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Abstract

Ultracold atoms in optical lattices allow for a fascinating insight in the
world of quantum many-body systems. The comparatively easy control of
many parameters of these systems gives the opportunity to study many
models of solid-state theory experimentally without disturbing influences. In
particular, mixtures of several kinds of atoms promise an insight into physi-
cal processes whose observations in solid state systems are close to impossible.

This thesis deals with analytic as well as numeric studies of the ground state
of mixtures of a bosonic and (spin-polarized) fermionic species in periodic
potentials. Experimental realizations of such mixtures in the framework
of quantum optics already showed several new effects. Furthermore mix-
tures are of particular interest since the underlying models have a close
relationship to the research on high-temperature superconductors. To
investigate the phase diagram of such mixtures, a treatment in terms of the
Bose-Fermi-Hubbard model is applied, which is valid for small temperatures.
As a result of the large number of free parameters in this system, a detailed
investigation and comprehensive understanding of the phase diagram will
not cover the full parameter space; restrictions to special cases nevertheless
allow for a rather accurate description of physics of this system.

After introducing the model and the basic physics, the first part of the
thesis which is based on an earlier diploma thesis deals with the influence
of ultraheavy fermions onto the bosonic phase diagram. At this point
it has to be distinguished, whether the ground state is reached for the
full system or the bosonic sector for a given fermion distribution. In the
first case, the fermions either arrange themselves with a maximal distance
between each other or group close to each other. This depends on the
effective coupling between the fermions and is primarily determined by the
boson-fermion interaction. The second case describes a bosonic system with
binary disorder, where the special sort of disorder leads, as in the first case,
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ii ABSTRACT

to the formation of new incompressible phases at non-integer filling. In both
cases, analytic theories are presented, allowing to predict the bosonic phase
diagram.

In the second part, the situation of light fermions is considered. The strongly
enhanced fermionic mobility leads to an effective long-range interaction
between the bosons. A deeper investigation of this interaction shows, that
the assumption of completely uncoupled fermions leads to divergences which
have to be renormalized by inclusion of the back-action of the bosons onto
the fermions. Apart from the derivation of the effective bosonic interaction,
the resulting bosonic phase diagram is discussed. Starting from the effective
bosonic Hamiltonian it is shown, that the induced interaction leads to
the formation of bosonic density waves, accompanied by fermionic ones,
representing a further incompressible phase beside the Mott insulators. From
the discussion of boundary effects the existence of a thermodynamically
instable phase is found, which comprises density waves and Mott insulators
simultaneously.

Recent experimental results suggest that the theory of ultracold atoms in
optical lattices based on a first-band model does not explain all occurring
effects. The third part of this thesis is devoted to an effective theory for the
first band, which takes effects of all higher bands into account by means of
virtual transitions between the first band and the higher ones. Based on
this effective (renormalized) first-band model, the influence of the higher
bands, as well as the influence of the fermions on the bosonic superfluid
to Mott-insulator transition is studied and the results are compared to
experimental results.

Finally, part four of this thesis studies the Jaynes-Cummings-Hubbard model,
which describes the coupling of two-level atoms in a lattice to a bosonic field.
Although this does not describe a boson-fermion mixture, an approach where
the two-level atoms are treated approximately as fermions allows the easy
calculation of the phase diagram. This solution is applied to the case of ions
in a linear Paul trap which present a realization of the Jaynes-Cummings-
Hubbard model. Additionally, the findings are compared to results from a
degenerate perturbation theory as well as to numerical data.



Zusammenfassung

Ultrakalte Atome in optischen Gittern erlauben einen faszinierenden und
darüber hinaus kontrollierbaren Einblick in die Welt der quantenmechani-
schen Vielteilchenphysik. Durch die vergleichsweise einfache Kontrolle vieler
Parameter dieser Systeme lassen sich eine Vielzahl festkörpertheoretischer
Modellsysteme ohne störende Einflüsse experimentell untersuchen. So
versprechen insbesondere Mischungen mehrerer Atomsorten ein detailliertes
Studium physikalischer Prozesse, deren Beobachtung im Festkörper in
diesem Maße nicht möglich ist.

In der hier vorliegenden Arbeit werden sowohl analytische, als auch
numerische Untersuchungen an Mischungen einer bosonischen und einer
(spin-polarisierten) fermionischen Spezies in einem periodischen Potential im
Grundzustand durchgeführt. Experimentelle Realisierungen solcher Mischun-
gen haben im Rahmen der Quantenoptik bereits eine Vielzahl neuer Effekte
hervorgebracht. Sie sind weiterhin von besonderem Interesse, da die zugrun-
de liegenden Modelle beispielsweise eine direkte Verbindung zur Theorie der
Hochtemperatur-Supraleitung haben. Für die hier gemachten Untersuchun-
gen des Phasendiagramms wird das Bose-Fermi-Hubbard-Modell verwendet,
welches solche Mischungen im Fall niedriger Temperaturen beschreibt.
Durch die Vielzahl freier Parameter in diesem System kann eine detaillierte
Untersuchung und ein genaues Verständnis des Phasendiagramms nur
sehr schlecht den gesamten Parameterraum abdecken; Beschränkungen auf
spezielle Parameterbereiche erlauben hier dennoch einen fundierten Einblick.

Nach einer Einführung in das Modell und die dadurch beschriebene Physik
wird im ersten Teil dieser Arbeit aufbauend auf meiner vorangegangenen
Diplomarbeit der Einfluß sehr schwerer Fermionen auf das bosonische
Phasendiagramm studiert. Hier ist zu unterscheiden, ob das Gesamtsystem
oder nur der bosonische Sektor bei fest vorgegebener Fermionenverteilung
den Grundzustand erreicht. Im ersten Fall ergibt sich ein Bild, in dem
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iv ZUSAMMENFASSUNG

die Fermionen entweder einen maximalen Abstand zueinander bevorzugen
oder sich in benachbarten Gitterplätzen ansammeln. Dies hängt von einer
effektiven Kopplung der Fermionen untereinander ab und ist primär durch
die Boson-Fermion-Wechselwirkung bestimmt. Der zweite Fall beschreibt
ein bosonisches System mit einer binären Unordnung, wobei die spezielle
Unordnung ebenso wie im ersten Fall zur Ausbildung neuer inkompressibler
Phasen mit nicht-ganzzahliger Füllung führt. Für beide Fälle werden
analytische Theorien präsentiert, die eine Vorhersage für das bosonische
Phasendiagramm erlauben.

Der zweite Teil betrachtet die Situation sehr leichter Fermionen. Hier führt
die, im Vergleich zu den Bosonen stark erhöhte Mobilität der Fermionen
zu einer durch diese induzierten effektiven Wechselwirkung zwischen den
Bosonen. Eine genaue Untersuchung dieser Wechselwirkung zeigt, dass
eine Annahme völlig entkoppelter Fermionen Divergenzen liefert, welche
jedoch durch eine Berücksichtigung der Rückwirkung der Bosonen auf
die Fermionen renormalisiert werden können. Neben der Herleitung der
effektiven bosonischen Wechselwirkung steht die Diskussion des bosonischen
Phasendiagramms im Vordergrund. Ausgehend vom effektiven bosonischen
Hamilton-Operator lässt sich zeigen, dass die induzierte Wechselwirkung
durch die Fermionen zur Ausbildung von bosonischen und damit auch
fermionischen Dichtewellen führt, welche eine weitere inkompressible Phase
neben den bekannten Mott-Isolatoren beschreibt. Eine Diskussion des
Einflusses der Randbedingungen zeigt überdies noch die Existenz von ther-
modynamisch instabilen Phasen in denen Dichtewellen und Mott-Isolatoren
koexistieren.

Aktuelle experimentelle Ergebnisse zeigen, dass eine Beschreibung ultrakal-
ter Atome in optischen Gittern im Rahmen eines Einband-Modells nicht alle
Effekte beschreiben kann. Dazu wird im dritten Teil eine effektive Theorie
des ersten Bandes entwickelt, welche den Einfluss aller höheren Bänder
durch virtuelle Übergänge zwischen dem ersten und den höheren Bändern
berücksichtigt. Im Rahmen dieses effektiven (renormierten) Einband-Modells
wird der Einfluss der höheren Bänder sowie der Fermionen auf den bosoni-
schen Superfluid-zu-Mott-Isolator Übergang untersucht und in Relation zu
experimentellen Ergebnissen gesetzt.

Abschließend wird in Teil vier das Jaynes-Cummings-Hubbard-Modell be-
trachtet. Dieses beschreibt die Kopplung von Zwei-Niveau-Atomen in einem
regelmäßigen Gitter an ein bosonisches Feld. Obwohl hier zwar keine Mi-
schung aus Bosonen und Fermionen vorliegt, erlaubt die Näherung die Zwei-
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Niveau-Atome als Fermionen zu betrachten (effektives Fermionenmodell) eine
einfache Bestimmung des Phasendiagramms dieses Modells. Die so gefundene
Lösung wird dann zur Beschreibung von Ionen in einer linearen Paul-Falle
angewendet, was eine Realisierung des Jaynes-Cummings-Hubbard-Modells
darstellt. Die Ergebnisse dieser Näherung werden schließlich zu einer entar-
teten Störungstheorie sowie numerischen Resultaten in Beziehung gesetzt.





Introduction and foundations
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Introduction

Starting from the development of efficient laser cooling techniques for neutral
atoms [1, 2, 3], the field of ultracold atoms developed quickly, reaching the
long-term goal of a Bose-Einstein condensate (BEC) [4, 5] in Sodium [6, 7],
Rubidium [8, 9] and Lithium [10] in the mid 1990th. More elaborate cooling
steps finally led to the achievement of a degenerate Fermi gas [11, 12] and
further improvements in the experiments subsequently allowed to impose
optical lattices to the BEC (for an overview see [13]), culminating in the
first observation of a bosonic superfluid to Mott-insulator transition [14] in
Rubidium [15]. For the fermionic analog, very recently the Mott insulating
state for stronger lattices was reached [16, 17].

Apart from realizations in ultracold atoms, BECs can also be observed in
other physical systems as for instance in magnons in the solid state [18], exci-
ton polaritons in semiconductor microcavities [19] or, with some limitations
in liquid Helium as in the early works of [20, 21]. Even Cooper-pairs [22] in
superconduction theory [23, 24] can be seen as a BEC. However, only within
the framework of quantum optics it is possible to manipulate important
system parameters such as the interaction between the constituents or the
geometry in a precise way. Because of this and the fact that the nature
of the resulting ground and excitated states can be studied by a variety of
different experimental methods, ultracold atoms provide the state-of-the-art
approach to study many-body physics experimentally under maximum
external control.

Alkali elements are most suitable for laser cooling and trapping because of
their atomic level structure [25], but earth-alkali elements (Calcium [26],
Strontium [27]) and other elements as Ytterbium [28], metastable Helium
[29, 30] and Hydrogen [31] could also be used for a BEC. Important is
the achievement of a BEC of Chromium [32], since Cr has a large dipole
moment, thus realizing a dipolar BEC with intrinsic long-range (orientation
dependent) interactions.
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4 INTRODUCTION

After the step of a simultaneous trapping of bosonic (e.g. 7Li, 41K or 87Rb)
and fermionic isotopes (e.g 6Li or 40K) of the same or different elements
[33, 34, 35, 36], the combination of the degenerate mixture with an optical
lattice setup [37, 38] opened the route to study a large variety of different
physical model systems. The most prominent is the Bose-Fermi-Hubbard
model [39], introduced in section 1.3, which is the key model studied in this
thesis.

Beyond the issues of preparation of the BEC or degenerate mixtures, a large
progress in the manipulation and analysis of the ultracold-atom system
was made in the last decade. Starting from simple absorption images of
the atomic cloud, modern setups allow for a direct, in-situ, imaging of a
two-dimensional BEC [40, 41] or the usage of electron microscopy [42] with
single-site resolution. Additional to imaging, the physics of the BEC (with
our without lattice) was studied by noise interferometry [43] as well as by
several spectroscopic methods, including microwave [44], lattice modulation
[45, 46], radio-frequency [47] or Bragg spectroscopy [48, 49]. The latter
method was recently extended to a momentum-resolved measurement of
the excitation spectrum, allowing to study the full band structure as well
as interaction effects on it [50, 51]. For further details of the experimental
methods refer to the review [13] and references therein. [52] gives a
short introduction on the realization of a BEC using atom chips, another
promising implementation of ultracold atoms.

