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Abstract

Quantum computers and quantum simulators are two exciting fields harnessing the extraordinary
properties of quantum-mechanical systems to solve problems which can practically not be computed
on classical computers and to understand fundamental physical models, respectively. Many differ-
ent ideas exist for building quantum computers and simulators. One promising recent approach
is Rydberg quantum optics, a field combining the extraordinary control of light-matter coupling
established in quantum optics with the strong nonlinearities between highly excited Rydberg atoms.
The fundamental quasi-particles in this field, Rydberg polaritons, are suited for many applications
in quantum information science, for instance optical transistors or phase gates, that ultimately may
pave the way for all-optical quantum computation. Moreover, beyond these quantum information
applications Rydberg polaritons provide a promising platform for creating many-body states of
photons that may allow to investigate open problems of condensed-matter physics. Furthermore
they will allow to address entirely new questions beyond the standard realm of solid-state physics
such as the competition between interactions and single-particle dynamics with couplings to tailored

reservoirs.

In the present thesis I study few- and many-body physics of one-dimensional Rydberg polaritons. I
contribute to the understanding of the properties of interacting Rydberg polaritons and derive an
effective many-body theory of these. I propose and analyze a scheme to reach a regime of strongly
repulsive polaritons enabling the creation of correlated many-body states by a dynamical protocol.
Moreover, I investigate the regime of weak attractive interactions, where photonic molecules can be

observed.

The coherent control of light-matter interactions by electromagnetically induced transparency
(EIT) leads to the formation of slowly propagating quasi-particles, termed dark-state polaritons. Using
Rydberg states in this setup mediates strong interactions between individual photons, or interacting
Rydberg polaritons. In general, interacting Rydberg polaritons have to be described as open systems,
as the atomic interaction induces a coupling of dark states to a reservoir of bright states which are
subject to decay. In Chapter 2 I derive an effective master equation of Rydberg polaritons and analyze
conditions when the system can be described by a one-dimensional model. In an off-resonant driving
scheme the open system can approximately be described by a unitary system, yielding many-body

theory of Rydberg polaritons. To verify this model I employ numerical wave-function simulations of



Abstract

two excitations and compare them with exact diagonalization for two excitations.

In one spatial dimension the low-energy physics of a many-body Rydberg polariton system is
described by a moving-frame Luttinger liquid with strong repulsive interactions suggesting the
possibility of Wigner crystallization. I argue that this regime of strongly interacting polaritons
cannot be accessed in a typical continuous wave EIT setup. In Chapter 3 I show that a solution to
this limitation consists in using a time-dependent protocol, i.e., dynamically storing the Rydberg
polaritons in the medium. I employ numerical simulations to show that storage of Rydberg polaritons
is possible — despite the strong interactions. A time-dependent Luttinger liquid theory shows that a
dynamical protocol allows to generate a many-body state with quasi-long range correlations, i.e., a
crystalline order over a finite length.

Finally, I consider the limit of weakly interacting Rydberg polaritons. Recent experiments have
shown the existence of bunching in this regime, indicating the existence of bound pairs of Rydberg
polaritons. Chapter 4 of the thesis contributes to the understanding of these experiments and
investigates the properties and time evolution of Rydberg polariton pair states by employing a Green’s
function approach and numerical wave-function simulations. The bunching can be explained by a
superposition of bound and scattering states. I investigate the interplay of these two contributions
giving rise to the possibility of filtering bound and continuum states enabling the creation and

observation of photonic molecules.



Kurzfassung

Quantencomputer und Quantensimulatoren sind zwei spannende Felder der Physik, die die aufler-
gewohnlichen Eigenschaften quantenmechanischer Systeme nutzbar machen, um Probleme zu 16sen,
die praktisch nicht auf klassischen Computern berechnet werden kénnen, bzw. um fundamentale
physikalische Modelle zu verstehen. Es existieren viele unterschiedliche Ideen, um Quantencomputer
und Quantensimulatoren zu bauen. Ein vielversprechender Ansatz ist die Rydberg-Quantenoptik,
ein Forschungsfeld, das die bemerkenswerte Kontrolle von Licht-Materie-Wechselwirkungen, die
in der Quantenoptik etabliert ist, mit starken Wechselwirkungen hochangeregter Rydberg-Atome
kombiniert. Die fundamentalen Quasiteilchen dieses Feldes, Rydberg-Polaritonen, eignen sich fiir viele
Anwendungen in der Quanteninformationstechnologie, z.B. optische Transistoren oder Phasengatter,
die letztendlich den Weg fiir rein-optische Quantencomputer bahnen kénnten. Uber Anwendungen
in der Quanteninformationstechnologie hinaus sind Rydberg-Polaritonen eine vielversprechende
Plattform, um Vielteilchenzustinde von Photonen zu erzeugen, die es moglich machen, offene Pro-
bleme der Physik der kondensierten Materie zu untersuchen. Weiterhin werden sie erlauben, véllig
neue Fragestellungen tiber den Bereich der Festkorperphysik hinaus zu untersuchen, wie z.B. die
Konkurrenz von Wechselwirkungen und Einteilchen-Dynamik mit Kopplungen zu zugeschnittenen

Reservoirs.

In der vorliegenden Arbeit untersuche ich Systeme weniger Teilchen und Vielteilchensysteme
von Rydberg-Polaritonen. Ich trage zum Verstindnis von Eigenschaften wechselwirkender Rydberg-
Polaritonen bei und leite eine effektive Vielteilchentheorie von Rydberg-Polaritonen her. Ich schlage
ein Schema vor, um ein Regime stark wechselwirkender Photonen zu erreichen, was es moglich
macht, mit einem dynamischen Protokoll korrelierte Vielteilchenzustande zu erzeugen. Weiterhin un-
tersuche ich das Regime schwacher attraktiver Wechselwirkungen, wo photonische Molekiilzustande

beobachtet werden konnen.

Die kohiarente Kontrolle von Licht-Materie-Wechselwirkungen durch elektromagnetisch induzierte
Transparenz (EIT) fiihrt zur Bildung langsam propagierender Quasiteilchen, genannt Dunkelzustands-
polaritonen. Das Nutzen von Rydbergzustinden in diesem Setup vermittelt eine starke Wechselwir-
kung zwischen einzelnen Photonen, oder wechselwirkende Rydberg-Polaritonen. Im Allgemeinen
miissen wechselwirkende Rydberg-Polaritonen als offene Systeme beschrieben werden, da die atoma-

ren Wechselwirkungen eine Kopplung von Dunkelzustdnden mit einem Reservoir von Hellzustdnden
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erzeugt, welche zerfallen. In Kapitel 2 leite ich eine effektive Mastergleichung fiir Rydberg-Polaritonen
her und untersuche Bedingungen, wenn das System durch ein eindimensionales Modell beschrieben
werden kann. Unter nicht-resonantem Treiben kann das offene System néherungsweise durch ein
unitdres System beschrieben werden, was zu einer Vielteilchentheorie von Rydberg-Polaritonen
fithrt. Um das Modell zu verifizieren, nutze ich numerische Wellenfunktions-Simulationen zweier
Anregungen, die ich mit exakter Diagonalisierung zweier Anregungen vergleiche.

In einer rdumlichen Dimension wird die Niedrigenergie-Physik von Vielteilchen-Rydberg-Polariton-
Systemen durch eine Luttinger-Fliissigkeit mit starken repulsiven Wechselwirkungen beschrieben,
die die Moglichkeit einer Wigner-Kristallisation andeuten. Ich argumentiere, dass dieses Regime
stark wechselwirkender Polaritonen in einem typischen continuous wave-EIT-setup nicht erreicht
werden kann. In Kapitel 3 zeige ich, dass durch Nutzen eines zeitabhéngigen Protokolls, d.h., durch
Speichern von Rydberg-Polaritonen im Medium, diese Limitierung iberwunden werden kann. Ich
nutze numerische Simulationen, um zu zeigen, dass ein Speichern von Polaritonen trotz starker
Wechselwirkungen moglich ist. Eine zeitabhidngige Luttinger-Theorie zeigt, dass ein dynamisches
Protokoll erlaubt, Vielteilchenzustdnde mit quasi-langreichweitigen Korrelationen zu erzeugen, d.h.,
eine kristalline Ordnung tiber eine endliche Distanz.

Im letzen Teil betrachte ich den Grenzwert schwach wechselwirkender Rydberg-Polaritonen. Neuere
Experimente zeigen, dass hier ein Bunching von Photonen existiert, was auf eine Existenz gebundener
Zustande von Rydberg-Polaritonen hinweist. Kapitel 4 tragt zum Versténdnis dieser Experimente bei
und untersucht Eigenschaften und die Zeitentwicklung von Rydberg-Polariton-Paarzustinden durch
Anwenden eines Greensfunktions-Ansatzes und numerischen Wellengleichung-Simulationen. Das
Bunching kann durch eine Superposition von gebundenen und Kontinuumszustianden erklart werden.
Ich untersuche die Wechselwirkung dieser zwei Beitrage, was es ermoglicht, photonische Molekiile

zu erzeugen und zu beobachten.



Chapter 1

General introduction

The main subject of this thesis are Rydberg polaritons, interacting quasi-particles of propagating
light and stationary matter excitations. We investigate few- and many-body properties of Rydberg
polaritons. In this section we want to introduce the fundamental physical and theoretical concepts

underlying the results in the main text.

In Section [1.1] we will introduce the phenomenon of electromagnetically induced transparency
(EIT) [11]], describing the lossless propagation of photons in a system of three-level atoms. In the case
of a (weak) quantized probe field, this can be explained in terms of dark-state polaritons [2, 3] as
a superposition of light and atomic excitation. These are massive quasi-particles and allow for an
explanation of slow light [4] and light storage [2]. In Section [1.2] we consider the interactions of
Rydberg states of atoms [5}|6]. By combining electromagnetically induced transparency with Rydberg
atoms, strong interactions between photons, respectively polaritons can be mediated [7]. These
so-called Rydberg polaritons, which will be introduced in Chapter 2] are the fundamental concept of
the present thesis giving rise to many interesting few-body effects, e.g. a strong suppression of the
correlation function at short distances [8]]. In Chapter[2]we will derive a many-body theory of Rydberg
polaritons by a perturbative approach in tracing out the remaining degrees of freedom. This will be
done by following a standard approach of quantum optics to describe open systems [9]. In Section|[1.3]
we will introduce this approach and derive a master equation in Lindblad form by employing Born and
Markov approximations. Finally, Section[1.4]introduces the concept of bosonization [[10], an effective
description of gap-less one-dimensional many-body systems, in particular photons propagating in
one dimension. This method will be employed in Chapter [3]to analyze the many-body dynamics in
Rydberg-polariton setups.

Remark. Throughout the thesis we set i = 1 unless otherwise noted.
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Figure 1.1: (a) Schematic setup of an EIT experiment with a cloud of atoms of length L a control field
) and a probe field &. (b) Effective atomic level scheme for EIT with Rydberg atoms in a
ladder configuration. The probe field Eis off-resonantly coupled to the atomic transition
|g) <> |e) with a single-photon detuning A and the (strong) control field €2 is driving the
transition |e) <+ |r) with a resulting two-photon detuning ¢.

1.1 Electromagnetically induced transparency and dark polaritons

The research field of quantum optics investigates the interaction of light fields and atomic matter from
the quantum-mechanical single-particle level up to semi-classical descriptions. An important concept
of quantum optics is the effect of electromagnetically induced transparency (EIT) [1] describing
the lossless propagation of a light field in a medium of three-level atoms under the influence of an
additional control light field, rendering an otherwise opaque medium transparent.

In this section we first introduce the fundamental Hamiltonian governing the propagation of light
in a gas of three-level atoms dressed by a control field and derive equations of motion for electric
field and atomic operators. We will discuss the phenomenon of EIT and slow light for classical light
fields in terms of the linear-response susceptibility and furthermore introduce the concept of dark-
and bright-state polaritons. These are light-matter quasi-particles that allow us to explain the effect
of light storage and, moreover, lead to an interacting many-body theory of photons by using Rydberg
interactions as will be subject of Section

A more detailed derivation of the light-matter coupling will be given in appendix [A]

1.1.1 Light-matter coupling and wave equation

In this section we want to derive the fundamental Hamiltonian describing the coupling of two light
fields to three-level atoms as sketched in Figure Specifically, we consider the propagation of a
probe field Ep in an ensemble of three-level atoms in ladder configuration consisting of a ground state
|g), a (meta-) stable (Rydberg) state |r) and an excited state |e) that is subject to spontaneous decay
with rate 5. The probe field is a weak quantized field E,(r, t) = \/%epé(r, t)ellkbpz=wpt) 1 T a,

with carrier frequency wy, and wave number k. This field couples the atomic transition |g) > |e)

10



1.1 EIT and dark-state polaritons

resonantly or off-resonantly with a single-photon detuning A = weg — wyp. Here wy, = (E, — E,)/h
denotes the transition frequency between atomic states ) and |v). The control field is assumed
to be a classical coherent field E. with carrier frequency w, that is driving the transition |e) < |r)
with a single photon detuning A, = wye — w.. We denote the resulting two-photon detuning by
8 = A + A.. The operators £f, £ are normalized creation and annihilation operators of the probe
field and, in particular, we assume that they are slowly varying in time and space and obey bosonic

commutation relations, i.e.,

E(r,0), 10, 0)] = o(r — 1), (L)
cf. Eq. (A.4) in the appendix. The polarization and spin coherence are microscopically defined by spin
flip operators 6, = |pt) (v|. We assume that there are many atoms on length scales where the light
field varies. Consequently, we can introduce coarse-grained continuous atomic operators 7, (r) by
averaging over a small volume centered at position r. These obey the commutation relations

a0, 0p0l)] = "o B, 1) = B, (12

where n(r) denotes the continuous atomic density. See appendix[A|for details.

The interaction of an atom with a quantized or classical light field can in general be described
in dipole approximation by the Hamiltonian 7:[dip01e = —d - E, [11], where the dipole operator of
an atom is defined by d= ZMV 00 + Ha., with g, being the dipole matrix element of the
transition |u) <> |v). Extending this interaction Hamiltonian to an ensemble of many three-level
atoms interacting with two fields, a probe field and a classical control field and performing the

continuum limit and the rotating wave approximation [12]] we arrive at the Hamiltonian
H = /d3r n(r) {A&ee(r) + 061 () — [gc‘:'T(r)ﬁge(r)e*ikpz + Q6o (r)e He? 4 H.a.} } . (13)

Here we introduced the probe field coupling strength g = \/% (ge - €p and the control field Rabi
frequency 2 = e - Ec. A more detailed derivation of will be given in Appendix [A] We
remark that the Hamiltonian is a well established model of light-matter interactions in quantum
optics [[11] and will together with the paraxial wave equation be the fundamental model for Chapters[2}-
[4]of the present thesis. The time evolution of the (quantized) probe light field is governed by Maxwell’s

wave equation,
1 0% .

5?2 )
{ - C2V2} By(r,1) = = 5 P(e,1), (1.4)

ot?

where P(r) = n(r)pgeg0(r) denotes the polarization of the medium in the continuum limit, where
we dropped the vectorial character of the fields and considered only the polarization corresponding to

the |g) <> |e)-transition, as can be justified by a proper choice of probe and control field polarization,

11



Chapter 1 General introduction

see appendix [A]for details. Making use of the fact that the probe field is almost monochromatic and
defining a slowly varying polarization P = P expli(kpz — wpt)] + H.a. leads to the truncated paraxial
wave equation

0 ,c9 ;¢

—+c——1

Wp A . .
ot 0z 2k, P(r,t) = ign(r)6ge(r, 1). (1.5)

vi] E(r,t) =i 2.

Here we used the dispersion relation of the free probe field w, = ck;, and neglected the first and
second time derivatives of the slowly varying polarization P. Furthermore, we absorbed a spatial

oscillation of 64 with wave vector &, into the operator according to (A.32).

1.1.2 Heisenberg-Langevin equations

Let us now derive equations of motion for the atomic operators, where we want to include the
spontaneous decay of the excited atomic states. The state |r) is assumed to be a highly excited
Rydberg state throughout the remainder of the thesis, which typically is a metastable state. Thus the
decay of this state plays only a small role on typical experimental time scales and for simplicity we
neglect its decay in the following, unless otherwise mentioned. The probe field is a weak quantized
field, therefore we treat the equations of motion in linear response with respect to g€. To regard the
spontaneous decay of the excited state |e) we derive Heisenberg-Langevin equations of motion. After
a transformation of the operators &, and 0, according to to absorb a factor 1/+/n(r) and

spatial oscillations with wave vector kj, and k;, — k¢, respectively, we obtain finally

%&ge(r, t) = —T6ge(r, 1) +igy/n(r)E(r, 1) 4 iQGg (r, 1) + Fyo(r, 1),
(1.6)
gt&gr(r,t) = —100g:(r, ) +1Q0,c(r, 1),

where I' = v + ¢A combines spontaneous decay rate and probe field detuning into an effective
complex detuning. Fge denotes a Langevin noise operator [[13]], which has to be added to preserve the
commutation relations of the decaying operators. This noise operator is d-correlated in space and

time with zero expectation value,

~

(Fge(r,t)) =0,

- . (1.7)
(Ed (v, ) Fye(r', 1)) = Dyed®(x — v')8(t — 1),

where Dy, is called diffusion coefficient and can be determined using the dissipation-fluctuation
theorem [[13]. Typically, the decay of the excited state |e) can be described by coupling to a thermal
(or vacuum) reservoir. In this case Dye o 7. Since the noise results from excitation of the state |e),

which we have set (G¢.) = 0 in linear response, the Langevin noise operator can safely be neglected.

12



1.1 EIT and dark-state polaritons

We note that in the derivation of equations (1.6) further approximations have been made that will
not be covered in detail here but will be presented appendix [A]

1.1.3 Electromagnetically induced transparency

Electromagnetically induced transparency is a coherence effect that does not require quantum prop-
erties of the light field but can be explained with classical fields. This makes it possible to under-
stand the effect in terms of the response of the medium, i.e. the susceptibility y, that is defined
by the relation P = ¢pxE. We get the equations of motion for the classical fields readily from
the Heisenberg-Langevin equations of motion by replacing the quantized probe field by a
classical field E = £e~“»! and the atomic spin-flip operators by density-matrix coherences, i.e.,

Guv — pup = (V|p| 1), for which we get the following equations of motion in linear response

az&peg = _Fpeg + idgege_iwr)t + iQprgv (1.8)
Oiprg = —10prg + i2peg.

Solving these equations for the steady state and using the definition of the Polarization P = ndgepeg

yields the susceptibility
_ n|dge K )
0 2 +i(y+iA)d’

as a function of the probe field frequency wy, since both, the single photon detuning A and the

X(wp) = (1.9)

two-photon detuning ¢ are dependent on w,. In Figure[1.2] we display real and imaginary part of
the susceptibility as function of the probe field frequency in the case of zero and non-zero control
field detuning. In both cases the absorption vanishes for A = —A, i.e. for 6 = 0, indicating that the

medium becomes transparent.

Using the susceptibility (1.9) we can calculate the transmission coefficient for the transmission of

probe light through a medium of length L under EIT conditions. According to Beer’s absorption law

the transmission coefficient, defined as the ratio of input and output intensity, | £(0)|* and | E(L)|?,
respectively,
|E(L) —2Q[x]kL ndg, ~9?
T = = BNk 1 _op—8 , 1.10
|E(0)]? co (2 —yA)* + 4207 (110

where in the last step we approximated the exponential function for small arguments, i.e. for small
3[x]. Here we can directly read off that the transmission coefficient becomes unity, if the two-photon
detuning § goes to zero and hence the absorption of the probe field vanishes. This phenomenon is
called electromagnetically induced transparency (EIT) and can be explained by an interference effect
of different excitation paths. Note that this is a purely classical effect [14]. It has first been observed

by [15].

13
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Figure 1.2: Imaginary (solid blue lines) and real part (dash-dotted red lines) of the EIT susceptibility x
as function of single-photon detuning A /~. (a) Resonant driving, no control field detuning.
(b) Control field detuning A, = 2+, the two-photon resonance is shifted to A = 2. In
both cases the imaginary part vanishes on two-photon resonance, i.e. the medium becomes
transparent.

For zero control field detuning, we can rewrite Eq. (1.10) in the form

A2
T(A~0)~ 1—m, (1.11)

tr

where Awy, denotes the spectral width of the EIT transparency feature, the so-called EIT transparency

window,

Awy = —=— (1.12)

with d = %n)\?’k‘L being the resonant optical depth in absence of EIT.

Not only the imaginary part of the susceptibility becomes strongly modified by the control field but
also the real part of the susceptibility, which is connected to the imaginary part by the Kramers-Kronig
relations [[16]]. As can be seen in Figure[1.2|the real parts of the susceptibility become very steep and
show for the resonant case a linear dispersion. Since the group velocity of the probe field is defined by
vg =c/(1+ %%) the real part of the susceptibility becomes very steep corresponding to a strong
reduction of the group velocity of the probe field, i.e. v, < c. This phenomenon is called slow light,
pointed out in [4] and observed in [17, 18] and led to the observation of a light speed reduction of

17ms! [19].

14



1.1 EIT and dark-state polaritons

clk —kp)/Q

Figure 1.3: Dispersion relation of electromagnetically induced transparency obtained by diagonalizing
the matrix in Eq. for gv/n = Q,v = A =6 = 0. The branch corresponding to the
dark-state polariton is given by the blue solid curve in the middle, which is exhibits a slow,
linear dispersion in the vicinity of £ = k, as indicated by the dashed red line.

1.1.4 Dark-state polaritons

As we have seen in the previous section, the dressing of an ensemble of three-level atoms with a
control field results in a strongly modified optical response for a probe field. In particular, the group
velocity of light propagating in such a medium can become very small compared to the vacuum
speed of light, giving rise to slow light and even allowing for the storage of light pulses, which will
be introduced in the next section. These effects can be understood by introducing quasi-particles
consisting of light and matter excitation, the so-called dark-state polaritons. The strong coherent
admixture of massive and stationary atomic excitation to the propagating light field then leads to a
strong reduction of the group velocity. In the following we want to introduce these quasi-particles.

See appendix[A]for details.

For simplicity we will assume a perfectly one-dimensional setup of light-fields propagating through
a cloud of atoms as sketched in Figure Then the truncated paraxial wave equation and
the Heisenberg-Langevin equations reduce to one spatial dimension and the transversal mass
term in the wave equation vanishes. Together these equations form a closed set of equations for the
electromagnetic and atomic field operators, the so-called Maxwell-Bloch equations (see also Eq.

in Appendix [A), that can be written in the form of a Schrédinger equation with a non-Hermitian

Hamiltonian,
J £ —ck 0 —gyn £
i% Ogr | = 0 0 - Oer | » (1.13)
Oge —gy/n —Q il Oge

15
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where we applied a Fourier transform of the space coordinate z according to f(z) = [dk e % f(k).
Next, we make a canonical transformation, rotating U = cosfE — sin 064 and O = sinb€ +
cos 00y, [2]]. As can easily be calculated, U is a zero energy eigenstate of the matrix in Eq. in
the case ck = 0 = 0, i.e., defines a dark-state polariton of the system. ® on the other hand denotes a
bright state polariton. The mixing angle § = atan(g+/n/(2) characterizes the mixture of £ and ¢,
in the polaritons. We now want to analyze the effect of k and J on the dynamics of the dark-state
polariton and treat them as a perturbation. Furthermore, we want to allow for a time-dependence of
the mixing angle, which introduces a coupling between ¥ and ®, when transforming the equation of
motion Eq. and can also treated as perturbation. In second order perturbation theory we get
the result

d

%\if = (—vgk: + §sin® 9) U

i
. " ) (1.14)

Q2 TP +402, + T2 — 402

— 1[040 + sin O cos O(ck + 5)]2

)

see Appendixfor details. vy = ccos? 0 denotes the group velocity of the dark state polariton. As in
k-space this is only an ordinary differential equation, it can easily be solved by integrating the time
variable. Considering the case, where 0(t) = const. and 6 = 0, the first order perturbation yields the
result U(k,t) = U(k,0) exp{ivgkt}, which transforms to the equation

A

U(z,t) = \i/(zfng,th), (1.15)
in real space, i.e., that the dark-state polaritons propagate form-stable with the group velocity v,.

A finite two-photon detuning leads to further corrections that we consider in greater detail in the

appendix or can be found in the literature, see e.g. [20, |21]]. In the case A > ~ we can simplify

Eq. (1.14) to the form

.d - .9 §A cos? 0 .9, 0A vgcAsin?d ] -
I%W = |:6Sln 9 <1 + %> — k”Ug <1 — 28111 9@ + ngﬂk’ \II, (116)

i.e., a Schrodinger equation with unitary time-evolution. Here the first term is a constant energy
offset, the second term a drift term with a modified group velocity and the last term describes a kinetic

energy with an effective mass

“1_, 5sin% 0 cos? HA

A
my = 2¢ R 20g Laps—, (1.17)
O v

where Laps = ¢y/ g°n denotes the resonant absorption length of the medium in absence of electro-
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1.1 EIT and dark-state polaritons

magnetically induced transparency.

Length scale.
In deriving the result (1.16) using perturbation theory we assumed that

2

Q
k eff 1.18

has to be fulfilled for all relevant £ modes of the polariton field ¥'. We note that this condition sets a
lower limit for the characteristic length scale of the dark-state polaritons
o A
lagp > €t & *— Lap, (1.19)
Vg
where in the second step we assumed |A| > v and L, denotes the resonant absorption length of

the medium in absence of EIT.

1.1.5 Light storage

In the previous chapter we have derived an effective Schrodinger equation for the time evolution
of dark-state polaritons under constant EIT driving conditions. However, Eq. , describes also
time-dependent driving and explains dynamics of EIT light storage [3]]. Recalling the definition of
the dark-state polariton, namely ¥ = cos O€ — sin 064, we see that changing the mixing angle 6(t)
dynamically, allows to turn an initial light pulse continuously into a stationary spin wave. Doing this
adiabatically, the pulse is at all times described by the ground-state of the model, i.e., the dark-state
polariton. To illustrate this, we show a numerical solution of Eq. for a single excitation wave
function in Fig. As can be observed, an initial polariton consisting mostly of photonic excitation
that propagates with the velocity v, gets turned into a stationary spin excitation and then back
to photonic excitation. The rightmost picture clearly shows that the dynamics is at all times well

described by a dark-state polariton wave function.

In a storage protocol, the corrections arising due to 9,0 become relevant. Considering the simple
case 6 = A = 0, i.e,, single- and two-photon resonance, Eq. (1.14) becomes
0

A~ . A ’y
— VU =iv kU —
ot e 2g°n

sin? 0[(9,0)% + sin 0 cos Ockd;0 + sin? 6 cos? 02 k2] W. (1.20)

This equation describes the time evolution of the dark polaritons with losses induced by non-adiabatic
storage. Introducing a characteristic time 7T, for the storage process, setting a bound for the relative
change of the mixing angle, T < 6/0,0 allows to determine an adiabaticity condition from Eq. (1.20).

