state within the EIT window by a �nite temperature T0, we can
estimate an upper bound for this temperature by kBT0 ≤ Ω2

e�(0)/(2m|Γ|c) corresponding to a
thermal length scale [34] of

LT ≥
vsK

πT
= 2ρ0RB

|∆|
γ
d−1

B , (3.58)

where we set kB = 1. We take these thermal excitations into account in the initial correlation
functions (3.26) of the time-dependent Luttinger model. Analog to the ground-state case we calculate
the time evolution of the density-density correlations during storage. The resulting curve is displayed
in Figure 3.11.

The behavior of the correlation function at small distances is again described by a Gaussian function
which agrees very well with the numerically integrated correlation function up to large distances. For
distances z � LT the correlation function crosses over to an exponentially decaying function similar
to the initial state. However, the crossover point depends on the scale Lc. Therefore, the regime of
adiabatic following may be extended beyond the initial thermal length scale LT . To analyze this
properly, we extract the crossover length scale in the �nite temperature case, Lcorr,T , by �nding the
value, where the correlations are decayed to 1/2, i.e., where

Gφφ(z = Lcorr,T , t = tmax) =
1

2
log(2). (3.59)

The length obtained by this is then compared to the correlation length Lcorr in the absence of
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Figure 3.12: Plot of the correlation length after storage in the case of an initial state with thermal
excitations Lcorr,T where the correlation function e−2Gφφ(z) decayed to 1/2 as function of
the correlation length Lcorr after storage in the absence of thermal excitations, obtained
from integrating the sound velocity vs over the storage protocol. Both axes are rescaled
by the thermal excitation length. The blue circles (yellow diamonds) show the results
obtained from numerically integrating the time evolution of the correlation function
Gφφ(z) with an initial thermal length of LT = 10 (LT = 5). The red x’s (violet crosses)
connected by dashed lines are analytical curves ∝ √Lcorr according to Eq. (3.60). For
obtaining these results a Lorentzian function has been used as protocol. The parameters
are LT = 10, K0 = 0.25, Θ0 = 1.99 and K(tmax) = 0.018 for the upper curves and
LT = 5, K0 = 0.5, Θ0 = 0.12 and K(tmax) = 0.029 for the lower curves. The lines
connecting the points are a guide to the eye.
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thermal excitations. To this end we performed storage with initial thermal excitations by numerically
calculating the time evolution of Gφφ(z, t) during storage, according to a protocol with a Lorentzian
shape, Ω(t) = Ω(0)/(1 + t2/τ2). The storage is performed up to a maximal time tmax. We change
the maximal time tmax and the characteristic switching time τ such that the �nal Luttinger parameter
K(T ) is constant for all runs. In this way, we obtain Lcorr,T for di�erent values of Lcorr. In Figure 3.12
we show the resulting curves for LT = 5, 10, where both axes are rescaled by LT . We �nd that
Lcorr,T behaves in good agreement as a function Lcorr,T ∝

√
Lcorr, see Figure 3.12. Speci�cally we

�nd that the relation is given by

Lcorr,T ≈
1

2πα

√
LcorrLT , (3.60)

where α = K0[log(K0/Kf )]1/4. Thus, the correlation length after storage is given by the geometrical
mean of thermal length scale LT and the correlation length Lcorr attained in the absence of thermal
excitations.

The result (3.60) is a remarkable result. It shows that by storage of Rydberg polaritons a Wigner
crystal can be obtained with a �nite correlation length larger twice the storage length Lstor, even if
the initial state exhibits large thermal �uctuations.

3.5 Experimental feasibility

In this section we want to address limitations arising in an experimental realization of the proposed
Rydberg polariton storage and their in�uence on the results.

Finite medium length. In experimental realizations only �nite medium lengths are available.
These are typically on the order of some 10 µm for typical quantum optical setups, cf. [8, 44, 45].
Thus the typical time scale τ of a photon storage protocol has to be limited such that the distance the
polaritons travel during storage is less than the medium length, i.e., the pulse gets to a full halt inside
the atomic medium. As the Rydberg polaritons travel with the group velocity vg, the distance they
propagate inside the medium is given by the integral (3.39), which in the case of the super-adiabatic
protocol, Eq. (3.47), can be integrated analytically,

Lstor =

∫ τ

0
ds vg(s) ≤ vg(0)Θ0K0τ. (3.61)

As for a �nite system this length scale is ultimately limited by the system length, we compare Lstor to
the correlation length Lcorr in case of the super-adiabatic protocol. Taking the quotient of these two,
the time scale τ cancels and we get the maximal correlation length that can be achieved for a given
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storage length Lstor as
Lcorr
Lstor

=
π4

45

ρLabs
K0

|∆|
γ

ln

(
K0

Kf

)
, (3.62)

where the initial K0 is also dependent on ρ0RB and dB. An experimentally feasible K0 can be read
o� Fig. 3.5. This shows that it is possible to get to the regime of strong correlations with a correlation
length on the order of the medium length for su�ciently small �nal Kf .

Note that realizing Rydberg EIT inside hollow-core �bers [52, 53], allows for much longer one-
dimensional atomic setups, relaxing these conditions.

Non-adiabaticity. Under continuous wave (cw) EIT conditions the validity of the model was
guaranteed as long as the initial pulse width �tted inside the EIT window, de�ned by Eq. (1.12). In a
dynamical setup, when using a time dependent control �eld, this condition has to be modi�ed and
additionally ∂tθ(t)� sin θ cos θΩe�/|Γ|. This restricts the characteristic switching times (denoted τ
above) during which an input pulse can get stored, cf. (1.21). For the protocol (3.47) the nonadiabatic
coupling ∝ ∂tθ is bounded by its value at t = 0. We �nd the condition

τ � 2
Labs|Γ|
cγ

K0

(K2
0 − 1)2

. (3.63)

We combine this expression with Eq. (3.61), and set Lstor = L/2 leading to a lower bound on the total
optical depth d = L/Labs of the system,

d� cos2 θ

π

γ

|Γ|(ρ0RB)4d2
B

K2
0

(K2
0 − 1)2

. (3.64)

Although this expression diverges for K0 → 1 it can easily be ful�lled for values K0 . 0.8 and
dB ≈ 10 which are reasonable initial values, cf. Figure 3.5, as cos2 θ � 1 under slow light conditions.
Consequently the storage of Rydberg polaritons is always adiabatic in terms of the polariton model.
This justi�es the use of Luttinger liquid theory despite using an explicit time-dependence of the
parameters.

3.6 Conclusion

In summary, we considered many-body properties of Rydberg polaritons propagating under conditions
of EIT. Speci�cally, we considered the regime of o�-resonant driving and strong repulsive interactions
in terms of large optical depth per blockade, where the physics is described by the many-body
Hamiltonian derived in the previous chapter. We considered many-body ground states of this model
calculated using DMRG calculations with open boundary conditions (provided by D. Muth), showing
strong density correlations. Particularly, we determined non-universal coe�cients of the theoretical
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density-density correlations of a Luttinger liquid by �tting the DMRG results and showed that the
numerically obtained result is described by Luttinger liquid theory with a very good agreement. We
showed that the regime of strong correlations is di�cult to reach under stationary EIT conditions, as
the experimentally accessible interaction strength, quanti�ed by the ratio of interaction and kinetic
energy Θ cannot be made su�ciently large while retaining su�ciently large excitation densities.
However, this restriction can be overcome when dynamically changing the interaction strength. In
this way it is possible to reach the strongly interacting regime by turning propagating polaritons into
a stationary density wave of Rydberg excitations. We argued that a storage of Rydberg polaritons
is possible, despite the space-dependent two-photon detuning induced by the interaction, which
we con�rmed for two polaritons using two-excitation wave-function simulations. Moreover, in a
dynamical �nite polariton excitation densities can be preserved.

We used a time-dependent Luttinger liquid theory to calculate the time-evolution of density-density
correlations of the stored density wave. As the Luttinger liquid is a gapless theory, a fully adiabatic
storage can intrinsically not be achieved. By �nding a storage protocol allowing to construct an exact
super-adiabatic solution of the time-dependent correlation functions, we could gain analytical insight.
We showed that a strongly correlated density-wave of Rydberg excitations can be generated, with
slowly decaying density-correlations that build up over a certain distance, marking a crossover to a
diabatic regime exhibiting a power-law decay with initial the initial exponent. We con�rmed this
result by numerically solving the time evolution of the correlation functions. Furthermore we showed
that even in the case of initial thermal excitations a �nite-range Wigner crystal can be created and
considered limitations. Finally, we considered limitations arising in experimental realizations of the
proposed polariton storage and found that the protocol is feasible.

Releasing this state from the medium by turning the stored density wave back into a propagating
pulse creates a Wigner crystal of photons correlated over a �nite range, respectively time, that can be
observed by interferometric methods, cf. [8].
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Chapter 4

Bound states of Rydberg polaritons

In the previous section we considered dark-state polaritons propagating under conditions of electro-
magnetically induced transparency in a gas of Rydberg atoms. Speci�cally, we considered o�-resonant
driving conditions with a single-photon detuning ∆. We showed by numerical simulations that the
g(2)-function at small distances are strongly suppressed, see also [42]. These results have been con-
�rmed by experiments in the group of V. Vuletic, see [8]. However, in a more recent publication they
showed also bunching of photon pairs, [65], and even of three photons, [66, 94]. Naively, this seems to
be contrary to the results we obtained in the previous section. However, the phenomenon can easily
be explained by the existence of bound states of photons and the contribution of scattering states, as
was done in [8, 95]. These publications investigated in particular the spectral properties of the system.
We analyze the conditions for and the dynamics of the creation of the bunching phenomena and the
dynamics at large times. To this end, we use a Green’s function approach to analyze the interplay of
two-photon bound states, i.e., photonic molecules, and the scattering continuum of two photons. We
use numerical methods to simulate the full system and con�rm the analytical results. We �nd that
the scattering continuum leads to a robust phase shift which can be utilized to separate bound-state
and scattering contributions by an interferometric detection scheme.