As latest points in the long list of achievements in the systems of ultracold
atoms, the controlled realization of (cold) chemical reactions [53, 54, 55]
and the in-deep study of genuine many-body states such as Efimov-trimers
[56, 57, 58] shows the enormous possibilities of ultracold atoms. Nevertheless,
many questions are still open. Though providing a fully controllable tool for
the simulation of well known Hamiltonians ranging from the Bose-Hubbard
model [59], the Hubbard model [16, 17] to effective spin models [60, 61, 62] in
various lattice geometries (dimensionality [63, 64], lattice types [65, 66, 67]
or including disorder [68, 69, 70, 71]), the nature of the different quantum
phase transitions still gives open questions. Considering ultracold atoms
as a quantum simulator [72], the implementations of quantum phase
gates [73, 74] are a further step towards a (scalable) quantum information
technology. As a far goal, the understanding of various important, but yet
unclear phenomena such as high-TC superconductivity [75, 76, 77] or the
physics of strongly imbalanced interacting fermions [78, 79] are prominent
outstanding problems to be explored. For all of these kinds of models, ul-
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tracold atoms provide a controllable environment to study individual effects
of the system which could not be discriminated against further effects in
other experimental realizations. Finally, the application of the lattice setup
opens the route to single-atom trapping which is important to metrology [80].

Focussing on the physics of mixtures of bosons and fermions in the optical
lattice, described by the Bose-Fermi-Hubbard model, we study in this thesis
the influence of the fermionic admixture on the well understood bosonic phase
diagram. This model is of special interest due to its relation for instance to
the coupling of fermions to phonons [81], fermionic polarons [82] or compos-
ite particles [83]. In a series of experiments [37, 38, 84] a strong influence of
the fermions to the bosonic superfluid to Mott-insulator transition was seen.
Similar experiments in Bose-Bose mixture reveal that only a small overlap
of the different atomic clouds suffices to observe the effect of inter-species
interactions [85]. Though some analytics and numerics has been done to un-
derstand these effects [86, 87, 88, 89, 90], several aspects are not understood
yet. Limiting on different regions of the parameter space, we develop analytic
approaches to provide a better understanding of the physics of interacting
bosons and fermions, supported by numerical simulations. This allows for
the construction of the bosonic phase diagram as well as the prediction of
qualitatively new phases.





Outline

Throughout the whole thesis we present different approaches to the physics
of interacting bosons and fermions, each of them allowing for the prediction
of the phase diagram in different parameter regimes. Starting with the
discussion of the general physics of ultracold bosons in optical lattices, the
first part of this thesis deals with the physics of the Bose-Fermi-Hubbard
model with vanishing fermionic mobility. Extending the results from a prior
diploma thesis, we study the influence of the fermions on the bosonic phase
diagram. In this limit, the fermions are treated as a source of disorder which
is assumed to be either quenched or annealed. In both cases, incompressible
phases with non-integer fillings arise together with the prediction of a
Bose-glass phase [Mering2008].

In the second part, the opposite limit is considered. Assuming the fermions
to be ultrafast, i.e., having almost infinite mobility, an effective bosonic
theory yielding induced long-range density-density interactions is derived
[Mering2010]. A first treatment of the induced interactions reveals the need
for a renormalization scheme, including the back-action of the resulting
bosonic charge-density wave phase to the fermions. Within the renor-
malized effective model, a strong-coupling theory gives analytic estimates
for the phase diagram, pointing to the existence of thermodynamically
unstable phases of coexistence between a charge-density wave phase and
a Mott insulator. Here, boundary issues are crucial for the understand-
ing of the system, leading to phases displaying a spatial separation of a
Mott insulator and a charge-density wave, also seen in numerical simulations.

Ultracold atoms in deep optical lattices are usually described by means of
a first-band model. Recent experimental results suggest however, that this
approach does not hold for a full understanding of certain aspects of these
systems. This problem, being discussed in the third part of this thesis, is
resolved by the inclusion of the higher bands into the Bose-Fermi-Hubbard
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model. Though contributing to the Hamiltonian, an adiabatic elimination
of these higher bands condenses their effect to an effective first-band
description extended by contributions due to virtual transitions to the
higher bands. Starting from this effective Hamiltonian, the effect of the
higher bands as well as the effect of the fermions to the bosonic superfluid
to Mott-insulator transition is studied and compared to experimental results.

The final part of this thesis studies the Jaynes-Cummings-Hubbard model
which describes the physics of two-level atoms coupled to a bosonic lattice
field. Approximating the two-level systems as fermions [Mering2009], the
Jaynes-Cummings-Hubbard model is easily solved with analytic expressions
for the phase diagram. Special application of this solution to the physics
of ions in a linear Paul trap displaying long-ranged bosonic hopping gives
a first estimate for the phase diagram of this system. Perturbation theory
as well as numerical results for the phase diagram finally validate the made
approximations.







CHAPTER 1

Foundations

In this chapter we provide the basic theory for the description of ultracold
atoms and mixtures in optical lattices and give a short overview over the most
important properties of the different phases. Before treating the mixture, we
focus on the discussion of the pure bosonic system, introducing the main
quantities and defining the notation. All this is done for a one-dimensional
system.

1.1 Bosons in optical lattices

Jaksch et al. realized in a pioneering work [59], that ultracold bosonic atoms
in an optical lattice are well described by the Bose-Hubbard model. Assuming
a local interaction V (z−z′) = gBBδ(z−z′) for the bosons with gBB = 4π~2

mB
aBB

and aBB being the s-wave scattering length, the continuous Hamiltonian
reads

Ĥ =

∫
dzΨ†B(z)

[
− ~2

2mB

∆ + V B
Pot(z)

]
ΨB(z)

+
gBB

2

∫
dzΨ†B(z)Ψ†B(z)ΨB(z)ΨB(z).

(1.1)

A potential V B
Pot(z) = ηB sin2(kz) is considered with k being the wave-vector

of the optical lattice laser and ηB the amplitude of the potential. No
additional harmonic confinement is included. Details about the physical
effects of the lattice potential can be found in section 17.1 and in [13, 91].
Here we shortly summarize the main features of this system.

11



12 CHAPTER 1. FOUNDATIONS

For the field operators it is convenient to switch to a localized basis in terms
of Wannier functions (see section 1.2), i.e., decomposing ΨB(z) as

ΨB(z) =
∑
j

âj w
B(z − ja) (1.2)

with a being the lattice spacing. We only incorporated Wannier functions
from the first Bloch band, which is a good approximation for deep lattices
and low temperatures, i.e., if the temperature is small compared to the band
gap1. The replacement of the field operators in the continuous Hamiltonian
leads to a lattice model, the well known Bose-Hubbard model [14]:

ĤBHM = −JB
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1) + ∆B

∑
j

n̂j. (1.3)

n̂j = â†j âj is the number operator and â†j (âj) the bosonic creation (annihi-
lation) operator at lattice site j. This model also describes the physics of
liquid 4He in pouros media [92] or an array of Josephson junctions [93, 94].
The first term is the kinetic energy, i.e., the hopping of a single particle from
one site to its nearest-neighbors with amplitude

JB = −
∫

dz w̄B(z − a)

[
− ~2

2mB

∂2

∂z2
+ V B

Pot(z)

]
wB(z), (1.4)

the second term the local nonlinearity with

U = gBB

∫
dz w̄B(z)w̄B(z)wB(z)wB(z) (1.5)

and the last term is the band energy

∆B =

∫
dz w̄B(z)

[
− ~2

2mB

∂2

∂z2
+ V B

Pot(z)

]
wB(z). (1.6)

A discussion of the properties of these amplitudes as a function of the lattice
depth ηB is found in the next section. Generally, we set the energy scale
by U = 1. All other amplitudes, though not explicitly written, are referred
to this energy. In Hamiltonian (1.3) no other contributions occur beside

1In part III we show that this assumption is too strong and does not allow a full
understanding of experimental results; higher bands are important in the experimental
situation but here they unnecessarily complicate the system and are henceforth left out
throughout the whole thesis besides part III.
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local interactions and nearest-neighbor hopping. This is a common simpli-
fication for these kinds of models, since all other amplitudes are much smaller.

For the treatment of the Bose-Hubbard model, the band energy is not im-
portant as it gives just an energy shift since the total number of particles
N̂ =

∑
j n̂j commutes with the Hamiltonian. This accounts for the de-

scription of the system in the canonical ensemble, i.e., fixing the number of
particles. For the discussion of the phase boundaries, this description turns
out to be more suitable than the grand-canonical ensemble, i.e., including a
chemical potential described by

K̂ = Ĥ − µB
∑
j

n̂j. (1.7)

Nevertheless the different phases are discussed in the (µB, JB)-plane where
the chemical potential, which gives the energy cost when changing the num-
ber of particles, is defined as

µB =
∂E

∂N
= E(N + 1)− E(N) (1.8)

This also leads to the definition of the compressibility which accounts for the
change of the number of particles with the chemical potential:

κ =
∂〈N̂〉
∂µB

. (1.9)

For phases with non-zero compressibility, the system in ungapped (with re-
spect to particle-hole excitations), i.e., it does not cost energy to change the
number of particles. For the Bose-Hubbard model (1.3), two different phases
exist, distinguished by the compressibility.

a) Plain Bose-Hubbard model

The model described in (1.3) will be referred to as the plain Bose-Hubbard
model, which is the basis of our discussions. We will present two important
extensions later. First we discuss the phase diagram of the plain model.

In the interaction dominated regime U � JB and for commensurate filling
N = nL, the ground state is given by the so-called Mott insulator, displaying
the same number of particles n on each lattice cite, i.e.,

|Ψ〉Mott ∼
∑
j

(
â†j

)n
|0〉 . (1.10)
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A single particle-hole excitation â†j âl 6=j |Ψ〉Mott has an extra energy U (for
JB = 0) compared to the Mott insulator and therefore the Mott insulating
phase is incompressible; it costs energy to add or remove a particle.

In the hopping dominated regime U � JB and for any filling, the ground
state is a superfluid with

|Ψ〉SF ∼

(∑
j

â†j

)N

|0〉 . (1.11)

This state does not display a particle-hole gap, it is compressible.

For vanishing hopping JB = 0, the phase diagram is easily constructed for the
grand-canonical Bose-Hubbard Hamiltonian (1.7). The Hamiltonian becomes
local and the number n of particles per site which minimizes the energy is
given by

n = max{0, [1/2 + µB]}, (1.12)

[x] is the integer closest to x. For non-integer µB, the number of bosons
is well defined and constant over a wide range of µB values whereas for
integer µB/U the system becomes degenerate with the possible number
states |b1/2 + µBc〉 and |b1/2 + µBc+ 1〉, yielding a quantum critical point.
bxc is the largest integer smaller than x. For non-vanishing hopping JB
these quantum critical points extend to a compressible region. This phase
is referred to as the superfluid phase. Together with the increase of the
superfluid phase with increasing hopping, the Mott insulator regions get
smaller until the upper and the lower boundary come together. At this point,
termed the tip of the Mott lobe, a quantum phase transition occurs from
the superfluid to Mott-insulator phase. For integer filling, this transition
at the tip is of the Kosterlitz-Berezinsky-Thouless type [95, 96], i.e., with
exponentially diverging correlations at the transition.

The resulting phase diagram for the (plain) Bose-Hubbard model is shown
in figure 1.1. The boundaries of the Mott insulator are taken from strong-
coupling results [97], showing a good agreement with various numerical cal-
culations not discussed here. Beside the compressibility, the superfluid and
Mott insulating phase can be distinguished from the behavior of the first-

order correlations
〈
â†j âj+d

〉
. In a one-dimensional system, these decay in the

superfluid algebraically ∼ m−K/2 and exponentially ∼ e−m/Lc for the Mott
insulator. K is the so-called Luttinger parameter, which in principal can be
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Figure 1.1: Phase diagram of the Bose-Hubbard model. Gray regions are
the Mott insulators, outside lies the superfluid region. The phase boundaries
were obtained according to [97]. The interaction energy U = 1 is set as
energy scale. Within the Mott insulators, the first-order correlations decay
exponentially, within the superfluid algebraically.

calculated from other approaches as Bethe ansatz [98, 99] and the algebraic
decay is seen from a bosonization approach [99, 100, 101, 102, 103].

b) Disordered Bose-Hubbard model

In the plain Bose-Hubbard model, no locally varying potential is present.
Including local potentials as

ĤdBHM = ĤBHM +
∑
j

εjn̂j, (1.13)

the resulting Bose-Hubbard Hamiltonian allows for a description of various
different situations such as bosons in an external (harmonic) confinement
with εj = ω (j − L/2)2, superlattice structures as εj = V δ(sin(πj/2)) or
disordered systems with εj ∈ [−∆/2,∆/2] chosen randomly.