17



Chapter 1 General introduction
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Figure 1.4: Numerical simulation of storage of a dark-state polariton pulse. Intensity of (a) electric field
&, (b) atomic coherence G, and (c) dark-state polariton U = cos 9€ —sin 0Ggr components
in arbitrary units. The initial group velocity is vg(0) = 0.8 c.

If we assume slow light, i.e., § ~ cos 6, sinf ~ 1 and set 0,0 = 6 /T, adiabaticity requires

L )
Taor > { Zabs g}, (1.21)
C C

where L,ps denotes the resonant absorption length in absence of EIT. In the case of a setup with a
finite single-photon detuning |A| > +, this condition has to be multiplied by |A|/~, see also the

condition (1.19).

1.2 Rydberg atoms

In this section we want to give a brief introduction into Rydberg states of atoms, in particular their
extraordinary properties and strong interactions compared to low-lying states of atoms. Detailed
reviews about Rydberg atoms and their application in physics can be found in [5| 6]. We focus on
alkali atoms like Rb and Cs as they possess only single valence electrons and are widely used in the
relevant experiments. The term Rydberg atom denotes atoms with a highly excited valence electron
which approximately behave like hydrogen atoms, i.e., their energies for a state with principal and
angular quantum numbers n and [, respectively, are given by the Rydberg formula for the hydrogen

atoms R
En l >

e

(1.22)
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(a) Sketch of dipole-dipole interaction. (b) Two-body interaction strengths.

Figure 1.5: (a) Sketch of dipole-dipole interaction between two Rydberg atoms A and B with single
interaction channel. (b) Two-body interaction strengths for ion, ground state atom, 100s
Rb atom. Taken from [6].

Here Ry denotes the Rydberg constant |'|and ;(n) the quantum defect that is a slowly varying
function of the principal quantum number n [6]]. The dipole moments of Rydberg atoms scale as

~ n? and the lifetime as ~ n3

, resulting in long-lived states suitable for applications in quantum
information, slow light and light storage, as will be considered in this thesis. Moreover, as they are
highly excited states one would need UV light to directly excite Rydberg levels from the ground state.
For EIT setups we are interested in two-photon excitation schemes that are typically in the visible
light range [23]. The dipole matrix elements for transitions between the ground state |¢p) and a
Rydberg state |¢,),

<¢0|eri|¢r> = <n07l07j0)m0’€r|n’l7ja m> (123)

become smaller with increasing n, as the overlap between the ground state and the spatially extended
Rydberg state becomes smaller. As can be seen from Fermi’s golden rule this results in an increasing
radiative lifetime of the Rydberg state, scaling as 7 ~ n3. Hence, the Rydberg states are very long-lived
metastable states and we assume them to be stable on the time scales considered throughout the

present thesis.

The dipole matrix element between neighboring Rydberg states, i.e., states of the same principle
quantum number n, scales as
(nP|er|nS) o n? (1.24)

leading to very large polarizabilities scaling as o ~ n”. The large polarizabilities of Rydberg atoms
make them strongly susceptible to electrical fields and leads to strong mutual interactions between

Rydberg states in the absence of external fields. At large inter-atomic distances, |r| > n2ag, of two

"Roo = 10973 731.568 508(65) m ', [22]
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Chapter 1 General introduction

Rydberg atoms A and B, the dipole-dipole interaction is given by

|

Dpa(r) = - L
dd(r) 47T€0 ’r|3

[t -1y — 3(rg - 1) (- 1p)], (1.25)
where = r/|r| and r, and r; denote the distances of the respective electrons from the atomic
cores. We are interested in the coupling of a Rydberg pair state |¢) = |nlj, nlj) to other pair states
%) = |1, la, Jas T, I, jb) With the coupling energy ()| Viq |#) as sketched in Figurem We do
not want to consider state exchange processes between |¢) and |¢/) but rather the energy shift acting
on the pair state |¢) in presence of neighboring states |1/) due to dipole-dipole interaction. While in
general a manifold of neighboring levels contributes to this level shift, it has been shown [24] that
the shift is dominated by only two neighboring states, i.e., a single channel. To derive the interaction
potential we choose a Rydberg state |¢) = |nS, nS) with the neighbors nP and (n — 1)P, such that
we can write the pair state |1)) = %(\nP, (n—=1)P) + |(n — 1)P,nP)) as shown in Figure
when choosing n’ = n — 1. For simplicity we neglect the degeneracy of these states, a more rigorous
derivation can be found in [6| [25]. We denote the energy mismatch of these states (for r = o) by
A=FEp,+E,
given by the operator

— 2E,, ;. In this single-channel approximation the interaction Hamiltonian is

(Vﬁ(r) Vd%(r)> | (120

acting on the vector of states (|¢) , [+/))!. Diagonalizing this operator leads to the eigenenergies

bslb

A A?
By= 4 \/4 + Vi (r)Vaa(r) (1.27)
Two regimes can be distinguished. If Vdd(r) > A, ie., for small distances (or the special case of
vanishing A) the interaction energy is given by Vaq ~ ]r|73, which is the regime of the so-called
Forster resonance. We are, however, interested in a second regime, where V(r) < A, the so-called

van der Waals regime. Here the relevant pair-state energy is approximately

Vaa(r)? _ Gs

Er)=-—x"="7%

(1.28)

scaling as |r| ®where Cg denotes the van der Waals interaction strength. As Vaq(r) ~ n? and
A ~ n~3 the interaction strength scales like n', i.e., becomes very strong for large n. This is shown
in Figure For our choice of states the interaction is isotropic, which is the relevant case for
the present thesis, however, in general the interaction can be anisotropic as has been considered for

binary interactions in [24].

Finally, when neglecting coupling between different Rydberg states, the interaction Hamiltonian of
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1.3 Open systems

two atoms at positions rj and re can be written as

H=5DV(r —ry)5?, (1.29)

where 61 = |r); (r|; denotes the projector onto the Rydberg state of atom j.

1.3 Open systems

Time evolution of quantum mechanical systems, as described by the Schrédinger equation, are unitary
processes and reversible in time [[26]. However, real systems have vast numbers of degrees of freedom
such that it is impossible to track all of them microscopically and irreversible processes can be
observed in many experiments. For instance, spontaneous decay of an excited atom or absorption
of a photon are of interest in quantum optics [11]. These and other irreversible processes can be
described by introducing the concept of open systems [9], i.e., systems that are in contact with an
environment or reservoir, that has a very large or even infinite number of degrees of freedom. Under
certain assumptions these degrees of freedom can be traced out leading to an equation of motion
describing the effective non-unitary time evolution of the system. This equation is called master

equation [9].

1.3.1 System-plus-reservoir approach

The standard approach in quantum optics to describe an open system starts in splitting the full Hilbert
space into a system, the degrees of freedom of interest, and a reservoir, containing all degrees of
freedom of the environment. These environment degrees of freedom will subsequently be traced out,

leading to an effective equation of motion for the system [9].

We start with the Hamiltonian in the Schrédinger picture, that has been split into a term containing
the system degrees of freedom, a term containing the reservoir degrees of freedom and a term that

contains the coupling of both,
H=Hs+Hg + He (1.30)

The dynamics of the full system is governed by the von Neumann equation of the density operator

§ of the full system. We transform to an interaction picture with respect to Hg + Hr, according to

x(t) = eih(7:ls+7:lR)t>~<(t)e—%(7:is+7:tR)t (1.31)

Flar(t) = enPlstHn)tgy =3 (s tHn)t, (1.32)
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Chapter 1 General introduction

leads to the von Neumann equation in the interaction picture

01 = 1 [Aart). x(0)]. (133)

Formally integrating this equation yields

. t .
€0 =x(0) = ; [ ar [fu(r)x(o) (134
and reinserting this into Eq. leads to
d i I - -
50 = =5 [Fa0x(0)] = 35 [ ar [, [Fratr). x(0)] | (135)

This seems to be a more complex form of Eq. (1.33) but its form allows us to derive a simplified
effective equation of motion for the system part of the density matrix only, when making certain

assumptions.

First, we assume that initially for ¢ = 0 system and reservoir are uncorrelated, i.e., x(0) = x(0) =
p(0) ® pr(0) and, moreover, that the expectation value of the coupling Hamiltonian with respect
to the initial reservoir state vanishes at all times, i.e., trg [or Hs:(t)] = 0. The latter assumption is
not essential to the derivation but is usually fulfilled in typical systems and simplifies the further

discussion.

Applying a partial trace over the reservoir degrees of freedom yields an equation of motion for the

density matrix of the system operator, p(t) = trg x(¢),

200 = 5 [t e { [Frs0), [Frsr) 1]} (136)

To simplify this equation we perform the Born approximation and Markov approximation. Typically
the reservoir has a large (infinite) number of degrees of freedom such that the coupling of system and
reservoir only affects system degrees of freedom. The reservoir degrees of freedom are thus stable
and we can assume that the reservoir stays in its initial equilibrium-state pr (t) = pr(0). Note that
the free evolution of the reservoir has been transformed away by transforming to the interaction
picture. This is called the Born approximation. If additionally the initial state has no system-reservoir

correlations, as assumed above, the full state can be written as x(t) = p(t) ® pr(0).

Equation (1.36) is still an integro-differential equation. A substantial simplification arises, if we
assume that the reservoir coupling destroys the memory of the system. Then we can replace p(7) by
p(t) in Eq. (1.36). This is called the Markov approximation and leads finally to the master equation in
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1.3 Open systems

Born-Markov approximation,

S0ty = o [ ar o { [0 [ns(). o6 @ )]} (137

As will be exemplified in the following, the Markov approximation is justified, if reservoir correlations
decay on time scales that are much shorter than the characteristic time scale governing the time

evolution of the system.

1.3.2 Master equation

We consider now a simple example of a system described by bosonic operators a; coupled to a

reservoir with operators l;j by a coupling Hamiltonian with the interaction picture representation

Her(t) =h Z &;B‘j + Hec. (1.38)
J

Inserting this into the master equation and using cyclic permutations in the trace yields

0 t - At At ata Sty A A
550 =32 [ ar (b @pal = alalo) + (180), (@ — i)

o+ (bl (alpas — aialp) + Bibl)y (alpal — alazp) +He) (139

where all operators with index ¢ are to be evaluated at time ¢ and operators with index j at time 7,
respectively, and () denotes the expectation value with respect to the reservoir. In the following
we assume for simplicity that the reservoir operators fulfill bosonic commutation relations, i.e.,
[l;i, BT] = 0;j, and, moreover, that all anomalous reservoir correlation functions vanish at all times,

J
ie, (bibj)r = 0. The Markov approximation is justified, if the reservoir operators are J-correlated in

time, i.e., if
(B (b)) = tr { pr()B] (1) (7) } = T0(t — 7) a0
(B (7)bs(t)), = T0(t — 7).
Then we can replace the upper limit of integration in Eq. by oo. Setting
Dij = vij + 1045 = 50 + 14 (1.41)
we get finally the equation of motion
9 i St 1 S St
gp(t) =3 Z Agjlala; +He., p(t)] + 3 Z Yij [Q(Ll-paj — a;a;p — paja;| . (1.42)

i i
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Chapter 1 General introduction

This is the Born-Markov master equation in Lindblad form. This form of the master equation is of
special interest, as it has certain properties as follows. First, throughout a time evolution according to
Eq. the total probability is conserved, i.e., tr p(t) = 1 at all times, which can be shown easily by
using the invariance of the trace under cyclic permutations. Second, if ;; > 0, the positivity of the

density operator is conserved at all times, i.e.,

(Plpt)y) >0 (1.43)

for all times ¢ and states |¢). These properties ensure that the time evolution of a density operator
always yields a density operator. Lastly, the Lindblad dynamics conserves the complete positivity of
the density operator, i.e., not only p(t), but in addition the extended density matrix upon an arbitrary

completion with an ancillary system remains positive.

A master equation in Lindblad form can be derived for many well-known problems of quantum
optics. Prime examples are the coupling of an harmonic oscillator to a reservoir representing the
coupling of an optical cavity to external light fields or the coupling of a two-level atom to a harmonic
oscillator. Generalizing Eq. we write

d 4 1 itT itT [, o7
o= il =5 {LMLMO +pLiL, — 2LupLM} : (1.44)
I
for Jiu denotes an arbitrary system operator, called Lindblad operator. These are the generators of

the dissipative dynamics.

1.3.3 Quantum trajectories

Instead of solving the Lindblad master equation with the density matrix formalism, which is
describing an ensemble average over many individual realizations of a quantum system, one can
also calculate the time evolution of pure states such that it reproduces the master equation as a
stochastic average. This is the principle of the quantum trajectory (or Monte-Carlo wave function)
approach [27H29]. The time evolution is governed by the master equation (1.44), which can be written

in the form J
o= i (Feo — pPtly) + " Luol, (1.45)
m

with a non-Hermitian effective Hamiltonian

=13 Ll (1.46)
o
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1.4 Bosonization

Here the i/u are Lindblad operators, generating the dissipative dynamics. Evolving a pure state [1))
under this non-Hermitian Hamiltonian for a time dt leads to a decay of the norm of the wave function,

in first order in dt given by

(Wt + db)p(t + dt)) = 1 —dp, dp=dt D  (W(t)|LILulv(t)), (1.47)

where dt is chosen, such that dp < 1. The probability 1 — dp gives the probability that the state

remains in |¢)(t + dt)) evolved under the effective Hamiltonian. Then with a probability of dp the

state does not remain but undergoes a projection,

1) M, (1.48)

T

i.e., a quantum jump [30]. Particularly, for multiple Lindblad operators [A/M, dp = > 4 dp, is a
probability distribution, summing up all probabilities of the different jumps. In the limit of d¢t — 0
the time evolution appears as the continuous time evolution of the state 1 interrupted by jumps.
Performing this time evolution many times while calculating the expectation values of observables
throughout the time evolution and stochastically averaging these lead to the same result.

A direct numerical implementation of this algorithm by evolving with a fixed step size dt and
evaluating the probabilities at every step is quite cumbersome. In typical implementations thus, the
time at which a jump occurs is randomly selected [31] and well-established numerical methods can
be used to calculate the time evolution under the effective Hamiltonian between two jumps.

Note that using this method has the advantage that instead of the density matrix only the time
evolution of wave functions has to be calculated. Thus a much larger system size can be calculated,
when storage is the limiting factor in a numerical implementation. However, that comes at a cost of

computational time, as the stochastic averaging requires many individual trajectories.

1.4 Bosonization

In this section we want to introduce the mathematical technique of Bosonization, a method that allows
to solve any gapless interacting quantum system in (1+1) dimensions by mapping it to a system of
massless, noninteracting bosons, called the Luttinger liquid. Extensive introductions can be found in
the literature, for example in the book by GiamMArcHI [10] as well as [32-34] among many others. In
this section we follow the notation of [10]] building on the phenomenological derivation introduced
in [135].

One-dimensional quantum many-body systems with a gapless spectrum can be described in terms

of their low-energy excitations, by using the technique of bosonization. This method is an approach
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Chapter 1 General introduction

describing the low-energy physics of a one-dimensional model by linearizing the spectrum around
the Fermi energy and mapping the model to a quadratic bosonic model, called the Luttinger liquid
model. This makes it possible to solve interacting problems nonperturbatively. The Luttinger liquid is
fully characterized by two parameters, the speed of sound vy, i.e., the characteristic velocity of the
system and the dimensionless Luttinger parameter K, that depend on the microscopic model. The

Luttinger liquid Hamiltonian is given by

Hip = % / da v K [Vé(x)r + % [vé(x)r. (1.49)

Here the field IT = %V@ is the canonically conjugate momentum to b, ie., they obey the commutation

relation

[6(@), Ti(y)| = 0@ — ), (1.50)
where, phenomenologically, V describes density fluctuations while IT describes phase fluctuations.
Hamiltonian is the most general Hamiltonian describing the low-energy properties of a massless
one-dimensional system. The bosonization method maps a one-dimensional model to the Hamil-
tonian (1.49). The parameters v5 and K are dependent on the microscopic model. Introducing an
interaction only leads to a renormalization of the parameters. A representation of the original physical

fields in terms of the new bosonized fields can be given by

bl (z) = /plw)e 0@, (151)
pz) = [Po - i%(x)} Y epmoa—d@), (1.52)
p

where p is an integer.

The correlation functions of the Luttinger liquid are universally determined by the K parameter.

For the ground state of a Luttinger liquid the first-order correlation function is given by

1

S N 1\ 2K
(1 () (0)) = pody () (159
and the density-density correlation function is given by
Al N A o K 1 2 —2K | 2 —8K
(p(x)p(0)) = pg — 2232 + Agpi cos(2mpox)x + p§Aa cos(dmpox)x +... (159

Comparing both correlation functions one finds that the asymptotic behavior of the Green’s function
is a power law with exponent % while the density-density correlation function is a power law with

exponent 2K . Thus, the point K = 1/2 marks a special point, indicating a cross-over from a regime
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Figure 1.6: Sketch phase diagram for Luttinger liquid of bosons, cf. [[10].

dominated by superfluid (SF) correlations for X' > 1/2 to a charge-density wave (CDW) for K’ < 1/2.
The limits of these regimes are the limit of free bosons for K — oo and a Wigner crystal for K — 0.
The point K = 1 corresponds to the case of hard-core interacting bosons, the so-called Tonks gas,
which is dual to free fermions. These observations can be put into a sketch phase-diagram, which we

show in Figure Note that these correlation functions get modified for non-zero temperature [34].
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Chapter 2

Few-body quantum physics of Rydberg

polaritons

Photons are well established as qubits, i.e. carriers of information in quantum science. Their noninter-
acting nature on the one hand makes them ideally suitable for quantum communication applications
but on the other hand makes it hard to perform computational operations directly with photonic
qubits. Instead one has to use different physical realizations, for instance superconducting qubits [36]],
for computation operations and convert them to photonic qubits for communication [37]. However,
these conversion steps are difficult to be made efficient and lead to loss of fidelity.

From this perspective it seems desirable to take another path and engineer interactions between
photons leading towards an all-optical realization. The high speed of an all-optical information
processing is moreover of large importance, also in classical communication.

One possible approach to engineer interactions is used in Rydberg quantum optics [7]], an emerging
research field in physics that utilizes the theoretical knowledge and experimental expertise of quantum
optics allowing for an extraordinary control of light-matter coupling and applies it to work with
Rydberg states of atoms which give access to strong interaction potentials [5]. The long life-times
and strong, non-local interactions make Rydberg states well suited for use in quantum information
science [6]. Including these states in a setup of electromagnetically induced transparency [1] allows
to mediate strong and long-range interactions between photons [38]. This so-called Rydberg EIT
paves the way to address problems ranging from quantum communication to quantum computation
and even beyond quantum information.

The first experiment to implement Rydberg EIT was done by Pritchard et al., [39] and was quickly
understood theoretically [40] using Monte-Carlo sampling of atom dynamics and explained by
introducing interacting superatoms [41].

While these first publications considered the attenuation of a classical probe field propagating
through an atomic medium with Rydberg states, subsequent experiments extended the research
to quantized light fields. On a quantum level, i.e., for a quantized probe field of few photons, the

interactions lead to an extension of the fundamental model of dark-state polaritons [2} (3] to a theory
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of interacting quasi-particles termed Rydberg polaritons. These have been shown to exhibit spatial
correlations, a strongly avoided volume for short relative distances [8]], as has been predicted by
Gorshkov et al. using two-photon wave function simulations [42]. These first results showed that
Rydberg polaritons are a promising setup for building optical quantum-computation devices and
since then a single-photon switch [43]] and all-optical transistors have been demonstrated by multiple
groups [44, [45] and a CZ-gate [46] has been proposed leading to the possibility of all-optical quantum
computation [47].

In this chapter we consider few-body quantum physics of Rydberg polaritons. We rigorously
analyze the experimental setup of sending a quantized probe light field through a three-dimensional
atomic Rydberg medium under conditions of EIT. We derive conditions, when the setup can be
described by a one-dimensional model, which is the case when the size of the Rydberg blockade
becomes larger than the transversal beam parameter. For this one-dimensional model we employ
a perturbative system-plus-reservoir approach to trace out the bright state degrees of freedom to
derive a theory that allows to describe the model in terms of a single quantum field, namely Rydberg
polaritons. In doing so we arrive at a master equation governing the time evolution of Rydberg
polaritons. We discuss the individual contributions to the dynamics described by the master equation
and find conditions where the dissipative dynamics can be approximated by a unitary dynamics, i.e.,
by an effective Hamiltonian.

Finally, we use numerical simulations to compute the time evolution of few-body wave-functions

under the full Heisenberg-Langevin equations to verify the effective polariton picture.

The results presented in this chapter are summarized in reference [[Mo0s2015|], which was a collabo-
ration of Razmik Unanyan, Michael Fleischhauer and myself, with contributions from Michael Héning
and numerical DMRG results provided by Dominik Muth. In particular all analytical calculations and

the wave-function simulations were done by me.

2.1 Rydberg polaritons in one dimension

One-dimensional systems are of great interest, as the reduced dimensionality typically corresponds to
an enhancement of quantum fluctuations due to correlations [[10]. Typically, perturbative descriptions
break down and non-classical states beyond mean-field description become relevant. Propagating
photons can be created in single laser modes [48]], and thus can be described by one-dimensional mod-
els. This holds true for polaritons due to their large transversal mass [49}|50]]. This changes, however,
when interactions have to be taken into account, which is the case for Rydberg polaritons [41]. Here,
a coupling between different transversal modes is induced by photon-photon scattering. Although a
restriction of transversal modes and a confinement to one dimension can be achieved by performing

the experiment inside hollow core fibers [51-53]], where excited transverse modes are energetically
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2.1 Rydberg polaritons in one dimension

separated, so far most Rydberg polariton experiments use three-dimensional atomic clouds [8} 39} |44l
45]). In the following we analyze the propagation of Rydberg polaritons in such three-dimensional
setups and derive conditions where the descriptions by a one-dimensional model remains valid, even

in the interacting case.

2.1.1 Paraxial light propagation

As introduced in Section|[L.1} the propagation of a weak monochromatic quantized probe light field

in an atomic medium under conditions of EIT is described by the truncated paraxial wave equation,

Eq. (1.5),

0 0 . C 2 5 . ~
(875 + o~ 12k‘va> E(r,t) = igv/ndge(r, ). (2.1)

To derive a one-dimensional model we assume a cylindrical symmetry of the experimental setup. In

a cylindrical setup the transverse mode functions of laser beams are the Laguerre-Gaussian modes,

typically denoted TEM,,, modes [48, |54]. The width w(z) of the Gaussian beam profile is given

by [54]

R(z)
z

w(z) = wo , R(z)==z2 <1 + Zj) , (2.2)

“R
measured in distance z from the focus point of the laser, R(z) gives the radius of curvature along z
and zr = Tw? /), denotes the Rayleigh length, indicating the distance from the focus point, where

the beam width is a factor of v/2 larger compared to the beam waist wg = w(0).

We decompose the probe field into the transverse mode functions, denoted by (7, ¢, 2), as

E(r,t) = Zupl(r, ©, z)ffpl(z,t). (2.3)
pl

The mode functions u,(r, ¢, z) are eigensolutions of the transverse Laplace’s equation in two dimen-

sions, V2 upy(r, ¢, 2) = 0, for fixed z given by [j55]

upl(r; 0,2) = C(}’l) sl (r, Z)e—TQ/w2(z)+il<pe—il<:pr2/2R(z)ei(2p+\l|+1)C(z)L;|lf\ [82 (r, 2)], (2.4)

w(z
where s(r,2) = v/2r/w(z) and ((z) = arctan(z/zr) denotes the so called Gouy phase of the
beam [48,|54]. The functions L,é are the associated Laguerre polynomials [56,57]], C},; is a normalization
constant and p and ! denote the radial and azimuthal indexes of the mode functions, respectively. In
Figure[2.1]we show a cross-section for z = 0 of some Laguerre-Gauss to illustrate the spatial structure

of the modes. The associated Laguerre polynomials Lé(a:) form an orthogonal set over the interval
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Chapter 2 Few-body quantum physics of Rydberg polaritons

oo ()| |uso(z, )| |uoy (2, )|

@) o/ (b) o/ (©) /uy
Figure 2.1: Examples of different Laguerre-Gauss modes. Plotted are normalized cross-sections

lupi(z,y)|? in the plane z = 0 in arbitrary units.

x € [0, 00) with respect to the weighting function e~*z!, i.e. it holds

/ dz e~7a! L1 (2) L () = (pp%l)ap,q. (25)

Moreover, the functions exp{ilyp} form a complete orthogonal set on ¢ € [0, 27) and therefore, when

choosing the appropriate normalization constants given in Eq. (2.4), namely C),; = %% (see

Appendixfor details), the mode functions u,,; form a complete orthonormal set in two dimensions

(i.e., for fixed z), with the completeness relation

o) 2
/ rdr/ dep upi(r, @, 2)Ugm (1, ©, 2) = OpgOim.- (2.6)
0 0

Thus we can conclude that the decomposition is well-defined. Moreover, the orthogonality of the

mode functions leads to the commutation relations of the normalized one-dimensional field operators,
[Ep1(2), €4 ()] = BpgO1md (2 — 2°). (2.7)

We decompose the atomic field operators analogously,
O'ge Z upl r,e,z ( 7 Ugr Z Upl e,z Upl( ) (2-8)

into one-dimensional operators that fulfill similar commutation relations as (2.7).

Note that the original three-dimensional operators, G4¢(r) have a different physical dimension

than the operators corresponding to single modes, % (2).

By using the decomposition of electromagnetic and atomic field operators and the completeness
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2.1 Rydberg polaritons in one dimension

relation of the mode functions we obtain from the paraxial wave equation
5 e ) Enlet) =g Y | [ [ rarde Vi uas(ro )| 620, @9)
ot 082 pl\Z,1) =19 rdr d@ /1T ) Uy, (T, @, 2)Uap(T, P, 2) | Oge (2,1). .
aMB

Thus, for a general atomic density distribution n(r), the paraxial wave function couples all transversal
modes. However, due to cylindrical symmetry, n(r) becomes independent of the p-coordinate. We
may furthermore assume that n(r) is only slowly varying in the radial coordinate, r, compared to
the lower order mode functions u,(r, ), e.g. given by a Gaussian distribution that falls off much
slower than the transverse mode functions. Then we can safely neglect the r-dependence of n(r) in
the integral in Eq. (2.9), i.e. replace it by n = n(0) and the orthogonality of the modes yields a set of

one-dimensional, decoupled paraxial wave equations for each of the transversal modes,

0 0\ & . .
(32& + C@z) Ep(z,t) = 1g\/ﬁagé(z, t). (2.10)

The same arguments can be made for the Heisenberg-Langevin-equations (1.6), when assuming that
the control field Rabi frequency {2 is independent of ¢ as well as slowly varying in r, leading also to a

decomposition of the Heisenberg-Langevin equations for the different transversal modes,

0 . . . A
aagﬁ(z,t) = —150’g7f(z,t) + 1Qa§é(z,t),
%&g@(z,t) = —F&gé(z,t) +igynép(z,t) + iQ&gﬁ(z,t),

(2.11)

with no coupling to other transversal modes.