The results presented in this chapter are published in reference [Moos2017] as a collaboration with
Razmik Unanyan and Michael Fleischhauer. In particular, I provided the numerical simulations and
contributed to the analytical calculations.

4.1 Green’s function approach

For strong interactions between Rydberg polaritons that lead to a large separation between these, the
interactions can be treated as a perturbation of the free model, see [68]. However, this treatment does
not capture the physics at short distances, particularly bound states and the associated bunching of
polaritons, as has recently been shown to occur under certain conditions [65, 66, 95]. Instead of using
perturbation theory, one has to consider the full scattering problem as was done in [95] (see also [67]).
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Figure 4.1: Time evolution of wave function for two excitations propagating inside a three-level
medium, where we consider the propagation from free space into the medium, where
the former is not displayed in the picture. Depending on the conditions two qualitatively
di�erent phenomena can be observed. a) Bunching for weak Rydberg interactions dB =
RB/Labs = 0.2� 1, b) antibunching for strong interactions, dB = 2 > 1.

In [Moos2017] we employed a Green’s function approach to treat the two-excitation problem. In the
following we want to review and discuss this approach.

A system of Rydberg polaritons under conditions of EIT is described by the truncated paraxial
wave equation for the operators Ê , σ̂ge, σ̂gr, Eq. (1.5). As we showed in Section 2.1, for su�ciently
strong interactions as well as su�ciently small excitation densities, the system can be described by a
one-dimensional model.

Let us assume that the time evolution of the system is slow compared to the time scale set by
the complex detuning, Γ = γ + i∆, such that it is justi�ed to adiabatically eliminate the optical
polarization σ̂ge. The resulting equations of motion for the operators Ê , σ̂gr are then given by

i
∂

∂t

(
Ê
σ̂gr

)
= − i

Γ

(
c ∂∂z + g2n g

√
nΩ

g
√
nΩ Ω2

)(
Ê
σ̂gr

)

+

∫
dz V (z − z′)σ̂†gr(z

′)σ̂gr(z
′)P̂σ̂gr

(
Ê
σ̂gr

)
, (4.1)

where P̂σ̂gr denotes the projector onto the atomic coherence, i.e., the second component of the
vector (Ê , σ̂gr)

t. The matrix on the right hand side of the �rst line in Eq. (4.1) we denote as Ĥ0,
corresponding to the free problem that has dark- and bright state solution. Including the interaction
term in equation (4.1) results in a set of coupled integro-di�erential equations that cannot be solved
directly. As it accounts for bound states we make a Green’s function approach for two-excitation
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4.1 Green’s function approach

wave function and use this to analyze the dynamics.The full wave function is given by

|Ψ(t)〉 = |0〉+ |Ψ1(t)〉+ |Ψ2(t)〉+ |Ψ3(t)〉+ . . . , (4.2)

where |0〉 denotes the vacuum and |Ψn〉 denote the components with n = 1, 2, 3, . . . excitations in
the medium. For instance, the two-photon component is de�ned as

|Ψ2(t)〉 =
1

N

∫∫
dz1 dz2

{
EE(z1, z2, t)Ê†(z1)Ê†(z2) + ES(z1, z2, t)Ê†(z1)σ̂†gr(z2)

+ SE(z1, z2, t)σ̂
†
gr(z1)Ê†(z2) + SS(z1, z2, t)σ̂

†
gr(z1)σ̂†gr(z2)

}
|0〉 , (4.3)

where N is a normalization constant and EE(z1, z2, t) = 〈0| Ê(z1)Ê(z2) |Ψ2〉 and analogously for
the other components.

To analyze the creation and dynamics of photonic molecules, we speci�cally assume a two-photon
state

|Ψ(t)〉 = |Ψ2(t)〉 . (4.4)

The complex detuning Γ in Eq. (4.1) in general couples the di�erent components dissipatively in the
presence of interactions, which act e�ectively as a space-dependent two-photon detuning, shifting
photons out of the EIT transparency window. This dissipation manifests itself in quantum jumps
at random times, e.g. projections of the two-photon wave function onto the single-photon wave
function corresponding to the loss of a Rydberg polariton. In the far-detuned regime |∆| � γ the
probabilities of these quantum jumps are small, thus we neglect them. We note, however, that due to
dissipation the norm of the wave function is not conserved during time evolution.

The two-photon wave function (4.3) is determined by the vector Ψ2 = (EE , ES,SE ,SS)T . The
time evolution of Ψ2 in real space is governed by the equation of motion,

i
∂

∂t
Ψ2(z1, z2, t) = Ĥ(z1, z2)Ψ2(z1, z2, t), (4.5)

i.e., a Schrödinger-like equation with the Hamiltonian Ĥ

Ĥ(z1, z2) = Ĥ0(z1, z2) + V (z1 − z2)P̂SS . (4.6)

Here Ĥ0 = Ĥ0(z1)⊗112+112⊗Ĥ0(z2) denotes the free Hamiltonian and the operator P̂SS = |ϕ4〉 〈ϕ4|
with |ϕ4〉 = (0, 0, 0, 1)T is the projector onto the fourth component of the wave function, i.e. the
componentSS of two atomic Rydberg excitations . Analog to Chapter 2 this equation can be integrated
numerically to �nd the time evolution of a two-photon wave packet.

Before we consider the numerical solutions in detail we summarize the Green’s function approach
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and the analytical results presented in [Moos2017]. A detailed derivation can be found in the appendix
of this reference. Note that a similar approach exists using the T matrix [95]. We proceed as follows.
First, we transform the coordinates z1 and z2 of the two-excitation wave function to relative and
center-of-mass coordinates, r = z1 − z2 and R = 1

2(z1 + z2), respectively. Subsequently we
perform a Fourier transform with respect to the center-of-mass coordinate R according to f(R) =∫

dK exp(iKR)f̃(K). Then we have to solve the initial value problem in K-space

i
∂

∂t
Ψ2(K, r, t) = ĤΨ2(K, r, t),

Ψ2(K, r, 0) = |Ψ0〉 ,
(4.7)

where we choose an initial state |Ψ0〉 = f(K, r) |ϕ1〉 , with only photonic excitation, |ϕ1〉 :=

(1, 0, 0, 0)T . It is straightforward to generalize the calculation to arbitrary initial states. Furthermore
we restrict the calculation to negative detuning without loss of generality as the solution for positive
detuning can directly be constructed from the solution for negative detuning (and vice versa). With
our choice of initial state we can write a formal solution of the initial value problem, Eq. (4.7), that is
given in spectral Fourier representation by

EE(t) =
1

2πi

∫ ∞
−∞

dω e−iωtf(K, r) 〈ϕ1|Ĝ(ω)|ϕ1〉 , t > 0, (4.8)

valid for t > 0. The full Green’s operator Ĝ(ω) is de�ned by

Ĝ(ω) :=
1

Ĥ − ω − i0+
. (4.9)

For large times t and small distances r the expression (4.8) is dominated by the low-frequency
contributions with |ω| � Ω2|Γ|. To capture this limit we may approximate the Green’s function in
Eq. (4.8) by

〈ϕ1|Ĝ(ω)|ϕ1〉 ≈ cos4(θ)G(r, r′, ω), (4.10)

where the Green’s function G(r, r′, ω) is determined by the integral equation

G(r, r′, ω) = G0(r, r′, ω)− sin4(θ)

∫
dr′′G0(r, r′′, ω)W (r′′, ω)G(r′′, r′, ω), (4.11)

where G0 denotes the Green’s function of the electric-�eld component of a non-interacting polariton
pair state with an e�ective mass m. The frequency-dependent e�ective potential and the complex
e�ective mass are de�ned as

W (r, ω) =
V (r)

1 + α00(ω)V (r)
, m = i

g2n

4cΓvg
, (4.12)
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Figure 4.2: Real (solid blue lines) and imaginary part (dashed red lines) of e�ective potential W (r),
de�ned in Eq. (4.12) for (a) positive and (b) negative single-photon detuning ∆ = ±8γ
and Ω = γ.

with α00(ω) = iΓ/(2Ω2 − iωΓ). In the limit of small ω the frequency dependence can be neglected
and consequently we can set α00 ≈ iΓ

2Ω2 . In Figure 4.2 we plot the e�ective potential for positive
and negative detuning ∆. For relative distances r > RB the potential decays like the bare van der
Waals potential for both signs of the detuning. For small distances the potential becomes a constant
potential where the sign of the real part can be tuned by changing the sign of ∆, while the imaginary
part is always negative (but small) indicating losses.

In the limit of slow light and large single photon detuning the Green’s function G describes the
evolution of a particle with the e�ective Hamiltonian

Ĥe� = − 1

2m

d2

dr2
+ sin4(θ)W (r, 0). (4.13)

In this limit the reduced mass is approximately given by the expression m ≈ sign(∆)(4vgLabs)
−1.