Here we discuss the situation of a weak (∆ < U), bound random disorder.
For strong or unbound disorder the situation qualitatively stays the same,
where the main difference to weak disorder is given by the full vanishing of
all Mott insulating lobes. The disorder distribution itself does not play any
role for the discussion of the phase diagram with one exception pointed out
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Figure 1.2: Phase diagram of the disordered Bose-Hubbard model in three
dimensions for different strengths of the disorder ∆ taken from [71]. For
vanishing disorder, the typical lobe structure is seen with a decrease of the
Mott lobes (MI) for weak (∆ < U) disorder. For large or unbound disorder,
all Mott lobes vanish with only a Bose glass (BG) and superfluid phase (SF)
remaining.

in section 3.1.

For zero bosonic hopping (JB = 0) and weak disorder, the disorder leads
to a shift of the upper and lower boundary of the Mott insulators. Due to
the inhomogeneity of the system and the continuous disorder distribution,
additional particles can always be added without cost in energy. This holds,
until commensurate filling is reached, according to the Mott insulating state.
The energy to add another particle is now given by the change in interaction
energy nU as well as the smallest local energy min(εj) = −∆/2, the chemical
potential for the upper boundary of the Mott insulator therefore equals
nU − ∆/2. Accordingly, the lower boundary is given by (n − 1)U + ∆/2.
This indicates a shrinking of the Mott insulating region by ∆ with the
appearance of a compressible phase in between2 (see figure 1.2).

The Mott insulating gap closes with increasing hopping as in the plain sys-
tem. The intermediate compressible phase turns out to be of a different
character than the superfluid. This is seen in the correlations of the system,
which still decay exponentially hence indicating a localization of the bosons,

2This explains the distinction between weak and strong disorder. For the strong dis-
order case, the disorder induced shifts of the upper and lower boundaries are beyond the
width of the Mott insulator.
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as well as in the vanishing superfluid fraction

%S =
2L2

π2NB

(
Eapbc − Epbc

)
. (1.14)

The superfluid fraction is defined by the energy difference of the ground states
of the system with anti-periodic and periodic boundary conditions [104, 105],
thus accounting for the response of the system to a phase gradient. This
compressible, not superfluid Bose-glass phase is a direct consequence of the
disorder and up to now a main research object theoretically and experimen-
tally. Again, ultracold atoms allow for the observation of this glass phase in
controlled experiments [69, 71, 106] with a clear observation of the predicted
properties.

c) Bose-Hubbard model with nearest-neighbor inter-
actions

Including nearest-neighbor density-density interactions

ĤeBHM = ĤBHM + V
∑
j

n̂jn̂j+1, (1.15)

to the plain Bose-Hubbard model, another important phase is present. For
repulsive interactions V , the bosons try to avoid states with two adjacent
bosons. This gives a stable configuration, where only every second lattice
site is occupied. The resulting phase is again incompressible, since the
addition of another particle increases the energy by 2V . This charge-density
wave (CDW) phase with a periodic modulation of the boson density is thus
extended in the (µB, JB)-plane like the Mott insulator. For fillings above
one, the CDW phase with filling %B = 2n−1

2
is given by a state with n bosons

on every second lattice site and n − 1 bosons in the remaining half of the
lattice.

According to numerical results, the CDW phase is characterized by a van-
ishing of the superfluid fraction %S and a finite static structure factor [108]

S(q) =
1

N2
B

∑
ij

eiq(i−j) 〈n̂in̂j〉 (1.16)

at momentum q = π. Possible phases with S(π) > 0 and %S > 0, so-called
supersolids are a recent matter of research and will be discussed briefly in
part II.
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Figure 1.3: Schematic phase diagram of the extended Bose-Hubbard model
taken from [107]. Beside the usual Mott insulator (MI), shifted due to the
nearest-neighbor interaction by 2V , charge-density wave phases (CDW) arise
for different fillings. The different Luttinger parameters K are the values at
the phase transition. Outside the incompressible phases, a superfluid phase
(SF) is present.

Figure 1.3 shows the phase diagram of the extended Bose-Hubbard model
with repulsive nearest-neighbor interaction. The Mott insulators are shifted
by 2V with intermediate CDW phases for half-integer filling. The given
Luttinger parameters represent values at the phase transition. These, cal-
culated for instance by means of microscopic theories [100, 109], also allow
for the determination of the phase transition from a fitting of the first-order
correlations to an algebraic decay [107].
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1.2 Wannier functions

In the derivation of the Bose-Hubbard Hamiltonian (1.3), the field operators
were expanded in the local basis of Wannier functions. Following [110], these
are obtained from the solution of the single particle Schrödinger equation(

− ∂2

∂z2
+ ηB sin2(z)

)
Φ(z) = E Φ(z), (1.17)

where all energies are given in units of the recoil energy Erec = ~2k2
2mB

and
all lengths in units of 1/k. Since the system is periodic with period π,
the Hamiltonian commutes with the (discrete) translation operator and the
eigenfunctions are given in terms of Bloch waves [111]

Φn,p(z) = un,p(z)eipz. (1.18)

un,p(z) is periodic with the lattice spacing. The eigenenergies of form certain
ranges En,p with n giving the different Bloch bands. Dealing with the notion
of different sites, the delocalized Bloch waves Φn,p(z) are replaced by the
more suitable Wannier functions [112], being localized within the different
potential minima. They are given by

wn(z) =
1√
2

1∫
−1

dp Φn,p(z), (1.19)

but are not uniquely defined due to an arbitrary phase factor. Nevertheless
they fall off exponentially [113, 114] and can be chosen to be symmetric in
the odd bands and antisymmetric in the even bands [113].

Only in the limit ηB → ∞ the Wannier functions have simple analytic ex-
pressions. Here the lattice potential is properly approximated by a harmonic
potential, giving the oscillator eigenfunctions for the Wannier functions in
the harmonic oscillator approximation. Numerically, the Wannier functions
are calculated from the Schrödinger equation (1.17) together with the Bloch
waves (1.18). For the periodic part in (1.18), the differential equation((

−i ∂
∂z

+ p

)2

+ ηB sin2(z)

)
un,p(z) = En,p un,p(z) (1.20)

together with a Fourier transform

un,p(z) =
∑
m

a(n,p)
m e2imz (1.21)
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Figure 1.4: Wannier functions for the first and second band for ηB = 10.

reduces to the linear equation for the Fourier components a
(n,p)
m(

(2m+ p)2 +
ηB
2

)
a(n,p)
m − ηB

4

(
a

(n,p)
m−1 + a

(n,p)
m+1

)
= En,p a

(n,p)
m . (1.22)

Beside the determination of the Fourier transformed Wannier function via

w̃n(k) =
1√
2
a

(n,k−2[ k
2

])

[ k
2

]
, (1.23)

this also allows for the calculation of the full band structure En,p. For the
first two bands, figure 1.4 displays the resulting Wannier functions. Figure
1.5 shows the band structure for three different values of the lattice depth
ηB as a function of the moment p (restricted to the first Brillouin zone) for
the first few bands.

With the knowledge of the Wannier functions, the parameters JB, U, µB of
the model are calculated as a function of the lattice depth ηB. Whereas for
the interaction amplitude U the numerical results of the Wannier functions
have to be used, the hopping and chemical potential simplify considerably.
Using the fact, that the Bloch waves are eigenfunctions of the single-particle
Hamiltonian (1.17), the hopping and chemical potential can be expressed by
the band structure via

JnB = −1

2

1∫
−1

dp

1∫
−1

dp′
∫

dz Φn,p′(z)eiπp
′
En,pΦn,p(z) = −1

2

1∫
−1

dp eiπpEn,p,

(1.24)
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Figure 1.5: Band structure of the optical lattice for three different values
ηB. For vanishing lattice ηB the typical quadratic band structure for free
particles can be seen. With increasing hopping, the band gaps open and the
bands get more and more flat.

µnB = −1

2

1∫
−1

dp

1∫
−1

dp′
∫

dz Φn,p′(z)En,pΦn,p(z) = −1

2

1∫
−1

dpEn,p. (1.25)

The band index defines the amplitude for the different bands, where
band-mixing amplitudes vanish per se due to the orthogonality of the Bloch
waves for different bands. A different derivation of the hopping amplitudes
and other parameters can be found in [115], restricting to the solution of
two bosons in an optical lattice. [116] presents another method for the
determination of localized states with special applications to disordered
lattices and [67] discusses the situation for a superlattice.

Figure 1.6 shows the calculated hopping amplitudes JnB and the band en-
ergy ∆n

B as a function of the lattice amplitude ηB. Additionally, the ratio of
the next-nearest to the nearest-neighbor hopping amplitude is shown. This
proves, that the next-nearest hopping is small compared to the other quan-
tities in the system and consistently left out.
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Figure 1.6: Hopping JnB and band energy ∆n
B of the first few bands (from

bottom to top) as function of the lattice depth ηB. Left: absolute value
of the nearest-neighbor hopping amplitude JnB; the dashed lines belong to
positive amplitudes, the solid lines belong to negative amplitudes. Middle:
absolute value of the ratio of the next-nearest to the nearest-neighbor hopping
amplitude. Right: band energy of the different bands.

1.3 Bose-Fermi-Hubbard model

So far, we only discussed the physics of bosons in an optical lattice setup.
Adding fermions, the continuous Hamiltonian is given by [39]

Ĥ =

∫
dzΨ†B(z)

[
− ~2

2mB

∆ + V B
Pot(z)

]
ΨB(z)

+
gBB

2

∫
dzΨ†B(z)Ψ†B(z)ΨB(z)ΨB(z)

+

∫
dzΨ†F (z)

[
− ~2

2mF

∆ + V F
Pot(z)

]
ΨF (z)

+
gBF

2

∫
dzΨ†B(z)Ψ†F (z)ΨF (z)ΨB(z).

(1.26)

with the bosonic and fermionic kinetic energy and the corresponding interac-
tion contributions. For the boson-fermion interaction again s-wave scattering
with V (z − z′) = gBFδ(z − z′) is taken into account with gBF = 4π~2

mR
aBF .

mR = mBmF

mB+mF
is the reduced mass and aBF the s-wave scattering length. Due

to Pauli’s principle, no s-wave scattering for the fermions occurs. Introducing
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Wannier functions for both, bosons [wB(z)] and fermions [wF (z)], we arrive
at the Bose-Fermi-Hubbard model

Ĥ = −JB
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1)− µB
∑
j

n̂j

− JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V

∑
j

n̂jm̂j.
(1.27)

m̂j = ĉ†j ĉj is the fermionic number operator and ĉ†j (ĉj) the fermionic creation
(annihilation) operator. We included the chemical potential for the bosons
for completeness, whereas we always fix the number of fermions, i.e., being in
a semi-canonical description. The additional amplitudes in the Hamiltonian
describe the fermionic kinetic energy

JF = −
∫

dz w̄F (z − a)

[
− ~2

2mF

∂2

∂z2
+ V F

Pot(z)

]
wF (z), (1.28)

and the local boson-fermion interaction

V =
gBB

2

∫
dz w̄B(z)w̄F (z)wF (z)wB(z). (1.29)

Here, we still restrict ourselves to nearest-neighbor hopping and local interac-
tions. Again the bosonic interaction energy defines the energy scale by U = 1.

In general, we are not interested in the dependence of the different amplitudes
on the lattice depth ηB, but discuss the influence of the different amplitudes
on the system directly. Due to the four-dimensional3 parameter space of
the Bose-Fermi-Hubbard model, an easy understanding of the model is not
possible. For several limiting cases, the prediction of various different phases
exist, partly verified by numerical means. Most prominent phases beside
the bosonic Mott insulators are paired or composite phases, polaritons and
supersolids [82, 83, 89, 117, 118, 119, 120] as well as studies on the influence
of disorder or superlattices on the Bose-Fermi-Hubbard model [121, 122, 123,
124]. A more detailed discussion of the existing literature can be found in
the introductions to the different aspects of the Bose-Fermi-Hubbard model.

3Hoppings JB , JF , Bose-Fermi interaction V and bosonic chemical potential µB .
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CHAPTER 2

Introduction

Disorder in experimentally studied systems always affects the measurements,
usually in a negative way. Nevertheless, disorder sometimes even enhances
physical effects such as the conductance in graphene p-n junctions [125],
the Curie temperature in the Anderson-Hubbard model [126, 127, 128],
the synchronization of an array of Josephson junctions [129] or the phase
coherence [130]. Most prominent feature of the effect of disorder is the
localization of non-interacting particles in a weak disordered potential
predicted by Anderson [131]. Although being observed in a variety of
different systems [132], ultracold atoms allowed for the first observation of
the exponential localization [133, 134]. In addition to it, the full control
of ultracold atom systems opens the route to an understanding of the
effects of localization for interacting particles beyond Anderson localization
[135, 136, 137].