In particular, this means that the propagation of the light field is reduced to a set of decoupled
equations for each transversal mode that is described by one-dimensional equations of motion. We
note, however, that this is only correct as long as the time evolution of the photons is described by
the linear Maxwell-Bloch equations. Including nonlinearities, e.g. interactions between photons into

the system changes the result in general. This will be subject of the next section.

2.1.2 Interactions

In a nonlinear medium, i.e., in the presence of interactions between polaritons, the result of the
previous section holds no longer true. The interactions between Rydberg states of matter mediating
interactions between photons lead in general to a scattering between different transverse Laguerre-
Gaussian modes 1, (7, ¢, z). Thus the propagation of dark-state polaritons in a Rydberg medium has
in general to be considered as a three-dimensional problem. However, as can intuitively be guessed
from the sketch in Figure we expect the scattering between different transverse modes to be

negligible, if the Rydberg blockade radius Rp is sufficiently large compared to the beam waist wg and
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Chapter 2 Few-body quantum physics of Rydberg polaritons

Figure 2.2: Sketch of a focused probe beam with beam waist w(z) propagating through a medium of
Rydberg atoms. Rydberg polariton excitations blockade further excitations in a radius of
Rp. If the blockade radius is sufficiently large then only a single excitation is allowed for
a certain z and the setup becomes effectively one-dimensional.

only single excitations are allowed to exist for a certain z-interval of the light beam because of the
Rydberg blockade [58]]. In the following we will derive conditions where this is fulfilled and also the
propagation of polaritons in a Rydberg gas of atoms can be reduced to an effective one-dimensional

description.

To begin with, we extend the interaction Hamiltonian (1.29) between two Rydberg atoms considered
in Section [1.2to an ensemble of many atoms, yielding the microscopic Hamiltonian
Ce

Z 6LV (v —r;)6l, V(r)=—¢, (2.12)
,J#Z ]

where the exact form of the potential V' depends on the specific setup. We will assume a van der Waals
potential V (r) = C/|r|® with an interaction strength Cf in the following. &%, denotes the projection
operator onto the Rydberg state of an atom at position r;. If the density of Rydberg excitations
is much smaller than the density of atoms, we can make the continuum limit as in Section
and replace the sum over operators 6%, of individual atoms by an integral over coarse-grained
operators G, (r). Furthermore, we make the assumption that 6. ~ 0 and apply a Holstein-Primakoff
transformation [59], which allows us to replace the continuous operators Gy (r) & Gpg(r)dg(r).
Finally, we transform the spin-flip operators to their slowly varying form 64, — n~Y z&grei(kl’_kc)z ,

see (A.32), leading to the continuous van der Waals interaction Hamiltonian,

Hine = / / Prd® V(e —r')6].(r)65 (r) 66 (1) g (r). (2.13)

Inserting the decomposition (2.8) of the operators into Laguerre-Gaussian modes into this interaction
Hamiltonian, we can write the interaction as a sum over all kinds of effective interaction potentials

between the different transversal modes,

Hint = // dzdz’ ZVPI 2,2 amll( N (5 p212( ))Tagfl3(z )Ug;*l‘l(z), (2.14)
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2.1 Rydberg polaritons in one dimension

Sp4l4 (Z) ~ gplll (Z)
Vpi(z, %)
ép3l3 ('z,) épzlz (Z/)

Figure 2.3: Diagrammatic representation of the scattering of two ingoing photons in modes (ps, l3)
and (p4, l4) into two outgoing photons in modes (p2, l2) and (p1,11).

where we defined the multi-indexes p = (p1, p2,p3,p4) and 1 = (Iy,12,13,14). YN/pl(z, ') denotes
scattering matrix elements between different transversal modes as sketched in Figure which are
in general dependent on the positions z, 2’ of two interacting atoms. These can be obtained from the

three-dimensional interaction potential by integrating over the transversal degrees of freedom, r, r’

and ¢, ¢/,

u (r)U* l (r/)umla (r/)up4l4 (I‘)
Vou( - C dr ' dr’ de de! Pt pala . (.15
pi(=: %) 6// e // P 0 2 cos(p — )+ (2 — 2P O

To get a reduction of the three-dimensional interacting Rydberg dark-state polariton model to one
spatial dimension, the effective potentials XN/pl have to become diagonal. This is of course not possible
to fulfill in general, but an approximate reduction of the model to one dimension is possible, as we
show in the following. Let us first consider the integration over the angles ¢, ¢’ in (2.15). Let us
assume that the Rydberg blockade prevents photons to exist at zero mutual distance, ie., 2 = 2’/
does not contribute to the interaction Hamiltonian. For z # 2’ the integrand of Eq. is non-
vanishing. In this case the integration over ¢, ¢’ can be performed analytically by means of residue

integration, 60} |61]], yielding

1 2 , (l2~l3)¢ il —l4)
I = dopd
¢ //0 PP 1 (2 )2 + 2r cos(p — )

~on2s (W— a>'q' (¢ +2)0® — (¢ ~ DB+ 3lgla/a® — B2
- =9

2.16
3 (a2 — B2)5/2 ’ (2.16)
where we introduced @ = 72 + 72 + (2 — 2/)%, 83 = 2r' and ¢ = |y — l4,q¢ = lo — I3 denote
the change of angular momentum in the scattering. A more detailed derivation of this is given in
Appendix [B] We observe that Eq. (2.16) is proportional to d, ' = 01, 41,1541, restricting the allowed
processes to those conserving the sum of angular momentum. This conservation rule is expected, as

we assumed a rotational symmetry of the model.

We are interested in the propagation of polaritons in the Gaussian, so-called TEMyg mode and the

interaction between these as well the scattering from these modes into higher order modes. Thus
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Chapter 2 Few-body quantum physics of Rydberg polaritons

(p1,p2) = (0,0) (p1,p2) = (1,1) (pl,pz) (2,0)
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Figure 2.4: Two-dimensional plots of the absolute value of the effective potentials/scattering matrix
elements |Vp1(z, 2')| between photons initially in modes p3 = ps = 0, l3 = I = 0 and
final modes /1 = Iy = 0 and different angular mode numbers p;, p2. The dashed white
rhombuses denote the region (|z| + |2/|) < 22gr, where the approximation V) (2, 2/) ~
Vi(|z — 2'|) is justified.

we restrict ourselves to in-going modes of this type, i.e., we set p3 = py = 0 and I3 = I4 = 0 in the
following. Further integration of in the radial directions r1, 79 has to be done numerically.
To this end we choose the ratio of the parameters zg and wy as in typical experimental setups,
see e.g. [[62], namely zr ~ 32wy and performed the numerical integration for different outgoing
modes with radial and azimuthal indexes (p1, p2, 1, 14) in dependence of z and z’. The integration
was done in MATLAB using the CHEBFUN package [64]]. In Figure [2.4 we show the resulting
scattering potentials between initial Gaussian and different final modes. Before we analyze and
compare these potentials in greater detail, we note that from these figures one recognizes that the
assumption |Vp1(z, 2')| & [Vpi(|z — 2'|)| is justified inside the region (|z| + |2’|) < 2zg, indicated by
a dashed rhombus, although in general the scattering potentials depend on z, 2’. Because of the Gouy
phase of the Laguerre-Gaussian modes we can make this statement only for the absolute value of
the scattering potentials. However, this is sufficient for comparison with the diagonal interaction
elements, i.e. between identical ingoing and outgoing Laguerre-Gauss modes. For these, specifically,
the relation Vp(z,2') = Vpi(|z — 2'|) holds exactly, as can easily be observed from Eq. (2.15).
In Figure [2.5 we show a log-log plot of different interaction and scattering potentials for ingoing
Gaussian two-polariton modes as function of mutual distance. For different distances, three regimes
are distinguishable. First, for small distances, |z — 2’| < wy, of the polaritons all potentials run in
parallel, i.e., decay as a power law with a common exponent. At a distance wy there is a crossover to a
regime where the potentials decay also as power laws, but with different exponents that depend on the
azimuthal and radial mode numbers of the out-going modes. Finally, for distances |z — 2’| 2 2z the
potentials all behave differently, e.g. show zero crossings or approach again the diagonal interaction
potential. In the regime of intermediate distances, where z — 2’ is larger a few wq but smaller 2z

we can derive an approximate solution, by making a series expansion of the full integral (2.16) for
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2.1 Rydberg polaritons in one dimension
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Figure 2.5: Interaction potentials f/pl posl1, 1o for ingoing Gauss modes into different out-going Laguerre-
Gauss modes. Shown is a log-log plot of the absolute values of the potentials for 2’ = —z
and zr = 32wy, indicated by the vertical dashed black line. Plotted are numerically
integrated exact potentials as well as approximate solutions according to Eq. (2.17). Note,
that the approximate solution for the two higher order potentials is identical, as here

r,1’ < |z — 2'| yielding in leading order

Vpl(za Z,) R 5l1,—l2 (*1)ZC6

(I+p1+p2+2)! \/ (L PO+ po)t w2 ()2t )

1! 9l+p1+p2+1 p1!pa! (2 — Z/)6+2(1+P1+p2) ’

where we defined [ = |/;|. In Figure 2.5 we have plotted these approximate potentials for the shown
numerically integrated potentials, displaying a very good agreement for intermediate distances.
Specifically, we can use Eq. to read off the exponents of the power laws in the intermediate
regime, which is given by 6 + 2(I + p1 + p2). That means, that higher order scattering potentials fall
off much quicker than the interaction between Gaussian modes. In Figure 2.6/ we show the ratio of
higher order potentials ‘7;01,102;11712 compared to 17070;070. As can be seen, for inter-particle distances
|z — 2’| larger & 5wy the potential 17170;070 is more than an order of magnitude smaller than ‘70,0;0’0.
All potentials describing scattering to higher order modes have an even smaller value, as can be
seen from the inset in Figure where the absolute value of different potentials is shown for fixed
z=wy = —2".

From these results we conclude that in the intermediate regime the dominant effective potential

for in-going TEMgp modes is the interaction between the two modes, which allows to restrict the

interaction Hamiltonian (2.14) to a single channel. Omitting the indexes p, [ that are zero, we arrive at

Hine = ;// dzd' V(z — z')(}gr(z)(}gr(z')&gr(z')6gr(z), (2.18)
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Figure 2.6: (a) Comparison of interaction potentials f/pl po:ly l» for in-going Gauss modes into different
out-going Laguerre-Gauss modes and the repulsive interaction potential Vj ¢.0,0. Shown is
a log-log plot of the absolute values of the ratio of the potentials for zr = 32wy, indicated
by the dashed black line. (b) Comparison of interaction potentials V), ;,., 1, for fixed
|2 — 2/| = 2w and different combinations (p1, p2; 1, l2) of the out-going modes.

where V(z — 2') = Cg/(z — 2/)® and 64, (2) = 637(2). Note, that these 1D-operators have a
different physical dimension as the original 3D-operators G4 (r). As a repulsive van der Waals
interaction leads to an avoided volume, where only single excitations can exist, polaritons keep a

minimal distance. Hence, if the interaction is sufficiently strong, the physics is restricted to the

regime of intermediate distances, |z — 2’| > wy, where the coupling to higher Laguerre-Gauss modes

is suppressed. Together with Egs. this yields an effective model in the sub-manifold of only

TEMggp-mode, i.e., a one-dimensional model.

2.1.3 Rydberg polaritons

In Section we showed that the propagation of photons through an EIT medium can, under
certain conditions, be restricted to the physics of a single transversal mode with negligible coupling
to other modes, i.e., by a one-dimensional model, governed by Eq. and Eq. in terms of
fields €, G g, Gr-

As derived in the introduction the fundamental quasi-particles of the non-interacting system are a

superposition of light and matter excitation, the Rydberg polariton U and the bright-state polariton

<i>, defined by the rotation
U cosf —sinf E
— . (2.19)
0] sinf cosf Ogr

The coherence G, can safely be eliminated under conditions of electromagnetically induced trans-
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2.2 Master equation for Rydberg polaritons

parency, see Section[A.2.4]in the Appendix.

In the previous section we showed that additional interactions in general require a three-dimensional
description, but for sufficiently small excitation densities and sufficiently strong repulsive interactions,
the one-dimensional model is still a valid description. In that case, the interaction is governed by the
Hamiltonian (2.18). This Hamiltonian changes the properties of the atomic medium in the polariton
setup considered in the previous section. In particular, in a ladder-type EIT setup with the upper state
r) being a Rydberg state the interactions between atoms mediate an interaction between photons,
which is the basis for many interesting experiments and phenomena, e.g. the Rydberg blockade [,
42]] or bunching of photons [65] 66]]. Consequently these Rydberg polaritons are promising candidates
for applications in quantum information processing [6} |7, |44} |45] and beyond [67].

Let us now add these results up in a simple way. Elimination of the bright-state polariton from
the paraxial Heisenberg Langevin equations in one spatial dimension leads to the Schrédinger
equation describing the time-evolution of the Rydberg polariton. When assuming two-photon
resonance, i.e., d = 0, it is straightforward to construct the Hamiltonian which is the generator of this
equation in real space, see supplemental material to at [[68]]. Combining this Hamiltonian
with transformed to the polariton basis we find in lowest non-vanishing order in cos 6

52 TN NI (2T
A R Te G ()1 () () (2)
H = /dz Ul(z) [2;1 - ngz} U(z) + 5 //dzdz’ P , (2.20)
where we set sinf = 1, p, = —id, and m™! = 2vg LabsA/7y. The interaction leads to an avoided

volume, called the Rydberg blockade defined by the interaction strength being equal to the EIT
linewidth, i.e., V(Rg) = Co/| Rs|” = & [42,[58, 69], such that

r 1/6
Rp = ( Q(;ﬁ) . (2.21)

The effective Hamiltonian (2.20) describes propagating massive Rydberg polaritons subject to van der

Waals type interaction. In the following section we want to make a strict derivation of this model.

2.2 Master equation for Rydberg polaritons

In the previous section we considered the propagation of photons coherently coupled to an atomic
three-level medium with Rydberg interactions and derived conditions for describing the system by a
one-dimensional model. It is well known that the photon propagation under conditions of EIT can be
described by a field theory of light-matter quasi-particles, dark-state polaritons [3]]. Particularly, this
holds true, even when incorporating interactions between three-level atoms as shown in the previous

section.
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Chapter 2 Few-body quantum physics of Rydberg polaritons

In this section we attempt to derive a field theory for the Rydberg polaritons in one dimension
by an elimination of the bright polaritons. To this end we identify multiple loss mechanisms for
the bright polaritons depending on the detuning between electrical fields and atomic transitions.
Treating the bright polaritons as a reservoir for the Rydberg polaritons in an open-system approach
and performing perturbation theory in the coupling of the two fields, allows us to derive a Markovian
master equation describing the time evolution of the Rydberg polaritons as an effective theory of a

single-component field.

2.2.1 Maxwell-Bloch equations

The dynamics of photons propagating in a medium of Rydberg atoms is governed by a set of equations
of motion, consisting of the Heisenberg-Langevin equations for the atomic operators and
the paraxial wave-equation for the electric field operator. After adiabatic elimination of the
coherence Gy, this set of equations is given in the polariton basis by

i\il = —ccos’ 02@ — ¢sin 6 cos 9£<i>

dt 0z 0z

i 5 5 (2.22)
%é = —Teg® — csin? 9%@ — ¢sin f cos 9%\11

where Teg = Q2%;/T = (022 + ¢°n) /(v +iA) and we assumed time-independent driving, i.e., 9;6 = 0.
We note that in the derivation of Eq. and subsequently Eq. we have dropped Langevin
noise operators. See Appendix[A.2.4] for details on the derivation. It is easy to construct an effective
Hamiltonian o which generates the equations of motion (2.22). Taking the interactions into

account the full interacting problem is described by
H= 7:[() + ﬁint = 7:[\1/ + 7:l<1> + 7:[\1@, (2.23)

which consists of three parts describing the time evolution of the dark and bright polaritons, respec-
tively, as well as the coupling between the two fields. The full coupling Hamiltonian between dark

and bright state polaritons is given by

Hoo = — /dz {iccos@sin 00T (2)0.8(2) —|—H.c.} —sinf cos 6

X // dzdz'V(z — 2")¥T(2)®7(2) [sin 00 (') — cos Hé(z’)] [sin 0 (z) — cos 9@(2)} + Hec,,

(2.24)

consisting of terms arising from the Maxwell-Bloch equations as well as from the interaction. Note

that in the case of time-dependent driving fields an additional coupling arises o< 0;0(t).
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2.2 Master equation for Rydberg polaritons

Neglecting the coupling Hamiltonian and the interaction between Rydberg polaritons, the time

evolution of the Rydberg polariton field U is simply described by
d - 9 .
ﬁ\II(z,t) = —ccos” 00,V (z,t), (2.25)

As already discussed in the introduction, see Eq. (1.15), this differential equation has the solution

A

U(z,t) = W(z — ccos? Or,t — 7), (2.26)

i.e., the free Rydberg polariton propagates lossless with a velocity vy = ¢ cos? § that is much smaller
than the vacuum speed of light ¢, while keeping its spatial shape. Analogously, the free time evolution

of bright-state polaritons d is governed by

|

D(z,t) = —csin? 09, P(z,t) — Deg®(2, t) (2.27)

QU

t
CTD(z, t) = e T ®(z — csin? Or,t — 7). (2.28)

Assuming slow light conditions, we observe that the bright polaritons propagate with the velocity
csin? 6, which is much larger than vy and are moreover subject to decay with the rate R{T'eg} =

Q%/|IT
VR Cefr

assume that the system has open boundaries. Hence, if there is no external driving of bright polariton

% e, bright polariton excitations either decay or propagate out of the atomic medium, if we

excitations, their steady state is given by

po = vac)y {vacly,, (2.29)

i.e., the vacuum density matrix. Therefore, the coupling of Rydberg (dark) polaritons and bright
polaritons via the Hamiltonian constitutes an effective loss channel for the Rydberg polaritons.
Making the assumption that 1/|T¢| defines the fastest time scale of the system, we can eliminate the
bright polariton excitations from the dynamics, giving rise to a description of the Rydberg polariton

U as an effective field theory of an open system.

2.2.2 Master equation

Let us now consider the coupling between bright- and dark-state polaritons and also take the
interactions into account to derive an field theory for the Rydberg polariton 0. Instead of calculating
the corrections by performing perturbation theory in the momentum space, see Eq. (1.14), and adding
the interaction term in lowest non-vanishing order cos 6, as lead to Eq. (2.20), we here use a systematic
approach. Specifically, we employ the system-plus-reservoir approach, introduced in Section[1.3] to

derive this field theory and the losses and corrections arising from the coupling to bright polaritons.
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Chapter 2 Few-body quantum physics of Rydberg polaritons

This approach is a standard procedure to describe open quantum systems, see e.g. [9, 11} [70H72]. We
treat the bright polaritons d as a reservoir for the dark polaritons, which will subsequently be traced
out leading to a theory solely for . We note that this approach allows us to treat both kinds of
corrections to the free polariton evolution, arising from non-adiabatic as well as interaction-induced
couplings between bright polaritons and Rydberg polaritons in an equal fashion.

We calculate the correlation functions of reservoir operators & with respect to their steady state pg
from the solution (2.28). The correlation function of lowest non-vanishing order in bright polariton

operators is the anti-normal ordered first-order correlation function, given by
(B(z, )T (y,t — 7)) me 5 (x—y), T>0, (2.30)

where the expectation value (-) = tr{pg-}s is defined as partial trace with respect to bright po-
lariton degrees of freedom. The first-order correlation function (2.30) is d-correlated in space and
exponentially decaying in time. Apart from this correlation function, only the anti-normal ordered

four-operator correlation function

<(i—)(x7 t)i)(xla t)(ﬁT(y’ t— T)(ADT(ylv t— T))
A~ e e [5(1‘ —y —csin?07)6(2’ — ' — csin? 07)

+6(z' —y — esin? 07)0(x — i — csin? 97‘)] , 7>0 (2.31)

is non-vanishing while all other correlation functions of reservoir operators ® are zero for the vacuum
steady state pg.

As in Section [I.3|we can now derive an effective equation of motion for the Rydberg polaritons by
tracing out the bright-state degrees of freedom. To this end, we start from the von Neumann equation
of the full density matrix, d,x = —i[')':[, x| and transform to an interaction picture with respect to
Hy + Ho. The Rydberg polariton degrees of freedom are described by a reduced density matrix
that can be obtained from the full density matrix by tracing out the bright-state degrees of freedom,
p = tro(x). The effective equation of motion for this operator is in Born approximation given by the
integro-differential equation

o)== [ ar tro {{Flual). Bran(r).ptr) 0 pull}. (232)

Starting from this equation we use the correlation functions and of reservoir operators to
derive an effective differential equation for the reduced system density matrix. This we will do in
the following. In particular, since the reservoir correlation functions are exponentially fast decaying,
the major contribution to the integrand comes from ¢ ~ 0 and thus we can perform the Markov

approximation and replace p(7) — p(t). For convenience let us introduce the nonlinear system
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2.3 Discussion of the master equation

operator (i.e., Rydberg polariton operator)

L(z) = —sin® 0 cos 0 [/ds V(z— s)\iﬁ(s)\ij(s) —I—i& 7

U(z), 2.33
sin® 6 (2) (2:33)
which allows us to write the Hamiltonian #yg for the coupling between system and reservoir

operators, i.e., between Rydberg and bright polaritons, in the interaction picture in the form

Tlos(t) = / dz (1(2)L() + L1 (2)d(2) )
+ // dzd2' V(z — 2')sin® @ cos® 0 (@T(z, ST, )W (2, )W (2, t) + H.a.) +... (2.39)

We omitted terms that are cubic in bright polaritons as they do not modify the effective dynamics of
dark-state polaritons since the corresponding correlations functions are not of the form or
and thus vanishing. By inserting this coupling Hamiltonian into the master equation, Eq. (2.32),
performing the Markov approximation, i.e., replacing p(7) — p(t) and transforming back to a frame

co-moving with the group velocity we finally arrive at the master equation in Lindblad form,

d sint 0

prid iQA2ff /dz {p, IA/T(Z)[A/(Z)} +i 5 // dzd2' V(2 —2) {p, \i’T(z)‘iJT(z’)\iJ(z')\il(z)}

+ iQAeff sin® 6 cos? 9/// dzdsds' V(z — sV (z — s) [p, @T(z)\iﬁ(s)@T(s)\@(s')@(s’)ﬁl(z)}

v sin* @ cos* 0

g [ ERUARLE) - (o L L + T

Q%
X / / dzde' V2(z — ) [2\@(z’)\i/(z)p\if*(z)®<z’) — I xiﬂ(zW(z’)@(z’)\iu(z)}} . (235)

where {-,-} denotes the anti-commutator. The master equation governs the effective time
evolution of dark-state polaritons with non-adiabatic and interaction induced corrections arising
from coupling to the bright-state polariton vacuum. It consists of unitary terms proportional to the
single-photon detuning A, an interaction term, and dissipative terms proportional to the decay rate
~. In the following we will discuss the unitary and dissipative terms in detail to get some insight into

the different processes contributing to the dynamics and analyze their interplay.

2.3 Discussion of the master equation

The master equation, Eq. (2.35) derived in the previous section denotes an effective field theory for
the Rydberg polariton field 0 taking into account interactions between Rydberg polaritons as well as

corrections arising from coupling the Rydberg polaritons to a vacuum of bright polaritons. These
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Chapter 2 Few-body quantum physics of Rydberg polaritons

corrections can be divided into two types, unitary terms given by an effective Hamiltonian and

dissipative terms given by a Lindbladian, which we want to analyze in the following. The terms

in the master equation arising from coupling to bright polaritons are generated by the operator L

we introduced in Eq. (2.33). To keep track of the individual contributions to the dynamics we split

L =L, + Ly with

Lyi(z) = —sin® Gcosﬁ/ds Vi(z—s) 0l (s)W(s)P(2),
(2.36)

Lo(z) = —isin @ cos 0052@(2).

L corresponds to corrections to the time evolution due to a coupling of Rydberg and bright polaritons

due to interaction, while Ly is due to non-adiabatic coupling.

Wave-function approach. The operator ﬁl(z) and thus the nonlinear terms in the master equa-
tion cannot be treated in mean-field approximation by replacing W1 (s)¥(s) with its expectation value
(UT(s)W(s)), since the integral over this single-particle density matrix multiplied with the potential
diverges for z = s. To analyze the nonlinear terms and get insight into the few-body physics of
Rydberg polaritons, we consider the time evolution of the simplest possible state showing nonlinear
effects, a wave function consisting of two Rydberg polariton excitations. This two-excitation wave

function is defined by
Wa(0) = [[ dzd (a2 0F () ()0), (237)

with the normalized two-excitation amplitude 15 (z, 2/, t) = (0] ¥ (2)W(2')|Ty(t)).

2.3.1 Unitary dynamics

The unitary dynamics of the master equation (2.35)) is generated by an effective Hamiltonian

sin* @
2

- A
Heff = 59
O

dz LT(2)L(2)+ // dzdz' V(2 —2" )01 (2) 0T (20 (2") T (2) + Hapody, (2.38)
that consists of a term generated by LT(z)L(z) and an interaction term, where 7:[3.body denotes
the three-body interaction. Expanding the product L'(z)L(z) yields three different terms, namely
a kinetic energy of the massive Rydberg polaritons, a drift term and corrections to the two-body
interaction. In the following we will consider these terms separately and discuss them in greater
detail.
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2.3 Discussion of the master equation

Kinetic energy

The first term we consider is the kinetic energy contribution, given by the Hamiltonian
A, - .
= sin? @ cos? 0 [ dz[0.07(2)][0,¥(2)]. (2.39)
eff

The existence of this term means that Rydberg polaritons are massive quasi-particles with an effective
mass that can be read off as
1 c2Asin? § cos? 6

A
=9 = 20, Lps— sin’ 6. 2.40
m szf Vg ab57 sin ( )

This mass is equal to the real part of the mass derived in [[49]]. This comes about, since the losses are
treated separately in the master equation (2.35). In the limit of large single-photon detuning |A] >
the expressions coincide. For a typical slow light setup the factor sin? § ~ 1 and we find that the
polariton mass becomes comparable to the electron rest massﬂ By adjusting the group velocity v, or
the ratio of detuning and decay rate, the magnitude of the mass can be tuned. Moreover, the sign
of the effective mass can be changed by changing the sign of the single-photon detuning A and
thus, depending on the sign of the interaction the Rydberg polaritons can be made attractively or

repulsively interacting.