We observe that the reduced mass also changes its sign with ∆ as the e�ective potential W does.
The product of e�ective potential W and e�ective mass m always has a negative real part at small
distances, indicating the existence of bound states for both positive and negative single-photon
detuning.

4.2 Bound states – photonic molecule

In the following section we consider the spectral properties of the e�ective Hamiltonian. We analyze
conditions for the existence of a single bound state and investigate the properties and internal structure
of this bound state by means of the Green’s function approach and numerical simulations.
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Figure 4.3: Results of numerical diagonalization of the e�ective Hamiltonian Ĥeff , Eq. (4.13) for a
system of �nite length with periodic boundary conditions and under the assumption
|∆| � γ, where the non-Hermitian part of the Hamiltonian can be neglected. (a) Bound-
state energies En in dependence of interaction strength, respectively optical depth per
blockade volume dB. The (light blue) dashed-dotted line is the approximate solution E0 ≈
−π2

9 d
2
B from Eq. (4.25). We restrict the plot to energies larger −Ω2/2|Γ|, as the e�ective

Hamiltonian is only valid for small energies. (b) First three symmetric eigenstates ψn for
di�erent optical depth per blockade dB corresponding to low energies En = −0.05Ω2/|Γ|
for n = 1, 3, 5. Note that the r−axis is scaled in units of RB which is di�erent for each
shown state. We show only symmetric eigenstates, as antisymmetric states cannot be
excited.

4.2.1 Bound states

In the far-detuned limit, |∆| � γ, the Green’s function G(r, r′, ω) can be written as a sum of bound
eigenstates of the Hamiltonian, denoted by ψn, and scattering (continuum) states, denoted by ψE . In
real space this sum is given by

G(r, r′, ω) =
N∑
n=1

ψn(r)ψ∗n(r′)
ω − En

+

∫
dE

ψE(r)ψ∗E(r′)
ω − E , (4.14)

with the bound state eigenenergies En that are in general complex and are increasing with increasing
optical depth per blockade, dB = RB/Labs. A su�cient condition for the existence of bound states in
the spectrum of a Hamiltonian is given by the product of (e�ective) mass and the area of the (e�ective)
potential [96],

m

∫ ∞
−∞

drW (r) < 0, (4.15)

94



4.2 Bound states – photonic molecule

which is in our case ful�lled, as for negative single-photon detuning ∆ the product of m and W (r) is
negative for all r. Furthermore the number N of bound states can be estimated [96] by

N ≤ 1 + 2|m|
∫ ∞
−∞

dr |r|W (r). (4.16)

This equation determines a condition when the number of bound states is smaller than 2, i.e., a
condition for the existence of a unique bound state. For a constant e�ective mass the number of
bound states depends on the area of the e�ective potential, i.e., depends on the strength of W . Using
the de�nition of the e�ective potential and the e�ective mass, we can derive the condition for the
regime where only unique bound state exists,

dB =
RB

Labs
≤

√
2
√

3

π
≈ 1.2861. (4.17)

This regime is determined by the optical depth per blockade dB being small, i.e., in the regime of
weak interactions. To observe bound states one has to operate in this regime, where the relevant
energies are close to zero, as can be explained as follows. Conditions of EIT require that the energies
of the bound states have to be small compared to Ω2/|Γ|, i.e., deeply bound states are subject to losses
respectively dispersion, depending on the single-photon detuning. Moreover, deeply bound states are
strongly localized and thus di�cult to excite by a �at initial photonic wave-packet. In Figure 4.3(a) we
show the spectrum calculated for the Hamiltonian Eq. (4.13) in dependence on the optical depth per
blockade, dB. In Figure 4.3(b) the absolute value of the corresponding eigenstates for n = 1, 3, 5 are
displayed, i.e., three lowest symmetric states. These states are calculated for di�erent optical depths,
such that they have the same energies En. We observe, that the n = 1-eigenstate exhibits a much
larger spatial extent. For small dB the e�ective Hamiltonian exhibits only a single bound state while
for increasing dB additional bound states exist. The energies of each of these bound states increases
with dB. In Figure 4.3(b) we show the �rst symmetric states, where we chose dB such that their
corresponding energies are equal. As can be seen, although they have equal energies, the spatial size
of the higher bound states is on the order of the blockade radius RB while the �rst bound state has a
much larger extent compared to RB. Note that RB ∼ d−1

B is di�erent for the di�erent curves. This
and the increasing number of oscillations makes it hard to excite higher bound states. Consequently,
only weakly bound states are feasible to create experimentally.

4.2.2 Internal structure of the bound state – photonic molecule

In the previous section we have shown that the EE-component of a two-excitation dark-state polariton
can be described using an e�ective Hamiltonian that possesses bound eigenstates. In particular for
small dB a single such state exists that has a large spatial extent.
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Having identi�ed this regime of a unique bound state we now turn to the calculation of the internal
structure of this bound state in terms of the components of the two-excitation wave function Ψ2. To
this end we simulate the time evolution of an two-photon wave-packet Ψ2(K, r) numerically, using
a discretization of space and a �nite di�erence scheme for the relative coordinate r and setting the
center-of-mass momentum K = 0. For small relative distances |r| . RB, i.e., inside the blockade
radius, the SS-component has to be strongly suppressed due to the Rydberg blockade, while for
distances |r| & RB the e�ect of the interaction potential is negligible. Consequently, we expect the
internal structure of the bound state wave function to be a dark-state polariton pair state, described
by a product wave function ΨΨ(K, r),

EE = cos2 θΨΨ, ES+ = − sin θ cos θΨΨ, ES− = 0, SS = sin2 θΨΨ, (4.18)

except inside the blockade radius. In Eq. (4.18) we de�ned ES± = 1
2(ES ± SE). Making this

observation, we set the initial wave-packet as a product state of two polaritons, where we modify the
SS-component inside the blockade radius by multiplying it with 1/(1− ∆

2Ω2V (r)). This suppresses
initial SS-excitation inside the blockade distance. Starting with this initial state we simulate a time
evolution of the two-photon wave function according to Eq. (4.7) for positive as well as for negative
detuning. After a time of t = 20 |∆|

2Ω2 we get the results shown in Figure 4.4, where we display the EE-
and SS-components as well as the symmetric and antisymmetric superpositions ES± := ES ± ES .
We observe that the SS-component is strongly suppressed inside the blockade radius as expected, and
thus the bound state has mainly photonic character in this regime. For larger distances, the internal
structure is close to that of two dark-state polaritons, i.e., given by Eq. (4.18). A small but nonzero
antisymmetric component ES− and correspondingly a slightly increased spin excitation outside the
blockaded region indicates small corrections. In the case of positive detuning sharp resonances in the
SS-component can be observed corresponding to the pole in the e�ective potential.

In the regime of small dB where only a single bound state exists, we can write the photonic
component of the wave function using Eq. (4.8) and Eq. (4.14) and obtain

EE(r, t) = cos4 θC0e
−iE0tψ0(r) +

∫
dE C(E)e−iEtψE(r), (4.19)

where C0 and C(E) denote the overlap integrals of initial state and bound and continuum states,
respectively. To get the internal structure of the bound state we neglect the second term corre-
sponding to the continuum part and insert the solution for the photonic part into the two-excitation
Schrödinger equation (4.7). Assuming that g2n/|∆| � {cK, |E0|} one can calculate the remaining
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4.3 Time evolution of bound and scattering states

−10 −5 0 5 10
0

0.5

1

1.5

2

r in units of RB

|Ψ
q
(r

)|2

|EE|2
cos4 θ

|SS|2
|ES+|2
2 cos2 θ

|ES−|2
2 cos2 θ

|W (r)EE|2
cos4 θ

(a) negative detuning, ∆ = −4γ
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Figure 4.4: Photonic molecule state obtained from numerical time evolution of the paraxial Maxwell-
Bloch equations for K = 0, g = 20Ω, dB = 0.2, and t = 20 in units of |∆|/2Ω2. Shown
are the amplitudes of the wave function components EE , ES±, SS , and W (r)EE , and
each scaled with powers of cos θ according to Eq. (4.20) to make them comparable. (a)
shows the result for negative detuning and (b) shows the result for positive detuning,
where the SS-component exhibits resonances. Outside the blockade radius we �nd small
deviations from the result we expect from Eq. (4.20).

components [Moos2017] and arrives at the two-photon wave function

Ψ(r, t) = cos2 θC0


cos2 θ

− sin θ cos θ

− sin θ cos θ
sin2 θ

1− ∆
2Ω2 V (r)

ψ0(r)e−iE0t, , (4.20)

where the factor cos2 θ in front is from projecting the intial state onto the state of two free polaritons
and can be changed by choosing a di�erent initial state. Eq. (4.20) describes a two-photon wave packet
that exhibits bunching for small distances and propagates form-stable through the medium, i.e., a
photon molecule state. This agrees well with the result shown in Figure 4.4 obtained by numerical
wave function propagation. Note that for distances |r| � RB it holds V (r)� 2Ω2/∆ and Ψ2 has
the internal structure as a product of two Rydberg polaritons, cf. Eq. (4.18).

4.3 Time evolution of bound and sca�ering states

In the previous section we showed the existence of a photonic molecule pair state and calculated
its internal structure. In doing so, we neglected the scattering continuum. However, in general the
full state is a superposition of bound and scattering states, and as we assumed a �at initial photon
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Chapter 4 Bound states of Rydberg polaritons

distribution, the scattering continuum has to play an important role in explaining the full numerical
result. In this section we analyze the time evolution of the full state as well as the interplay of bound
and continuum states.