In the (strongly) interacting regime, the so-called Bose glass is of im-
portance [14, 109]. Partly possessing properties of the Mott insulator
(no long-range phase coherence) and the superfluid (being compressible),
the experimental search for the Bose glass in ultracold atoms reached
the line with its observation in the excitation spectrum of cold atoms
[71]. Further experiments studied the influence of the disorder on the
condensate fraction [106] or transport [138]. Theoretically, the Bose-glass
phase is also found in systems without random on-site disorder but with
disorder in the interaction [139, 140] or the hopping amplitude [140, 141, 142].

Whereas in solid-state systems and other interesting models the nature and
origin of disorder cannot be controlled (beside doping), several implemen-

27
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tations of the disorder are available in ultracold atoms. Superimposing the
optical lattice with a speckle pattern from a diffusive plate [69] and the
interference of two, non-commensurate optical lattices [71, 143, 144, 145, 146]
are the easiest realizations of on-site disorder. Holographic methods used in
[41] might also become interesting. The most intriguing source of disorder is
the usage of a second, immobile species. First studied in [147], this source
of disorder quickly gained wide interest [148, 149, 150, Mering2008] with
applications to fermionic or bosonic impurities.

In this part of the thesis, we focus on the case of the Bose-Fermi-Hubbard
model in the limit of immobile fermions, i.e., we consider the limit JF = 0.
Here the effect of the fermions reduces to a binary random potential at site
j for the bosons, depending on whether a fermion is at a given site j or not.
This means that the local bosonic chemical potential is altered by

δµj =

{
V, if a fermion is present at site j,
0, otherwise.

(2.1)

The disorder distribution is thus given by ∆(x) = (1− %F )δ(x) + %F δ(x−V )
with δ(x) being Dirac’s δ-function and V the boson-fermion interaction.
The resulting model is closely related to the Falicov-Kimball model [151],
describing the mixture of a mobile and an immobile fermionic species or the
Hubbard model with binary-alloy disorder [127, 152].

We systematically investigate to what extent this limit of the Bose-Fermi-
Hubbard model can be described as a specific instance of a disordered Bose-
Hubbard model with binary disorder and study the phase diagram which to
our knowledge is not yet done1. This simple model shows important features
of the full Bose-Fermi-Hubbard model but displays important qualitative
differences to the phase diagram of the disordered Bose-Hubbard model with
continuously distributed on-site disorder, as studied for instance in [14, 105,
153, 154, 155]. Depending on the physical situation of interest, we consider
two cases of disorder: If the fermionic tunneling is small but sufficiently
large such that on the time scales of interest relaxation to the state of total
minimum energy is possible, the fermion induced disorder is referred to as
being annealed. In this case the ground state is determined by minimization
over all possible fermion distributions. If the fermion tunneling is too slow
or the temperature too high the disorder is an actually random distribution
which is then called quenched.

1Earlier studies mainly concentrated on the density-of-states and other quantities.
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Incompressible phases

3.1 Ultradeep lattices

We first discuss the phase diagram of the incompressible phases for the simple
case of an ultradeep lattice for the bosons, such that their hopping can be
neglected. In this situation, where JF = JB = 0, the Hamiltonian becomes
diagonal in the occupation number basis, denoted as {|n1,m1〉 · · · |nL,mL〉},
where mj = 0, 1 is the number of fermions at site j and nj = 0, 1, ... the
corresponding number of bosons. L labels the total number of lattice sites
in the one-dimensional system. The problem of finding the ground state
reduces to identifying product states with the lowest energy. By fixing the
total number of fermions NF = L%F , where %F denotes the fermionic filling
factor, this amounts to minimize

E =
1

2

∑
j

nj(nj − 1)− (µB − V )
∑
j∈F

nj − µB
∑
j∈N

nj. (3.1)

F denotes the set of %FL = NF sites with a fermion and N the set of
(1 − %F )L = L − NF sites without a fermion. The energy is degenerate for
all fermion distributions and the ground state is given by an equal mixture
of all states with state vectors

|ψ〉 =
⊗
i∈F

|n1, 1〉
⊗
j∈N

|n0, 0〉. (3.2)

Here,

n1 = max
{

0, [1/2 + (µB − V )]
}
, n0 = max

{
0, [1/2 + µB]

}
, (3.3)

29
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is the local boson number for sites with (F) or without (N ) a fermion and
[.] denotes the closest integer bracket. In other words, the degenerate states
with lowest energy will have %FL sites with n1 bosons and one fermion and
L(1− %F ) sites with n0 bosons and no fermion. For the case of unity (zero)
fermion filling, %F = 1 (%F = 0), the situation becomes particularly simple
as we encounter the pure Bose-Hubbard model with an effective chemical
potential µeff

B = µB − V (µB).

Since n1 and n0 are integers there are adjacent intervals of µ where the oc-
cupation numbers do not change as it is the case in the plain Bose-Hubbard
model. In these intervals the system is incompressible, i.e., the compressibil-
ity vanishes. Following [83] we label the difference n0 − n1 in the bosonic
number mediated through the presence of a fermion by s. The local ground
state can either consist of n0 bosons and no fermion or n1 = n0 − s bosons
and one fermion. These state vectors will be denoted as |n0, 0〉 = |0〉 and
|n0 − s, 1〉 = |1〉. The value of s depends on µ and V and can be a positive
or negative integer. Both vectors are eigenvectors of the number operator

Q̂j = n̂j + sm̂j (3.4)

with the same integer eigenvalue n0 and 〈∆Q̂2
j〉 = 0. Thus incompressible

phases have a commensurate number Q̂ and can be characterized by the two
integers n0 and s.

This behavior, illustrated in figure 3.1, is very similar to that of the Bose-
Hubbard model except that here the bosons can be incompressible even for
non-integer filling %B since %B = n0+%F (n1−n0) [83, 156, Mering2008]. Since
n0 and n1 are integers and increase monotonically with µ, there is a jump
in the total number of bosons when moving from one incompressible phase
to the adjacent one. All systems with boson numbers between these values
are critical and have the same chemical potential since JB = 0. The average
boson number per site in the incompressible phases does not have to be
an integer, however. The existence of Mott phases with non-commensurate
boson number is a direct consequence of the interaction of the bosons with
the fermions. At (random) sites with a fermion, the bosons experience an
effective local potential which resembles the physics of a disordered system.
Due to the nature of this disorder, i.e., the occurrence of only two possible
values, the immobile fermions act as a binary disorder to the bosons. A
similar behavior, i.e., the existence of non-integer incompressible lobes has
been shown for superlattices, which can be considered as binary disorder in
the special case of anti-clustering [157, Muth2008].
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Figure 3.1: Phases of Bose-Fermi-Hubbard model for JB = JF = 0 for
different inter-species couplings 0 < V < 1 (lowest diagram), 1 < V < 2
(middle diagram), −1 < V < 0 (upper diagram), and U = 1. n indicates the
number of bosons (empty circles) at the site, m the number of fermions (red
filled circles). The horizontal red bars illustrate the boson number n1 for sites
with a fermion (m = 1) as function of the chemical potential, the horizontal
blue bars correspondingly the boson number n0 for sites without a fermion
(m = 0), which is identical to the Bose-Hubbard model. The values of µ
where a transition between different boson numbers n0 occurs are quantum
critical points.

In general Mott-insulating phases with incommensurate boson numbers exist
for any disorder distribution that is non-continuous, i.e., containing a gap
within the distribution. This stems from the fact, that the different disorder
values account to a shift of the JB = 0 phase diagram of the Bose-Hubbard
model. For a gapped disorder distribution, these shifts leave regions with
the same number of bosons open, as seen in figure 3.1 for the binary disorder
distribution. In this sense, also the behavior of the non-integer Mott lobes
for arbitrary superlattices can be understood.
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3.2 Minimum energy distribution of fermions

for small bosonic hopping

In order to understand the physics of disorder due to the presence of
fermions we need to discuss the influence of the distribution of fermions
to the ground-state energy. The energetic degeneracy of different fermion
distributions in the incompressible phases is lifted if a small bosonic hopping
JB is taken into account. Near the quantum critical points the boson
hopping leads to the formation of possibly critical phases with growing
extent. We first restrict ourselves to regions where incompressibility is
maintained, i.e., sufficiently far away from the critical points.

In order to obtain a qualitative understanding of the effects of a finite
bosonic hopping we performed a numerical perturbation calculation on a
small lattice. Figure 3.2 shows different distributions of 4 fermions over a
lattice of 8 sites ordered according to their energy for different parameters
in 6th order perturbation.

One notices that the lowest energy states are either given by fermion dis-
tributions with maximum mutual distance (anti-clustered configuration) or
minimum mutual distance (clustered configuration) modified by boundary
effects. This behavior can in part be explained by a composite fermion pic-
ture introduced in [83]. The composite fermions are defined for the phase
(n0, s) by the annihilation operators

f̂i =

√
(n0 − s)!
n0!

(
b̂†i

)s
ĉi, for s ≥ 0 (3.5)

f̂i =

√
n0!

(n0 − s)!

(
b̂i

)−s
ĉi, for s < 0, (3.6)

and describe the fermions surrounded by a bosonic (bosonic hole) cloud on
top of a boson see. For details, refer to [83].

For each (n0, s), the full Bose-Fermi-Hubbard Hamiltonian (1.27), with
JF = 0 gives, in second order in JB, rise to an effective Hamiltonian
[83, 121, 158, 159, 160]

Ĥeff = Keff

∑
〈i,j〉

(f̂ †i f̂i)(f̂
†
j f̂j). (3.7)
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Figure 3.2: Fermion distributions ordered increasingly by ground-state en-
ergy for JF = 0, JB = 0.02, U = 1. The energy ranges from small (blue) to
larger (red) values. Top: attractive boundary, left: (V, n0, s) = (1, 1), i.e.,
Keff = −0.002, and right: (1.5, 2, 1), i.e., Keff = 0.001. Bottom: repulsive
boundary, left: (−1.5, 0,−1), i.e., Keff = −0.002, right: (−1.5, 1,−1), i.e.,
Keff = 0.001. For the definition of Keff refer to equation (3.8).
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The effective coupling (note that U = 1 and JF = 0 in contrast to [83]) reads

Keff = 4J2
B

[n0(n0 + 1− s)
1− s+ V

+
(n0 − s)(n0 + 1)

1 + s− V
− n0(n0 + 1)− (n0 − s)(n0 + 1− s)

]
. (3.8)

Composite fermions cannot occupy the same lattice site, but there is a
nearest-neighbor attraction (Keff < 0) or repulsion (Keff > 0), depending
on (n0, s) and V . Associating a site with a composite fermion with a
spin-up state and a site without a fermion with spin down, equation (3.8)
corresponds to the classical Ising model with fixed magnetization and
anti-ferromagnetic (Keff > 0) or ferromagnetic coupling (Keff < 0). At this
point it should be mentioned, that introduction of the composites does
not explain important properties of the system. As pointed out in our
previous work [161, Mering2008], the fluctations of the composite number
operator are non-zero which cannot be seen from the effective Hamiltonian
(3.8). Nevertheless it gives an effective understanding of the behavior of the
fermions in the system.

As a consequence, if Keff < 0, the energy is smallest for composite (and
therefore fermion) distributions that minimize the surface area of sites
with and without a fermion (referred to as clustering). In this setting, the
fermion distribution forms a block of occupied sites. For this block, the
open boundary condition either yields attractive or repulsive interaction
with the boundary which explains the behavior of the energy of the different
distributions in figure 3.2. If s > 0, the boundaries are attractive, otherwise
repulsive as seen in the figure.

The other regime is the one for Keff > 0. Then, the fermions repel each
other and form a pattern with maximum number of boundaries for small JB,
referred to as anti-clustering. The fact that the fermions attain a distribution
with maximum distance cannot be explained by the effective model due to
its perturbative nature. In all of our numerical simulations using DMRG
we found however that a positive Keff always leads to anti-clustering with
maximum distance. This behavior of clustering and anti-clustering is also
reported in [83, 162] for slightly different parameters JF .

From figure 3.2, another important feature can be seen. As the color
code shows, the energies for the different distributions differ only by
a small amount on the order of J2

B/U or even higher orders n. This
means, that for temperatures which are still small enough to treat the
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Figure 3.3: Effective couplings Keff for V = −2.7 (left) and V = 2.2 (right)
for different combinations (n0, s). Green bars depict positive Keff and red
ones are negative. The combinations (n0, s) which do not occur in the phase
diagram are plotted blue.

bosonic system with given disorder as an effective T = 0 problem, but
larger than the energy gap between different fermion distributions, i.e., for
JB(JB/U)n � kBT � JB, the various fermion distributions are equally
populated. Thus the (fermionic) system never reaches the minimal energy
distribution. This leads to the conclusion, that the treatment of a real
disordered system with random disorder is more natural than the discussion
of the annealed case. This has important consequences for the phase diagram.