Drift term

The second contribution to the effective Hamiltonian is given by the product of [Aﬂi and L and vice
versa, i.e., by the terms linear in the interaction potential and in the derivative. This Hamiltonian is

given by

Hase =~y 2 Ginto / / dzdsV(z — ) {1 (()P0(:)] -He ). @an

This Hamiltonian describes a drift term, i.e., the propagation of polaritons. As our frame of reference
is co-moving with the particles with group velocity v this can be translated to a correction of the
group velocity. This correction depends on the interaction, i.e., affects two polariton excitations
depending on their relative distance r. For a two-excitation wave function 9 this effect can be

calculated leading to the equation of motion

Dutn(B,r. 1) = 8 sin 0V (1)l R, 1, 1), (2.42)
eff

!Using for instance realistic values of A/y = 5 and v, = 500m/s and reintroducing h, we find a value of m =
1 x 10* s/m? x h, which is comparable to the electron rest mass [22].
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Chapter 2 Few-body quantum physics of Rydberg polaritons

where we introduced the coordinates R = (x + y)/2 and r = x — y for center-of-mass and relative
distance, respectively. Eq. shows that for finite A, i.e., under off-resonant driving conditions the
center-of-mass propagation velocity of two polaritons gets strongly modified at small distances in the
presence of interactions. This can be understood by a simple argument as follows. The interaction
shifts the energy of the upper level |r) of the three-level atoms, i.e., induces a large two-photon
detuning. If additionally a large single-photon detuning is present this leads to a complete decoupling
of an incident probe field £ from the atoms, i.e., the medium becomes transparent and thus the probe

field propagates with a large velocity up to the vacuum speed of light.

Interaction

The final contribution to the effective Hamiltonian is the interaction between Rydberg polaritons

given by a combination of two- and three-body interaction,
. 1 . . . .
Hin = / / dzd2 V(= — )0 ()0 (=) ()b (2), (2.43)

where the effective two-body interaction potential Vg is given by the bare van der Waals interaction

potential and corrections that are of second order in cos 6,

Ve(r) ~ sin® @ [V(r) + % cos® OV3(r)| . (2.44)

€

For large distances r = |z — 2’| between polaritons the bare van der Waals potential dominates,
while for small distances r the correction term dominates, as it diverges like r—12. We observe that
the sign of the correction term can be tuned independently from the bare interaction by changing the
sign of the single photon detuning A. This behavior is illustrated in Figure where we show linear
and double logarithmic plots of the potential for negative as well as positive single photon
detuning A. We can identify a length scale

ro = (|CsA] cos?(0) /%)Y = cos?/3(0) Ry, (2.45)

where the second order correction becomes irrelevant for r > ry and dominating for r < ro,
respectively. Here Rp denotes the (off-)resonant blockade radius, defined in Eq. (2.21). In the case of
an repulsive interaction potential V'(r) the interaction leads to a blockade, i.e., a vanishing two-photon
amplitude for distances smaller . Hence, the correction term is negligible in the limit of slow
light, where 7y < Rp. However, in the case of an attractive potential V' (r) Rydberg polaritons the
correction term becomes important. Since the sign of the second order correction is only determined
by the sign of the single-photon detuning A, as is the sign of the effective mass (2.40), the interaction

between Rydberg polaritons is always a repulsive interaction at small distances, leading to a blockade

46



2.3 Discussion of the master equation

17500 T “\ T T 11T T T T TTTTT T N ——
— V() 10" — V(r) H
1.000 I === Var(r),A <0 || -== Var(r),A <0
’ Ver(r), A >0 o Ver(r), A > 0
&) O 107 . d
= 500 . = :
N =
10! [ N .
0 - - - - ' ’.,\
To \~.~
_500 | | 10—5 Lol I ; Ll I \~’\~.IHH
0 04 06 08 1 1072 107! 10° 10
T/RB T/RB

(a) Linear plot. (b) Double logarithmic plot.

Figure 2.7: Illustration of the effective two-body interaction potential Veg(r) defined in Eq. (2.44). (a)
Potential with linear axis scaling and (b) the absolute value of the potential in double-
logarithmic axis scaling. The red dotted and yellow dash-dotted lines show the effective
potential for negative and positive detuning, respectively and positive van der Waals
interaction strength Cg.

of polaritons.

2.3.2 Dissipative dynamics

The dissipative dynamics is described by the remaining terms in Eq. (2.35). These terms are given
in Lindblad form [9]], see also Section In particular the dissipative terms are proportional to
the decay rate 7 of the intermediate atomic state which is the only decay process in the system.
As the free Rydberg polaritons propagate lossless, cf. (1.14), all dissipative channels in the master
equation originate from coupling to bright polaritons, which are subject to decay. This coupling is
either induced by interaction or non-adiabatic coupling and get generated by the operators L and the
higher order interaction processes. Therefore, the dissipative terms in the master equation have a
structure similar to the unitary, which we discussed in the previous section, but generate dissipative

time evolution. We proceed as with the unitary terms and consider the different processes separately.

Imaginary mass term

The term generated by the operator Ly is in Lindblad-form given by

Lp= %62 sin?@cos? 6 [ dz [28z\il(z)paz\iﬁ(z) - {p, 8Z@T(z)8zli/(z)}} :
Qeff

(2.46)

This term can be considered as an imaginary mass term. This can be seen evaluating the adjoint

equation for some operator. For instance, when only considering the dynamics generated by Eq. (2.46),
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Chapter 2 Few-body quantum physics of Rydberg polaritons

we find for the expectation value (U (2)¥(z)) the equation of motion

d - - A -
T (U ()W () = vgLaps sin 0 (92 + 0urr) (W1 (2)9()), (2.47)
where 0, = aa—;g This result can also be achieved by transforming the effective polariton mass

to a complex quantity as

m~t — (1 + i%) m~L (2.48)

Note that including the imaginary part in the Hamiltonian makes it a non-hermitian Hamiltonian
that has to be applied using a generalized von Neumann equation. This complex mass coincides with

the complex mass derived in [49].

Nonlinear decay term

The operator L; and the last term in the master equation (2.46) lead to non-linear losses. While the
latter simply describes a two-excitation decay which leads to a loss of two excitations, the former term

can be interpreted as a non-linear single-excitation decay. This non-linear loss term gets generated

by the Lindblad operator L = /T'(z)¥(z), where I denotes an operator valued loss rate given by

. 7 cos? 0sin® @ , N , 2
I'(z) = — e dz'V(z = )W (2T ()| . (2.49)

Note that it is not possible to simplify this loss mechanism by replacing I with its expectation value,
i.e., performing a mean field approximation, since V' (r) diverges for r — 0. Even if a cutoff would be
introduced for the interaction potential the mean field expression L = (I'(z)) ¥(z) would describe a

strong single-excitation loss process which is not physical.

2.3.3 Trajectory approach

In general the state of an open system is a mixed state, i.e., has to be described by a density matrix p.

To analyze the time evolution of an observable O, one has to evaluate
(0) = tr{pd,0} = tr{08,p}. (2.50)

Note that the middle expression of is in the Heisenberg picture of quantum mechanics while
the rightmost expression is to be taken in the Schriodiger picture. The equality can easily be seen
utilizing the invariance of the trace under cyclic permutations. The evaluation of can be done
using an adjoint equation, i.e., writing equations of motion for the expectation values leading to a

coupled set of equations. For instance, this can be done for the single- and two-excitation density
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2.4 Wave-function simulations of the Maxwell-Bloch equations

matrices, p1(z,y) = (U1(2)U(y)) and pa(z,y,y,z) = (Ui (2) U (y)T(y)T(z)), respectively, see
Appendix |[C] The master equation generates a set of coupled equations, as the decay leads to a
coupling of two-photon observables to single-photon observables and so forth, leading to a hierarchy
of equations, terminating at the total number of excitations that are considered. However, the specific
form of L in the master equation leads to another hierarchy of equations, coupled by derivatives, that
are difficult to solve.

Thus we choose a different route to investigate the master equation dynamics. As introduced in
Section[1.3.3] the time evolution can be calculated using trajectories, i.e., considering wave functions
evolving under a non-Hermitian Hamiltonian Hegs with random projections due to the jump operators,
for instance L, and performing a stochastic average over these trajectories. Here these jumps
correspond to projections of the two-polariton wave function onto the single-photon wave function,
i.e., the loss of a polariton. In the off-resonant regime, where |A| > ~, the time-scales on which these
jumps occur are large compared to the time-scales governing the unitary time evolution. Consequently,
we can find an approximate solution by neglecting the projections and considering only the non-
Hermitian Hamiltonian. This allows us to consider only the wave function 2 of two polaritons. We

recall the definition

Wy (t)) = // dzdz (2, 2/, )01 (2)TT(2) |0), (2.51)

with the two-excitation amplitude (2, 2/, t) = (0¥ (2) T ()| Wa(t)).
Note that the norm of |¢)2| is not conserved when evolving under a non-Hermitian Hamiltonian,
but gives the probability of remaining in the two-excitation subspace, i.e., the probability that no

projection occurred.

2.4 Wave-function simulations of the Maxwell-Bloch equations

In this section we want to employ numerical methods to calculate the propagation of two photons in
a gas of Rydberg atoms [|842]. The idea is to simulate the full Maxwell-Bloch equations to understand
the propagation of photons inside the medium, especially under off-resonant driving conditions.
The Maxwell-Bloch equations were the starting point for the derivation of the effective field theory
of Rydberg polaritons which lead to the master equation in the previous section. Hence, we use
the results in this section as a benchmark to validate the master equation. The simulation of the
full Maxwell-Bloch equations is numerically challenging even with the restriction to one spatial
dimension as one has to deal with the time evolution of strongly interacting particles propagating in
continuous space and which are moreover subject to losses. Thus we have to restrict the simulations
of the full equations to two particles and use approximations and simplifications of the problem to
achieve further reduction of the complexity.

In the following we start with a brief introduction of the numerical methods. Then we simulate
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Chapter 2 Few-body quantum physics of Rydberg polaritons

how a pair of particles propagates through a boundary into a medium with Rydberg interactions and
back into free space. Next we analyze the propagation inside the medium by making use of periodic
boundary conditions and reducing the dimensionality and thus the computational complexity by

considering the relative dynamics only.

2.4.1 Methods and observables

The full time-evolution of our model is described by the Maxwell-Bloch equations for the
operators E , Oge, Ogr and additional interaction processes between the coherences g,. As these
equations are not exactly solvable, one has to apply approximations and simplifications to get an
solution and use numerical methods. We use wave-function methods to map the equations of motion
of the operators to equations for complex valued functions describing the amplitudes and phases of
the different wave-function components. Restricting ourselves to a certain number of excitations
leads to a closed set of equations that can be integrated numerically. In general the state vector of a
few-photon pulse with contributions from electrical field £ optical 64 and atomic G, coherences is

given by a superposition,

B(E)) = [0) + ) + g2} + ... (2.52)
—10)+ [ a1 3010040 0

+ // dz; dzo Z@Dézg(zl, ZQ,t)O(];(Zl)OL(ZQ) ’0) + ..., (2.53)
a,

of vacuum, one-, two-, and higher number states. The sums over ¢, 5 run over all possible n-particle
wave functions, i.e., the operators are O, € {&, Gge, Ggr } corresponding to excitations in the electrical

field £ , optical polarization &, and spin coherence G,,. The amplitudes
9 nt A
v = (w(®)|OLOkI0) | (2.54)

give the probability of finding 1, 2, ...excitations O, or 05 at positions z; or 21, 22, respectively,
and similar for higher number of particles. For simplicity we absorb the normalization of the wave
function into the components ¢)(1), 1)(2), . (") In the following we consider only states of fixed
excitation numbers. In particular we are interested in two-excitation states, as the vacuum state is
trivial and the single-excitation state is not interesting due to the lack of interaction effects. Moreover,

under off-resonant driving conditions dissipation is negligible, and thus the number of particles
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2.4 Wave-function simulations of the Maxwell-Bloch equations

should be almost conserved.

To solve the equations we introduce a discretization of the space coordinates,

Pa(z1, 22) = Pa(z1,5, 22,5) (2.55)

and use a combination of different methods to efficiently calculate the time propagation for a finite
time step dt. We use a finite difference scheme to calculate the partial derivatives. To simulate the
propagation of a two-photon pulse from free space into the medium, we use adaptive boundary

conditions, using a nonuniform spatial grid to account for the EIT pulse compression [1].

2.4.2 Simulation of full Maxwell-Bloch equations

We start with the simulation of the full Maxwell-Bloch equations of two interacting photons. For a
wave function with exactly two excitations they assume a Schrédinger-like form that can be written

for the vector ¥, with components w((ng

.0 .
15‘1’2('21’ z9,t) = H(z1, 22) W2 (21, 22, 1), (2.56)

where the Hamiltonian 7 is given by
7:[(21, 22) = 7:[0(21) & 7:[0(2’2) + V(Zl — 22)1553. (2.57)

Here, Ho(z) is the real space representation of the matrix in Eq. (1.13) and Pss denotes the projector
onto the component ((t)|Ggr0gr|0) as the interaction only affects this component of two Rydberg

excitations. To large energies we introduce a cutoff a into the van der Waals interaction potential

sin? 0Cg

To verify that the cutoff has no influence onto the simulation results we performed benchmark

simulations showing that the results are independent of the cutoff.

Propagation through boundary

To capture the physics when the photons propagate from free space, where they propagate with
vacuum speed of light, into the medium, where they are much slower with the velocity v, < ¢
and the pulse experiences EIT compression as well as interaction due to the coupling to Rydberg
atoms, we split the space into two regions inside the medium and in free space. This is illustrated
in Figure Using this method to calculate the time evolution for two-photons according to the

Maxwell-Bloch equations we find that the pulse gets split into two parts, avoiding a region of small
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Figure 2.8: [llustration of the adaptive grid. As the pulse propagates in free space with vacuum speed
of light ¢ and in the medium under conditions of EIT with the group velocity v, < c and
moreover gets spatially compressed, we split the space into two parts and discretize free
space and the medium separately with different step size. (a) illustrates this in one spatial
dimension and (b) for two spatial dimensions.

relative distance. In Figure [2.9 we show snapshots of the simulation for off-resonant and resonant
EIT driving conditions. For both cases the figures show the formation of an avoided volume for
small distances, which is the well-known effect of Rydberg photon blockade [8} 42] and allows us
to compare resonant and off-resonant propagation. While in the resonant case the interaction leads
to decay of polaritonic excitation and loss of amplitude, in the resonant case a much slower decay
seems to be present and a repulsion of the two photons can be observed.

On the basis of the master equation we showed in the previous section that the dissipative terms
play no role in the dynamics when the single photon detuning is large, but two photons inside a
blockade distance propagate at the vacuum speed of light through the medium and thus escape
from the wave packet. Moreover, polaritons interact repulsively inside which prevents photons from

getting inside the blockade region.

Periodic boundary conditions

In the previous section we used adaptive boundary conditions to simulate the transition of a two-
photon pulse from free space to a gas of Rydberg atoms. As this calculation is numerically challenging,
we want to find simplifications that allow us to capture the important physics. As a first step we
assume an atomic medium with periodic boundary conditions. In this case we can use a uniform grid
for spatial discretization. This allows us to calculate the derivative propagator in the Fourier space,
where it is diagonal. Using a Suzuki-Trotter decomposition and utilizing a Fast-Fourier-Transform
implementation [63]] allows to calculate the time evolution much faster and furthermore allows us to
use a higher precision or simulate longer evolution times. A drawback of this method is that we have
to make an ansatz for the initial state that is not an eigenstate and thus essentially have to perform a

quench initially.
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Figure 2.9: Electrical field component of Rydberg polariton propagating through a boundary at z = 0
into a gas of Rydberg atoms. Simulation of two-excitation wave equation using the full
Maxwell Bloch equations, Egs. and interactions. (a) and (b) show snapshots of |EE ]2
the propagation of a two-photon pulse under off-resonant EIT conditions and (c) the
resonant case. The propagation time ¢ is given in units of the time 7' = L /v,, where t = 0
denotes the time, when the center of the pulse is at z; = 29 = 0 and L denotes the length
of the medium. The parameters of the simulation are ¢ = 10y, 2 = 0.57. The dashed
lines indicate the blockade distance |21 — 22| = Rp. The color scale of the figure is set to
the maximal value of |£€|? in (a).
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Figure 2.10: Electrical field component of Rydberg polariton propagating in a gas of Rydberg atoms.
Simulation of two-excitation wave equation equation under off-resonant EIT-conditions
using the full Maxwell-Bloch equations, Eqgs. (L.13). (a) shows the result of the previous
figure after propagation through boundary as comparison for (b) where we quench a
non-interacting Rydberg polariton pulse inside the medium at ¢ = 0 and calculate the
propagation inside the medium with periodic boundary conditions. This allows us to
extend the time evolution to larger times as shown in (c). The propagation time ¢ is given
in units of the time 7" = L/v,, where t = 0 denotes the time, when the center of the
pulse is at z; = 22 = 0 and L denotes the length of the medium. The parameters of the
simulation are A = 4, g = 107, Q = 0.5. The dashed lines indicate the blockade
distance |2; — 22| = Rp. The color scale of the figure is set to the maximal value of |£€|?
in (a).

In Figure[2.10| we compare the result of the adaptive boundary calculation (a) with a simulation of a
two-polariton pulse inside the medium with periodic boundary conditions (b). For these simulations
we choose initially a non-interacting two-polariton wave packet with a Gaussian shape and perform
an interaction quench. As can be seen by comparing the two methods, they yield a very good
agreement. The main difference is that the “full” simulation shows an increasing repulsion with
increasing center-of-mass coordinate R = (z1 + 22)/2, i.e., along the anti-diagonal axis. This is due
to the fact that the parts with larger R are for a longer time inside the medium. In contrast to this, for
the simulation inside the medium with periodic boundary conditions all parts are propagating in the

medium for the same amount of time.

The periodic boundary conditions allow us to simulate larger time scales which is shown in
Figure c), where we show a snapshot of the electrical field component after twice as long

propagation time.
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Figure 2.11: Simulation of Rydberg polariton propagation in a gas of Rydberg atoms using full Maxwell-
Bloch equations. (a) Time evolution of the two-photon wave function ¢s(r, K = 0,t)
in the relative coordinate 7 = 2; — 23 up to a time of t = 47, where ' = L/v,.
Shown is the component |£E(r, t)|? in arbitrary units. (b) Cross section of two-excitation
wave equation. Simulation of the full Maxwell-Bloch equations. The solid lines show
|EE(r, t)|? for fixed times t/T = 0.5, 1,2, 4 calculated using only relative time evolution,
i.e., horizontal cross-sections of (a). The dashed lines show for times /7 = 0.5, 1 cross-
sections along the line x + y = 0 of the simulation in both coordinates z7, 22 using
periodic boundary conditions, which are cross-sections of the simulations shown in
Figure[2.10[b)-(c). The plots are normalized to the maximal value at ¢t = 0. Parameters of
the simulations are as in Figure[2.10]

2.4.3 Relative dynamics

Due to its symmetry we expect the interaction between two excitation solely to affect the dynamics
in the relative coordinate r = z; — 25 of the wave packet. This matches the behavior seen in the
simulation in the previous section which gives subsequently rise to a further possibility to reduce
the complexity of the numerical simulation. Namely, we transform to relative and center-of-mass
coordinates r = z; — zp and R = %(zl + z9), respectively. We perform a Fourier transform from R
to K and assume that only K = 0 has a relevant contribution to the dynamics. Then the problem
is reduced to a one-dimensional equation of motion of the wave function ¢9(r, K = 0, ), which is
a computationally much simpler problem. In Figure a) we show the dynamics in the relative
coordinate only and in (b) we compare these results to cross sections of the full two-dimensional

simulations in coordinates z7, z5.
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2.5 Effective Hamiltonian

In the case of large single-photon detuning |A| > ~ as simulated in the previous section the
fundamental physics is governed by an interplay of repulsive interaction and a kinetic energy with an
almost real mass, i.e., we expect a unitary time evolution. The simulation of two-photon wave packets
using Maxwell-Bloch equations confirms this expectation mainly, although some small remaining
decay can be observed.

In this case the decay processes in the master equation can be neglected, leading to a unitary time
evolution governed by an effective Hamiltonian for the Rydberg polaritons. In leading order in cos(f)

the Hamiltonian simplifies to
) il az2 T 1 ! Nt \TANVAS VAT
H=—[dzV¥ (2)2—\11(2) +3 dzdz Veg(z — 2")UT(2)UT ("W (2")¥(2), (2.59)
m

in a frame co-moving with the group velocity v,.

We can calculate eigenstates of this Hamiltonian by using again a discretization of the space
coordinates and numerical exact diagonalization methods. We take a box of length L corresponding
to the medium length used in the propagation simulations and impose open boundary conditions. We
find the spectrum and lowest energy eigenstate shown in Figure where we plotted a symmetric
superposition |gs) = (|¢o) + i|¢1))/v/2 of the two degenerate ground states |1y) and |t/1). In (c)
we compare a cross section of this state to the ground state calculated for the relative coordinate only,
i.e., for numerically only one dimension, where we find a disagreement between the spatial shapes of
these two states.

However, we find that the eigenstate calculated for relative coordinate restricted to a box of half
the size agrees very well with a cross-section of the time evolved state from Figure [2.10|c).

From this result we conclude that the wave function of two Rydberg polaritons evolves into state

close to the ground state of the effective Hamiltonian.

2.6 Conclusion

In this chapter we investigated the propagation of photons under conditions of electromagnetically
induced transparency in a gas of Rydberg atoms. We showed that the dimensionality of the model
can be reduced from three to one if the transverse beam diameter of the probe field is smaller than the
Rydberg blockade radius. We showed that under paraxial propagation conditions and for sufficiently
small densities of excitations the system can be described by an effective field theory of a single
species of quasiparticles called Rydberg polaritons. This theory is in general an open system that can
be described by a master equation. We employed numerical wave-function simulations to find the

state of two Rydberg polaritons inside the medium and to compare the time evolution described by
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tion to calculate the eigenstate of the Hamiltonian H for two Rydberg polaritons on a
discretized spatial grid with open boundary conditions. (a) shows the numerical spectrum
we find for A = —4~, gy/n = 107, Q = 0.5y and a calculation in two dimensions as
shown in (b) where we plot a symmetric superposition of the two degenerate ground

states. (c) shows a cross section of (b) along the axis z1 + 23 = 0 (solid blue line) compared

to a ground state calculated in one dimension along the relative coordinate r = 29 — 21
(dashed red line) using the same medium length as the propagation calculations above.
Both curves are normalized to 1. The dash-dotted violet line shows the cross section of
Figure of a polariton pulse propagating inside the medium for a time ¢t = L /v,
after an initial interaction quench. This cross section is compared to a rescaled eigenstate
calculated inside a one-dimensional box of length L /2 (dotted yellow line).
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Chapter 2 Few-body quantum physics of Rydberg polaritons

the effective field theory with a simulation of the full paraxial Maxwell-Bloch equations. We showed
that under off-resonant driving conditions and for sufficiently large inter-particle separation the
Rydberg polaritons behave like massive Schrodinger particles with repulsive interactions. For shorter
distance there is a coupling of Rydberg polaritons to decaying and fast propagating bright polaritons.
Correspondingly the dissipative time evolution reduces to a unitary time evolution described by
an effective Hamiltonian. We used numerical exact diagonalization to calculate the two-excitation
ground-state of this effective Hamiltonian and found very good agreement with the two-excitation
state from the wave-function simulation. This result allows to analyze many-body physics of Rydberg
polaritons described by the effective Hamiltonian. This will be the subject of the following chapter.
Under off-resonant driving conditions with finite single-photon detuning also bound two-particle
states exist. Since, these states cannot be excited for large blockade distances as considered in the

current chapter but will be considered in Chapter
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Chapter 3

Many-body physics of Rydberg polaritons

Photons propagating in a gas of Rydberg atoms under conditions of electromagnetically induced
transparency form massive quasi-particles, termed Rydberg polaritons, interacting with a van der
Waals-type interaction potential. Under certain conditions the dimensionality of this system effectively
reduces to one. In the case of off-resonant driving conditions, i.e., with a single-photon detuning that
is large compared to the atomic decay rate, the Rydberg polaritons behave like massive Schrodinger
particles with a unitary time evolution described by an effective Hamiltonian. The mass and the
interaction strength are independently tunable parameters. In the case of repulsive interactions the
polaritons repel each other leading to an avoided volume. In the previous chapter we showed that
a pair of photons propagating from free space into a gas of Rydberg atoms forms a state that has a
large overlap with a two-excitation ground state of the effective Hamiltonian.

In the present chapter we want to generalize these results to many particles and larger length
scales. Here the properties and results of our model suggest that the setup can be used to convert
an initial wave-packet of photons into a train of single photons. As the time evolution inside the
medium is a unitary process with repulsive interactions, the photonic state may build long-range
correlations, leading to the formation of a quasi-crystalline state, a so-called Wigner crystal. This
state has been predicted for electrons a long time ago [73]]. Such a state has potential applications in
all-optical (quantum) communication and information. For instance, a regular train of photons can
provide high bit rates for quantum repeater protocols and multiplexing of photons. Note that this is
opposed to the dissipative case where an initial wave-packet evolves into a superposition of photon
states with different particle numbers [42].

In the following, we want to address these questions and calculate the ground state in the many-
particle case [74],[Otterb2013] and analyze its properties and correlation length in terms of a Luttinger
liquid theory. We investigate the possibilities to reach a regime of strongly interacting Rydberg
polaritons. This regime turns out to be inaccessible under stationary driving conditions. However,
this can be overcome by changing the EIT driving conditions in time, i.e., performing a storage of
polaritons into a stationary spin wave [J3}(75,76]. Using a time-dependent Luttinger liquid theory [77,

78] allows us to calculate the correlation functions during this time-dependent protocol.
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Chapter 3 Many-body physics of Rydberg polaritons

The results presented in the following are summarized in references [Otterb2013]], which was a col-
laboration of Johannes Otterbach, Razmik Unanyan, Michael Fleischhauer and myself and [Moos2015],
which was a collaboration of Razmik Unanyan, Michael Fleischhauer and myself with contributions
by Michael Honing. The density-matrix renormalization-group simulations used in the chapter and

as well as the publications were provided by Dominik Muth, see also [[74].

3.1 Wigner crystal of Rydberg polaritons

In the case of large single-photon detuning the physics of Rydberg polaritons is described by the
Hamiltonian (2.59) in a co-moving frame,

2 1 R . . R
2‘9;1\1/@) s / dz dz' Vag(z — 2/ )0 ()8 ()0 () (2),

H= —/dz\iﬁ(z)

with a real mass m and a repulsive interaction potential Vg. In the following we investigate many

body properties of this Hamiltonian.

3.1.1 Many-body ground state

We are interested in the many body ground state of the Hamiltonian (2.59). For sufficiently small
group velocity and small excitation densities, the effective potential reduces to a van der Waals

potential, which we modify by introducing a cutoff

sin? 0C; sin* 0Cg
6 6 6’
T a’+r

Vesr(r) =~ (3.1)

i.e., a screening of the short distance interaction at the length a to account for a potential regularization
at short distances [42]. This screening is physically always present, e.g., in our model due to the
finite distances of Rydberg atoms in a dilute gas. However, for sufficiently strong interactions the
results are independent of the cutoff, cf. Figure and thus we neglect a in the remainder of this
chapter. Then the Hamiltonian can be described by a single, dimensionless parameter ©, given by
the interaction strength at average distance 1/pg between excitations compared to the Fermi energy

generalized to the bosonic system, [|74].
1
O = —pgmsin® 0C. (3.2)
27

Ground states of bosonic systems with polynomially decaying interactions ~ r— can numerically be
calculated. In [[74] the author employed the density matrix renormalization group (DMRG) method [79]
to calculate ground states of van der Waals-type interacting bosons for periodic as well as open

boundary conditions. In Figure 3.1 we show first-order and normalized density-density correlation
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(a) First order correlation function. (b) Second order correlation function.