In the limit of low excitation the spatial character of the interaction is not important, only the
area of the interaction is relevant. Thus, the e�ective potential can be approximated by a point-like
pseudopotential with the same area [Moos2017],

We�(r) =
2π

3

2Ω2

|∆|
sin4 θ

(1 + iγ/|∆|)5/6
δ(r/RB). (4.21)

For convenience we introduce below dimensionless units such that time and space coordinates are
measured in units of (2Ω2/|∆|)−1 and RB, respectively.

Within this approximation, one can show that the initial value problem with a uniformly distributed
initial two-photon state admits analytical solutions, that are closed expressions [Moos2017] given by

EE(r, t)

cos4 θ
= 2 exp

(
−i
βη2

2
t− βη|r|

)
+ erf

(√
iβ
2t |r|

)
+ exp

(
−i
βη2

2
t− βη|r|

)[
1 + erf

(
− sign[<(βη)]

√
βη2

2i t+

√
iβ
2t |r|

)]
. (4.22)

The constants β and η are de�ned by

η =
2π

3

1

(1 + i γ
|∆|)

5/6
, β =

1

2

d2
B

(1 + i γ
|∆|)

. (4.23)

The �rst term 2 exp
(
−iβη

2

2 t − βη|r|
)

right hand side of Eq. (4.22) corresponds to a single bound
state wavefunction of the e�ective potential We�(r), if the condition <(βη) > 0 is ful�lled. This
holds, if |∆| > 0.8665 γ, i.e., under o�-resonant driving conditions. This condition also shows that
bound states require a su�ciently large single-photon detuning, i.e., an o�-resonant EIT setup. From
Eq. (4.22) we can read o� the size of the bound state as being

rb ≈ (βη)−1 ≈ π

3
d−2

B , (units of RB), (4.24)

which is much larger than the blockade distanceRB, for dB � 1. In Figure 4.5 we show the bound and
scattering components according to Eq. (4.22) and a comparison of the sum of both with a numerically
calculated state. We observe that in the vicinity of r = 0 the spatial structure of bound state and
continuum state are the same.

The energy of the bound state can be read o� Eq. (4.22). Expanding up to second order in γ/∆ we
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Figure 4.5: Second order correlation functions |EE(r, t)|2 of two photons as function of relative
distance r and �xed time t = 20 (in units of |∆|/2Ω2). The solid blue line shows a
numerical calculation for K = 0, g/Ω = 100, ∆ = −4γ in the weakly interacting regime
with dB = 0.2. The dashed red and the dotted yellow line show the bound and continuum
part of the wave function, respectively, according to Eq. (4.22), and the dash-dotted purple
line shows the sum of both.

obtain
E0 = −π

2

9
d2

B

(
1− i

8

3

γ

∆
− 44

9

γ2

∆2

)
, (4.25)

which is complex-valued. The imaginary part gives rise to an exponential decay of the bound state
with the rate

γb ≈ 2.924 d2
B

γ

∆
. (4.26)

Note that both E0 and γb are in units of 2Ω2/|∆|. We observe a slow decay of the bound state, i.e., a
long lifetime can be achieved in the regime of small optical depth per blockade, dB � 1, and also be
improved by a large single-photon detuning.

Interplay of bound and continuum states. The analytical solution allows us to analyze the
properties and the dynamical interplay of bound state and continuum states. At small distances r = 0

and for large times the analytical solution (4.22) can be simpli�ed to the expression

EE(0, t) = cos4 θ
[
2 exp

(
− iβη2

2 t
)
− 1√

πβη2

2i t

]
, (4.27)

where again the �rst term on the right hand side corresponds to the bound state and the second term to
the scattering state contribution. This correlation function illustrates that both bound and continuum
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Figure 4.6: Time evolution of bound and scattering state components and full state of the two-photon
wave function EE(r = 0, t) at zero relative distance, calculated according to Eq. (4.22) and
by using numerical simulations of the two-photon wave function. (a) and (c) are for a
small single photon detuning of ∆ = −1.5 γ, while (b) and (d) show results for ∆ = −12γ.
(a) and (b) are log-log plots of the intensities and (c) and (d) show the time evolution of
the phase arguments, in particular the di�erence in phase between bound and scattering
components. The results are in the regime of slow light and weak interactions, where
dB = 0.2 and g

√
n/Ω = 100. The dashed vertical lines in (a) and (c) displays indicates

the time scale t0, where the character of the full state crosses over from bound state to
scattering state. Note that for large detuning t0 is larger than the maximal time displayed
in (b) and (d).
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Figure 4.7: (a) Asymtotic phase of continuum contribution for large t0. (b) Sketch of interferometric
setup that can be used to �lter and detect bound-state and scattering-state contributions.

parts of the wave function contribute to the bunching. Initially, the contribution of the bound state is
twice as large as the scattering states, but they interfere destructively, so the superposition of both
sums up to the �at initial state. Then both evolve in time qualitatively di�erent. While the bound
state exhibits an exponential decay as discussed above, the continuum state decays algebraically
in time, i.e., ∝ 1/

√
t. The exponent of this is �xed, while the decay rate of the bound state can be

changed by tuning the single-photon detuning. Moreover, considering the complex phases of the two
components, Eq. (4.27) we �nd that the bound state acquires a dynamical phase, while the continuum
contribution asymptotically approaches a constant phase. The interplay of this leads to an oscillatory
behavior, as shown in Figure 4.6, which will be discussed below in more detail. Using Eq. (4.27) we
can de�ne a time scale t0 such that for times t < t0 the superposition is dominated by the bound
state while for times t > t0 the continuum state is dominant. It can be shown that t0 is minimal for
γ/|∆| = tan 3π

16 ≈ 2/3 where
t0 ≈

π

2d2
B

. (4.28)

In the regime of weak interactions, dB < 1, it holds t0 � 1 in units of the inverse o�-resonant EIT
linewidth |∆|/2Ω2.

4.4 A scheme for detection of bound states

From equation (4.27) we obtain that the bound state acquires a dynamical phase of

φb(t) =
1

2
<{βη2}t, (4.29)
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Chapter 4 Bound states of Rydberg polaritons

that grows linearly in time. Thus, on the one hand, at the point γ/|∆| = tan 3π
16 the dynamical phase

vanishes, as <{βη2} = 0. On the other hand, the scattering continuum approaches asymptotically a
constant value, depending on the single-photon detuning ∆. For γ/|∆| = tan 3π

16 this constant value
is−π/2 and then decreases with increasing detuning to an asymptotic value of−3π/4. Although the
continuum phase φcont. reaches this constant value only in the limit t→∞, already for intermediate
times the phase is close to this asymptotic value and changes slowly in time, cf. Figures 4.6(c) and 4.6(d).
Furthermore, as Figure 4.7(a) shows, the continuum phase is very robust, as it depends only on |∆|/γ,
and thus can be tuned by changing the frequencies of the probe and control �elds. This allows to
build a detection setup for �ltering bound and scattering state components.

When taking also the amplitude evolution into consideration, one can distinguish three regimes
depending on the ratio |∆|/γ. For small single-photon detuning the scattering continuum dominates
the dynamics at all times and attain a phase of−π/2. For intermediate detuning the photon bunching
is dominated by the bound state at small times up to the crossover time t0, where the continuum
states start to dominate. Lastly, for large detuning the continuum states decay very quickly and the
bunching is solely due to the bound state on all relevant time scales.

To observe the bound state, i.e., a photonic molecule state, one could try to perform experiments in
the far-detuned regime, where the continuum decays much faster than the bound state. However, a
far detuned EIT setup is experimentally challenging, it is much easier to work in the regime of small
to intermediate detuning. The robustness of the phase φb of the scattering states makes it possible to
�lter the bound and scattering state components by employing interferometric techniques as e.g. the
homodyne detection setup as sketched in Figure 4.7(b). In the regime of intermediate detuning the
decay of the bound components is su�ciently slow and the phase of the continuum components is
only changing slowly and close to their asymptotic value.

4.5 Conclusion

To summarize, we investigated the propagation of Rydberg polaritons under conditions of electro-
magnetically induced transparency and o�-resonant driving, i.e., with a �nite single-photon detuning.
Particularly, we discussed the bunching that has been observed under these conditions [65], see
also [66]. By using a Green’s function approach we derived an e�ective model for two dark-state
polaritons and analyzed its spectral properties, showing the existence of bound eigenstates. We
showed that in the regime of weak interactions, manifesting in a small optical depth per blockade, the
o�-resonant model has a single eigenstate close to the scattering continuum, i.e., a photonic molecule.
We argued that this low-energy bound state is experimentally accessible, while higher-order bound
states are di�cult to excite. Using two-photon wave function simulations of the full Maxwell-Bloch
equations we con�rmed the existence of bunching for su�ciently small values of the optical depth
per blockade, as opposed to the anti-bunching that has been discussed in Chapter 2 in the case of
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stronger interactions.
We showed that the bunching of photons arises from two contributions, i.e., additionally to the

bound state, scattering states play a role. By using the Green’s function approach we derived analytic
expressions for the bound state and continuum wave functions in the limit of very weak interactions,
where the e�ective interaction potential can be approximated by a δ potential. This expression
allowed us to investigate the time dependence of the bound state and continuum components, where
we found that the bound state decays exponentially, while the scattering state exhibit an algebraic
time dependence. For small evolution times up to a certain cross-over time scale the bunching of
polaritons is dominated by a superposition of bound and continuum wave function. For large times,
however, the continuum contribution dominates the observed state. Since the continuum component
asymptotically attains a constant phase, that depends only on the single-photon detuning we proposed
to use an interferometric detection scheme to �lter bound and continuum components. This allows
for an isolation and observation of photonic molecules by using standard interferometric methods.
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Chapter 5

General conclusion and outlook

The aim of this thesis was to investigate few- and many-body properties of interacting Rydberg
polaritons. To this end, we derived conditions, when a three-dimensional setup can e�ectively
described by a one-dimensional model. Using this as a starting point we showed in Chapter 2 that
the physics of Rydberg polariton can be described by a �eld theory of a single �eld. We derived the
master equation governing the time evolution of this �eld and discussed the properties of its various
dissipative and unitary terms. We could con�rm this result on the few-excitation level by comparing
with numerical simulation of the full Maxwell-Bloch equations of photons propagating in a gas of
Rydberg atoms. Moreover, we found a regime, where the master equation reduces to a Hamiltonian
description, i.e., the time evolution becomes unitary.