Figure 3.3 shows the value of Keff for two choices of the interspecies inter-
action V . Going from the lowest lobe to higher ones, both signs may occur
for a fixed interaction V . This means, that one part of the incompressible
lobes display the clustering, the other part the anti-clustering behavior. For
the numerical calculation of the phase diagram using the DMRG method
this has some major consequences. Observing the expectation value of the
local number operator for the fermions in this parameter regime shows that
the fermions are bunching together, but in several, equally spaced small
blocks rather than in one full block. We believe this to be an artefact
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of the build-up mechanism (for details see [163]) in the DMRG code1,
which nevertheless does not limit the applicability of our results. More
recent implementations of the DMRG method without finite size build-up
[167, 168, 169] could perhaps overcome this problem.

3.3 Incompressible phases for finite JB

For finite bosonic hopping JB we extend the strong-coupling expansion
applied in [97] to the Bose-Hubbard model and complement the results
with numerical DMRG simulations. This formulation of the strong-coupling
expansion provides a rather accurate description of the Bose-Hubbard
model even on a quantitative level, with further improvements from the
employment of a field theoretic approach [170, 171, 172, 173].

In the zero hopping limit JB = 0, all fermion distributions give the same
energy. Considering the phase with (n0, s) and NF = %FL fermions, the
ground-state vector is found to be

∣∣ψ〉 =
⊗
j∈F

ĉ†j
(
â†j
)(n0−s)√

(n0 − s)!

⊗
k∈N

(
â†k
)n0

√
n0!
|0〉, (3.9)

where |0〉 = |0, . . . , 0〉B ⊗ |0, . . . , 0〉F is the total vacuum of both bosons and
fermions at all sites. The energy density is given by

ε0 =
U

2

[
(1− %F )n0(n0 − 1) + %F (n0 − s)(n0 − s− 1)

]
+ V %F (n0 − s).

For a state with a single additional boson (bosonic hole), we have to
distinguish two cases compared to the usual Bose-Hubbard model. First
the boson (bosonic hole) can be added to a site with a fermion, or second,
without a fermion. Up to normalization, we have

1The DMRG code used was provided by Prof. Dr. U. Schollwöck. Unfortunately,
the code does not allow to change the intrinsic routines to get rid of unwanted effects.
This prevented us to study further interesting quantities in the system. Nevertheless,
all important physical quantities calculated using the DMRG code are sufficient for the
study and prediction of the new phases described throughout the whole work. The usage
of open-source program packages as the ALPS [164, 165] or PwP [166] projects is not
possible since these are not yet implemented for Bose-Fermi mixtures.
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∣∣ψ+
F
〉j

= â†j
∣∣ψ0

〉
,

∣∣ψ−F〉j = âj
∣∣ψ0

〉
, for j ∈ F , (3.10)

for sites with a fermion and∣∣ψ+
N
〉j

= â†j
∣∣ψ0

〉
,

∣∣ψ−N〉j = âj
∣∣ψ0

〉
, for j ∈ N , (3.11)

for sites without a fermion. All of these vectors are eigenvectors of the Bose-
Fermi-Hubbard Hamiltonian for JB = 0 with respective energies

E+
F = E0 + V + U(n0 − s), E+

N = E0 + Un0, (3.12)

E−F = E0 − V + U(n0 − s− 1), E−N = E0 + U(n0 − 1), (3.13)

where E0 = Lε0. The corresponding chemical potentials read

µ̄+
F = E+

F − E0 = V + U(n0 − s), (3.14)

µ̄−F = E0 − E−F = µ̄+
F − U,

and

µ̄+
N = E+

N − E0 = Un0, (3.15)

µ̄−N = E0 − E−N = µ̄+
N − U.

Except from the special case V = Us, the energies E±F and E±N all differ
from each other. Thus we can determine the phase boundaries for JB 6= 0
by degenerate perturbation theory within the subspaces with the additional
boson (bosonic hole) in sites j ∈ F or j ∈ N separately.

There will be a second order contribution in JB for sites j that have at
least one neighboring site of the same type. For isolated sites degenerate
perturbation theory will lead only to higher order terms in JB. Since the
boundaries of the incompressible phases are determined by the overall lowest-
energy particle-hole excitations, we can construct the expected phase diagram
in the case of extended connected regions of fermion sites coexisting with
extended connected regions of non-fermion sites. In this case we can directly
apply the results of [97] to sites with and without fermions yielding

µ±F/N = µ̄±F/N + δµ±(n0, JB) (3.16)

where

δµ+(n0, JB) = −2JB(n0 + 1) + J2
Bn

2
0 + J3

Bn0(n0 + 1)(n0 + 2),

δµ−(n0, JB) = 2JBn0 − J2
B(n0 + 1)2 − J3

Bn0(n2
0 − 1).

(3.17)
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Figure 3.4: Phase diagram from strong-coupling expansion with
U = 1, V = 1.5. Red areas (A) indicate truly incompressible Mott regions
with gapped particle-hole excitations everywhere. Green (B) and blue (C)
areas are partially compressible quasi-Mott regions with gapped particle-hole
excitation for sites with (B) or without (C) a fermion but ungapped excita-
tion in the complementary region. Outside the three regions, the system is
completely compressible.

This gives rise to two overlapping sequences of the usual Mott-insulating
lobes, one for the sites with and one for the sites without fermions. Accord-
ing to (3.14), the shift is given by the boson-fermion interaction V and the
effect on the phase diagram is shown in figure 3.4. In [149], similar results
including higher dimensions can be found.

As seen in the figure, the system is truly incompressible only in the overlap
region (A) of the quasi-Mott lobes for sites with and without fermions.
Points which are within one of the two sequences of quasi-Mott lobes but
not in both (cases B or C) are not compressible in the whole system but
only in a region. Thus the energy for a particle-hole excitation is gapped
within this sublattice and ungapped in the other part upon addition of a
boson (bosonic hole). Outside the three described regions, the system is
fully compressible. It should be mentioned that a similar procedure allows
to describe the phases in the (general) disordered Bose-Hubbard model,
which can have many shifted Bose-Hubbard phase diagrams overlapping,
also explaining the emergence of non-integer incompressible phases for weak,
gapped disorder.
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The analytic result (3.17) for the different phases allows for a direct
comparison to numerical results from DMRG. Therefore we employ DMRG
with open boundary conditions and two different fermionic distributions,
the clustered and the anti-clustered one. Throughout the whole thesis, the
local dimension of the Hilbert space in the DMRG as well as the dimension
of the blocks are chosen in such a way, that no significant change in the
numerical results upon increasing the two quantities could be observed.
Figure 3.5 shows the corresponding numerical results together with the
analytic prediction from (3.17). For the phase diagrams throughout this
part, a finite size extrapolation (see section 3.4 and [107]) is performed.

One recognizes nearly perfect agreement between numerics and strong-
coupling prediction in the case of clustering. This is expected since in the
clustered case the majority of sites has neighbors of the same type. In
the case of anti-clustering, however, the incompressible lobes extend much
further into the region of large boson hopping with a critical JB of about 1
for a fermion filling of %F = 0.25 at V = −1.5. This behavior is expected
since in this case hopping to nearest-neighbors is suppressed if the neigh-
boring sites are of a different type (F or N ). For this situation, the curves
of the critical chemical potential µcrit(JB) that correspond to a bosonic
particle-hole excitation at a fermion site (here µcrit(0) = −1.5,−0.5, 0.5, 1.5
etc.) start with a power JγB determined by the minimum number of hops
required to reach the next fermion site, i.e., γ = 1/ρF , if %F ≤ 1/2. If the
fermion filling is larger than 1/2 the behavior changes and the non-fermion
sites (hole sites) cause µcrit(JB) ∼ JγB with γ = 1/(1 − %F ). In principle
it is possible to extend the strong-coupling perturbation expansion to any
fermion distribution (compare the method presented in section C.1), which is
however involved. In [175, 176] a numerically assisted strong-coupling theory
termed cell-strong-coupling expansion is developed. Since the anti-clustered
situation is equivalent to the Bose-Hubbard model with a superlattice, the
semi-analytic results from this method can be applied directly. Figure 3.6
shows a comparison of the numerical results using DMRG from figure 3.5
for V = −1.5 to the results from the cell-strong-coupling approach2 showing
a very good agreement as expected3.

2Thanks to P. Buonsante for the cell-strong-coupling results of the phase boundaries.
3It should be noted that the loop-hole insulator phases [174, 177, 178, Muth2008]

predicted for a super-lattice are for the present parameters too small to be visible in the
DMRG simulation and are nevertheless expected to disappear after averaging over disorder
distributions.



40 CHAPTER 3. INCOMPRESSIBLE PHASES

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

1.5

2

2.5

3

bosonic hopping J
B

c
h

e
m

ic
a

l 
p

o
te

n
ti
a

l 
µ

B

 

 

analytic

clustering

anti−clustering

V=1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

bosonic hopping J
B

c
h

e
m

ic
a

l 
p

o
te

n
ti
a

l 
µ

B

 

 

analytic

clustering

anti−clustering

V=−1.5

Figure 3.5: Comparison of the incompressible phases predicted from the
strong-coupling approximation (solid line) to DMRG results (circles,crosses)
for two fixed distributions of fermions. Circles: clustering, Crosses: anti-
clustering with maximal distance. V = 1.5 (top figure) and V = −1.5
(bottom figure). %F = 0.25, and U = 1.

So far we did not discuss the issue of fermionic distributions which are
unequal the two cases. For the situation of random disorder, i.e., a fixed
fermionic distribution, the so-called rare events [97, 155] are of major
importance to the phase diagram. In the thermodynamic limit, all possible
disorder configurations appear within the system; in particular also the
optimal situation of a large clustered region. Here, optimal is used in
the sense that the superfluid to Mott-insulator transition occurs in this
configuration first. Thus our strong-coupling results describe the phase
diagram properly for binary disorder in the thermodynamic limit because
the clustered distribution is always the optimal one.
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Figure 3.6: Comparison of cell-strong-coupling approximation (solid line)
from [174] and DMRG for boundaries of incompressible phases for fixed distri-
bution of fermions corresponding to anti-clustering with maximum distance
(crosses). V = −1.5, %F = 0.25, and U = 1.

Unlike for random fermions, in the case of an annealed system, the strong-
coupling expansion gives only less accurate results, at least in the regions
where Keff > 0, i.e., where the ground state of the whole system is obtained
by the anti-clustered configuration. This can be seen from figure 3.7, where
we compare the predictions of the strong-coupling approximation with those
from a DMRG simulation for annealed fermionic disorder and a mean-field
ansatz. Within the mean-field approach [158, 179], hopping is included to
the system as a perturbation to the ground state

|g〉 =
√

1− %F |n0, 0〉+
√
%F |n0 − s, 1〉 (3.18)

in second order. Using this ground state and introducing a global bosonic
order parameter ψ, the phase boundaries can be found using the usual
Landau argumentation [179, 180, 181]. When comparing the different data
sets in figure 3.7 one recognizes that the mean-field predictions are quali-
tatively correct but, as expected, quantitatively only moderately precise.
The numerical data were obtained by letting the DMRG code freely evolve
in the manifold of fermionic distributions. The initial fermion distribution
is not fixed but determined by the build-up process inherent to the initial
infinite-size DMRG algorithm which is then followed by finite-size sweeps.
The final distribution of fermions converges quite well to the expected
anti-clustering, where deviations come from the truncations of the method
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Figure 3.7: Incompressible phases for annealed fermions and U = 1,
V = 0.25, %F = 0.25. Within the incompressible phases, the final fermion
distributions correspond to the totally anti-clustered state, in agreement with
the analytic predictions of section 3.2. Shown are the strong-coupling results
(solid line), the mean-field results from [179] (dashed line) and results from
a DMRG calculation with JF = 0 (crosses) for annealed fermions.

and the complex energy manifold with many metastable low-energy states.
Since the DMRG method is prone to get stuck in local minima we checked
the consistency of our results by implementing different sweep algorithms
after the initial infinite size algorithm. In these sweep algorithms, the
fermionic hopping was not taken to be zero but was given a finite initial
value which was decreased during the DMRG sweeps to the final value zero.
To ensure proper convergence we compared the data for a few representative
points (JB = 0.07 boundaries of (n0, s) = (1, 1) lobe; JB = 0.15 boundaries
of (1, 0) lobe; JB = 0.03 boundaries of (2, 0) lobe) to the data obtained from
two different sweep strategies4. The difference in the chemical potential is
of the order of 3% independent of the sweep strategy an therefore negligible
on the scale of the plot. It should be noted, that the build-up procedure

4 The sweep strategy was implemented by first applying an infinite size algorithm up to
the system length, then applying 5 finite size sweeps, all at JF = JB/2. Subsequently the
hopping was reduced after a complete sweep and again 3 sweeps were carried out to ensure
convergence again with the new hopping amplitude. Repeatedly, the hopping was slightly
reduced until after 30 sweeps the fermionic hopping is set to be 0 with another 3 sweeps.
In the first method the hopping was reduced according to an exponential decay followed
by a linear decay to zero. In the second method the hopping was reduced according to a
cosine followed by a linear decay to zero.
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Figure 3.8: Incompressible regions for U = 1, V = 0.25, %F = 0.25. Shown
are the results from a DMRG calculation with JF = 0 and annealed fermionic
disorder (circles) (see figure 3.7) and JF = JB (crosses). The agreement is
quite good, which indicates that the established interpretation for JF = 0
also holds at least partially for JF > 0.

during the infinite-size part of the DMRG algorithm inherently behaves bad
for annealed fermions in the case of a clustered ground state, i.e., Keff < 0
and JF = 0 as already pointed out.