Figure 3.1: First and second order correlation function calculated by DMRG. Shown are results taken
from [74],[[Otterb2013] for 10 particles on 100 lattice sites with periodic boundary con-
ditions for different interaction strengths. (a) First order correlation function and (b)
normalized second order correlation function. The main figures show double logarithmic
plots of the correlation function and the deviation of the correlation function from one,
respectively. The insets show linear plots of the correlation functions. See also Figure

functions in double-logarithmic and linear representation taken from [Otterb2013]. The correlation
functions were calculated using DMRG on a discretized lattice with 10 particles on 100 sites and
periodic boundary conditions. The Figure contains results for three different interaction strengths
O, corresponding to a parameter K as shown in Figure We observe that for decreasing K the
density-density correlations (p(z)p(0)) develop pronounced peaks at distances that are multiples of
the inverse density pg ! indicating the formation of a charge density wave. Note that the correlation
function around = = 0 is more suppressed than for free fermions, which is the strongest possible for

point-like interactions [80,81].

3.1.2 Luttinger liquid approach

To explain the structure of the correlation functions in Figure 3.1 we use Luttinger liquid theory [[10],
see also Section This approach allows for a semi-analytical treatment of one-dimensional in-
teracting models in the limit of low energy and can also be applied to bosons with polynomially
decaying interactions [82]]. In particular, Luttinger liquid theory provides means to generalize the
DMRG results and extract a correlation length.

To this end we assume a fixed excitation density pg and follow the standard Luttinger liquid

approach to construct an effective low-energy Hamiltonian,

Hyp = % /dz vs KK [Vé(z)r + % [ng(z)r (3.3)
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Figure 3.2: DMRG results by [74], for 10 particles on 100 lattice sites with periodic
boundary conditions. Luttinger K parameter as function of © from extracted from
DMRG calculations for different short-distance cutoffs a of the interaction potential, the
unscreened interaction potential (¢ = 0) and the formula (3.8), [83], for comparison.

Here, ¢ and IT = %Vé are canonically conjugate fields with [¢(z), TI(y)] = i6(x — ). The Luttinger
liquid is determined by two constants, the speed of sound vg and the dimensionless Luttinger parameter
K. The latter constant universally governs the asymptotic behavior of the first order and density-
density correlation functions, which are in leading order power laws with exponents —1/2K and
—2K, respectively. Thus, for K > 1 the dominant long-range correlations are superfluid order,
while for K < 1 a charge-density wave dominates, where K = 1/2 marks the crossover point. This
expected behavior is matched by the results in the Figures as can be directly observed from the

logarithmic representations.

We can extract the K -parameter from the DMRG simulation. To this end we note that the ratio

K /v = mp?y, (3.4)

1

can be determined from the compressibility x ™ = pgg—’; [10]. Furthermore, for Galilean invariant

systems the relation
P

v K = — (3.5)
m

holds [35]. Combining both relations allows to determine the K parameter, as a function of ©
from (3.2), the single free parameter of our microscopic model. In Figure [3.2] we show the resulting
relation for different screening lengths a and the unscreened case. Using the independently determined
value for K, we can determine the agreement of the correlation functions with the Luttinger liquid
theory. To this end we use the formulas given in [34] for the correlation functions of a Luttinger liquid

constrained to a box of length L with periodic boundary conditions. Including higher harmonics the
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Figure 3.3: DMRG results by [74], for 10 particles on 100 lattice sites with periodic
boundary conditions. Solid lines: density-density correlation functions shown also in
Figure [3.1(b)| for different interaction strengths. Dashed lines: fits of the density-density
correlation functions by Eq. (3.7). Note that K is not a fit parameter but extracted from
the DMRG calculation as described in the main text.

first order correlation function is given by the expression

(@) B (0)) = po— {Bo + 3 Bon
n=1

1
[pod(x, L)]1/2K (z, L)2m°K COS(?W”PO@“)} (3.6)

pod

and the density-density correlation function by

(o)) = 72 1—K[1]2+iA lpod(e, D] cos(2mmppr) b (3
pLT)p = Po 272 pgd(l‘,L) Z 2n|POANT, COS(4TNpoT .

where d(x, L) = L|sin(wx/L)|/m. We fit the formula to the density-density correlation functions
obtained by DMRG with the non-universal coefficients Asg,, as fit parameters. Additionally, we restrict
the fit to a domain 0.5 < xpy < Lpg — 0.5, as the smaller (and larger) « correspond to high energy
contributions that are not well described by Luttinger liquid theory. In Figure [3.3|the density-density
correlation functions obtained by DMRG are displayed together with the corresponding fitting results.
The coeflicients Ay, obtained by the fitting are displayed in Table We recognize a very good
agreement between numerical results and the fitted Luttinger liquid correlation function, proving that
the low-energy physics of the Rydberg polariton model is well described by Luttinger liquid
theory (3.3). Moreover, the fitting results show that for weak interactions the density correlations are
determined solely by the second harmonic with coefficient Ag, while for the stronger interacting case

with K = 0.109 the fourth and sixth harmonic become increasingly important. However, as they fall
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K | 4 | A Ag
0.782 || 0.1011 0 2.59 x 107
0.442 || 0.3639 0 5.2 x 107°
0.109 || 1.3116 | 0.3485 0.0317

Table 3.1: Coeflicients A, of the Luttinger harmonics in (3.7) extracted from a fit of the DMRG
density correlation functions on the interval 0.5 < xpg < Lpg — 0.5.

(i) input field (ii) Rydberg medium (iii) correlated photon train
Figure 3.4: Idea sketch: creation of a regular train of photons.

off with much larger exponents —2m? K, the second harmonic remains the dominant contribution
for larger distances. We note that the first-order correlation functions can be fitted analogously with
comparable goodness of the fit, but are of minor interest for the following, as they decay very quickly

for K > 1.

3.1.3 Strongly interacting regime under stationary EIT conditions

We turn now to our microscopic model of propagating Rydberg polaritons. We estimate the driving
conditions needed to reach the strongly interacting regime, i.e., K < 1, under stationary conditions
of EIT.

In the case of the unscreened van der Waals interaction potential an approximate formula for the
K parameter has been given by [383],

K 1 (3.8)

)
4
1+ 50
which is asymptotically correct in the case of small and large interaction strengths, as can also be

observed from Figure Using the definition of the effective mass (2.40) and the blockade radius (2.21)
we can rewrite the definition (3.2) of © in terms of system parameters,

~ L 1 (1N 2
O~ (phn)* (1) db, (3.9)

where we assumed slow light, i.e., v, < ¢ and dg = Rp/Labs denotes the optical depth per blockade
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Figure 3.5: Log-log plot of Luttinger parameter K as a function of optical depth per blockade dg.
Shown for |A|/ = 5 and three different excitation densities poRp = 1, 3, 3.
Solid lines: interpolation of the DMRG results from presented in Figure
Dashed lines: Corresponding analytical approximation according to Eq. (3.10).

radius. Approximating Eq. (3.8) in the case of strong interactions and inserting the expression (3.9)

yields the relation
|A 1 1

v (poRB)2dp’

Here, po R compares the excitation density to the blockade radius. In a stationary setup there can at

K ~ 2.410 (3.10)

most a single excitation exist per blockade radius, thus the density is limited by
poRp < 1. (3.11)

For larger densities excitations will be converted to bright state polaritons and subsequently decay or
propagate out of the medium. Moreover, to realize the unitary model we require |A|/y > 1. The
remaining free parameter in Eq. is the optical depth per blockade. In Figure 3.5 we display the
approximate relation as well as the exact result obtained from interpolating the DMRG results
shown in Figure [3.2) for different values of pg Rp. and A/ = 5. We find that even for large excitation
densities (pg Rp ~ 1) the optical depth per blockade required for reaching the strongly interacting
regime (K < 1) is orders of magnitude larger than experimentally feasible values that are on the
order of 10 [8]]. Furthermore, changing the optical depth per blockade dp by changing the blockade

radius while keeping pg Rp fixed requires smaller excitation densities with increasing dp.

An typical experimental setup, see e.g. [8]], uses a Rydberg medium of a certain, finite length L on
the order of a few 10 microns. Condition (3.11) then limits the number of excitations in the medium
to N < [L/Rg]. Thus, for sufficiently large dp, the maximal number of excitations in a finite system

reduces to a single excitation, when the blockade radius Rp becomes larger L. Hence, it is impossible
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Chapter 3 Many-body physics of Rydberg polaritons

to reach a regime of arbitrary large interactions under stationary driving conditions. We remark,
that a charge density wave could still be observed for not too strong interactions, as its amplitude
can become quite large in finite systems [[84]. An alternative may also be given by exciting Rydberg

atoms in hollow core fibers, as has recently been realized [52, 53], see also [81].

3.2 Dynamical storage of Rydberg polaritons

We have shown that a stationary slow-light setup of polaritons propagating in a gas of Rydberg atoms,
the interactions between the polaritons can lead to strong, long-range density-density correlations
corresponding to a Wigner crystal of dark-state polaritons, i.e., a train of photons moving with the
slow-light group velocity. However, the limit of long-range correlations is attained only for diverging
blockade distance, which makes it impossible to create such a state in a finite system under stationary
driving conditions.

In the following section we propose and investigate a possible solution to this problem by us-
ing a time-dependent protocol, i.e., dynamically changing the parameters from an initially weakly
interacting to the strongly interacting regime. This protocol corresponds to a dynamical slowing
down of polaritons or light storage [3,75,|76] inside the medium by turning off the control field and
thereby turning propagating polaritons into a stationary spin-wave. During storage the dimensionless
interaction strength is dynamically increased, leading to a divergent blockade distance. We show that

despite this fact a storage of Rydberg polaritons is possible and confirm that by numerical simulations.

3.2.1 Frequency pulling

Storing light in an EIT setup is performed by decreasing the control field strength 2 and thus the
group velocity, the propagation speed of the polaritons. During that process the EIT transmission
spectrum 7T'(w), see Eq. (1.10), becomes smaller. Nevertheless, storage of polariton works as in a
dynamical protocol the spectrum S(z, w) of a polariton pulse becomes narrower and thus stays inside
the transparency window [1], as opposed to a spatial change of the group velocity. The picture seems
to change, when taking interactions into account. The interaction energy between two Rydberg
polaritons can be interpreted as a shift of the atomic levels, i.e., a space-dependent two-photon
detuning 4, or, a shift of the pulse spectrum relative to the atomic resonance. Under stationary
conditions, a finite two-photon detuning is allowed, if the shifted pulse spectrum fits inside the
transmission spectrum. If the transmission spectrum tends to zero, however, this is no longer the case
and the pulse gets absorbed or decoupled from the medium. As has been shown [20], this argument
is too naive and the storage of Rydberg polaritons is possible despite the interactions. This can be
seen as follows.

Let us consider the time evolution of a dark-state polariton pulse during storage. We assume that
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Figure 3.6: EIT transmission spectrum and normalized pulse spectrum during time-dependent slow-
down of a light pulse.

initially the pulse propagates with a fixed two-photon detuning dp = wp,(0) + we — wye. As has been
shown in [20]], this small two-photon detuning leads to a time-dependent phase shift of the dark-state

polariton during storage,

. . t t
U(z,t) =W (z - c/ dr cos? 0(r), 0) exp {150/ dr sin? «9(7)} . (3.12)
0 0

If the mixing angle only changes slowly this causes a time-dependent modification of the spectrum
S(z,w) of the probe light field & (z,t) = cos 6(t)¥(z, 1), that is given by

S(z,w) = /°° dr e T (ET(2,)E(2,t — 7)) (3.13)
20(¢ 1 '
- cC:;):?Q((o))S (0’ m[w + o Sm29(t)]> : (3.14)

The equation shows two effects, that are illustrated in Figure[3.6] First, there is a spectral narrowing
of the pulse spectrum S proportional to cos? f(t) which corresponds to the narrowing of the EIT
transmission spectrum 1" during light storage and therefore guarantees that the spectral width of the
pulse stays inside the EIT window at all times, if it did so initially [3]. Secondly and most importantly
for the storage of interacting polaritons, there is a pulling of the central frequency of the pulse

spectrum, i.e., the two-photon detuning 0(¢) is shifted towards two-photon resonance,
0(t) = wp(t) + we — wrg = do cos?A(t) — 0. (3.15)

These effects have been observed experimentally [85]. It can be concluded that the two-photon
linewidth of EIT light storage is determined by the collective Rabi frequency {2 by

Q2a(t)
621ph (t) = |]f?‘ ’

(3.16)
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rather than by the control field Rabi frequency €2(¢). As a consequence, the minimal distance of
Rydberg polaritons is determined by leading to the critical distance a,

ac = maX{RB(O) =y 56(3 6 S%(th } (3.17)

This length is bounded in a dynamical light storage protocol as opposed to the instantaneous blockade

distance Rp(t). We note that in the case of slow light Q¢ < Qcg(t) holds at all times and consequently
we get a. = Rp(0). We conclude that the minimal distance of Rydberg polaritons does not diverge
in a light storage protocol, making it possible to reach the strongly interacting regime with a finite

number of excitations — at least dynamically.

3.2.2 Wave function simulation of storage

The result we derived above can be verified numerically, using two-excitation wave function simula-
tions as introduced in Section [2.4 The two-excitation wave function is defined as in the previous
chapter. As we have shown in Section the relative and center-of-mass dynamics are decoupled,
such that it is sufficient to simulate only the evolution in the relative coordinate r for center-of-
mass coordinate R = 0. This can efficiently be done by using the split-operator approach with a

time-dependent control field (¢). Specifically, we use a Gaussian protocol
Q1) = Qoexp{—(t/7)*} = vg(t) = vg(0) exp{—2(t/7)%}, (3.18)

where we assumed Q3 < g?n. In Figure we show the time-dependence of {2 and the time-
dependence of the instantaneous blockade distance Rp(t) oc 2(t)~'/3. We choose initial conditions
of Qy = 0.57, gy/n = 10y and a detuning of A = 4. We determine the switching time 7 by the
condition [ dswvg(s) = L, with L being the medium length, i.e.,
2L

T= \ﬁT(O)' (3.19)
We calculate the simulation up to a time of ¢ = 37, as v,(37) is sufficiently small compared to vg(0)
and only small changes happen in the time evolution for larger times. The time evolution of the
components E€ = (0| ¥ (r/2)¥(—r/2)|¥s) in relative coordinates and analogously defined SS of the
wave function are displayed in Figureand where we plot the intensities |£€|? normalized
by cos? §(0) and |SS|? normalized by sin* f ~ 1. We observe that initially the wave-packet begins to
spread as in the time-independent propagation, cf. Figure but then the dispersion stops and the
amplitude of the electrical field component gets shifted to the spin component. Note that the latter

is only a small effect, since the initial state already is a slow light pulse. This is illustrated better in
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Figure 3.7: Simulation of storage of two-photon wave function propagating in a gas of Rydberg atoms

using full Maxwell-Bloch equations, restricted to relative coordinate. In (a) the protocol for
the simulation is displayed, namely Q(¢)/£2(0) and the diverging instantaneous blockade
radius Rp(t)/Rp(0) o< Q(t)~/3. (b) and (c) show the time evolution of the electric-field
EE and spin component SS of the wave function, respectively. Shown is the amplitude
squared normalized by cos* #(0) and sin* #(0) to make them comparable. (c) Shows the
total amplitude squared integrated over r of the components £, £S and SS normalized
by N7 = cos? 0(0), N2 = cos 8(0) sin §(0), and N3 = sin? §(0) as well as the integrated
amplitude squared of the two-excitation Rydberg polariton, UW. Finally, (d) shows cross
section of the polariton wave function for different times during the storage protocol (solid
lines) and for comparison the cross section of a wave function propagating under stationary
EIT conditions (dashed line), cf. Figure The times are chosen such that the traveled
distances of the propagating pulse and the stored pulse are equal. The vertical dashed
lines indicate the blockade radius 4+ Rp. Parameters of the simulation were g/n = 10,
Q(0) = 0.5y and A = 4~. The characteristic storage time 7 was chosen as in Eq. (3.19).
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Figure3.7(d)} where we show the integrated intensities of the components £, £S and SS normalized
by appropriate combinations of cos #(0) and sin #(0) as well as the combination of the three into the

dark polariton ¥, where the two-polariton amplitude is given by
WU (r,t) = cos? O(t)EE(r, t) — sin O(t) cos O(t)[ES(r, t) + SE(r, )] + sin? ()SS(r,t).  (3.20)

We observe that the intensities containing electric field components are quickly turned to zero, while
the spin-component is initially decaying and then saturates. The integrated intensity of the dark-state
wave function is in very good agreement given by the spin amplitude as expected in the case of slow
light.

Figure[3.7(e)|finally shows snapshots of the relative wave function at different times during storage in
comparison to the wave function propagating under stationary EIT conditions, taken from Figure[2.11]
Specifically, we choose the propagating time of the latter such that the distance the wave packet
travels during propagation is equal to the distance the stored wave packet travels. We observe that
the wave function during storage evolves into a time-independent state with a shape similar to the
propagating pulse. This confirms our result of the previous section, that the relevant length scale
governing the avoided volume during storage is given by the initial blockade radius Rg(0). Therefore

it is feasible to store a pulse of interacting Rydberg polaritons.

3.3 Time-dependent Luttinger liquid

As we have seen in the previous section the minimal distance of Rydberg polaritons stays finite
during a light storage protocol. Thus, a pulse of Rydberg polaritons gets turned into a stationary
density-wave of atomic Rydberg excitations during storage. As in a dynamical protocol the mass
and consequently the dimensionless interaction strength get increased this hints to the possibility of
reaching the strongly interacting regime with a dynamical protocol.

To investigate this, we will calculate the correlation functions during and after an storage protocol
in this section. Therefore we employ a time-dependent Luttinger liquid theory [78, |86} 87]. An
important field of research is non-equilibrium dynamics of closed interacting quantum systems [88].
Recently, Luttinger liquid theory has been applied to study the time evolution of closed quantum
systems and specifically their correlation functions during and after quenches. In particular, sudden
as well as finite time quenches have been investigated [[77,|86}/89-91]]. While the former case is always
diabatic, i.e., brings the system out of equilibrium, a smooth or finite-time quench can in general be
adiabatic, if it is slow compared to the slowest time scale in the system. However, this limit cannot be
reached for a Luttinger liquid, as the system is gapless. Here, a smooth quench leads to a crossover
in the system between adiabatic and diabatic regimes [[77]. As we will show in the following this

makes it possible to create sufficiently long-range correlations in a system of finite length, i.e., a
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3.3 Time-dependent Luttinger liquid

charge-density wave correlated on a length scale on the order of a typical sized atomic cloud in an

experimental setup.

Let us now calculate the time evolution of the density-density correlation functions (1.54). To this
end we assume a Galilean invariant system which is described by a Luttinger Hamiltonian (3.3). The
system is initially in its ground state, which, for instance, can for interacting Rydberg polaritons
be prepared under stationary slow light conditions. In the time-independent case the Hamiltonian
can simply be diagonalized by rescaling the Luttinger liquid fields ®,0 [10]. In the time-dependent
case this is no longer the case, and a more sophisticated approach involving numerical simulations is

needed in general.

3.3.1 Time-independent case

Let us first discuss the time-independent case. We introduce standard bosonic operators [l;p, BII] = Op,q»

transforming the Luttinger liquid fields ,0 in the thermodynamic limit . — oo as

Ip|

A( ) = T Z M 1/21 —alp\—ipx(AT +b ) (3.21)

o(x) = IL o pe p +0—p .
p#0

A LT L|p‘ 12 1 —alp|—ipz (1T 7

bx) = +ig ; <27T) e () (3.22)
p

with o being a short-distance cutoff. If the system is not in the thermodynamic limit, topological
excitations are important and additional terms have to be taken into account [10]]. The Luttinger
Hamiltonian (3.3) transforms into [[10]]

=
&

Il
2| §
=
| — |
g
=2

>
B
|

N |

br, + B,pl}p)} : (3.23)

where the coefficients are w, g = K 4+ K !, respectively. This Hamiltonian can be diagonalized by a

l;p _ cosh( sinh( Yp (3.24)
IA)T,p sinh{ cosh ¢ ‘yT,p ’ .

where e?¢ = K. The resulting Hamiltonian expressed in terms of the new variables is

Bogoliubov transformation,

H =0 Iplim (3.25)
p#0

71



Chapter 3 Many-body physics of Rydberg polaritons

corresponding to free bosons with linear dispersion. The only nonvanishing correlation function in a

thermal state at temperature 7" reads

(A8 = 6p,q coth(uvs|p| /2T), (3.26)

where we set kg = 1. Note that, in the limit 7" — 0 the coth-factor becomes unity.

We are interested in density-density correlations (p(x)p(0)). In leading order they are describe
by a charge-density wave, given by a spatial oscillation period given by the inverse of the density
po multiplied by a function e~¢4¢(?) determining the spatial behavior of the amplitude. In the
ground-state this is a power law like decay. Following (1.52), we find,

Goolz) = ([9(2) = SO) = T 3 PP (B + 500, + b)) G20
p>0

— / dpp~te (1 — cos px) <(l;;, + lA)_p)(lAJT_p + Bp)>
0

in the thermodynamic limit [[10]. Hence, the spatial envelope of the density correlations is determined
by phase correlations. Consequently, to to determine the correlation function (3.27) we need to find
(b + b_p)(bT, + by)). With Eq. (3:26) we find

~

(b} + b_p) (B, + b)) = K coth(us|p| /2T) (3.28)

for the correlation functions of a thermal state.

3.3.2 Time-dependent case

Now we turn to the case of an explicit time dependence of the system parameters, which translates

into a time-dependent speed of sound v and Luttinger K parameter
vs = vs(t), K — K(t). (3.29)

We assume that the time variation is sufficiently slowly, such that the Luttinger-liquid approximation
still holds and, furthermore, non-adiabatic corrections of the underlying polariton model are negligible,
cf. Section[3.5/for an estimation. In this case the system can still be described by Hamiltonian, Eq. (3.23),
where the total energy scale of as well as the ratio between particle-number conserving and non-

conserving terms become time-dependent

s =50 S [y - 5 G, + ). (3:30)

2
p#0
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3.3 Time-dependent Luttinger liquid

with w(t), g(t) = K (t) + K (t)~'. The Heisenberg equations of motion for the bosonic modes b, bf

under this Hamiltonian are given by

d by ws@®p| (wt) —g®) (b b,
lﬁ<ﬁ)" : Qm>—w@>Q;>—“@@<a)’ (531

where we introduced the time-dependent coupling Matrix M,,. These are differential equations

coupling modes with momenta +p. To solve these equations we perform a time-dependent Bogoliubov

transformation [[92]]

"(0), (3.32)
_,(0), (3.33)

which maps the time dependence of the operators to the coefficients, for which we introduce the
notation R, = (u,(t), v,(t))". In this way, the Heisenberg equations of motion get mapped to coupled

differential equations for R, that can be written in the form
10 R, (1) = Mu(t)R,(t), R,(0) = (1,0)T. (3.34)

In general these equations cannot be solved analytically, since diagonalizing the time-dependent
matrix Mp(t) always creates non-adiabatic corrections that are off-diagonal, i.e., the transformed
equations will again be coupled. Let us consider the matrix S, such that 5, 1M, S, is diagonal
and use this to transform the equations of motion, where the transformed equations of motion for
RI(DI) =5, IR, are given by
i%Rg)(t) = S, (1) My (1) Sy (ORI (1) + S, (1) S,(RMV (1), (3.35)

with initial condition Rél) (0) = 5,1, 0)”. Thus, the diagonalization of the time-dependent matrix

M,,(t) does not diagonalize the equations of motion as a new off-diagonal coupling arises, proportional

to Sp_ 1S,. Consequently, the initial value problem (3.34) can in general only be solved numerically.

Assuming that a solution R,,(t) exists we can calculate the time dependent correlation function of

the bosonic operators,

~

([b3(1) + b_p(B)][BL, (1) + By(1)]) = <{ [ () + o (D]B(0) + [up (1) + vp(£)]b-(0) }

x {[up(t) + v 1B, 0) + (1) + 1y (1)1 (0)})
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Chapter 3 Many-body physics of Rydberg polaritons

Making use of the correlation function (3.28) at ¢ = 0 this can be simplified to

~ ~

(BE(t) + bop(D]BT () + Dp()])

= coth(vs(0)|p|/2T) x {K()?R[up(t) + vp ()2 + ];)%[up(t) + vp(t)]2} , (3.37)

where Ko = K(t = 0).

We note th'at a correction Szj 1S, in Eq.' (3.35) appears that again is an off-diagonal matrix pro-
portional to K /K. For sufficiently small K (¢), one can find a perturbative solution which reflects
the gaplessness of the Luttinger liquid. Comparing the off-diagonal terms to the difference of the
diagonal terms we find that the off-diagonal coupling can be neglected, if

1 K(t)
|vs(t)p| > 1K) (3.38)

To be fully adiabatic this condition has to be fulfilled at all times and for all relevant momentum
modes p. However, this is impossible to achieve for small momenta p, since the Luttinger model is
gapless. Consequently, a dynamical protocol cannot be used to transform a ground state of weakly
interacting Rydberg polaritons adiabatically to the strongly interacting regime.

Nevertheless we can assume that the time scale on which K (t) changes is bounded, giving rise
to a critical momentum pc, such that all momentum modes with |p| > p. obey at all times.
Then we expect a crossover between modes with p being larger and smaller p. from an adiabatic
following (p < p.) of the storage protocol to a diabatic following, i.e., a sudden quench (p > p.). The
momentum scales are related to length scales of the correlation functions. Large momenta correspond
to small distances and small momenta to large distances. That means, the crossover momentum scale
Pe can be related to a crossover length scale L. ~ 1/p.

From this simple argument we conclude that correlation functions can adiabatically follow a
sufficiently slow quench over a finite distance, while correlation functions on large scales always
exhibit diabatic behavior. Consequently, true long-range order cannot be obtained in a Luttinger

liquid model.