Building on the few-body results, we analyzed many-body properties of the Rydberg polariton �eld
theory in the regime of unitary description and small excitation densities. In Chapter 3 we showed on
the basis of correlation functions obtained by density-matrix renormalization group simulations, that
the many-body physics is very well described by a Luttinger liquid theory. Thus, in the case of strong
interactions, the correlations on large length scales are dominated by a density wave, giving rise to
a Wigner crystal of photons. As the blockade distance increases with the interaction strength, this
regime is inaccessible for propagating polaritons while keeping su�ciently large excitation densities.
We proposed a solution to this problem, by using a dynamical protocol turning propagating polaritons
into a stationary density-wave of Rydberg excitations and at the same time increasing the interaction
strength, while keeping excitation densities �nite. Releasing this density wave from the medium
by turning it back into a propagating polariton pulse generates a regular train of photons. As an
outlook, one could extend the results by imposing a lattice potential on the polaritons giving rise
to sine-Gordon physics [32] that allows for true crystalline order[97]. In this case a stationary light
setup [49, 98] should be used.

Finally, in Chapter 4, we investigated a di�erent regime of weak interactions, where under o�-
resonant driving conditions bunching of photons has been observed [65]. By utilizing a Green’s
function approach and deriving an e�ective Hamiltonian for the two-excitation problem, we found
that this bunching can be explained by an interplay of continuum states and bound states, photonic
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molecule states. We showed that the bound states have a Rydberg polariton-like structure except
for small distances inside the blockade radius. An analysis of the time evolution of the continuum
and bound contributions during propagation revealed a robust asymptotic phase for the continuum
states, allowing for an isolation and subsequent observation of the photonic molecule. Building on
this result, many further questions can be addressed. A natural next step would be to extend the
results to more particles, as bunching has very recently been observed for three particles [66]. Even
beyond that, one could investigate interactions between pair-states possibly yielding a many-body
theory of photonic molecules.

In conclusion, let me observe that Rydberg quantum optics is a vibrant and exciting research
�eld. The combination of slowly propagating polaritons with strong nonlocal van der Waals-type
interactions produces interesting properties ranging from the few-excitation level to many-body
physics giving rise to many possible applications.
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Appendix A

Derivation of the Rydberg polariton model

In this appendix we present details on the derivation of the Rydberg polariton model used in the
main text. Speci�cally, we derive the Heisenberg-Langevin equations for a quantized probe �eld
propagating under conditions of electromagnetically induced transparency (EIT) [1] starting from
the Hamiltonian of quantum optics. Furthermore, we �nd the polariton as a dark-state eigensolution
of this Hamiltonian and derive corrections using perturbation theory.

We remark that for all calculations we set ~ = 1.

A.1 Hamiltonian of quantum optics

A transversal electrical �eld consisting of a probe �eld and a classical control �eld

Ê(r, t) = Êp(r, t) + Ec(r, t), (A.1)

where we assume that the �elds are linear polarized parallel to the polarization vectors εp and εc,
respectively. Furthermore we assume that the probe �eld is varying around a central k-mode and
frequency, kp = kpez and ωp = ckp, respectively. Thus we can write the probe �eld as

Ê(r, t) =
∑
q

√
ωq

2ε0V

(
âq(t)εpe

iq·r + H.a.
)

=

√
ωp

2ε0

(
εpÊ(r, t)ei(kpz−ωpt) + H.a.

)
(A.2)

where V denotes the quantization volume and in the �rst equation we used the general de�nition
of a linear polarized, quantized �eld, that reduces to (A.2) under our assumptions, with the slowly
varying operator

Ê(r, t) ≡ 1√
V

∑
q

√
ωq

ωp
ˆ̃aqe
−i(∆ωqt−∆q·r). (A.3)

Here we de�ned ˆ̃aq = âqe
+iωqt and ∆ωq = ωq − ωp, ∆q = q− kp. Note that Ê(r, t) ∝ V −1/2 is a

normalized operator, and thus Ê†Ê gives the photon number density. Using the bosonic commutation
relations of the creation and annihilation operators, [âk, â

†
k′ ] = δk,k′ , we can derive commutation

relations for the slowly varying �eld operators

[Ê(r, t), Ê†(r′, t)] ≈ δ(r− r′). (A.4)
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The classical probe �eld is given by

E(r, t) = εcEc(r, t)e
i(kcz−ωct) + c.c. (A.5)

yielding for the full �eld operator

Ê(r, t) =

√
ωp

2ε0

(
εpÊ(r, t)ei(kpz−ωpt) + H.a.

)
+
(
εcEc(r, t)e

i(kcz−ωct) + c.c.
)
. (A.6)

The atomic medium consists of 3 (or 2) states |µ〉 with corresponding energies ωµ and the free
Hamiltonian of an atom at position ri is given by

Ĥa =
∑
µ

ωµσ̂
i
µµ, (A.7)

where we introduced the spin �ip operators σ̂iµν = |µ〉i 〈ν|i. For these we can deduce the commutation
relations by using the orthogonality of the atomic states 〈µi|νj〉 = δi,jδµ,ν yielding

[σiµν , σ
j
αβ] = δi,j {δν,ασiµβ − δβ,µσiαν}. (A.8)

The coupling of an atom and the electromagnetic �eld is in dipole approximation described by the
Hamiltonian

Ĥaf = −d̂ · Ê(ri). (A.9)

Using the identity 11 =
∑

µ σ̂
i
µµ, we can write the dipole operator in the form

d̂ =
∑
µ

|µ〉i 〈µ|i d̂
∑
ν

|ν〉i 〈ν|i =
∑
µ,ν

℘µν σ̂
i
µν , (A.10)

where we denote the dipole matrix element ℘µν = 〈µ| d̂ |ν〉 which we assume to be the same for all
atoms (, which trivially holds if they are identical).

A.1.1 Three-level atoms

Now we restrict ourselves to atoms with three levels denoted by |g〉, |e〉 and |r〉, where the free
Hamiltonian of an atom is given by

Ĥa = ωgσ̂gg + ωeσ̂ee + ωrσ̂rr. (A.11)
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Without loss of generality we set in the following ωg → 0, which is equivalent to performing the
unitary transformation

Ĥa → UĤU † + i(∂tU)U † (A.12)

(see below) with U = exp{iωg(σ̂gg + σ̂ee + σ̂rr)}, such that the atomic Hamiltonian becomes

Ĥa = ωegσ̂ee + ωrgσ̂rr (A.13)

where ωµν = ωµ − ων . Moreover, we assume that the transition |g〉 ↔ |r〉 is dipole-forbidden
and that the non-zero matrix elements ℘µν are real. Thus the dipole operator is given by d̂ =

℘ge(σ̂ge + σ̂eg) + ℘er(σ̂er + σ̂re). We use this and the electromagnetic �eld in the dipole interaction
Hamiltonian, Eq. (A.9) and furthermore assume for simplicity that ℘ge ⊥ εc and ℘er ⊥ εp. Then the
dipole interaction Hamiltonian becomes

Ĥaf = −
√
ωp

2ε0
℘ge · εp

(
Ê(r, t)ei(kpz−ωpt) + H.a.

)(
σ̂ge + σ̂†ge

)
− ℘er · εc

(
Ece

i(kcz−ωct) + c.c.
)

(σ̂er + σ̂re) . (A.14)

We perform a unitary transformation to a frame rotating with optical frequencies ωp, ωc generated by

U = eit{ωpσ̂ee+(ωp+ωc)σ̂rr}. (A.15)

This transforms the free atomic Hamiltonian to

Ĥa = (ωeg − ωp)σ̂ee + (ωrg − ωp − ωc)σ̂rr = ∆σ̂ee + δσ̂rr, (A.16)

where ωµν = ωµ − ων and where we introduced the one- and two-photon detuning ∆ = ωeg − ωp

and δ = ωre − ωc + ∆, respectively. The atom-�eld coupling Hamiltonian gets transformed to

Ĥaf = −
√
ωp

2ε0
℘ge · εp

(
Ê(r, t)ei(kpz−ωpt) + H.a.

)(
σ̂gee

−iωpt + σ̂†gee
iωpt
)

− ℘er · εc

(
Ece

i(kcz−ωct) + c.c.
) (
σ̂ere

−iωct + σ̂ree
iωct
)
. (A.17)

To simplify the Hamiltonian we perform a rotating wave approximation (RWA) thereby neglecting
fast oscillating terms proportional to e±2iωjt, j = p, c. De�ning the control �eld Rabi frequency
Ω = ℘er · εcE

∗
c and g =

√
ωp

2ε0
℘ge · εp we get the full Hamiltonian in rotating wave approximation

Ĥ = Ĥa + Ĥaf = ∆σ̂ee + δσ̂rr −
{
gÊ†(r, t)σ̂gee

−ikpz + Ω∗σ̂ree
−ikcz + H.a.