3.4 Fermions with finite mobility and infinite

size scaling

A priori it is not clear what happens to the phase diagram for non-frozen
fermions, i.e., JF 6= 0. From the discussion above it is clear, that the general
arguments do not change. Obviously, the situation for JF 6= 0 should
be compared to the case JF = 0 for annealed fermionic disorder. This is
done in figure 3.8 which shows a comparison of DMRG data for JF = 0
from figure 3.7 and JF = JB. One recognizes that the influence of a small
fermionic hopping is rather small and does not considerably change the
structure of the incompressible lobes. This allows for the conclusion that
even for fermionic hopping as large as the bosonic hopping amplitude the
picture of fermion-induced disorder is an adequate description of the bosonic
subsystem. Our findings support the picture of an insulating ground state
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Figure 3.9: Thermodynamic limit extrapolation for the critical point of the
n0 = 1, s = 1 lobe (%F = 0.25, %B = 0.75) in figure 3.8. The critical point is
found at J cB = 0.16038

developed in [182]

As final property of the incompressible phases we study the behavior of the
critical hopping amplitude of one lobe as a function of the system size. In
finite size numerical situations, boundary effects are always present when us-
ing open boundary conditions. As example, in the finite system the spectrum
is always gapped, even within the superfluid phase. Considering free bosons,
described by the Hamiltonian

Ĥ = −JB
∑
j

(
â†j âj+1 + â†j+1âj

)
, (3.19)

the energy cost per particle is proportional to 1/L, with L being the system
size. For the calculation of the tip of the Mott insulators, a finite size scaling
in 1/L turns out to be suitable to obtain the infinite size limit [183]. Ex-
emplarily we study the finite size scaling of the lowest lobe (n0, s) = (1, 1)
in figure 3.8 for JF = JB. Figure 3.9 shows the critical point calculated
from DMRG for various system sizes as function of 1/L. From a fit of J cB to
log(L) we find the critical point in the thermodynamic limit Jc = 0.16038.
The data for different system lengths show the expected 1/L behavior for
the Bose-Hubbard model [183].



CHAPTER 4

Compressible and partially compressible

phases

So far, our discussion was restricted to the fully incompressible phases.
As shown in figure 3.4, beside the usual incompressible and superfluid
phases, our strong-coupling treatment suggests the existence of a second
kind of phases. These phases are characterized by the fact, that the bosonic
particle-hole excitations are gapless if they occur on a fermion (non-fermion)
site but have a finite gap on a complementary, i.e., a non-fermion (fermion)
site. These phases are termed partial compressible in the following, where
a distinction of partial compressibility for sites with or without fermions is
not necessary.

A precise definition of the partially compressible phases can be done via the
compressibility (1.9). As shown in figure 4.1, where the expectation value of
different total number operators is shown as a function of the chemical po-
tential µB for JF = 0, a distinction of the different phases is seen numerically
by these expectation values. Whereas in the fully incompressible phases the

total number of particles
〈∑

j n̂j

〉
is constant, the different partial incom-

pressible phases manifest themselves in constant particle numbers only for a
subset of the system. Defining the partial compressibilities

κF =
∂
〈∑

i∈F n̂i
〉

∂µ
, κN =

∂
〈∑

i∈N n̂i
〉

∂µ
, (4.1)
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Figure 4.1: Density cut along the µB-axis in figure 3.8 for JF = 0 (annealed)
and JB = 0.02, U = 1, V = 0.25, %F = 0.25. From top to bottom: over-

all average density
〈∑

j n̂j

〉
, average density for sites without a fermion〈∑

j∈N n̂j

〉
and average density for sites with a fermion

〈∑
j∈F n̂j

〉
, all after

averaging as described in the main text. Inset: Dependence of the particle
number as function of chemical potential without averaging. The system size
is chosen to be L = 128 sites. Gray background indicates the regions of the
full incompressible phases, i.e., the quasi-Mott insulators.

the two different phases from figure 3.4 are

B: κF = 0 κN 6= 0

C: κF 6= 0 κN = 0.
(4.2)

Within each of the partial compressible phases, all additional particles enter
the sublattices denoted F or N , depending on the chemical potential.

For vanishing fermionic hopping, the results for the different number of
particles in the subset of the lattice are displayed in figure 4.1. Here the
average boson number per site obtained from a DMRG simulation with
annealed disorder is shown as a function of the chemical potential for
JB = 0.02. Also shown are the corresponding values only for fermion sites
and non-fermion sites respectively. In the partially compressible phases the
average boson number increases only for one type of sites while it stays
constant for the other. As seen in the inset of the figure, the chemical
potential is not a monotonous function of the filling as it should be. This
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artefact of the numerical method in this highly demanding parameter regime
is overcome by an averaging of the chemical potential of a small number of
different fillings. These averaged results are shown in the main part of the
figure. As mentioned earlier, the problem stems from the complex energy
surface in the parameter space and the trapping of the numerical algorithm
in metastable states close to the ground state.

We now discuss the properties of the single-particle density matrix 〈â†i âi+m〉
in the partially incompressible phases. In general, for very large values of JB
the system is expected to have a Luttinger-liquid behavior [184, 185, 186]
in one dimension with 〈â†i âi+m〉 ∼ m−K/2 and to possess long-range off-
diagonal order in higher dimensions. K is the so-called Luttinger parameter
which is essential for the understanding of the existing phases. In one
dimension, we expect the Luttinger-liquid behavior to disappear in the
partially incompressible phases and correlations to decay exponentially as
〈â†i âi+m〉 ∼ e−m/Lc . This is because in this case a single (static) impurity is
sufficient to prevent the build-up of long-range correlations. This accounts
for a percolation problem, where for higher dimensions there will be a
critical fermion (or hole) filling above which off-diagonal order is suppressed.
This critical filling is determined by percolation thresholds and for annealed
fermionic disorder depends on the actual fermion distribution in the
ground state (e.g. clustered or anti-clustered). For a (quenched) random
fermion distribution in two dimensions, the threshold is %crit

F = 0.5927 (or
1− %crit

F = 0.5927 if non-fermion sites are incompressible) and %critF = 0.3116
for three dimensions [187]. See [188] for the percolation threshold of a
variety of two-dimensional lattices.

Figure 4.2 shows the first-order correlations 〈â†i âi+m〉 as function of the
distance m for an annealed fermion distribution obtained from DMRG
simulations for a rather large lattice of 512 sites with incommensurate boson
filling (NB = 448) and %F = 0.25. i and i + m are chosen symmetrically
around the center. For JB = 0.07, strong exponential decay with correlation
length Lc = 1.3 is found corresponding to a glass-type behavior (due to the
finite compressibility), while for JB = 0.2 correlations decay algebraically
with 〈â†i âi+m〉 ∼ m−0.32, which corresponds to a Luttinger liquid. The
Luttinger parameter K = 0.64 is slightly smaller than the known value
for the critical point of the superfluid to Bose-glass transition K = 2/3
[109] with box-disorder thus being close to the transition. It should be
mentioned that so far it is not clear whether the result for the superfluid to
Bose-glass transition for boxed disorder, i.e., a disorder distribution with
∆(x) = 1

∆
Θ(∆ − x)Θ(x) is applicable also for the binary disorder with
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Figure 4.2: DMRG simulations (crosses) of first-order correlations 〈â†i âi+m〉
for V = 0.25, %F = 0.25 and U = 1 for a lattice of L = 512 sites andNB = 448
bosons in the case of annealed disorder. Top: Within the partial compressible
phase (JB = 0.07), the line corresponds to the exponential fit ∼ exp{−m/Lc}
with Lc = 1.3. The exponential decay is apparent. Bottom: Superfluid
region (JB = 0.2), the line corresponds to the algebraic fit ∼ m−K/2 with the
exponent K = 0.64.

∆(x) = (1−%F )δ(x)+%F δ(x−V ) case. Nevertheless it serves as a rough esti-
mate. Another evidence for the existence of a glass-like phase in this system
is seen in [189], where the superfluid fraction is calculated from a Gutzwiller
approach. This study shows the existence of a region outside the Mott in-
sulators with zero compressibility, indicating the partial compressible phases.

The phases in figure 3.4 display another uncommon feature. Since the
early work of Fisher et al. [14] and an (incomplete) DMRG study by Pai
et al. [190], the question of the nature of the phase transition at the tip of
the lobe for boxed disorder stayed open. Different scenarios were discussed,
distinguishing between a direct superfluid to Mott-insulator transition
even for ∆ > 0 or the existence of an intermediate Bose-glass phase.
Though numerical [105] and analytic results [97] favored the existence of
an intermediate Bose-glass phase, the strict proof was only found recently
by Pollet et al. for the case of generic, bounded disorder [191, 192]. For
our situation of a binary disorder distribution, the strong-coupling results
suggest the existence of a direct superfluid to Mott-insulator transition. A
final, decisive answer to this question related to the nature of our disorder
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Figure 4.3: DMRG simulations (crosses) of first-order correlations 〈â†i âi+m〉
for V = 1.5, %F = 0.375 and U = 1 for a lattice of L = 128 sites and
NB = 184 bosons, averaged over 100 fermion distributions. Top: JB = 0.03,
the line corresponds to the exponential fit ∼ exp{−m/Lc} with Lc = 2. The
exponential decay is apparent. Bottom: JB = 0.2, the line corresponds to
the algebraic fit ∼ m−K/2 with the exponent K = 0.42. To avoid finite size
effects at short and long ranges, the fitting is done only for intermediate
distances.

distribution can however not be given at this point.

Figure 4.3 shows the first-order correlations for random, quenched fermion
distribution averaged over 100 realizations with non-commensurate boson
number (%B = NB/N = 184/128). Despite the sampling noise one recognizes
the transition between exponential decay with correlation length Lc = 2 for
JB = 0.03, and a power-law decay with m−0.21 for JB = 0.2 corresponding
to a Luttinger liquid with K = 0.42. JB = 0.03 is within a partially
incompressible phase, JB = 0.2 outside, proving that our picture of partially
compressible phases holds in both cases, annealed and quenched disorder.

Numerical results for the situation of non-vanishing but small fermionic hop-
ping reveal that (strict) partial incompressibility is lost. But still the increase
of the boson number with increasing chemical potential at one type of sites
is substantially less that that on the complementary type of sites:

κF � κN or κN � κF . (4.3)
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Figure 4.4: Density cut for the same parameter as figure 4.1 but for
JB = JF = 0.02 (see figure 3.8). The gray region depicts the incompressible
phases.

Figure 4.4 shows the corresponding density cut obtained from DMRG simu-
lations for the same parameters as in figure 4.1 but for JB = JF = 0.02, i.e.,
a cut along the chemical potential in figure 3.8. It should be noted that in
contrast to figure 4.1 averaging over the chemical potential is not needed due
to the finite mobility of the fermions which improves the convergence of the
numerical method. The simulations show that the glass-type character of the
phases survives. This is also seen in the exponential decay of the correlations
shown in figure 4.5.
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Figure 4.5: First-order correlations 〈â†i âi+m〉 for V = 0.25, %F = 0.25 and
U = 1 for a lattice of 128 sites and NB = 204 bosons in the case of equal
hopping amplitudes JF = JB = 0.02. Top: Logarithmic plot showing the
exponential decay with Lc = 1.8. Bottom: Double-logarithmic plot for the
same data. A proper fitting is not feasible as may be seen by the solid line.