3.4 Reaching the strongly interacting regime

In the Luttinger model true long-range order can not be achieved, due to the gaplessness of the model,
but very slowly decaying correlation functions can be achieved by a slow quench. However, so far
we neglected the fact that we employed the Luttinger model in a moving frame and the underlying
microscopic model is propagating in space. As experimental realizations require a finite medium

length L, the characteristic storage time has to be restricted such that the Rydberg polaritons get
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3.4 Reaching the strongly interacting regime
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Figure 3.8: Pulse propagation and spreading of correlations during storage. (a) The time dependent
control field Q(¢) o< cos?(nt/27) defines the protocol. (b) Group velocity vg(t) and speed
of sound vs(t) during the protocol in units of v, (0). (c) Light-cone like spreading of

correlations of a propagating pulse during storage. We set v5(0) = vg(0) = 0.01c for the
initial velocities?.

stored before leaving the medium. This condition can be put in the form

Lgior :/ dswvg(s) < L, (3.39)
0

where Ly, denotes the distance a pulse travels inside the medium during the storage. This condition
sets a limit on the characteristic storage time, and thus the question arises, if long-range correlations
inside the medium can be achieved. As the correlations propagate with the speed of sound v we can

analogously to define a correlation length during storage by

Lcorr:/ dsws(s). (3.40)
0

Then states with long-range correlations are experimentally accessible, if Lco;y > L, or, alternatively,
Leory > Lgior. That is the case, if the speed of sound is large compared to the group velocity. To
answer the question if this holds true, we note that in any Galilean invariant systenﬂ the speed of
sound is determined by the relation vy = mpg/(mK) where the mass m and the Luttinger parameter

K are both time-dependent. The mass is inverse proportional to the group velocity, cf. Eq. (2.40) and

! And approximately for the bulk of sufficiently large finite systems.
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Chapter 3 Many-body physics of Rydberg polaritons

furthermore K is a unique function of m, which in the strongly interacting limit can be approximated
by K (t) o< [m(t)]~'/2, which can be derived from Eq. together with (3.2). Combining these

relations, we can determine the time-dependence of the speed of sound by

vg (1)

oe0) (3.41)

In the case of slow light we can assume v(0) = v, (0) for the initial Velocitieﬂ Thus the speed of
sound tends slower to zero as the group velocity during storage, allowing correlations to spread faster
as the pulse propagates and consequently allows to create a correlated state during storage of a pulse
of Rydberg polaritons. This is illustrated in Figure [3.8|for a storage protocol Q(t) o cos?(nt/27),
(a) shows the protocol, (b) the time-dependence of the velocities and (c) illustrates the spreading of
correlations of a propagating pulse.

Note, that the approximate relation K o 1/y/m overestimates the Luttinger parameter and
subsequently underestimates the speed of sound, i.e., the result is further improved when taking the

correct relation.

3.4.1 An exactly solvable case

As argued in the previous section, the equations of motion, Eq. (3.31), for the bosonic modes of the
Luttinger model can, in general, not be solved analytically for time-dependent parameters. Moreover,
we showed that no perturbative solution exists for arbitrary momenta, as the Luttinger Hamiltonian
is gapless. One possible way to solve the equations of motion is in using numerical methods, which
we will employ in the next section. The form of the transformed Equations of motion (3.35), however,
gives rise to another, analytical way to solve the equations, which we will discuss now.

We want to solve an initial value problem (IVP) with a system of linear differential equation given

in vector-matrix form by

d

iaRw) (t) = MO RO ), RO(0) =Ry. (3.42)

We try to find a solution of this IVP by performing a series of n linear transformations, where S
denotes the nth transformation matrix as follows. First, starting from the original problem (3.42), we
find the matrix S()(t), such that

DW(t) = [SW(1)] 7'M ()SV(t) = diag. (3.43)

*This assumption is reasonable, as under the assumption of v, (0) < ¢ the ratio of both velocities is given by vs(0) /v (0) =

\/ 7l'5/45(p0RB)3 with pQRB <1.
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3.4 Reaching the strongly interacting regime

1

is a diagonal matrix. Applying this transformation to the IVP by multiplying with [S (1)]’ and

inserting 1ls yields

ifsW )] S(l)(t)[S(l)]_lR(O)(t)}=[5(1)@)]_11\450)(t)S(”(t)R(O)(t), R(0) =Ry

4
dt

This can be rearranged to

i%R(l)(t) = {D(l)(t) — 1[5(1)(t)]‘18t5(1)(t)} RO(1)
= Mlgl)(t)R(l)(t)7 R(l)(o) — [S(l)<0)]71R0' (3.44)

We observe that the diagonalization of the time-dependent matrix Mlgl) (t) requires a second time-
dependent diagonalization matrix S(¢) and this leads subsequently to new off-diagonal couplings
in the differential equation. An exact diagonalization of the differential equation can thus not be
achieved in general. Neglecting these second order coupling corresponds to a so-called super-adiabatic

approximation [|93]].

To get a better approximation we can iterate the above procedure n times which has been investi-

gated 93] and leads to a transformed initial value problem of

.d

1%R(”)(t):Mé")(t)R(”)(t), R™(0) = [S™(0)]7L--- [SD(0)'Ry.  (345)

Dropping now the off-diagonal corrections of nth order gives a higher order adiabatic approximation.

Typically one finds, that the accuracy of the deviation of the nth order adiabatic solution from the
exact solution first decreases with n but at a certain n this behavior changes and the further iterations
make the approximation again worse. However, there exist special cases where the equations get
diagonalized by n iterations and thus an exact solution can be found. Such a super-adiabatic solution
can also be found for Eq. as follows. We repeat the diagonalization procedure with Eq. by
calculating the Matrix S;,()l) (t) that diagonalizes the Matrix M}gl) (t). This step again preserves the
structure of the equations of motion, i.e., results in an equation with the same form as the original

equation, with off-diagonal coupling by the matrix

[Szgl)]fl S = % [[m] (_01 (1)) , (3.46)

Expressing the speed of sound by vs = mpy/mK and employing the unique relation of Luttinger
parameter K and effective polariton mass m, cf. Figure 3.2 we can find a special time-dependence of
K (t), such that expression (3.46) vanishes at all times. With the approximation for small K, where
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Chapter 3 Many-body physics of Rydberg polaritons

0.8 F ]
- — K()

Figure 3.9: Blue, solid line: function K (¢) for the super-adiabatic protocol, Eq. for Ky = 0.679;
red, dashed line: asymptote for large t.

vs(t) o< K (t), this yields a differential equation for K (t) that has the solution
K(t) —e aCOSh(t/T+C)’ (3.47)

where C' = %(K{) + 1/K)p) and 7 is the characteristic time of the smooth quench. In the limit of
large time, ¢ > 7, the leading order term is given by K (t) ~ 7/2t, as indicated by the dashed line in
Figure Note that it is a very slow decay, thus it takes long times to reach the limit of K < 1. For
the time-dependence of the Luttinger parameter, the off-diagonal couplings, Eq. vanish,
i.e., a second iteration of the diagonalization transformation diagonalizes the Eqs. and they can

be solved analytically. This corresponds to exact super-adiabaticity.

Before we discuss this solution in detail, let us calculate the crossover and correlation lengths
L¢ and Loy, respectively, to get some insight into the solution. As by construction for the special
solution the derivative in Eq. vanishes at all times, the critical momentum p. becomes a
constant of time, given by

=1_ const., (3.43)
-

_|_E®
C | E(®us(t)

where ! = 1(poRp)°dp Zvg(0) is defined by the relation nvs = (K©)~1, cf. Eq. (8.5). The inverse

of momentum scale p. defines the crossover length between adiabatic and diabatic correlations,

1 1
Lo = — = = (poRp) vgdp (3.49)

Do 2 AT

where the constants R, vg,dp on the right-hand side have to be taken at the initial time. The

crossover length is proportional to the characteristic quench time 7, the initial group velocity v, and
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3.4 Reaching the strongly interacting regime

the optical depth per blockade dg. It is very sensitive to the initial excitation density per blockade
poRpB. This length scale appears in the exact super-adiabatic solution of the equations of motion,

which assumes the form

iEB/Le ,
Rp<t)=< 0 0L R{)(0), (3.50)

—1
where £(t) = m\ /p*L? — 1 and RI(;Q)(O) = [S,S”} S, 'R,(0). We observe that for increasing
p at the critical momentum scale p = p. the square root changes from an imaginary to a real, positive
quantity, i.e., the character of the solution changes qualitatively. How this affects the correlation
functions, we will analyze in the following paragraph. The correlation length is defined by the

integral (3.40), which can be calculated for the time dependence (3.47), yielding

Leon(t) = /0 s vs(s) = %m <[I§(£))> . (3.51)

Loy denotes the maximal distance, where correlations can built up during storage. This length is
given by L. /2 times logarithmic corrections and diverges logarithmically for K (¢) — 0. For large
times the K -parameter vanishes like K (t) o< 7/2t, thus in this special protocol it takes very long

times to reach small K parameters.

3.4.2 Correlation functions in the super-adiabatic case

With the super-adiabatic solution derived in the previous section it is now straightforward to invert
the transformations and obtain the time evolution of the operators lA);L, (t) and Ep(t) and then correlation
functions of these. In Chapter [2] we performed numerical simulations of two polaritons propagating
under stationary slow light conditions in the weakly interacting regime and found that after an initial
transient they evolve into a state close to the two-polariton ground state, see Figure Thus
it is reasonable to assume that the initial state of the many-body model is close to the many-body
ground state or a low-temperature thermal state and we choose such a state for the calculations
of the time-dependent Luttinger model as initial state. The initial LL-Hamiltonian for ¢ < 0 is
time-independent, and can be diagonalized by a rescaling of the parameters [[10], or by a Bogoliubov
transformation [92]]. The p-dependent matrix generating the Bogoliubov transformation is equal to
S = 5,(0), we introduced in Eq. (3.35). The resulting diagonal Hamiltonian reads

H=vs(0) > plA - (3.52)
p#0
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Chapter 3 Many-body physics of Rydberg polaritons

To begin with, let us consider the case of zero Temperature, 7' = 0. In this case the correlations
T

functions in the operators 4, 9, are given by

(pA8) = bpq- (3.53)

After obtaining the corresponding initial state of the operators IA)};, Bp we can calculate arbitrary
time-dependent correlation functions during a light storage protocol with the solution (3.50). In
particular, we can calculate the equal time density-density correlations, which are in Luttinger liquid
theory of the universal form [10],

(p(2)p(0)) = p5 — o2 + Agpd cos(2mpyz)e 2Cwe ) 1 (3.54)

ie., determined by the correlation function Gy4(z,t) = ([¢(z) — ¢(0)]?). This can be derived
from (1.52), see also (3.27). For the time-independent ground state the density-density correlation
function reduces to the expression (1.54). For the protocol we can derive this time-dependent
correlation function with Eq. and (3.50), leading to

1 —cos(pz) , -

Goolzst) = [ o (@ + b6, +5,)

= K(t) /dp epap [1 — cos(pz)] {1 — Slj}%] + 1= ;?;gf_(ti/LC} } ,  (3.55)

where we introduced the cutoff « to treat high-momentum divergences. For the integral (3.55) no

closed expression exists, i.e., further integration can only be done numerically. However, for the
limiting cases for small and large momentum modes p, compared to p., we can derive asymptotic
results. These correspond to large and small distances z, respectively, as compared to L,. Since
the correlation length L, is growing logarithmically with K according to (3.51), i.e., only slowly,
we assume that Lo 5 Lcore(t). In the regime p > p. the terms cos(2£(t)/L.) and analogously
sin(2€(t)/ L) oscillate quickly in p and thus average to zero in the integral. Within this approximation
we find a closed expression for (3.55),

Gpo(z,t) = —K(t) ln(%) -+ const., (3.56)

in the limit of small a. The correlation function has the form of ground state correlation function
with a power law in the density-density correlations, where the exponent is given by 2K (¢). Hence,
for distances z < L. the correlations follow adiabatically the (moving-frame) ground state in the
light storage protocol and become long-range for K(¢t) — 0, indicating a quasi-crystalline order.

However, in the regime of large distances z >> L, corresponding to momenta p < p., the function
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Figure 3.10: Spatial envelope exp{—2G ¢ (2, tmax) } of the density-density correlations after a smooth
quench according to the storage protocol with Ky = 0.5, 7 = 4/povg(0) and a
total time of tmax = 24povg(0). (a) Log-log representation normalized to the value at
zpo = 0.1 and (b) linear representation normalized to the value at zpg = 1 show the
semi-analytical solution (blue, dashed line) compared to a numerical integration of
the equations of motion with ©(K) as in Eq. as a benchmark (red, dash-dotted line)
and ©(K) obtained from interpolating the DMRG results displayed in Figure 3.5/ (yellow
solid line). The black dash-double-dotted line shows the initial spatial envelope of the
density-density interactions given by a power law with exponent —2Kj. Finally, the
vertical dashed lines indicate the length scales Lgo; and Loy, obtained from integrating
vg(t) and vs(t), respectively.

&(t) becomes purely imaginary and can be approximated by iIn(K (0)/K (t)). Then the integral
has the same form as Eq. (3.56), but we have to replace K () — K(0). That means that for large
distances the storage is diabatic, i.e., the initial correlation functions get frozen and decay spatially
with the initial exponent 2K (0). This agrees with the crossover from an adiabatic to a diabatic regime

which we expected in the previous section.

3.4.3 Numerical integration

A full expression for the density-density correlations after the storage can be obtained numerically by
integrating Eq. (3.55). In Figure[3.10| we show the resulting curves in log-log and linear representation.
For comparison we show a power law with the exponent of the initial correlations.

In the derivation of this semi-analytic result we obtained the relation between the Luttinger
parameter K and the system parameters from Eq. (3.8), which allowed us to find the super-adiabatic
solution (3.55). However, this relation is only asymptotically correct. As we have an exact relation

available, obtained by interpolating the data points calculated by DMRG shown in Figure [3.2] we can
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Chapter 3 Many-body physics of Rydberg polaritons

also calculate the correlation function using this relation. To this end, we integrate the initial value
problem numerically with a time-dependent Luttinger parameter K given by and the
speed of sound determined by Eq. and the relation between mass and K obtained by DMRG, see
Figure

The resulting curves are shown in Figure Both results show the expected crossover at a
length scale Lo,y from an adiabatic to a diabatic regime. For large distances the correlation function
decays as a power law with the initial exponent 2K. Note that this exponent is different for the
numerical solution and the semi-analytical solution, which comes about due to the fact that for equal
dimensionless interaction strength © the relations yield different Ky, cf. Figure Consequently,
the numerically calculated correlation function exhibits slower decaying correlations. In the case of
short distances an approximation by a power law with the adiabatic exponent K; does not make
much sense, as this behavior is only asymptotically assumed for z — 0. We find that a much better
fit can be obtained by a Gaussian function e=2*/20" with a FWH of o which agrees well with
the correlation functions almost up to a length of z = L. Moreover, this fit allows to extract a
correlation length, which will be considered in the following in greater detail.

In conclusion, this result shows that the strongly interacting regime can be reached with correlations

up to a certain distance.

3.4.4 Thermal excitations

Now we want to consider corrections onto the final correlation functions of the created charge-density

wave, when the initial state of Hamiltonian (3.52) exhibits thermal excitations. For a temperature T’

the correlations get modified to (3.26),
(ApA4) = Op,q coth (vs|pl/2T).

The argument of the coth defines a thermal length Ly ~ 7po/(mT K) marking a crossover from a
power law decay of the spatial correlation function to an exponential decay [34].

Let us now derive the time evolution of this initial state under a polariton storage protocol. As we
have shown numerically and used in the previous section, the initial state created under stationary
propagation of a two-photon pulse into a Rydberg medium is close to the ground state. As the
Rydberg polaritons can only be excited inside the EIT window, we can estimate the maximal allowed
momentum fluctuations by

QQ
k| < Fomax| = . 3.57
| ’ — | max| C|F| ( )
Excitations with a kinetic energy corresponding to k& > ky,ax couple to bright-state polariton degrees

of freedom which are subject to losses, cf. Section[2.1.3] and thus quickly disappear. Hence, when

SFull width at half maximum
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Figure 3.11: Log-log plot of the correlation function e~2¢¢¢(?) after storage of an initial state with
initial excitations for different temperatures 71" characterized by the thermal length L.
L7 = oo corresponds to the case 1" = 0, i.e., an initial ground state. The dashed vertical
line indicates the correlation length L., obtained in the case 7" = 0 by integrating the
sound velocity vg in time.

modeling excitations of the initial state within the EIT window by a finite temperature 7j, we can
estimate an upper bound for this temperature by kgTy < Q%:(0)/(2m|T'|c) corresponding to a
thermal length scale [34] of

v K A
Lp>—— = QPORBudgl, (3.58)
'l ¥
where we set kg = 1. We take these thermal excitations into account in the initial correlation

functions of the time-dependent Luttinger model. Analog to the ground-state case we calculate
the time evolution of the density-density correlations during storage. The resulting curve is displayed
in Figure

The behavior of the correlation function at small distances is again described by a Gaussian function
which agrees very well with the numerically integrated correlation function up to large distances. For
distances z > L the correlation function crosses over to an exponentially decaying function similar
to the initial state. However, the crossover point depends on the scale L.. Therefore, the regime of
adiabatic following may be extended beyond the initial thermal length scale Lr. To analyze this
properly, we extract the crossover length scale in the finite temperature case, Lo 7, by finding the

value, where the correlations are decayed to 1/2, i.e., where

1
G¢¢(Z = Lcorr,Tp t= tmax) = 5 log(2). (3.59)

The length obtained by this is then compared to the correlation length L., in the absence of
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Chapter 3 Many-body physics of Rydberg polaritons

2.5

Lcorr,T/LT

0 5 10 15 20 25
Lcorr/LT

Figure 3.12: Plot of the correlation length after storage in the case of an initial state with thermal
excitations Lo, Where the correlation function e 2Go0(2) decayed to 1/2 as function of
the correlation length L, after storage in the absence of thermal excitations, obtained
from integrating the sound velocity vg over the storage protocol. Both axes are rescaled
by the thermal excitation length. The blue circles (yellow diamonds) show the results
obtained from numerically integrating the time evolution of the correlation function
G4¢(%) with an initial thermal length of Ly = 10 (L7 = 5). The red x’s (violet crosses)
connected by dashed lines are analytical curves o< /Lo according to Eq. (3.60). For
obtaining these results a Lorentzian function has been used as protocol. The parameters
are Ly = 10, Ky = 0.25, ©g = 1.99 and K (tmax) = 0.018 for the upper curves and
Ly =5, Ky = 0.5, 09 = 0.12 and K (tmax) = 0.029 for the lower curves. The lines
connecting the points are a guide to the eye.
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thermal excitations. To this end we performed storage with initial thermal excitations by numerically
calculating the time evolution of G4 (2,t) during storage, according to a protocol with a Lorentzian
shape, Q(t) = 2(0)/(1 + t2/72%). The storage is performed up to a maximal time ¢y,,. We change
the maximal time ¢,,x and the characteristic switching time 7 such that the final Luttinger parameter
K (T) is constant for all runs. In this way, we obtain Lo, 7 for different values of Loy In Figure
we show the resulting curves for L7 = 5,10, where both axes are rescaled by L7. We find that
Lcorr, 7 behaves in good agreement as a function Loy, 7 V/Leorr, see Figure Specifically we
find that the relation is given by

1
Lcorr,T ~ % V LcorrLTa (3-60)

where a = Ko[log(Ko/K)]'/*. Thus, the correlation length after storage is given by the geometrical
mean of thermal length scale L7 and the correlation length L, attained in the absence of thermal
excitations.

The result is a remarkable result. It shows that by storage of Rydberg polaritons a Wigner
crystal can be obtained with a finite correlation length larger twice the storage length Lo, even if

the initial state exhibits large thermal fluctuations.

3.5 Experimental feasibility

In this section we want to address limitations arising in an experimental realization of the proposed

Rydberg polariton storage and their influence on the results.

Finite medium length. In experimental realizations only finite medium lengths are available.
These are typically on the order of some 10 pm for typical quantum optical setups, cf. 8| 44, [45].
Thus the typical time scale 7 of a photon storage protocol has to be limited such that the distance the
polaritons travel during storage is less than the medium length, i.e., the pulse gets to a full halt inside
the atomic medium. As the Rydberg polaritons travel with the group velocity v, the distance they
propagate inside the medium is given by the integral (3.39), which in the case of the super-adiabatic
protocol, Eq. (3.47), can be integrated analytically,

Lgior = / dsvg(s) < vg(0)0gKor. (3.61)
0
As for a finite system this length scale is ultimately limited by the system length, we compare Lg,, to

the correlation length L, in case of the super-adiabatic protocol. Taking the quotient of these two,

the time scale 7 cancels and we get the maximal correlation length that can be achieved for a given
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Chapter 3 Many-body physics of Rydberg polaritons

storage length Lo, as

4
Fan _ =gl 8 (50 s

Laor 45 Ko v = \Kr
where the initial K is also dependent on pg Rp and dp. An experimentally feasible K can be read
off Fig. This shows that it is possible to get to the regime of strong correlations with a correlation
length on the order of the medium length for sufficiently small final K.

Note that realizing Rydberg EIT inside hollow-core fibers [52} 53], allows for much longer one-

dimensional atomic setups, relaxing these conditions.

Non-adiabaticity. Under continuous wave (cw) EIT conditions the validity of the model was
guaranteed as long as the initial pulse width fitted inside the EIT window, defined by Eq. (1.12). In a
dynamical setup, when using a time dependent control field, this condition has to be modified and
additionally 0,0(t) < sin 6 cos 0Qeq/|T'|. This restricts the characteristic switching times (denoted 7
above) during which an input pulse can get stored, cf. (1.21). For the protocol the nonadiabatic
coupling o 0,0 is bounded by its value at ¢ = 0. We find the condition

Labs‘r‘ KO
oy (K§—1)%

T>>2 (3.63)
We combine this expression with Eq. (3.61), and set Lo, = L/2 leading to a lower bound on the total
optical depth d = L/ L of the system,

cos? 6

K2
na R 4d2 0

> PR -1

(3.64)
Although this expression diverges for Ky — 1 it can easily be fulfilled for values Ky < 0.8 and
dp ~ 10 which are reasonable initial values, cf. Figure as cos? 0 < 1 under slow light conditions.
Consequently the storage of Rydberg polaritons is always adiabatic in terms of the polariton model.
This justifies the use of Luttinger liquid theory despite using an explicit time-dependence of the

parameters.

3.6 Conclusion

In summary, we considered many-body properties of Rydberg polaritons propagating under conditions
of EIT. Specifically, we considered the regime of off-resonant driving and strong repulsive interactions
in terms of large optical depth per blockade, where the physics is described by the many-body
Hamiltonian derived in the previous chapter. We considered many-body ground states of this model
calculated using DMRG calculations with open boundary conditions (provided by D. Muth), showing

strong density correlations. Particularly, we determined non-universal coefficients of the theoretical
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density-density correlations of a Luttinger liquid by fitting the DMRG results and showed that the
numerically obtained result is described by Luttinger liquid theory with a very good agreement. We
showed that the regime of strong correlations is difficult to reach under stationary EIT conditions, as
the experimentally accessible interaction strength, quantified by the ratio of interaction and kinetic
energy © cannot be made sufficiently large while retaining sufficiently large excitation densities.
However, this restriction can be overcome when dynamically changing the interaction strength. In
this way it is possible to reach the strongly interacting regime by turning propagating polaritons into
a stationary density wave of Rydberg excitations. We argued that a storage of Rydberg polaritons
is possible, despite the space-dependent two-photon detuning induced by the interaction, which
we confirmed for two polaritons using two-excitation wave-function simulations. Moreover, in a
dynamical finite polariton excitation densities can be preserved.

We used a time-dependent Luttinger liquid theory to calculate the time-evolution of density-density
correlations of the stored density wave. As the Luttinger liquid is a gapless theory, a fully adiabatic
storage can intrinsically not be achieved. By finding a storage protocol allowing to construct an exact
super-adiabatic solution of the time-dependent correlation functions, we could gain analytical insight.
We showed that a strongly correlated density-wave of Rydberg excitations can be generated, with
slowly decaying density-correlations that build up over a certain distance, marking a crossover to a
diabatic regime exhibiting a power-law decay with initial the initial exponent. We confirmed this
result by numerically solving the time evolution of the correlation functions. Furthermore we showed
that even in the case of initial thermal excitations a finite-range Wigner crystal can be created and
considered limitations. Finally, we considered limitations arising in experimental realizations of the
proposed polariton storage and found that the protocol is feasible.

Releasing this state from the medium by turning the stored density wave back into a propagating
pulse creates a Wigner crystal of photons correlated over a finite range, respectively time, that can be

observed by interferometric methods, cf. [8].
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Chapter 4

Bound states of Rydberg polaritons

In the previous section we considered dark-state polaritons propagating under conditions of electro-
magnetically induced transparency in a gas of Rydberg atoms. Specifically, we considered off-resonant
driving conditions with a single-photon detuning A. We showed by numerical simulations that the
g'?-function at small distances are strongly suppressed, see also [42]]. These results have been con-
firmed by experiments in the group of V. Vuletic, see [8]. However, in a more recent publication they
showed also bunching of photon pairs, [65], and even of three photons, [66}(94]. Naively, this seems to
be contrary to the results we obtained in the previous section. However, the phenomenon can easily
be explained by the existence of bound states of photons and the contribution of scattering states, as
was done in [8,[95]]. These publications investigated in particular the spectral properties of the system.
We analyze the conditions for and the dynamics of the creation of the bunching phenomena and the
dynamics at large times. To this end, we use a Green’s function approach to analyze the interplay of
two-photon bound states, i.e., photonic molecules, and the scattering continuum of two photons. We
use numerical methods to simulate the full system and confirm the analytical results. We find that
the scattering continuum leads to a robust phase shift which can be utilized to separate bound-state

and scattering contributions by an interferometric detection scheme.

The results presented in this chapter are published in reference [Moo0s2017] as a collaboration with
Razmik Unanyan and Michael Fleischhauer. In particular, I provided the numerical simulations and

contributed to the analytical calculations.

4.1 Green’s function approach

For strong interactions between Rydberg polaritons that lead to a large separation between these, the
interactions can be treated as a perturbation of the free model, see [68]. However, this treatment does
not capture the physics at short distances, particularly bound states and the associated bunching of
polaritons, as has recently been shown to occur under certain conditions 65,66} 95]]. Instead of using

perturbation theory, one has to consider the full scattering problem as was done in [[95] (see also [67])).
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Figure 4.1: Time evolution of wave function for two excitations propagating inside a three-level
medium, where we consider the propagation from free space into the medium, where
the former is not displayed in the picture. Depending on the conditions two qualitatively
different phenomena can be observed. a) Bunching for weak Rydberg interactions dg =
Rp/Las = 0.2 < 1, b) antibunching for strong interactions, dg = 2 > 1.

In [Mo00s2017|] we employed a Green’s function approach to treat the two-excitation problem. In the
following we want to review and discuss this approach.

A system of Rydberg polaritons under conditions of EIT is described by the truncated paraxial
wave equation for the operators g, Oges Ogr, Eq. (1.5). As we showed in Section for sufficiently
strong interactions as well as sufficiently small excitation densities, the system can be described by a

one-dimensional model.