}
. (A.18)
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A.1.2 Coarse graining and continuum limit

For an ensemble of N atoms we write the full Hamiltonian as a sum over all atoms j at positions rj

Ĥ =
∑
j

{
∆σ̂jee + δσ̂jrr −

[
gÊ†(rj , t)σ̂jgee

−ikpzj + Ω∗σ̂jree
−ikczj + H.a.

]}
. (A.19)

If N � 1 we can split the atoms into bins, small volumes V (rj) centered at rj containing N(rj)� 1

atoms, where
∑

j N(rj) = N . We furthermore assume that the bins are su�ciently small such that
Ê(r) and exp{−ikp/cz} are approximately constant for each bin. Then we can introduce continuous
atomic spin-�ip operators by

σ̂µν(r) =
1

N(r)

∑
k∈V (r)

σ̂kµν , (A.20)

which allows us to write the Hamiltonian in the form

Ĥ =
∑
j

N(rj)
{

∆σ̂ee(rj) + δσ̂rr(rj)−
[
gÊ†(rj)σ̂ge(rj)e

−ikpzj + Ω∗σ̂re(rj)e
−ikczj + H.a.

]}
(A.21)

Finally, performing a continuum limit
∑

j V (rj)
N(rj)
V (rj)

→
∫

d3rn(r), by letting V (r) → 0 while
N(r)
V (r) → n(r) which is the atomic density at position r. This yields the continuum Hamiltonian

Ĥ =

∫
d3rn(r)

{
∆σ̂ee(r) + δσ̂rr(r)−

[
gÊ†(r)σ̂ge(r)e−ikpz + Ω∗σ̂re(r)e−ikcz + H.a.

]}
(A.22)

The commutation relations of the continuous spin-�ip operators can be derived as follows [69]

[
σ̂αβ(r), σ̂µν(r′)

]
=

1

N2

∑
k∈V (r)

∑
l∈V (r′)

[
σ̂kαβ, σ̂

l
µν

]
= δr,r′

1

N2

∑
k,l∈V (r)

δk,l

(
δβ,µσ̂

k
αν − δα,ν σ̂kµβ

)
=

1

N
δr,r′

(
δβ,µσ̂αν(r)− δα,ν σ̂µβ(r)

)
In the continuum limit we get �nally

[
σ̂αβ(r), σ̂µν(r′)

]
=

1

n
δ3(r− r′)

(
δβ,µσ̂αν(r)− δα,ν σ̂µβ(r)

)
, (A.23)

where the Kronecker delta changes to the Dirac delta function.
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A.2 Dark-state polaritons

In the following section we derive equations of motion for the dark-state polariton. To this end we
start from Heisenberg-Langevin equations for the atomic operators and the truncated paraxial wave
equation for the electromagnetic �eld from which we derive Maxwell-Bloch equations for a reduced
set of operators. We diagonalize these equations of motion in k-space to �nd the dark-state polariton
eigenmode and use a perturbation theory to �nd its equations of motion.

A.2.1 Heisenberg-Langevin equations

The Heisenberg-Langevin equations for the atomic occupations and coherences are given by

∂tσ̂gg = Γegσ̂ee + ig
(
Ê†σ̂gee

−ikpz − Ê σ̂ege
ikpz
)

+ F̂gg, (A.24a)

∂tσ̂ee = −Γegσ̂ee + Γreσ̂rr − ig
(
Ê†σ̂gee

−ikpz − Ê σ̂ege
ikpz
)

− i
(

Ω∗σ̂ree
−ikcz − Ωσ̂ere

ikcz
)

+ F̂ee, (A.24b)

∂tσ̂rr = −Γreσ̂rr + i
(

Ω∗σ̂ree
−ikcz − Ωσ̂ere

ikcz
)

+ F̂rr, (A.24c)

∂tσ̂ge = −(γge + i∆)σ̂ge − igÊeikpz(σ̂ee − σ̂gg) + iΩeikczσ̂gr + F̂ge, (A.24d)

∂tσ̂re = −(γre + i(∆− δ))σ̂re + igÊeikpzσ̂rg − iΩeikcz(σ̂ee − σ̂rr) + F̂re, (A.24e)

∂tσ̂gr = −(γgr + iδ)σ̂gr − igÊeikpzσ̂er + iΩ∗σ̂gee
−ikcz + F̂gr. (A.24f)

Γeg and Γre are spontaneous emission rates from states |e〉 to |g〉 and from |r〉 to |e〉, respectively, since
we have a ladder con�guration and the transition from Rydberg to ground state is dipole forbidden.
The rates γµν are so-called transverse decay rates combining spontaneous decay rates and dephasing
rates. The operators F̂µ are Langevin noise operators, that are δ-correlated in space and time with
zero mean value,

〈F̂µ〉 = 0 (A.25a)

〈F̂ †µ(r, t)F̂ν(r′, t′)〉 = Dµνδ
3(r− r′)δ(t− t′). (A.25b)

The coe�cients Dµν are denoted di�usion coe�cients and can be determined by the generalized
dissipation-�uctuation theorem [99]. The Langevin noise operators are introduced to preserve
commutation relations of the operators when introducing decay. However, in the regime of EIT
there is typically only a small excitation of excited and spin (Rydberg) state present and therefore the
error arising from omitting the Langevin noise operators is small. Hence we will omit them in the
following for convenience. Together with the truncated paraxial wave equation, Eq. (A.30), that will
be derived below, the Heisenberg-Langevin equations form a closed set of equations of motion, called
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the Maxwell-Bloch equations.
The time evolution of the electromagnetic �eld Ê(r, t) is coupled to the polarization of the atomic

medium, according to Maxwell’s equation,

[∂2
t − c2∇2]Ê(r, t) = − 1

ε0
∂2
t P̂(r, t). (A.26)

The polarization of the medium is de�ned by the average over all single atom dipole operators. In the
continuum limit it is given by

P̂(r, t) = n(r)
(
℘geσ̂ge(r, t)e

−iωpt + ℘erσ̂er(r, t)e
−iωct + H.a.

)
, (A.27)

where we used slowly varying operators σ̂µν as they are de�ned in the rotating frame we are using,
see Eq. (3.12). We put this de�nition together with the de�nition of the electromagnetic �eld, (A.6),
into Maxwell’s equation. Furthermore, we assume as before for simplicity that℘ge ⊥ εc and℘er ⊥ εp

and the polarizations of the probe and control �elds are orthogonal to each other, i.e., εp ⊥ εc. As we
are interested in the dynamics of the probe �eld, we project the Maxwell equation onto εp, yielding

[
∂2
t − c2∂2

z − c2∇2
⊥
]√ ωp

2ε0

(
Ê(r, t)ei(kpz−ωpt) + H.a.

)
= − 1

ε0
n(r)εp · ℘ge ∂

2
t

(
σ̂ge(r, t)e

−iωpt + H.a.
)
, (A.28)

where we split the spatial derivative into z- and transversal derivative. We use the de�nition g =√
ωp

2ε0
℘ge · εp of the atom-�eld coupling strength, the dispersion relation of the free probe �eld,

ωp = ckp and arrive at:

[
∂2
t Ê − c2∂2

z Ê − 2iωp(∂tÊ + c∂zÊ)− c2∇2
⊥Ê
]
ei(kpz−ωpt) + H.a.

= − 2

ωp
n(r)g

[
∂2
t σ̂ge − 2iωpσ̂ge − ω2

pσ̂ge

]
e−iωpt + H.a. (A.29)

We observe that the operators σ̂ge and Ê are slowly varying in time and space and time, respectively.
Thus we can make the estimations |∂2

t Ê | � ωp|∂tÊ |, |∂2
z Ê | � kp|∂zÊ | for the probe �eld and

|∂2
t σ̂ge| � ωp|∂tσ̂ge| � ω2

p|σ̂ge| for the atomic coherence and simplify Eq. (A.29) by neglecting the
higher order derivatives, accordingly. Comparing the coe�cients of the exponential functions we
arrive �nally at the equation[

∂t + c∂z − i
c

2kp
∇2
⊥

]
Ê(r, t) = ign(r)σ̂ge(r, t)e

−ikpz, (A.30)

the truncated paraxial wave equation that will be one of the fundamental equations for our calculations.
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A.2.2 Maxwell-Bloch equations

In the following we want to make further assumptions and approximations to derive a reduced set of
equations for the relevant operators. In the regime of a weak quantized probe �eld we can assume
that the probe �eld is much weaker than the control �eld, i.e., g 〈Ê〉 � Ω. Under this assumption we
can treat the probe �eld perturbatively. If we furthermore make the reasonable assumption that the
atoms are initially all in their ground state, we obtain in zeroth order of gÊ that σ̂(0)

gg = 1. Including
the paraxial wave equation (reduced to one spatial dimension for the moment) the equations in �rst
order in gÊ read

∂tÊ = −c∂zÊ + ignσ̂(1)
ge e
−ikpz

∂tσ̂
(1)
ge = −(γge + i∆)σ̂(1)

ge + igÊeikpz + iΩσ̂(1)
gr e

ikcz

∂tσ̂
(1)
gr = −(γgr + iδ)σ̂(1)

gr + iΩ∗σ̂(1)
ge e
−ikcz

(A.31)

We omit the perturbation orders in the following and absorb a factor of 1/
√
n as well as the spatial

oscillations with the wavevector kp and the wave vector mismatch kp − kc into the operators σ̂ge

and σ̂gr, respectively, by transforming

σ̂ge →
1√
n
σ̂gee

+ikpz, σ̂gr →
1√
n
σ̂gre

i(kp−kc)z, (A.32)

i.e., transforming also to spatially slowly varying operators. Multiplying the second and last equation
by
√
n results in the �nal Maxwell-Bloch equations

∂tÊ(r, t) = −c∂zÊ(r, t) + ig
√
nσ̂ge(r, t)

∂tσ̂ge(r, t) = −(γge + i∆)σ̂ge(r, t) + ig
√
nÊ(r, t) + iΩσ̂gr(r, t)

∂tσ̂gr(r, t) = −(γgr + iδ)σ̂gr(r, t) + iΩ∗σ̂ge(r, t),

(A.33)

that are the fundamental equations of motion for our calculations and numerical simulations of
interacting Rydberg dark-state polaritons considered in this thesis.