CHAPTER 5

Conclusion and outlook

Studying the phase diagram of the Bose-Fermi-Hubbard model in the limit
of immobile fermions, we were able to point out the connection of the system
to the disordered Bose-Hubbard model. Because of the unique disorder
distribution, new incompressible phases with non-integer filling arise, as is
the case for any gapped disorder distribution. Employing a generalization of
the strong-coupling method, we analytically derived the phase diagram for
the case of quenched binary disorder, being in perfect agreement with nu-
merical results. From this approach, the existence of partially compressible
phases is predicted, being identified with a Bose glass phase. For annealed
fermions, the resulting fermion distribution is understood in terms of an
effective model, where the situation of anti-clustering fermions is similar to
that of the Bose-Hubbard model in a superlattice potential.

From the strong-coupling theory, a direct Mott-insulator to superfluid tran-
sition is predicted for the case of binary disorder, which is not common in the
disordered Bose-Hubbard model. A deeper investigation of this transition by
analytic and numerical means should give a further understanding of the pro-
cesses taking place at the tip of the lobe. Furthermore, a better insight into
the nature of the special glass phases could be obtained from studies of the
superfluid density or the Edwards-Anderson order parameter [121, 193, 194]
not considered so far. Additionally, the lack of knowledge about the Lut-
tinger parameter at the Bose-glass to superfluid transition for this special
disorder realization is another important starting point for further studies.
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Part II

Induced interactions in the
Bose-Fermi-Hubbard model

from ultrafast fermions
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CHAPTER 6

Introduction

Recent experiments on very cold 4He [195] found a supersolid behavior
predicted nearly forty years ago [196, 197, 198]. In a supersolid, superfluidity
coexists with a solid structure, where the superfluidity is believed to be
related to vacancies in the solid 4He with possible issues from remaining 3He
in the sample as well as disorder (see overview [199]). As shown by several
authors, supersolids also exist in bosonic systems with long-range interac-
tions [108, 200, 201, 202, 203] or in multi-species systems with a purely local
interaction [117, 120, 204, 205, 206, 207, 208, 209, 210]. Beside the prediction
of a supersolid phase, a multitude of other phases in mixed systems such
as phase separation between the species [118, 119, 200, 201, 204, 205, 211],
CDW phases [118, 205, 211, 212, Mering2010] and coexistence regions of
different phases [206, 208, Mering2010] are reported and are a vital field of
research.

As believed in the case of Helium, the supersolid exists because of a particle
or hole doping, where the latter one is similar to the mentioned vacancies.
For mixtures of bosons and fermions, Hébert et al. showed by numerical
means, that a supersolid of the bosons is only present, if and only if the
fermions are at half filling and the bosons are doped away from half filling
[120]. Special interest gained the situation of double-half filling, where
beside the mentioned phases also situations with Luttinger liquid behavior
or density wave character [89] as well as fermionic CDW in addition to a
bosonic CDW of full amplitude [205] exist.

In the present part, we provide a conclusive analytic theory to understand
the physics of the bosonic subsystem in the Bose-Fermi-Hubbard model
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for ultrafast fermions. This limit is of natural interest, since in most
experimental realizations the fermionic atoms are lighter than the bosonic
ones [37, 38], leading to an increased mobility of the fermions compared to
the bosons. Alongside the idea of an effective bosonic theory [117] we derive
the bosonic Hamiltonian for JF →∞, adiabatically eliminating the fermions
similar to the approach in [87]. After explaining the nature of the induced
long-range couplings between the bosons, a discussion of the bosonic phase
diagram is given together with a study of the influence of boundary effects.
All results are accompanied by numerical studies using DMRG for the full
Bose-Fermi-Hubbard model.

So far, no direct connection between the long-range interacting and the
mixture case is pointed out to our knowledge, where this similarity can be
seen within an effective approach. As shown in [87, 117, 213, 214, 215, 216],
the inclusion of the second species allows for an effective description of the
first species in terms of an effective Hamiltonian. Within linear response
theory, the induced interactions for the first species are attractive for
mixtures of bosons and fermions1, where so far no effects of the long-range
density-density interactions are studied in the framework of ultracold atoms,
yet. Nevertheless, quantum monte carlo results in two dimensions [208]
suggest the appearance of long-range, sign-alternating interactions at least
for double half filling.

1In [217] the opposite behavior is reported in contrast to the induced attractive inter-
action reported in [87, 117, 216, Mering2010].



CHAPTER 7

Friedel oscillations: fermion induced

superpotential

In this chapter, we present a simple ansatz which provides an intuitive
understanding of the physics in the regime of ultrafast fermions. The ansatz
assumes a full decoupling of the fermions from the bosons, which, after the
solution of the fermionic problem, gives the phase diagram of the bosons in
the limit JF →∞.

Since the fermions are ultrafast, we expect them to be uninfluenced by the
bosons, resulting in a homogeneous spacial distribution of the fermions. This
homogeneous distribution described by

〈m̂j〉 = %F (7.1)

results in an effective chemical potential for the bosons, since the interaction
part

V
∑
j

n̂jm̂j → V %F
∑
j

n̂j (7.2)

directly enters the chemical potential for the bosons as µB 7→ µB − V %F .
This first, intuitive ansatz holds for periodic boundary conditions. For open
boundary conditions as used in DMRG simulations, the ground state of the
fermions is changed in a very important way. The fermionic density in the
system with open boundaries displays so-called Friedel oscillations [218, 219,
220, 221], which are given by [219]

〈m̂(x)〉 =
N + 1

2

L+ 1
− 1

2(L+ 1)

sin
(

2πx
N+ 1

2

L+1

)
sin
(
πx
L+1

) . (7.3)
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Figure 7.1: Friedel oscillations of the fermionic species for large fermion
hopping JF = 10. The DMRG calculation is done with the full Bose-Fermi-
Hubbard model for integer filling of the bosons. The density distribution
perfectly agrees with the theoretic prediction from equation (7.3). The sys-
tem parameters are L = 64 sites, JB = 0, V = 1.25 and NB = L.

In the following we replace, the continuous position x by the lattice site
position j. So instead of a resulting homogeneous chemical potential for the
bosons, which still holds for an infinite system or periodic boundary condi-
tions, the system may be considered as having a site dependent potential∑

j µjn̂j where the chemical potential is given by µj = µB − V 〈m̂j〉. This
site dependent chemical potential introduces a qualitatively new feature to
the system which is equivalent to the disordered Bose-Hubbard model as
presented in chapter 1.1. For the Mott-insulating states, it is well justified
to neglect any possible influence of the bosons onto the fermions even for
finite but large values of JF . At other densities it will turn out that this
does not hold. For this reason, we only discuss the Mott lobes at this point.

In figure 7.1 the numerical results for the density of the fermions from
the full Bose-Fermi-Hubbard model are shown for JF = 10, JB = 0 and
unity filling of the bosons. The agreement between equation (7.3) and the
numerical results is very good. This shows that for integer filling of the
bosons the fermions are quite well described by the ground state of free
fermions. For the later discussion it should be noted that for the case %F = 1

2

the fermionic density does not display any oscillation because the Friedel
oscillations are in phase with the lattice.
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Figure 7.2: Phase diagram of the Bose-Fermi-Hubbard model for zero bosonic
hopping JB = 0 as a function of the fermionic filling %F at large hopping
JF = 10. The shaded regions each represent the different Mott lobes, where
the shrinking of the Mott lobes is a typical feature of the underlying effective
potential as described in the main text. The numerical data are obtained for
L = 64 with V = 1.25 and the agreement with the analytic prediction from
the Friedel oscillations is very good. The mean-field shift V %F is indicated
by the straight dashed lines.

On ground of this complemented Bose-Hubbard model we are now able to
discuss the phase diagram for JB = 0 in a straightforward way. Considering
particle-hole excitations, we find the chemical potentials for the upper and
lower lobe of the n−th Mott insulator

µ+
n = V n%F + V min

j
〈m̂j〉 (7.4)

µ−n = V n%F + V max
j
〈m̂j〉 . (7.5)

This result is shown in figure 7.2, where numerical results as well as
the corresponding analytic curves are presented. In the figure it may be
recognized, that with increasing fermion density, the Mott insulators are
first shrinking, opening a gap between two adjacent Mott insulators. This
gap is maximal around quarter filling with a reclosing for half filling. Beyond
half filling, the same structure arises due to particle hole symmetry of the
fermions. This property is superimposed onto a mean-field shift V %F which
comes from the first term in equation (7.3).
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Although the explanation for the phase diagram is quite intuitive, it lacks
an important feature. As can be seen from figure 7.1, the Friedel oscillations
for half fermionic filling %F = 1

2
are constant over the lattice, resulting in a

closing of the gap between the different Mott lobes. Having a closer look at
the phase diagram for %F = 1

2
for large but not infinite values of JF reveals

a completely different behavior which is shown in figure 7.3. Starting with
the local densities of bosons and fermions shown for double half filling, i.e.,
%F = %B = 1

2
, it can be seen that the fermions, in contrast to the Friedel oscil-

lation prediction, as well as the bosons displays a strict oscillating behavior.
This is typical for a so-called charge density wave phase which emerges in this
case 1. This CDW is a first evidence that the aforementioned back-action of
the bosons to the fermionic ground state is crucial to understand the physics
in this regime even for larger values of JF . This is even better seen in the
numerically obtained phase diagram in figure 7.3. There it can be seen, that
on the one hand, the Mott lobes do not touch each other and on the other
hand, the CDW phase is incompressible. The extent of the CDW phase,
or, more strictly speaking, the metastability region of the CDW phase even
penetrates that of the Mott insulator, resulting in a thermodynamic instable
phase with coexistence of Mott insulator and CDW. With these two indica-
tions, pointing to the necessity of a deeper analysis of the system we develop
a full effective theory of the bosons in the following chapters, explaining the
main features of the phase diagram.

1 It may be seen from figure 7.3 that at the center of the system there exists some kind
of domain wall. This domain wall is an artefact of the DMRG calculation and only present
for zero bosonic hopping JB = 0. The Lanczos diagonalization used in DMRG is sometimes
problematic, for instance if the initial state is chosen wrong as happening for the final step
of each sweep. This seems to happen in this case, resulting in some numerical problems
which are however unimportant in our case since they can be overcome if necessary by
methods shortly discussed later. Here I would like to thank the group of Prof. Eggert for
useful discussions.
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Figure 7.3: Above: Density profile of bosons and fermions1 for double half
filling showing a CDW of both bosons and fermions in contrast to the Friedel
oscillations giving %F = 1

2
= const. The parameters are the same as in the

plot below but for JB = 0. Below: Full phase diagram for%F = 1
2
. It can

be seen that the Mott insulators do not touch each other. Furthermore the
CDW phase extents over a wide region overlapping with the Mott insulators.
For both plots, the numerical data where obtained for V = 1.25 and JF = 10,
using DMRG and exact diagonalization (ED) for small lattices.





CHAPTER 8

Adiabatic elimination of the fermions

Before we consider the nature of the mentioned back-action, we derive an
effective bosonic model explaining the resulting phase diagram. For general
fermion filling, this is done by first rewriting the Bose-Fermi-Hubbard Hamil-
tonian (1.27) such that the notation in the following becomes much simpler.
We introduce a bosonic part ĤB, a fermionic part ĤF and an interaction part
ĤI, i.e.,

ĤBFHM = ĤB + ĤF + ĤI (8.1)

with

ĤB = −JB
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1) (8.2)

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V

∑
j

ñjm̂j (8.3)

ĤI = V
∑
j

(n̂j − ñj)m̂j. (8.4)

At this step, we already introduced a bosonic mean-field potential ñj in ĤI

and compensate it by subtracting the term in ĤF. This term serves later
as the source for the inclusion of the previously mentioned back-action. For
the moment, this term is kept for simplicity, without a deeper meaning. The
effective bosonic Hamiltonian is found from an adiabatic elimination, which
is performed in the framework of the scattering matrix

Ŝ = T exp

− i~
∞∫

−∞

dτĤI(τ)

 (8.5)

65



66 CHAPTER 8. ADIABATIC ELIMINATION OF THE FERMIONS

of the full system in the interaction picture, i.e.,
ĤI(τ) = e−

i
~ (ĤB+ĤF)τ ĤI e

i
~ (ĤB+ĤF)τ and T being the time ordering

operator. Tracing over the fermionic degrees of freedom yields the bosonic
scattering matrix

ŜB
eff = TrF Ŝ

=

〈
T exp

− i~ V
∑
j

∞∫
−∞

dτ

(
n̂j(τ)− ñj

)
m̂j(τ)


〉

F

. (8.6)

At this point, we make use of the so-called cumulant expansion [222, 223, 224],
which relates the average of an exponential 〈exp{sX}〉X (with respect to a
stochastic variable X) to the exponential of the averages, i.e., the higher
order cumulants of the stochastic variable

〈exp{sX}〉X = exp

{
∞∑
m=1

sm

m!
〈〈Xm〉〉

}
. (8.7)

Since the cumulants for the fermionic system vanish for orders higher than
two due to the nature of the fermionic state, the final expression for the
bosonic S-matrix is given by

ŜB
eff = T exp

− i~ V
∑
j

∞∫
−∞

dτ
(
n̂j(τ)− ñj

)
〈〈m̂j(τ)〉〉F (8.8)

− V
2

2~2

∑
j,l

∞∫
−∞

dτ

∞∫
−∞

dσ
(
n̂j(τ)− ñj

)(
n̂l(σ)− ñl

)
〈〈T m̂j(τ)m̂l(σ)〉〉F

 .