Let us assume that the time evolution of the system is slow compared to the time scale set by
the complex detuning, I' = v + iA, such that it is justified to adiabatically eliminate the optical

polarization 6. The resulting equations of motion for the operators g, Ogr are then given by

12 £ _ i e +g*n gy/nQ £
Ot \ 6gr '\ gynQ 0?2 Gor
N At N A A%5 g
+ [ dzV(z =260, (2)0e(2)Ps, | . |, (4.1)
Ogr
where f’g,gr denotes the projector onto the atomic coherence, i.e., the second component of the
vector (5’ ,0gr)'. The matrix on the right hand side of the first line in Eq. we denote as H,
corresponding to the free problem that has dark- and bright state solution. Including the interaction
term in equation results in a set of coupled integro-differential equations that cannot be solved

directly. As it accounts for bound states we make a Green’s function approach for two-excitation
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4.1 Green’s function approach

wave function and use this to analyze the dynamics.The full wave function is given by
(W (1)) = 10) + [W1 () + [Wa(2)) + [W3(t)) + .., (42)

where |0) denotes the vacuum and |¥,,) denote the components with n = 1,2, 3, ... excitations in

the medium. For instance, the two-photon component is defined as

|\P2(t)> = % // d21 dZ2 {Sg(zl,ZQ,t)gT(zl)gT(ZQ) + 55(»21,22,75)5“21)5‘&(22)

+ 85(21, 29, t)é‘gr(zl)éT(Zz) + 88(21, 29, t)(“fgr(zl)&;r(@)} |0> s (4.3)

where N is a normalization constant and (21, 20, 1) = (0| £(21)€(22) | ¥2) and analogously for

the other components.

To analyze the creation and dynamics of photonic molecules, we specifically assume a two-photon

state
(W (t)) = [Wa(t)) - (4.4)

The complex detuning I" in Eq. in general couples the different components dissipatively in the
presence of interactions, which act effectively as a space-dependent two-photon detuning, shifting
photons out of the EIT transparency window. This dissipation manifests itself in quantum jumps
at random times, e.g. projections of the two-photon wave function onto the single-photon wave
function corresponding to the loss of a Rydberg polariton. In the far-detuned regime |A| > ~ the
probabilities of these quantum jumps are small, thus we neglect them. We note, however, that due to

dissipation the norm of the wave function is not conserved during time evolution.

The two-photon wave function is determined by the vector ¥y = (£€,£S,S&,SS)”. The

time evolution of W3 in real space is governed by the equation of motion,

.0 ~
1&‘112(2'177«'2775) = H(z1,22)W¥a(z1, 22, 1), (4.5)

i.e., a Schrodinger-like equation with the Hamiltonian H
H(z1, 22) = Ho(z1,22) + V(21 — 22)Pss. (4.6)

Here Ho = Ho(z1)®1o+19® Hy(z) denotes the free Hamiltonian and the operator Pss = |¢4) (4]
with |p4) = (0,0,0,1)7 is the projector onto the fourth component of the wave function, i.e. the
component SS of two atomic Rydberg excitations . Analog to Chapter[2)this equation can be integrated

numerically to find the time evolution of a two-photon wave packet.

Before we consider the numerical solutions in detail we summarize the Green’s function approach
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Chapter 4 Bound states of Rydberg polaritons

and the analytical results presented in [Moos2017]]. A detailed derivation can be found in the appendix
of this reference. Note that a similar approach exists using the 7" matrix [95]. We proceed as follows.
First, we transform the coordinates z; and 29 of the two-excitation wave function to relative and
center-of-mass coordinates, 1 = z; — 29 and R = %(21 + 29), respectively. Subsequently we
perform a Fourier transform with respect to the center-of-mass coordinate R according to f(R) =

J dK exp(iKR) f(K). Then we have to solve the initial value problem in K -space

9 .
1—Wsy(K =HWo(K
o o(K,r,t) = HW(K, 1, 1), @)

Wy (K, r,0) = |y,

p1) =
(1,0,0,0)T. It is straightforward to generalize the calculation to arbitrary initial states. Furthermore

where we choose an initial state |Ug) = f(K,r)|¢1), with only photonic excitation,

we restrict the calculation to negative detuning without loss of generality as the solution for positive
detuning can directly be constructed from the solution for negative detuning (and vice versa). With
our choice of initial state we can write a formal solution of the initial value problem, Eq. (4.7), that is

given in spectral Fourier representation by

EE() = - /°° dwe (K, 7) (o |G@)ler), ¢ 0, (48)

2mi J_ o

valid for ¢ > 0. The full Green’s operator G (w) is defined by

Glw) == . (4.9)
H—w—i0"

For large times ¢ and small distances 7 the expression is dominated by the low-frequency
contributions with |w| < Q2|T'|. To capture this limit we may approximate the Green’s function in
Eq. by

(p1lG(W)le1) = cos'(O)G(r, 1", w), (4.10)

where the Green’s function G(r, r’,w) is determined by the integral equation
G(r, 7, w) = Go(r,r,w) — sin*(0) /dr” Go(r, ", )W (", w)G(r" 7' w), (4.11)

where G denotes the Green’s function of the electric-field component of a non-interacting polariton
pair state with an effective mass m. The frequency-dependent effective potential and the complex
effective mass are defined as

V(r) g'n

m=1

T 1+ ag(w)V(r)’ 4el'vg’

(4.12)

92



4.2 Bound states — photonic molecule

— RW(r)
- SW(r) ]

o
=
I

0.5 - n

W in units of Cg
o
T
W in units of Cg
o
o
T
!

1

1
1
1
1
1
1
1
1

0 1 2 3 4 0 1 2 3 4

r in units of Rp r in units of Rp

(a) Positive detuning, A = 8y > 0. (b) Negative detuning, A = —8y < 0.

Figure 4.2: Real (solid blue lines) and imaginary part (dashed red lines) of effective potential W (r),
defined in Eq. for (a) positive and (b) negative single-photon detuning A = +8y
and 2 = 7.

with ago(w) = il'/(2Q? — iwl). In the limit of small w the frequency dependence can be neglected
and consequently we can set agg = % In Figure we plot the effective potential for positive
and negative detuning A. For relative distances > Rp the potential decays like the bare van der
Waals potential for both signs of the detuning. For small distances the potential becomes a constant
potential where the sign of the real part can be tuned by changing the sign of A, while the imaginary
part is always negative (but small) indicating losses.

In the limit of slow light and large single photon detuning the Green’s function GG describes the

evolution of a particle with the effective Hamiltonian

. 1 d2

e 4
Heg = 5 12 + sin*(0)W (r,0). (4.13)

In this limit the reduced mass is approximately given by the expression m = sign(A)(4vg Labs) .
We observe that the reduced mass also changes its sign with A as the effective potential W does.
The product of effective potential W and effective mass m always has a negative real part at small
distances, indicating the existence of bound states for both positive and negative single-photon

detuning.

4.2 Bound states — photonic molecule

In the following section we consider the spectral properties of the effective Hamiltonian. We analyze
conditions for the existence of a single bound state and investigate the properties and internal structure

of this bound state by means of the Green’s function approach and numerical simulations.

93



Chapter 4 Bound states of Rydberg polaritons

0 ~ T ~ 1 T T
| s\\ \{ _ =1,dp = 0.23
— \ _ 3 =3,dp =1.76 ||
% 0.1 ‘\\ n\f 4 <, 0.8 =5,dg = 3.40
(3] \ \\ 'S
EO —0.2 |- ' > N_: 0.6 |- N
] ' n=3 =
s 03| ' 1 % 0.4 B
K= n=2 ‘é
o —0.4| n= 1 02 2
\ ]
—0.5 \ | \\ | 0 | N
0 2 4 6 —6 6

Optical depth per blockade dp 7 in units of Rp

(a) Spectrum of effective Hamiltonian (b) First symmetric eigenstates 9, .

Figure 4.3: Results of numerical diagonalization of the effective Hamiltonian g, Eq. for a
system of finite length with periodic boundary conditions and under the assumption
|A| > ~, where the non-Hermitian part of the Hamiltonian can be neglected. (a) Bound-
state energies E,, in dependence of interaction strength, respectively optical depth per
bloc2kade volume dp. The (light blue) dashed-dotted line is the approximate solution Ey ~
—%d% from Eq. (4.25). We restrict the plot to energies larger —Q?/2|T'|, as the effective
Hamiltonian is only valid for small energies. (b) First three symmetric eigenstates 1), for
different optical depth per blockade dg corresponding to low energies F,, = —0.05Q2/|T|
for n = 1, 3, 5. Note that the r—axis is scaled in units of Rp which is different for each
shown state. We show only symmetric eigenstates, as antisymmetric states cannot be
excited.

4.2.1 Bound states

In the far-detuned limit, |A| > ~, the Green’s function G(r, ', w) can be written as a sum of bound
eigenstates of the Hamiltonian, denoted by ,,, and scattering (continuum) states, denoted by ¥g. In

real space this sum is given by

N * (0] * (]
G(T, ,,J’w) — Z wn(rﬁpn(r ) + /dE "Z}E(T)d}E(T )

n\’ / 4.14
w—FE, w—FE (4.14)

n=1
with the bound state eigenenergies F,, that are in general complex and are increasing with increasing
optical depth per blockade, dg = Rp/ Laps. A sufficient condition for the existence of bound states in

the spectrum of a Hamiltonian is given by the product of (effective) mass and the area of the (effective)
potential [96]],

m/oo drWi(r) <0, (4.15)
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4.2 Bound states — photonic molecule

which is in our case fulfilled, as for negative single-photon detuning A the product of m and W (r) is

negative for all . Furthermore the number NV of bound states can be estimated [96] by
oo
N < 1—|—2|m/ dr [ W (r). (4.16)
—00

This equation determines a condition when the number of bound states is smaller than 2, i.e,, a
condition for the existence of a unique bound state. For a constant effective mass the number of
bound states depends on the area of the effective potential, i.e., depends on the strength of W. Using
the definition of the effective potential and the effective mass, we can derive the condition for the

regime where only unique bound state exists,

R 2v3
dg = —2 < 2V3 1.2861. (4.17)
Laps ™

This regime is determined by the optical depth per blockade dp being small, i.e., in the regime of
weak interactions. To observe bound states one has to operate in this regime, where the relevant

energies are close to zero, as can be explained as follows. Conditions of EIT require that the energies

of the bound states have to be small compared to 2 /|T

,1.e., deeply bound states are subject to losses
respectively dispersion, depending on the single-photon detuning. Moreover, deeply bound states are
strongly localized and thus difficult to excite by a flat initial photonic wave-packet. In Figure we
show the spectrum calculated for the Hamiltonian Eq. in dependence on the optical depth per
blockade, dg. In Figure [4.3(b)] the absolute value of the corresponding eigenstates for n = 1, 3,5 are
displayed, i.e., three lowest symmetric states. These states are calculated for different optical depths,
such that they have the same energies E,,. We observe, that the n = 1-eigenstate exhibits a much
larger spatial extent. For small dp the effective Hamiltonian exhibits only a single bound state while
for increasing dp additional bound states exist. The energies of each of these bound states increases
with dg. In Figure we show the first symmetric states, where we chose dp such that their
corresponding energies are equal. As can be seen, although they have equal energies, the spatial size
of the higher bound states is on the order of the blockade radius R while the first bound state has a
much larger extent compared to . Note that Rg ~ dp !is different for the different curves. This
and the increasing number of oscillations makes it hard to excite higher bound states. Consequently,

only weakly bound states are feasible to create experimentally.

4.2.2 Internal structure of the bound state — photonic molecule

In the previous section we have shown that the ££-component of a two-excitation dark-state polariton
can be described using an effective Hamiltonian that possesses bound eigenstates. In particular for

small dp a single such state exists that has a large spatial extent.
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Having identified this regime of a unique bound state we now turn to the calculation of the internal
structure of this bound state in terms of the components of the two-excitation wave function ¥s. To
this end we simulate the time evolution of an two-photon wave-packet Wy (K, r) numerically, using
a discretization of space and a finite difference scheme for the relative coordinate r and setting the
center-of-mass momentum K = 0. For small relative distances |r| < Rp, i.e., inside the blockade
radius, the SS-component has to be strongly suppressed due to the Rydberg blockade, while for
distances |r| 2 Rp the effect of the interaction potential is negligible. Consequently, we expect the
internal structure of the bound state wave function to be a dark-state polariton pair state, described

by a product wave function VW (K, ),
EE=cos? UV, ES, =—sinfcosf VU, ES_ =0, SS=sin?0VV, (4.13)

except inside the blockade radius. In Eq. we defined £S5+ = %(58 + S&). Making this
observation, we set the initial wave-packet as a product state of two polaritons, where we modify the
SS-component inside the blockade radius by multiplying it with 1/(1 — ﬁV(T)) This suppresses
initial SS-excitation inside the blockade distance. Starting with this initial state we simulate a time
evolution of the two-photon wave function according to Eq. for positive as well as for negative
detuning. After a time of t = 20% we get the results shown in Figure |4.4) where we display the £&-
and SS-components as well as the symmetric and antisymmetric superpositions £ES4 := ES + £S.
We observe that the SS-component is strongly suppressed inside the blockade radius as expected, and
thus the bound state has mainly photonic character in this regime. For larger distances, the internal
structure is close to that of two dark-state polaritons, i.e., given by Eq. (4.18). A small but nonzero
antisymmetric component £S_ and correspondingly a slightly increased spin excitation outside the
blockaded region indicates small corrections. In the case of positive detuning sharp resonances in the

SS-component can be observed corresponding to the pole in the effective potential.

In the regime of small dg where only a single bound state exists, we can write the photonic
component of the wave function using Eq. (4.8) and Eq. (4.14) and obtain

EE(r,t) = cos® BChe oty (1) + /dE C(E)e Flypp(r), (4.19)

where Cy and C'(F) denote the overlap integrals of initial state and bound and continuum states,
respectively. To get the internal structure of the bound state we neglect the second term corre-
sponding to the continuum part and insert the solution for the photonic part into the two-excitation
Schrédinger equation (4.7). Assuming that g?n/|A| > {cK, |Ey|} one can calculate the remaining
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Figure 4.4: Photonic molecule state obtained from numerical time evolution of the paraxial Maxwell-
Bloch equations for K = 0, g = 205, dg = 0.2, and ¢ = 20 in units of |A|/2Q2. Shown
are the amplitudes of the wave function components £, £S5+, SS, and W (r)EE, and
each scaled with powers of cos 6 according to Eq. to make them comparable. (a)
shows the result for negative detuning and (b) shows the result for positive detuning,
where the S'S-component exhibits resonances. Outside the blockade radius we find small
deviations from the result we expect from Eq. (4.20).

components [[Mo00s2017] and arrives at the two-photon wave function

cos? 6

—sinfcos @

W(r,t) = cos? 6C) o (r)e Bt (4.20)

—sinf cos 6
sin? 6
1-555V(r)
where the factor cos? 6 in front is from projecting the intial state onto the state of two free polaritons
and can be changed by choosing a different initial state. Eq. describes a two-photon wave packet
that exhibits bunching for small distances and propagates form-stable through the medium, i.e., a
photon molecule state. This agrees well with the result shown in Figure 4.4 obtained by numerical
wave function propagation. Note that for distances |r| > Rp it holds V (r) < 222/A and ¥, has

the internal structure as a product of two Rydberg polaritons, cf. Eq. (4.18).

4.3 Time evolution of bound and scattering states

In the previous section we showed the existence of a photonic molecule pair state and calculated
its internal structure. In doing so, we neglected the scattering continuum. However, in general the

full state is a superposition of bound and scattering states, and as we assumed a flat initial photon
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Chapter 4 Bound states of Rydberg polaritons

distribution, the scattering continuum has to play an important role in explaining the full numerical
result. In this section we analyze the time evolution of the full state as well as the interplay of bound

and continuum states.

In the limit of low excitation the spatial character of the interaction is not important, only the

area of the interaction is relevant. Thus, the effective potential can be approximated by a point-like

pseudopotential with the same area [[Mo0s2017|],

2 202 sin 0
Wealr) = ~-
) = AT T+ /1A

5(r/Rg). (4.21)

For convenience we introduce below dimensionless units such that time and space coordinates are

measured in units of (2022/|A|)~! and Rg, respectively.

Within this approximation, one can show that the initial value problem with a uniformly distributed

initial two-photon state admits analytical solutions, that are closed expressions [M00s2017| given by

SCSO (SZ ;) gexp(ﬂft — Blr]) + erf (\F 1)

+ exp(—iTt - 577\7“0 [1 + erf(— sign[%(ﬁn)}@ + \/g]r\)} . (4.22)

The constants 5 and 7 are defined by

2T 1

3 (L+ipgg)/6

di

1
p= SA+iL) Fig) (4.23)

77:

The first term 2 exp(—i%rﬁt — Bn|r |) right hand side of Eq. corresponds to a single bound
state wavefunction of the effective potential Weg(r), if the condition R(Sn) > 0 is fulfilled. This
holds, if |A| > 0.8665 , i.e., under off-resonant driving conditions. This condition also shows that
bound states require a sufficiently large single-photon detuning, i.e., an off-resonant EIT setup. From
Eq. we can read off the size of the bound state as being

r, & (Bn) L & gd]§2, (units of Rp), (4.24)

which is much larger than the blockade distance Rg, for dg < 1. In Figure[4.5|we show the bound and
scattering components according to Eq. (4.22)) and a comparison of the sum of both with a numerically
calculated state. We observe that in the vicinity of » = 0 the spatial structure of bound state and

continuum state are the same.

The energy of the bound state can be read off Eq. (4.22). Expanding up to second order in /A we
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Figure 4.5: Second order correlation functions |£€(r,t)|? of two photons as function of relative
distance 7 and fixed time ¢ = 20 (in units of |A|/20?). The solid blue line shows a
numerical calculation for K = 0, g/Q2 = 100, A = —4+~ in the weakly interacting regime
with dg = 0.2. The dashed red and the dotted yellow line show the bound and continuum

part of the wave function, respectively, according to Eq. (4.22), and the dash-dotted purple
line shows the sum of both.

obtain ) )
8 44
Egz—ld]%) <1_17_7) ’ (4.25)

which is complex-valued. The imaginary part gives rise to an exponential decay of the bound state
with the rate

o A~ 2.924 d%%. (4.26)

Note that both E and 7, are in units of 2022 /|A|. We observe a slow decay of the bound state, i.e., a
long lifetime can be achieved in the regime of small optical depth per blockade, dg < 1, and also be
improved by a large single-photon detuning.

Interplay of bound and continuum states. The analytical solution allows us to analyze the
properties and the dynamical interplay of bound state and continuum states. At small distances r = 0
and for large times the analytical solution (4.22) can be simplified to the expression
iﬂ"]Z ].

r)-

}7
7r772t
21

£E(0,1) = cos* 0 [2 exp (— (4.27)

where again the first term on the right hand side corresponds to the bound state and the second term to

the scattering state contribution. This correlation function illustrates that both bound and continuum
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Figure 4.6: Time evolution of bound and scattering state components and full state of the two-photon
wave function EE(r = 0, t) at zero relative distance, calculated according to Eq. and
by using numerical simulations of the two-photon wave function. (a) and (c) are for a
small single photon detuning of A = —1.5+, while (b) and (d) show results for A = —12+.
(a) and (b) are log-log plots of the intensities and (c) and (d) show the time evolution of
the phase arguments, in particular the difference in phase between bound and scattering
components. The results are in the regime of slow light and weak interactions, where
dp = 0.2 and ¢g1/n/Q = 100. The dashed vertical lines in (a) and (c) displays indicates
the time scale t(, where the character of the full state crosses over from bound state to

scattering state. Note that for large detuning ¢y is larger than the maximal time displayed
in (b) and (d).
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setup that can be used to filter and detect bound-state and scattering-state contributions.

parts of the wave function contribute to the bunching. Initially, the contribution of the bound state is
twice as large as the scattering states, but they interfere destructively, so the superposition of both
sums up to the flat initial state. Then both evolve in time qualitatively different. While the bound
state exhibits an exponential decay as discussed above, the continuum state decays algebraically
in time, i.e., ox 1/ \/t. The exponent of this is fixed, while the decay rate of the bound state can be
changed by tuning the single-photon detuning. Moreover, considering the complex phases of the two
components, Eq. we find that the bound state acquires a dynamical phase, while the continuum
contribution asymptotically approaches a constant phase. The interplay of this leads to an oscillatory
behavior, as shown in Figure which will be discussed below in more detail. Using Eq. we
can define a time scale ¢y such that for times ¢t < ¢y the superposition is dominated by the bound
state while for times ¢ > t( the continuum state is dominant. It can be shown that ¢ is minimal for

v/|Al = tan 3T ~ 2/3 where
T

to " —5.
°7 242

(4.28)

In the regime of weak interactions, dg < 1, it holds ¢y > 1 in units of the inverse off-resonant EIT
linewidth |A[/2Q2.

4.4 A scheme for detection of bound states

From equation (4.27) we obtain that the bound state acquires a dynamical phase of

Pu(t) = %%{an}t, (4.29)
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that grows linearly in time. Thus, on the one hand, at the point v/|A| = tan ?1’% the dynamical phase
vanishes, as 18{3n%} = 0. On the other hand, the scattering continuum approaches asymptotically a
constant value, depending on the single-photon detuning A. For v/|A| = tan ?{—g this constant value
is —7/2 and then decreases with increasing detuning to an asymptotic value of —37 /4. Although the
continuum phase ¢¢ont, reaches this constant value only in the limit ¢ — 0o, already for intermediate
times the phase is close to this asymptotic value and changes slowly in time, cf. Figures[4.6(c)|and[4.6(d)|
Furthermore, as Figure shows, the continuum phase is very robust, as it depends only on |A|/~,
and thus can be tuned by changing the frequencies of the probe and control fields. This allows to
build a detection setup for filtering bound and scattering state components.

When taking also the amplitude evolution into consideration, one can distinguish three regimes
depending on the ratio |A|/~. For small single-photon detuning the scattering continuum dominates
the dynamics at all times and attain a phase of —7 /2. For intermediate detuning the photon bunching
is dominated by the bound state at small times up to the crossover time ¢y, where the continuum
states start to dominate. Lastly, for large detuning the continuum states decay very quickly and the
bunching is solely due to the bound state on all relevant time scales.

To observe the bound state, i.e., a photonic molecule state, one could try to perform experiments in
the far-detuned regime, where the continuum decays much faster than the bound state. However, a
far detuned EIT setup is experimentally challenging, it is much easier to work in the regime of small
to intermediate detuning. The robustness of the phase ¢}, of the scattering states makes it possible to
filter the bound and scattering state components by employing interferometric techniques as e.g. the
homodyne detection setup as sketched in Figure In the regime of intermediate detuning the

decay of the bound components is sufficiently slow and the phase of the continuum components is

only changing slowly and close to their asymptotic value.

4.5 Conclusion

To summarize, we investigated the propagation of Rydberg polaritons under conditions of electro-
magnetically induced transparency and off-resonant driving, i.e., with a finite single-photon detuning.
Particularly, we discussed the bunching that has been observed under these conditions [65], see
also [66]. By using a Green’s function approach we derived an effective model for two dark-state
polaritons and analyzed its spectral properties, showing the existence of bound eigenstates. We
showed that in the regime of weak interactions, manifesting in a small optical depth per blockade, the
off-resonant model has a single eigenstate close to the scattering continuum, i.e., a photonic molecule.
We argued that this low-energy bound state is experimentally accessible, while higher-order bound
states are difficult to excite. Using two-photon wave function simulations of the full Maxwell-Bloch
equations we confirmed the existence of bunching for sufficiently small values of the optical depth

per blockade, as opposed to the anti-bunching that has been discussed in Chapter [2]in the case of
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stronger interactions.

We showed that the bunching of photons arises from two contributions, i.e., additionally to the
bound state, scattering states play a role. By using the Green’s function approach we derived analytic
expressions for the bound state and continuum wave functions in the limit of very weak interactions,
where the effective interaction potential can be approximated by a ¢ potential. This expression
allowed us to investigate the time dependence of the bound state and continuum components, where
we found that the bound state decays exponentially, while the scattering state exhibit an algebraic
time dependence. For small evolution times up to a certain cross-over time scale the bunching of
polaritons is dominated by a superposition of bound and continuum wave function. For large times,
however, the continuum contribution dominates the observed state. Since the continuum component
asymptotically attains a constant phase, that depends only on the single-photon detuning we proposed
to use an interferometric detection scheme to filter bound and continuum components. This allows

for an isolation and observation of photonic molecules by using standard interferometric methods.
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Chapter 5

General conclusion and outlook

The aim of this thesis was to investigate few- and many-body properties of interacting Rydberg
polaritons. To this end, we derived conditions, when a three-dimensional setup can effectively
described by a one-dimensional model. Using this as a starting point we showed in Chapter 2| that
the physics of Rydberg polariton can be described by a field theory of a single field. We derived the
master equation governing the time evolution of this field and discussed the properties of its various
dissipative and unitary terms. We could confirm this result on the few-excitation level by comparing
with numerical simulation of the full Maxwell-Bloch equations of photons propagating in a gas of
Rydberg atoms. Moreover, we found a regime, where the master equation reduces to a Hamiltonian
description, i.e., the time evolution becomes unitary.

Building on the few-body results, we analyzed many-body properties of the Rydberg polariton field
theory in the regime of unitary description and small excitation densities. In Chapter [3| we showed on
the basis of correlation functions obtained by density-matrix renormalization group simulations, that
the many-body physics is very well described by a Luttinger liquid theory. Thus, in the case of strong
interactions, the correlations on large length scales are dominated by a density wave, giving rise to
a Wigner crystal of photons. As the blockade distance increases with the interaction strength, this
regime is inaccessible for propagating polaritons while keeping sufficiently large excitation densities.
We proposed a solution to this problem, by using a dynamical protocol turning propagating polaritons
into a stationary density-wave of Rydberg excitations and at the same time increasing the interaction
strength, while keeping excitation densities finite. Releasing this density wave from the medium
by turning it back into a propagating polariton pulse generates a regular train of photons. As an
outlook, one could extend the results by imposing a lattice potential on the polaritons giving rise
to sine-Gordon physics [32] that allows for true crystalline order[97]]. In this case a stationary light
setup [[49, 98] should be used.

Finally, in Chapter [4] we investigated a different regime of weak interactions, where under off-
resonant driving conditions bunching of photons has been observed [65]. By utilizing a Green’s
function approach and deriving an effective Hamiltonian for the two-excitation problem, we found

that this bunching can be explained by an interplay of continuum states and bound states, photonic
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molecule states. We showed that the bound states have a Rydberg polariton-like structure except
for small distances inside the blockade radius. An analysis of the time evolution of the continuum
and bound contributions during propagation revealed a robust asymptotic phase for the continuum
states, allowing for an isolation and subsequent observation of the photonic molecule. Building on
this result, many further questions can be addressed. A natural next step would be to extend the
results to more particles, as bunching has very recently been observed for three particles [66]]. Even
beyond that, one could investigate interactions between pair-states possibly yielding a many-body

theory of photonic molecules.

In conclusion, let me observe that Rydberg quantum optics is a vibrant and exciting research
field. The combination of slowly propagating polaritons with strong nonlocal van der Waals-type
interactions produces interesting properties ranging from the few-excitation level to many-body

physics giving rise to many possible applications.
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Appendix A
Derivation of the Rydberg polariton model

In this appendix we present details on the derivation of the Rydberg polariton model used in the
main text. Specifically, we derive the Heisenberg-Langevin equations for a quantized probe field
propagating under conditions of electromagnetically induced transparency (EIT) [1] starting from
the Hamiltonian of quantum optics. Furthermore, we find the polariton as a dark-state eigensolution

of this Hamiltonian and derive corrections using perturbation theory.