A.2.3 Perturbation theory in k-space

In this section we want to derive an e�ective equation of motion for the dark-state polaritons by
using perturbation theory. We transform the spatial coordinate z to the momentum space according
to f(z, t) =

∫
dk e−ikzf(k, t). As we want to solve a system of equations of motion for the three

operators Ê , σ̂gr and σ̂ge we de�ne ŷ = (Ê , σ̂gr, σ̂ge)
t, such that the equations can be rewritten in the
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form

i∂tŷ = (H0 +H1)ŷ, (A.34)

H0 =

 0 0 −g√n
0 0 −Ω

−g√n −Ω −2iΓ

 , H1 =

−ck 0 0

0 δ 0

0 0 0

 , (A.35)

where we set Γ = 1
2(γge + i∆) and γgr = 0 and H1 denotes the perturbation Hamiltonian. For

simplicity we perform a rotation transformation

R(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , R(θ)

 Êσ̂gr

σ̂ge

 =

 Ψ̂

Φ̂

σ̂ge

 ≡ x̂, (A.36)

where the second equation de�nes the dark-state polariton Ψ̂ and the bright-state polariton Φ̂.
Applying this transformation to Eq. (A.34) yields after rearranging terms

i∂tx̂ = [R(θ)(H0 +H1)R−1(θ)− iθ̇R(θ)∂θR
−1(θ)]x̂. (A.37)

Choosing the mixing angle θ = atan(g
√
n/Ω) we get

RH0R
−1 =

0 0 0

0 0 −Ωe�

0 −Ωe� −2iΓ

 , (A.38)

RH1R
−1 =

1

Ω2
e�

g
2nδ − Ω2ck −gΩ(ck + δ) 0

−gΩ(ck + δ) Ω2δ − g2nck 0

0 0 0

 (A.39)

and

R(θ)∂θR
−1(θ) =

 0 1 0

−1 0 0

0 0 0

 , (A.40)

where we de�ned Ωe� =
√
g2n+ Ω2.

The unperturbed matrix RH0R
−1 can be diagonalized giving the eigenvalues and (not yet normal-
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ized) eigenstates

|n0〉 = (1, 0, 0)t, E0 = 0 (A.41)

and

|m0
±〉 =

(0, E∓/Ωe�, 1)t√
|E∓|2/Ω2

e� + 1
, E± = −(iΓ±

√
Ω2

e� − Γ2). (A.42)

The state |n0〉 corresponds to the operator Ψ̂ and has in zeroth order perturbation theory the eigenen-
ergy E0 = 0, i.e. is a dark-state. We want now to calculate energy corrections arising by the coupling
matrix H̃1 ≡ RH1R

−1. Perturbation theory yields up to second order

i∂tΨ̂ =

[
〈n0|H̃1|n0〉 −

∑
α=±

|〈m0
α|H̃1|n0〉|2

Eα

]
Ψ̂ (A.43)

=
[
−ck cos2 θ + δ sin2 θ

]
Ψ̂

− i(θ̇ + sin θ cos θ(ck + δ))2

[
2Γ

Ω2
e�
− γ

|Γ|2 + Ω2
e� + |Γ2 − Ω2

e�|

]
Ψ̂ (A.44)

Note that in the limits ∆� γ and ∆� γ, respectively, the term in the last (square) bracket becomes

i∆

Ω2
e�

=
i∆ sin2 θ

g2n
and γ

2Ω2
e�

=
γ sin2 θ

2g2n
, (A.45)

respectively, where we assumed Ω2
e� > γ2 for the last expression. Furthermore, we used the identity

sin2 θ = g2n/Ω2
e�, as this takes care of the θ- (and thus also time-) dependence of Ωe�.

We can now derive a simple solution of this equation as given in [21] by integrating the time
variable, yielding

Ψ̂(k, t) = Ψ̂(k, 0) exp

{
i

∫ t

0
dτ
[
ck cos2 θ(τ)− δ sin2 θ(τ)

]}
× exp

{
−γ + i2∆

g2n

∫ t

0
dτ sin2 θ(τ)[θ̇(τ) + sin θ(τ) cos θ(τ)(ck + δ)]2

}
× exp

{
− γ
g2n

∫ t

0
dτ AΓ(τ)

}
. (A.46)

The �rst exponential factor consist of two terms, describing propagation of the polariton with time-
dependent group velocity vg(t) = c cos2 θ(t) and an additional phase factor due to the two-photon
detuning δ. The second exponential factor describes losses and dispersion of the polariton, where one
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of the two processes may dominate, depending on the ratio ∆/γ. Furthermore it describes corrections
arising from non-adiabatic switching of θ and a �nite two-photon δ [21]. The last exponential factor
with AΓ(τ) only contributes if γ is comparable to ∆, a regime that we are not interested in. Let us
now discuss the �rst and second exponential factor.

A.2.4 Adiabatic elimination

Equations of motion for the dark-state polaritons coupled to bright-state polaritons can also be derived
by adiabatic elimination of σ̂ge. Starting from (A.33) and setting d

dt σ̂ge = 0 leads to

σ̂(0)
ge = +i

g
√
n

Γ
Ê + i

Ω

Γ
σ̂gr (A.47)

Inserting this into the equations of motion we get

d

dt
Ê = −c∂zÊ −

g2n

Γ
Ê − g

√
nΩ

Γ
σ̂gr (A.48)

d

dt
σ̂gr = −(γgr + iδ)σ̂gr −

|Ω|2
Γ
σ̂gr −

g
√
nΩ∗

Γ
Ê (A.49)

Finally, transforming to the polariton degrees of freedom according to Eq. (A.36) yields a set of coupled
equations,

d

dt
Ψ̂ = −c cos2 θ

∂

∂z
Ψ̂− c sin θ cos θ

∂

∂z
Φ̂− θ̇Φ̂ (A.50)

d

dt
Φ̂ = −Ω2

e�
Γ

Φ̂− sin2 θ
∂

∂z
Φ̂− c sin θ cos θ

∂

∂z
Ψ̂ + θ̇Ψ̂ (A.51)

describing the time evolution of Rydberg polaritons.
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Laguerre-Gauss transition elements

In this appendix we present the details on the calculations in section 2.1. In particular we present
the integration of the angular integrals by means of residue calculus and furthermore the derivation
of the approximate integration of the radial integrals.

B.1 Laguerre-Gaussian modes

Let us �rst reconsider the De�nition of the Laguerre-Gauss modes. These are de�ned by

upl(r, ϕ, z) =
Cpl
w(z)

(
r
√

2

w(z)

)|l|
e−r

2/w2(z)+ilϕe−ikpr2/2R(z)ei(2p+|l|+1)ζ(z)L|l|p

(
2r2

w2(z)

)
, (B.1)

where the normalization constant is given by

C−2
pl (z) = 2π

∫
dr r

∣∣∣∣∣∣ 1

w(z)

(
r
√

2

w(z)

)|l|
e−r

2/w2(z)L|l|p
( 2r2

w2(z)

)∣∣∣∣∣∣
2

=
π

2

(|l|+ p)!

p!
. (B.2)

B.2 E�ective interaction potentials

The e�ective potentials for a mode scattering as considered in the main text are de�ned by integration
of angular and radial coordinates,

Ṽpl(z, z
′) := C6

∫∫ 2π

0
dϕdϕ′

∫∫ ∞
0

rdr r′dr′
u∗p1l1

(r)u∗p2l2
(r′)up3l3(r′)up4l4(r)

[r2 + r′2 + 2rr′ cos(ϕ− ϕ′) + (z − z′)2]3
, (B.3)

where in polar coordinates r = (r, ϕ, z).