We remark that for all calculations we set i = 1.

A.1 Hamiltonian of quantum optics

A transversal electrical field consisting of a probe field and a classical control field

E(r,t) = Ey(r,t) + Ec(r, 1), (A.1)

where we assume that the fields are linear polarized parallel to the polarization vectors €, and €.,
respectively. Furthermore we assume that the probe field is varying around a central k-mode and

frequency, k;, = kpe. and w;, = ckp, respectively. Thus we can write the probe field as

E(r,t) = Z \/ Q:;qV (dq(t)epeiq'r +H.a.) = ;u—;; (epg(r, t)ellkpz—wpt) | Ha) (A.2)
q

where V' denotes the quantization volume and in the first equation we used the general definition

of a linear polarized, quantized field, that reduces to (A.2) under our assumptions, with the slowly

5 1 wWq 2 —i(Awqt—Aq-T
E(r,t) = Nz Z \ op g (Awgt=Aqr) (A.3)
q

Here we defined Gq = dqet“a’ and Awg = wq — wp, Aq = q — k;,. Note that E(r,t) o« V-1/2is a

varying operator

normalized operator, and thus Eté gives the photon number density. Using the bosonic commutation
relations of the creation and annihilation operators, [ax, &L,] = Ok k’» We can derive commutation

relations for the slowly varying field operators

[E(r,t), (', t)] = 6(r — 1). (A.4)
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The classical probe field is given by
E(r,t) = €. F.(r,t)elFe*mwet) 4 ¢ c. (A.5)

yielding for the full field operator
E(r,t) = 4 /ﬁ (epf’(r,t)ei(kpz_wpt) + H.a.) + (ecEc(r,t)ei(kcz_th) + c.c.) . (A.6)
2¢q

The atomic medium consists of 3 (or 2) states |u) with corresponding energies w,, and the free

Hamiltonian of an atom at position r; is given by
Ha = Z""#&Lw (A7)
o

where we introduced the spin flip operators 6fw = |u); (v|;. For these we can deduce the commutation

relations by using the orthogonality of the atomic states (11;|vj) = 6; 0, yielding
(020251 = 01 {Ov.a0ls — p,u0h, }- (A.8)

The coupling of an atom and the electromagnetic field is in dipole approximation described by the
Hamiltonian
Har = —d - E(r;). (A.9)

Using the identity 1 = we can write the dipole operator in the form

w O
A= lui (ulid Y1) Wl =D o, (A.10)
o v v

where we denote the dipole matrix element g, = (| d |v) which we assume to be the same for all

atoms (, which trivially holds if they are identical).

A.1.1 Three-level atoms

Now we restrict ourselves to atoms with three levels denoted by |g), |e) and |r), where the free

Hamiltonian of an atom is given by

Ha = WgOgg + WeOee + WrOrpr. (A.11)
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A.1 Hamiltonian of quantum optics

Without loss of generality we set in the following w, — 0, which is equivalent to performing the

unitary transformation

Ho — UHUT +i(0,0)U1 (A.12)
(see below) with U = exp{iwg(Fgg + Gece + I1r) }, such that the atomic Hamiltonian becomes
ﬁa = WegTee + Wrglrr (A.13)

where w,,, = w, — w,. Moreover, we assume that the transition |g) <> |r) is dipole-forbidden

A~

and that the non-zero matrix elements ¢, are real. Thus the dipole operator is given by d =
©ge(0ge + Oeg) + Per(Ter + Gre). We use this and the electromagnetic field in the dipole interaction
Hamiltonian, Eq. (A.9) and furthermore assume for simplicity that g, L €. and ge; L €. Then the

dipole interaction Hamiltonian becomes
1. — “p E(r. )ellkpz—wpt) | 1 - o
af = — Q—E()gage -€p (E(r,t)e +H.a.) (0ge + 04
— Per - €c (Ecei(kcszct) + C‘C'> (Ger + 6re) . (A.14)
We perform a unitary transformation to a frame rotating with optical frequencies wy,, w. generated by
U= eit{wp&ee—i—(wp—i-wc)&”}. (A.15)
This transforms the free atomic Hamiltonian to

Ha = (Weg — Wp)Fee + (Wrg — Wp — We)Orr = Abee + 00yr, (A.16)

where w,,, = w, — w, and where we introduced the one- and two-photon detuning A = wez — wp,

and 0 = wye — we + A, respectively. The atom-field coupling Hamiltonian gets transformed to
’ w 5 i(kpz— s i At
Hat = — /2—;5%8 - €p (5(1‘, t)ellkpz=wpt) 4 H.a.) (Jgee wpl Jgee “’pt)
— §er * €c (Ecei(kcz_wct) + c.c.) (6er6_i“’°t + c}reeiwct) . (A.17)

To simplify the Hamiltonian we perform a rotating wave approximation (RWA) thereby neglecting

fast oscillating terms proportional to e¥2“it, j = p, c. Defining the control field Rabi frequency
Q= e €. EFand g = %pge - €p we get the full Hamiltonian in rotating wave approximation
H = Ho + Hat = Abee + 0611 — {géT(r, t)Ggee P74 QF e T 4 H.a.} . (A.18)
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A.1.2 Coarse graining and continuum limit

For an ensemble of N atoms we write the full Hamiltonian as a sum over all atoms j at positions r;

H=3" {260 + 060 — g€ (), )50 % + ole o s Hal b (A19)

If N >> 1 we can split the atoms into bins, small volumes V' (r;) centered at r; containing N (r;) > 1
atoms, where ;N (rj) = N. We furthermore assume that the bins are sufficiently small such that
&(r) and exp{—ik, .z} are approximately constant for each bin. Then we can introduce continuous
atomic spin-flip operators by
&w(r)::Air) > 6h, (A.20)
keV(r)

which allows us to write the Hamiltonian in the form

=37 V() { Adeelry) + 60m(r)) — [9€1(r))0el,)e 55 + 0 re(rj)e %5 + Ha] }
J

(A21)
— [ d3rn(r), by letting V(r) — 0 while

Finally, performing a continuum limit . V(r;) ]‘\//gj ))
N(r)

v n(r) which is the atomic density at position r. This yields the continuum Hamiltonian

= / @ n(e) { Adee(r) + 56,0(r) — [81 ()00 (0)e 7 + 26e(r)e ™ 1 Ha} (A22)

The commutation relations of the continuous spin-flip operators can be derived as follows [[69]

Gas(). 0] = 3 3 [ohn6l)

keV(ﬂeV&

= r r’ Z (Sk l (5ﬁ #O'OW - 504,”&;’3,3)
k JLeV(r)

1 . .
— Ném/ (55,H0W(r) — 5a,ya#5(r))

In the continuum limit we get finally

[605(r), 6, ()] = %53@ ) (85,60 () — Ganus(r)), (A.23)

where the Kronecker delta changes to the Dirac delta function.
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A.2 Dark-state polaritons

A.2 Dark-state polaritons

In the following section we derive equations of motion for the dark-state polariton. To this end we
start from Heisenberg-Langevin equations for the atomic operators and the truncated paraxial wave
equation for the electromagnetic field from which we derive Maxwell-Bloch equations for a reduced
set of operators. We diagonalize these equations of motion in k-space to find the dark-state polariton

eigenmode and use a perturbation theory to find its equations of motion.

A.2.1 Heisenberg-Langevin equations

The Heisenberg-Langevin equations for the atomic occupations and coherences are given by

0i0gg = Leglee + ig (5T6gee_ikpz — f&egeikf’z) + Fgg, (A.24a)
060 = —Tegboe + Drebrr — ig (émgeefikpz _ g&egeikpz>

(e = Qo) + e, (A.24b)
Oree = —Tabe + i (Q*&ree—i’%z _ Q&ereikcz> . (A.24¢)
Or6ge = —(Vgo +18)5ge — ig€™* (6ee — Gygg) + 10 F Gy + Fie, (A.24d)
D0re = — (e +1(A = 8))bre + ig€*? 6,y — 10 (600 — Grr) + Fre, (A.24e)
Nibgr = —(Yar +10)5gr — 1gE*P*Gop + Q0 Ggoe % 4 Fyp. (A.24f)

I'cg and I'; are spontaneous emission rates from states |e) to |g) and from [r) to |e), respectively, since
we have a ladder configuration and the transition from Rydberg to ground state is dipole forbidden.
The rates v, are so-called transverse decay rates combining spontaneous decay rates and dephasing
rates. The operators F . are Langevin noise operators, that are d-correlated in space and time with

zero mean value,

A

<Fu> =0 (A.25a)
(Fi(r,t)E,(r',t)) = Dy d®(r —x))3(t — t'). (A.25b)

The coefficients D, are denoted diffusion coefficients and can be determined by the generalized
dissipation-fluctuation theorem [99]]. The Langevin noise operators are introduced to preserve
commutation relations of the operators when introducing decay. However, in the regime of EIT
there is typically only a small excitation of excited and spin (Rydberg) state present and therefore the
error arising from omitting the Langevin noise operators is small. Hence we will omit them in the
following for convenience. Together with the truncated paraxial wave equation, Eq. (A.30), that will

be derived below, the Heisenberg-Langevin equations form a closed set of equations of motion, called
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the Maxwell-Bloch equations.

The time evolution of the electromagnetic field E(r, t) is coupled to the polarization of the atomic

medium, according to Maxwell’s equation,

. 1 o
07 — AV2E(r,t) = ——0?P(r,t). (A.26)
€0
The polarization of the medium is defined by the average over all single atom dipole operators. In the

continuum limit it is given by
13(r7 t) = n(r) (gage6ge(r, t)e Wt 4 oo (r, t)e et 4 H.a.) , (A.27)

where we used slowly varying operators 7, as they are defined in the rotating frame we are using,
see Eq. (3.12). We put this definition together with the definition of the electromagnetic field, (A.6),
into Maxwell’s equation. Furthermore, we assume as before for simplicity that go,c L €. and ger L €,
and the polarizations of the probe and control fields are orthogonal to each other, i.e., €, L €.. As we

are interested in the dynamics of the probe field, we project the Maxwell equation onto €, yielding

w 5 i(kpz—w
(07 — 292 — V3], /27}; <5(r,t)e (kpz—wpt) H.a.)

1 .
= ——n(r)ep - Pge 07 (6ge(r,t)e ™?" + Ha.), (A.28)
€0
where we split the spatial derivative into z- and transversal derivative. We use the definition g =
%pge - €, of the atom-field coupling strength, the dispersion relation of the free probe field,

wp = ck, and arrive at:

[8?5 — PO2E — 2wy (D€ + ¢D.E) — C2Vi(€:| kpz=wpt) L Ha
_ _in(r) 82 5o 9 A, 24 —iwpt
= 9|05 0ge lwpge — WpOge|€ +Ha. (A.29)
“p

We observe that the operators d,. and & are slowly varying in time and space and time, respectively.
Thus we can make the estimations |02€| < wp|9:&|, |02 < kp|D.€| for the probe field and
|07 ge| < wp|DyGge| <K wl|Ggel for the atomic coherence and simplify Eq. (A-29) by neglecting the
higher order derivatives, accordingly. Comparing the coeflicients of the exponential functions we

arrive finally at the equation

c

ok V2 | E(r,t) = ign(r)dge(r, t)e *e?, (A.30)
p

8t+Caz—i

the truncated paraxial wave equation that will be one of the fundamental equations for our calculations.
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A.2 Dark-state polaritons

A.2.2 Maxwell-Bloch equations

In the following we want to make further assumptions and approximations to derive a reduced set of
equations for the relevant operators. In the regime of a weak quantized probe field we can assume
that the probe field is much weaker than the control field, ie., g <(§' ) < Q. Under this assumption we
can treat the probe field perturbatively. If we furthermore make the reasonable assumption that the
atoms are initially all in their ground state, we obtain in zeroth order of g€ that c}gé) = 1. Including
the paraxial wave equation (reduced to one spatial dimension for the moment) the equations in first
order in gf:' read
OE = —cO,E + ign(}éé)e_ikpz

065y = —(ge +1A)6 L) +ig€e®® 4 iQ5L0 e (A31)

05 = —(vgr +10)6L) +1Q (Ve ke
We omit the perturbation orders in the following and absorb a factor of 1/1/n as well as the spatial
oscillations with the wavevector k;, and the wave vector mismatch kj, — k. into the operators ¢

and 0y, respectively, by transforming

R | P . Lo k-

Oge —7 ﬁagee-ﬁkpz’ Ogr — %Jgrel(kp k:c)z7 (A.32)
i.e,, transforming also to spatially slowly varying operators. Multiplying the second and last equation
by /n results in the final Maxwell-Bloch equations

E(r,t) = —cd.E(r,t) + igy/ndge(r,t)
at&ge(r> t) = _(Pyge + iA)&ge(ra t) + ig\/ﬁé(rv t) + iQa—gr(rv t) (A-33)
O0pGgr(r,t) = —(Ygr +10)0gr(r, 1) + Q% Gge(r, 1),

that are the fundamental equations of motion for our calculations and numerical simulations of

interacting Rydberg dark-state polaritons considered in this thesis.

A.2.3 Perturbation theory in k-space

In this section we want to derive an effective equation of motion for the dark-state polaritons by
using perturbation theory. We transform the spatial coordinate z to the momentum space according
to f(z,t) = [dke % f(k,t). As we want to solve a system of equations of motion for the three

operators E , Ogr and e we define y = ((‘f , Ogrs &ge)t, such that the equations can be rewritten in the
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form

ioyy = (Ho + H1)y, (A.34)
0 0 —gvn —ck 0 0

Hy = 0 0 -Q |, Hi=| 0 4 0}, (A.35)
—g/n —Q 2T 0 0 0

where we set I' = %(’Yge +iA) and v, = 0 and H; denotes the perturbation Hamiltonian. For

simplicity we perform a rotation transformation

~

cos —sinf O E U
R()=|sinf cos@ 0|, RO |6e|=| T | =%, (A.36)
0 0 1 a_ge OA_gG

where the second equation defines the dark-state polariton U and the bright-state polariton P,

Applying this transformation to Eq. yields after rearranging terms
i0;% = [R(0)(Ho + H1)R™(0) — i0R(9)0pR™1(0))%. (A.37)

Choosing the mixing angle = atan(g+/n /) we get

0 0 0
RHoR™'=[0 0 —Q«&]l, (A.38)
0 —Qeg —2i0

g*né — Q%ck  —gQ(ck+9) 0

1
RHlR_lzg—Z —gQck +6) Q%6 —g*nck 0 (A.39)
ot 0 0 0
and
0 0
R(0)ORYO)=]-1 0 0], (A.40)
0 00

where we defined Qg = /g%n + Q2.

The unperturbed matrix RHyR ™! can be diagonalized giving the eigenvalues and (not yet normal-
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A.2 Dark-state polaritons

ized) eigenstates
[n%) = (1,0,0), Eo=0 (A.41)

and

E=/Qe, 1)¢
|m(j:> — (07 ?/ eff ) . By = —(iF + /QZPF_ FZ). (A.42)
|Ex[? /9% +1

The state [n°) corresponds to the operator U and has in zeroth order perturbation theory the eigenen-

ergy Ey = 0, i.e. is a dark-state. We want now to calculate energy corrections arising by the coupling

matrix H; = RH;R~'. Perturbation theory yields up to second order

oty =

(n®| Hy|n®) Z [(m ’Hlm ) ]\If (A.43)

= [—ckcos 0 + & sin? 9] U

2r ¥
Q0P+ Q% + T2 — Q%

—i(0 + sin 0 cos O(ck + 0))? 0 (A.44)

Note that in the limits A > v and A < , respectively, the term in the last (square) bracket becomes

iA  iAsin?6 4 v sin? 0
— =——— an =
0% g%n 202, 2g°n

, (A.45)

respectively, where we assumed Q% > ~? for the last expression. Furthermore, we used the identity

sin? @ = ¢g?n/ Qeff’ as this takes care of the 8- (and thus also time-) dependence of Q..

We can now derive a simple solution of this equation as given in [21] by integrating the time

variable, yielding

U(k,t) = U(k,0)exp {i/t dr [ck cos® (r) — & sin® 9(7)]}

0

X exp {—7 Z;SA /0 "dr sin? 0(7)[(r) + sin 6(7) cos O(7) (ck + 5)]2}
X exp{ 3 n/ dr Ap(r )} . (A46)

The first exponential factor consist of two terms, describing propagation of the polariton with time-
dependent group velocity vg(t) = ccos? 6(t) and an additional phase factor due to the two-photon

detuning d. The second exponential factor describes losses and dispersion of the polariton, where one
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of the two processes may dominate, depending on the ratio A /. Furthermore it describes corrections

arising from non-adiabatic switching of # and a finite two-photon § [21]]. The last exponential factor

with Ar(7) only contributes if -y is comparable to A, a regime that we are not interested in. Let us

now discuss the first and second exponential factor.

A.2.4 Adiabatic elimination

Equations of motion for the dark-state polaritons coupled to bright-state polaritons can also be derived

by adiabatic elimination of G4e. Starting from (A.33) and setting %6ge = 0 leads to

6&2) gfé' +1I‘Ugr

Inserting this into the equations of motion we get

Q° gv/nQ

(A.47)

(A.48)

(A.49)

Finally, transforming to the polariton degrees of freedom according to Eq. yields a set of coupled

equations,

d 0 -
d— = —ccos® 9& —csm&cos&a—(b 0P
d -

Q2 “ R “ ..
— = fH _ sin? Gﬁq)—csinﬁcosﬁg\ll—kﬁ\lf
0z 0z

dt T

describing the time evolution of Rydberg polaritons.
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Appendix B
Laguerre-Gauss transition elements

In this appendix we present the details on the calculations in section [2.1] In particular we present
the integration of the angular integrals by means of residue calculus and furthermore the derivation
of the approximate integration of the radial integrals.

B.1 Laguerre-Gaussian modes

Let us first reconsider the Definition of the Laguerre-Gauss modes. These are defined by

Il 9
Uy (r, p,2) = Cpi <T\/§> e—r2/w2(Z)+ilsoe—il<:pr2/2R(Z)ei(2p+l|+1)C(Z)L¥( 2r )7 (B.1)

w(z) \ w(z) w?(z)

where the normalization constant is given by

2

1 rv2 d 2/ o 272 7 (|I] + p)!
C2z2) = 27r/dr7" ( ) e /v (Z)L‘l|(7> SN 71y (B.2)

Pl w(z) \ w(z) P Aw?(z) 2 p

B.2 Effective interaction potentials

The effective potentials for a mode scattering as considered in the main text are defined by integration

of angular and radial coordinates,

~ 2 o] u* (r)u* (r’)u ; (r/)u . (I‘)
|74 = C, dodo drr'dr’ p1ly pala psl3 paly B3
PI(Z,Z) 6//0 pae //0 rdrr'dr [r2+T’2+2TT’COS((,0—<p’)+(z—z’)2]3’ (B.3)

where in polar coordinates r = (r, @, 2).

B.2.1 Angular integration

The angular integration can be done analytically by means of the residue theorem [60]. We consider

/ / dody 17T (B.4)
P la+ Beos(p — PP '

the integral
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where we introduced the notation ¢ = I; — Iy, ¢ =ls — I3, = 12 + 72 + (2 — 2/)? and B = 2r¢’
for simplicity. We restrict ourselves to the case & > 0 which can be justified by assuming that no
double Rydberg excitation can exist for z = z’. We want to perform the integration over . We do
this using the residue theorem applied to a rational function of trigonometric functions [60]], which

allows us to calculate the double integral as

/d(p’ e 19 o Z Res,, (f), (B.5)

‘zo|<1

i.e. a sum of residues of the function

fz) = sz (B.6)
2= (2az + Bel¥’ + 22e~1¢")3” '
This function has the poles z = 0 for ¢ > 2 and
.y 2
e = —%el‘p <1 +4/1— i) : (B.7)

As can easily be seen, it holds o > . Thus |z | > 1 and |z_| < 1 and therefore only z_ and z = 0

may contribute to the integral. A calculation of the residue yields

2 1\A2 (2 o2 oo — 32
Res._(f) =iz_? Cat): (Q(J(a;—_Q)52);;23q \/76 (B.8)

In particular the remaining ¢’-dependence of the integral is given by z_* o e 7' We can easily

integrate over the variable ¢/, resulting in
2 .
) —i(p ’
/0 A/ e PP —org . (B.9)

Thus, the full integral is vanishing except for the case, when ¢ = —¢’. For ¢ > 2 also the residue
Res,=o(f) yields a finite contribution to the integral. However, as the full integral is invariant
under changing ¢ <+ ¢’ and proportional to J, _, it has to be independent of the sign of p. Thus we
can take the result for ¢ < 0 and replace ¢ — —|q| to get the result that is valid for arbitrary ¢,

_ 522\ [ 2 2 (2 1\a2 2 _ 732
%zéq’_q( =t /o 5) (¢ +2)o <q(a2_”§2);23'Q'a\/“ P )

Inserting the definition of ¢, ¢’ we get the relation &, 1, 1,1, = 01,41, 15+1,> 1.€. @ conservation rule

for angular momentum.
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B.2.2 Approximate radial integration

For the radial integrals no closed expression can be given. However, in certain limits regarding 2z — 2/,
an approximate result can be derived for the integrals that reproduces the exact integrals quite well,
as demonstrated in the main text. Here we want to get a brief derivation of these results. To this end
we consider the limit « > 3, as holds eg. for sufficiently large z — z’. Expanding around 3/« = 0
yields for the integral in first order

(rr)ldl
(r2 + 72 4+ (z — 2/)?)lal+3"

I, = 0q—q2m*(1+ |g)) (2 + [q]) (1)l (B.11)
Now we restrict ourselves to the case of initial Gaussian modes, i.e., p3 = py = l3 = l4 = 0, and

denote [ = |q| = |l1|. Here we have to integrate

Vpl(z,z/) = Cp //0 rdr'dr’ Ifo(r, vz, 7). (B.12)

We are in particular interested in the intermediate regime for distances larger than a few beam
waists wg and smaller than a few Rayleigh lengths zg where the diagonal scattering potential is
the dominant contribution to the potential. In this regime all potentials decay as a power law with
different exponents. By making some assumptions we can derive an approximate closed analytical
expression for the integrals over 7, 1’ and hence the potentials in this regime as follows. In the limit
of |z — 2’| > 71’ the full integral can be written for Gaussian in-going modes (p3 = py = I3 =
l4 = 0) and taking only lowest order of 7/ as

5 (_1)l+1
Vi(2:2') = Ot

p1!po! —i(p14+1)¢(2) ,—i(pa+1)¢(2)
[+ 1)(1+2 g I e
(t+1)( )¢@+M@+W

o 1

[r(s)? +1'(s)? + (2 = &))"

(B.13)

< (wEuE) |

[e.@]
dsslesLél(s)/ ds' s"'e ¥ LL (s')
0 0

where we made the substitutions s = s(r, z) = 2r?/w?(z) and analog for s’ and r(s) indicates the
inverse of this substitution. Moreover, we set [ := |l;| = |l3]. For z, 2’ > s, s’ we can make a series
expansion of the fraction in the integral with respect to s, ¢/, in the point s = s’ = 0, yielding a power
series, that we will not consider here in detail, but analyze the contribution of its terms to the integral
as follows. Let us consider the m™ power ~ s™ of this series. Using Rodrigues representation [57] of

; : l,—srl _ dP [ —s p+l ; ;
the associated Laguerre polynomials, s'e™*L;,(s) = 5 (e sP ) we can derive the expression

oo p—1
/0 ds sl"'me_sLé(s) = (l—;'m)' H(] —m). (B.14)
b
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From this result we can directly read off, that the power s™ of the power series of the fraction in (B.13)
only contributes to the integral, if m > p, all lower orders of the power series cancel. For the leading
order of the power series the integral becomes (—1)P(I + p)!. Taking only the leading order and
repeating the argument for the second integral as well, we can finally determine the asymptotic

behavior in the intermediate regime in leading order as

Voi(z,2) o (z = 2')7%,  a=6+2(p1 +p2) + 2L, (B.15)

where we used that the terms of the power series of order (ss’)" are proportional to (z —2/)~6=2=2m,
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Appendix C

Equations of motion for single- and two

particle density matrix

Here we want to derive the equation of motion under the master equation (2.35) in the main text
for single- and two-particle correlations assuming, that initially only up to two excitations exist in

the system. In this case it is justified to keep only expectation values up to second order in \ii(z) and

Tl (2).

Equation of motion for single particle density matrix

% (U (2)T(z)) = ngabsi sin® 0 <[am®(x)]xi/(x) - @T(x)amxiz(x)>

+ mgQAZE sin 00, / A2V (2 — 2) (0 (2) 0 (2) ()0 ()

+ vg Laps sin’ 0 <[am\iﬁ(x)]\i/(m) i \iﬁ(:ﬁ)amif(x)>
U

n 2wg(;ﬁ sin*f [ dzV(z - 2) <[8x\i’T(x)]\ilT(z) () (z) — @T($)¢/T(z)\if(z)[8x\il(:n)]>

— 292{ sin? 0 cos? 6(2 — sin? 0) /szz(w —2) <\ilT(x)\ilT(y)\if(x)\i/(y)) (C.1)

Equation of motion of two particle density matrix

G ()3 () b)) =

ngabsi sin® 0 {[(am + Oyy) U1 (2) W ()W () U () — B ()T () (O + ayy)\i/(y)xi/(x)}

g sin 000, +0,) [V (@ = ) (#1(0) 9 (1) 1) $ o)
— 4925 sin? 0 cos? OV 2 (z — y) (UT (2) U1 () U (2)T(y))

~ g Laps it 0 { (D + Dy ¥ (@) ()] B () U () + 0 ()T (1) (O + 0y ¥ (0) 0 ()}

+ 2iv, i sin 0V (z — ) ([0, + 9,) ¥ (@) ¥ )] ¥(2) D () — ¥ (2) ¥ () (01 +0,) ¥(2) D ()] )

eff
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Appendix D

Finite differences on a non-uniform grid

We want to derive a finite difference scheme for the first derivative of a function f given at a
discretized nonuniform grid as sketched in Figure [D.1] To this end we consider three sampling points

Ziy Ti—1, Ti—2. Approximating the function f by the Taylor expansion at the point x; yields

Fla) = fa) + @ = ) f ) + 3 (= 205" + o)

We evaluate this at the sampling points x;_1 and z;_2, where we use the definitions A = x; — x;_1

and § = Ti—1 — XTj—2,

f(l‘i_l) = f(xz) — Af’($l) + %Azf”(mi) 4+ ... N (D.Z)

Flas-2) = £(a0) = (A +0)f ) + 5(A+ 0P (@) + .. 03

Multiplying these two equations with v and 3, resp., then calculating the sum and requiring o+ = 1

we find an expression for the first derivative, where the contribution of the second derivative vanishes:

0+2A A+d A

flwi) = mf(%) - Wf(l’i—l) + mf(wi—2) (D.9)

f(x) A

Figure D.1: Sketch of nonuniform grid.
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In the case of a uniform grid we regain the well known coefficients {3/2, —2,1/2} for a second order

backward finite difference scheme. This expression is of second order accuracy.
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