B.2.1 Angular integration

The angular integration can be done analytically by means of the residue theorem [60]. We consider
the integral ∫∫

dϕdϕ′
e−iq′ϕ′e−iqϕ

[α+ β cos(ϕ− ϕ′)]3 , (B.4)
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where we introduced the notation q = l1 − l4, q′ = l2 − l3, α = r2 + r′2 + (z − z′)2 and β = 2rr′

for simplicity. We restrict ourselves to the case α > 0 which can be justi�ed by assuming that no
double Rydberg excitation can exist for z = z′. We want to perform the integration over ϕ. We do
this using the residue theorem applied to a rational function of trigonometric functions [60], which
allows us to calculate the double integral as∫

dϕ′ e−iq′ϕ′2πi
∑
|z0|<1

Resz0(f), (B.5)

i.e. a sum of residues of the function

f(z) =
8iz2−q

(2αz + βeiϕ′ + z2e−iϕ′)3
. (B.6)

This function has the poles z = 0 for q > 2 and

z± = −α
β
eiϕ′

(
1±

√
1− β2

α2

)
. (B.7)

As can easily be seen, it holds α > β. Thus |z+| > 1 and |z−| < 1 and therefore only z− and z = 0

may contribute to the integral. A calculation of the residue yields

Resz−(f) = iz−q−
(q2 − 1)β2 − (q2 + 2)α2 + 3qα

√
α2 − β2

2(α2 − β2)5/2
. (B.8)

In particular the remaining ϕ′-dependence of the integral is given by z−p− ∝ e−ipϕ′ . We can easily
integrate over the variable ϕ′, resulting in∫ 2π

0
dϕ′ e−i(p′+p)ϕ′ = 2πδp,−p′ . (B.9)

Thus, the full integral (B.4) is vanishing except for the case, when q = −q′. For q > 2 also the residue
Resz=0(f) yields a �nite contribution to the integral. However, as the full integral (B.4) is invariant
under changing q ↔ q′ and proportional to δq,−q′ it has to be independent of the sign of p. Thus we
can take the result for q < 0 and replace q → −|q| to get the result that is valid for arbitrary q,

2π2δq,−q′

(
−α+

√
α2 − β2

β

)|q|
(q2 + 2)α2 − (q2 − 1)β2 + 3|q|α

√
α2 − β2

(α2 − β2)5/2
. (B.10)

Inserting the de�nition of q, q′ we get the relation δl1−l4,l3−l2 = δl1+l2,l3+l4 , i.e. a conservation rule
for angular momentum.
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B.2.2 Approximate radial integration

For the radial integrals no closed expression can be given. However, in certain limits regarding z− z′,
an approximate result can be derived for the integrals that reproduces the exact integrals quite well,
as demonstrated in the main text. Here we want to get a brief derivation of these results. To this end
we consider the limit α� β, as holds eg. for su�ciently large z − z′. Expanding around β/α = 0

yields for the integral in �rst order

Iϕ = δq,−q′2π
2(1 + |q|)(2 + |q|)(−1)|q|

(rr′)|q|

(r2 + r′2 + (z − z′)2)|q|+3
. (B.11)

Now we restrict ourselves to the case of initial Gaussian modes, i.e., p3 = p4 = l3 = l4 = 0, and
denote l ≡ |q| = |l1|. Here we have to integrate

Ṽpl(z, z
′) := C6

∫∫ ∞
0

rdr r′dr′ I lϕ(r, r′, z, z′). (B.12)

We are in particular interested in the intermediate regime for distances larger than a few beam
waists w0 and smaller than a few Rayleigh lengths zR where the diagonal scattering potential is
the dominant contribution to the potential. In this regime all potentials decay as a power law with
di�erent exponents. By making some assumptions we can derive an approximate closed analytical
expression for the integrals over r, r′ and hence the potentials in this regime as follows. In the limit
of |z − z′| � rr′ the full integral (2.15) can be written for Gaussian in-going modes (p3 = p4 = l3 =

l4 = 0) and taking only lowest order of rr′ as

Ṽpl(z, z
′) = δl1,−l2

(−1)l+1

22l+1
(l + 1)(l + 2)

√
p1!p2!

(p1 + l)!(p2 + l)!
e−i(p1+l)ζ(z)e−i(p2+l)ζ(z′)

× (w(z)w(z′))l
∫ ∞

0
ds sle−sLlp1

(s)

∫ ∞
0

ds′ s′le−s
′
Llp2

(s′)
1

[r(s)2 + r′(s′)2 + (z − z′2)]l+3
,

(B.13)

where we made the substitutions s = s(r, z) = 2r2/w2(z) and analog for s′ and r(s) indicates the
inverse of this substitution. Moreover, we set l := |l1| = |l2|. For z, z′ � s, s′ we can make a series
expansion of the fraction in the integral with respect to s, s′, in the point s = s′ = 0, yielding a power
series, that we will not consider here in detail, but analyze the contribution of its terms to the integral
as follows. Let us consider the mth power ∼ sm of this series. Using Rodrigues representation [57] of
the associated Laguerre polynomials, sle−sLlp(s) = dp

dsp

(
e−ssp+l

)
, we can derive the expression

∫ ∞
0

ds sl+me−sLlp(s) =
(l +m)!

p!

p−1∏
j=0

(j −m). (B.14)
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Appendix B Laguerre-Gauss transition elements

From this result we can directly read o�, that the power sm of the power series of the fraction in (B.13)
only contributes to the integral, if m ≥ p, all lower orders of the power series cancel. For the leading
order of the power series the integral becomes (−1)p(l + p)!. Taking only the leading order and
repeating the argument for the second integral as well, we can �nally determine the asymptotic
behavior in the intermediate regime in leading order as

Ṽpl(z, z
′) ∝ (z − z′)−α, α = 6 + 2(p1 + p2) + 2l, (B.15)

where we used that the terms of the power series of order (ss′)m are proportional to (z−z′)−6−2l−2m.
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Appendix C

Equations of motion for single- and two
particle density matrix

Here we want to derive the equation of motion under the master equation (2.35) in the main text
for single- and two-particle correlations assuming, that initially only up to two excitations exist in
the system. In this case it is justi�ed to keep only expectation values up to second order in Ψ̂(z) and
Ψ̂†(z).

Equation of motion for single particle density matrix

d

dt
〈Ψ̂†(x)Ψ̂(x)〉 = ivgLabs

∆

γ
sin4 θ

〈
[∂xxΨ̂†(x)]Ψ̂(x)− Ψ̂†(x)∂xxΨ̂(x)

〉
+ 2ivg

∆

Ω2
e�

sin4 θ∂x

∫
dz V (x− z) 〈Ψ̂†(x)Ψ̂†(z)Ψ̂(z)Ψ̂(x)〉

+ vgLabs sin4 θ
〈

[∂xxΨ̂†(x)]Ψ̂(x) + Ψ̂†(x)∂xxΨ̂(x)
〉

+ 2ivg
γ

Ω2
e�

sin4 θ

∫
dz V (x− z)

〈
[∂xΨ̂†(x)]Ψ̂†(z)Ψ̂(z)Ψ̂(x)− Ψ̂†(x)Ψ̂†(z)Ψ̂(z)[∂xΨ̂(x)]

〉
− 2

γ

Ω2
e�

sin4 θ cos2 θ(2− sin2 θ)

∫
dzV 2(x− z) 〈Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y)〉 (C.1)

Equation of motion of two particle density matrix

d

dt
〈Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)〉 =

ivgLabs
∆

γ
sin4 θ

{
[(∂xx + ∂yy)Ψ̂

†(x)Ψ̂†(y)]Ψ̂(y)Ψ̂(x)− Ψ̂†(x)Ψ̂†(y)(∂xx + ∂yy)Ψ̂(y)Ψ̂(x)
}

+ 2vg
∆

Ω2
e�

sin4 θ(∂x + ∂y)
[
V (x− y) 〈Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)〉

]
− 4

γ

Ω2
e�

sin4 θ cos2 θV 2(x− y) 〈Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y)〉

− vgLabs sin4 θ
{

[(∂xx + ∂yy)Ψ̂
†(x)Ψ̂†(y)]Ψ̂(y)Ψ̂(x) + Ψ̂†(x)Ψ̂†(y)(∂xx + ∂yy)Ψ̂(y)Ψ̂(x)

}
+ 2ivg

γ

Ω2
e�

sin4 θV (x− y)
〈[

(∂x + ∂y)Ψ̂
†(x)Ψ̂†(y)

]
Ψ̂(x)Ψ̂(y)− Ψ̂†(x)Ψ̂†(y)

[
(∂x + ∂y)Ψ̂(x)Ψ̂(y)

]〉
(C.2)
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Appendix D

Finite di�erences on a non-uniform grid

We want to derive a �nite di�erence scheme for the �rst derivative of a function f given at a
discretized nonuniform grid as sketched in Figure D.1 To this end we consider three sampling points
xi, xi−1, xi−2. Approximating the function f by the Taylor expansion at the point xi yields

f(x) = f(xi) + (x− xi)f ′(xi) +
1

2
(x− xi)2f ′′(xi) + . . . (D.1)

We evaluate this at the sampling points xi−1 and xi−2, where we use the de�nitions ∆ = xi − xi−1

and δ = xi−1 − xi−2,

f(xi−1) = f(xi)−∆f ′(xi) +
1

2
∆2f ′′(xi) + . . . , (D.2)

f(xi−2) = f(xi)− (∆ + δ)f ′(xi) +
1

2
(∆ + δ)2f ′′(xi) + . . . (D.3)

Multiplying these two equations with α and β, resp., then calculating the sum and requiring α+β = 1

we �nd an expression for the �rst derivative, where the contribution of the second derivative vanishes:

f ′(xi) =
δ + 2∆

∆(∆ + δ)
f(xi)−

∆ + δ

δ∆
f(xi−1) +

∆

δ(δ + ∆)
f(xi−2) (D.4)

f(x)

xxixi−1xi−2

Figure D.1: Sketch of nonuniform grid.
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Appendix D Finite di�erences on a non-uniform grid

In the case of a uniform grid we regain the well known coe�cients {3/2,−2, 1/2} for a second order
backward �nite di�erence scheme. This expression is of second order accuracy.
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