At this point, the time ordering in the fermionic cumulants is important
as discussed in [225, 226]. So far, no approximations are used, thus the
effective bosonic S-matrix is exact. To derive an effective Hamiltonian for
the bosonic system, an approximation has to be incorporated. As can be seen
in equation (8.5), the relation between the Hamiltonian and the scattering
matrix incorporates a single integral. This form can be reached be applying
a Markov approximation [227, 228], replacing the two-time bosonic density-
density operators by equal time operators, i.e.,
∞∫

−∞

dτ

∞∫
−∞

dσ
(
n̂j(τ)− ñj

)(
n̂l(σ)− ñl

)
〈〈T m̂j(τ)m̂l(σ)〉〉F

7→
∞∫

−∞

dτ
(
n̂j(τ)− ñj

)(
n̂l(τ)− ñl

) ∞∫
−∞

dσ 〈〈T m̂j(τ)m̂l(σ)〉〉F.

(8.9)
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This approximation is valid since the timescale of the fermionic system is
1/JF and therefore much shorter than any other timescale in the system. This
is equivalent to the Born-Oppenheimer approximation in molecular physics,
where the heavier (atomic) system is presumed to be static regarding the
solution of the lighter (electronic) system. Using the Markov approximation,
we rewrite the bosonic S-matrix as

ŜBeff = T exp

− i~
∞∫

−∞

dτHeff
I (τ)

 , (8.10)

which defines the effective bosonic interaction Hamiltonian in the interaction
picture

Ĥeff
I (τ) = V

∑
j

(
n̂j(τ)− ñj

)
〈〈m̂j(τ)〉〉F

− iV
2

2~
∑
jl

(
n̂j(τ)− ñj

)(
n̂l(τ)− ñl

) ∞∫
−∞

dσ 〈〈T m̂j(τ)m̂l(σ)〉〉F.
(8.11)

Since the first order cumulant 〈〈m̂j(τ)〉〉F is equal to the expectation value
and the second order cumulant1 does only depend on the difference T of the
times τ and σ and the distance d between the sites j and l as will turn out
in the next chapter, the final form of the effective interaction Hamiltonian in
the Schrödinger picture can be written as

Ĥeff
I = V

∑
j

(
n̂j − ñj

)
〈m̂j〉F +

∑
j

∞∑
d=−∞

gd(%F )
(
n̂j − ñj

)(
n̂j+d − ñj+d

)
,

(8.12)
where the coupling constants gd(%F ) for the induced long range density-
density interactions are given by

gd(%F ) = −iV
2

2~

∞∫
−∞

dT 〈〈T m̂j(T )m̂j+d(0)〉〉F. (8.13)

With this result, the whole effect of the fermions on the bosonic subsystem
is governed by two terms: (i) the mean-field interaction (1st order) and (ii)
the induced density-density interactions (2nd order). In a simple pictorial
way, the induced interaction means the scattering of a boson with a fermion

1The definition of the second order cumulant is given by
〈〈m̂j(τ)m̂l(σ)〉〉 = 〈m̂j(τ)m̂l(σ)〉 − 〈m̂j(τ)〉〈m̂l(σ)〉.
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density−density

fermion−induced

interaction
bosons on site i bosons on site i+d

Figure 8.1: Feynman graph representing the fermion induced density-density
interaction.

on site j with a subsequent second scattering process between the same
fermion and another boson at site j + d. A corresponding Feynman diagram
for this process can be found in figure 8.1, illustrating the effective interaction.

Finally, the whole effective Hamiltonian for the bosonic subsystem is given
by equation (8.2) together with equation (8.12):

Ĥeff
B = −JB

∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1) (8.14)

+ V
∑
j

(
n̂j − ñj

)
〈m̂j〉F +

∑
j

∞∑
d=−∞

gd(%F )
(
n̂j − ñj

)(
n̂j+d − ñj+d

)
.

As can be seen from equation (8.13), the remaining task in the calculation
of the effective Hamiltonian is to calculate the fermionic density-density cor-
relator 〈〈T m̂j(T )m̂j+d(0)〉〉F using the fermionic Hamiltonian in (8.3). This
will be done in the next chapter for the case of free fermions, i.e., ñj ≡ 0 for
all sites j. This case neglects all possible back-actions of the bosons to the
fermions which will be incorporated later by a proper choice of the ñj. The
knowledge of the coupling constants at the end allows for a construction of
the bosonic phase diagram.
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Couplings gd(%F ) for free fermions ñj ≡ 0

9.1 Calculation of the couplings

a) Determination of the cumulant

Here we calculate the coupling constants from equation (8.13) for the case of
free fermions. This is, as mentioned the natural choice, since the fermionic
hopping amplitude JF is much larger than any other parameter in the system
and hence it can be suspected that the state of the fermions is not affected
by the bosons. Therefore the ground state of the fermions is given by the
ground state of the fermionic Hamiltonian

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
. (9.1)

In momentum space, the solution is straightforward. Applying a Fourier
transform

ĉj =
1√
L

L
2
−1∑

k=−L
2

e−2πi kj
L f̂k, (9.2)

the fermionic Hamiltonian transforms into

ĤF = −2JF
∑
k

cos(2π
k

L
) f̂ †k f̂k. (9.3)

The ground state is the Fermi sphere KF , which means that all momen-
tum modes k smaller than the Fermi momentum kF = NF/2 are occupied,

69
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KF = {k| |k| ≤ kF}. Here NF is the number of fermions in the system and
L is the number of sites. Using the Fourier transform, the real-space density
operator in the Heisenberg picture is given by

m̂j(τ) =
1

L

∑
k1,k2

e−
i
~ τ2JF [cos(2π

k1
L

)−cos(2π
k2
L

)]e−2πi
(k1−k2)j

L f̂ †k1 f̂k2 . (9.4)

Together with the ground state

|ΨF 〉 =
∏
k∈KF

f̂ †k |0〉 (9.5)

and the four-point function

〈f̂ †k1 f̂k2 f̂
†
k′1
f̂k′2〉 = δk1,k2δk′1,k′2Θ(kF − |k1|)Θ(kF − |k′1|)

+ δk1,k′2δk′1,k2Θ(kF − |k1|)Θ(|k′1| − kF ),
(9.6)

the density-density cumulant reads

〈〈m̂j(T )m̂j+d(0)〉〉F =
1

L2

∑
k1∈KF

∑
k′1 6∈KF

(9.7)

× e−
i
~2JFT cos(2π

k1
L

)e
i
~2JFT cos(2π

k2
L

)e−2πi
dk1
L e2πi

dk′1
L .

for T > 0, where time ordering is irrelevant. To simplify the calculation of
the momentum sums it is more convenient to switch to the thermodynamic
limit L→∞. This is reached by defining ξ = k

L
and changing 1

L

∑
k to

∫
dξ.

With this, and a further substitution 2πξ 7→ ξ, the cumulant simplifies to

〈〈m̂j(T )m̂j+d(0)〉〉F =
1

4π2

∫
2π KF

dξ

∫
2π KC

F

dξ′ e−
i
~2JFT [cos(ξ)−cos(ξ′)]e−idξeidξ

′
.

(9.8)
Here KC

F is the complement of the Fermi sphere. Using Euler’s formula and
restricting the integration to the positive momentum part we finally find

〈〈m̂j(T )m̂j+d(0)〉〉F =
1

π2

%F π∫
0

dξ

π∫
%F π

dξ′ cos(dξ) cos(dξ′) e−
i
~2JFT [cos(ξ)−cos(ξ′)].

(9.9)
Figure 9.1 displays the real, imaginary and absolute values of the cumulant
for %F = 1/2 and JF = 10. The sharp localization around T = 0 further-
more shows the validity of the used Markov approximation (8.9) since the
bosonic timescales are much larger. Next we aim at gd(%F ) by performing
the integration over time in (8.13).
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Figure 9.1: Density-density cumulant (9.9) for free fermions splitted in real
and imaginary parts as well as the absolute value. %F = 1/2 and JF = 10.
The sharp peak around T = 0 shows the validity of the used Markov approx-
imation.

b) Calculation of the time integral

The easiest way to perform the time integral over (9.9) is to make use of the
Riemann-Lebesgue lemma, which states, that for any L1 function f : R→ C,
the Fourier transform of f(t) tends to zero as the frequency tends to infinity
[229]

lim
ω→±∞

b∫
a

f(t) eiωt dt = 0. (9.10)

When calculating the time integral over equation (9.9), it turns out to be
simpler to rewrite the integration together with the time ordering operator
as

∞∫
−∞

dT 〈〈T m̂j(T )m̂j+d(0)〉〉F = 2 lim
A→∞

A∫
0

dT 〈〈m̂j(T )m̂j+d(0)〉〉F. (9.11)

= lim
A→∞

2

π2

%F π∫
0

dξ

π∫
%F π

dξ′ cos(dξ) cos(dξ′)

[
i~

2JF

e−
i
~2JFT [cos(ξ)−cos(ξ′)]

cos(ξ)− cos(ξ′)

]A
0

.

From the Riemann-Lebesgue lemma, we note that the upper integration limit
vanishes for A → ∞. The final result for the coupling constants (8.13) for
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the case of free fermions, i.e. without any back-action of the bosonic system
onto the fermions is thus given by

gd(%F ) = − V 2

2π2JF

%F π∫
0

dξ

π∫
%F π

dξ′
cos(dξ) cos(dξ′)

cos(ξ)− cos(ξ′)
. (9.12)

This expression for the couplings will be the starting point for our discussion
of the phase diagram shown in figure 7.3. As will be seen later, gd(%F )
has a singular behavior at %F = 0, 1. For this reason on has to be careful
with all steps of the calculation here, and we ask the question whether the
Riemann-Lebesgue lemma is applicable for this function. The L1-norm of
the kernel has an upper bound given by the L1-norm of the kernel of g0(%F ).
Additionally, the denominator is always positive and therefore

%F π∫
0

dξ

π∫
%F π

dξ′
∣∣∣∣cos(dξ) cos(dξ′)

cos(ξ)− cos(ξ′)

∣∣∣∣ ≤
%F π∫
0

dξ

π∫
%F π

dξ′
1

cos(ξ)− cos(ξ′)
=
π2

4
.

(9.13)
The last step is proven in the next section. Before we proceed we note that
(9.12) shows a particle-hole symmetry gd(%F ) = gd(1 − %F ). This can be
shown by substituting ξ → π − ξ and ξ′ → π − ξ′ and interchanging ξ ↔ ξ′

afterwards.

9.2 Couplings in real space

From (9.12), the couplings gd(%F ) can be calculated numerically. We use the
prefactor V 2

2π2JF
as the energy scale. Only the integral in (9.12) is important

and inherits all vital features. Unfortunately, there does not seem to be a
general analytic result for it but for d = 0, the integrals can be calculated
analytically. We find

g0(%F )
∣∣∣
%F 6=0,1

∼ −
%F π∫
0

dξ

π∫
%F π

dξ′
1

cos(ξ)− cos(ξ′)
(9.14)

= −2

π∫
%F π

dξ′

atanh
(

cot
(
ξ′

2

)
tan
(
ξ
2

))
sin(ξ)

%F π
0

(9.15)

= −π
2

4
(9.16)



9.2. COUPLINGS IN REAL SPACE 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

fermionic density ρ
F

co
up

lin
gs

 g
d(ρ

F
) 

   
[ V

2 /2
π2 J F

 ]

 

 

d = 0 d = 1 d = 2 d = 3 d = 5 d = 10

Figure 9.2: Dependence of the coupling strength for various distances d on
the fermionic filling %F . One can obviously see the particle-hole symmetry,
reflecting gd(%F ) = gd(1 − %F ) as well as the singular behavior for integer
filling.

for non-integer fermion filling and naturally g0(0) = g0(1) ≡ 0, which shows
that the couplings for zero distance are independent of the density of the
fermions. g0 = − V 2

8JF
is thus a shift in the bosonic on-site interaction U .

This negative shift is in full agreement with the results from [87, 90, 117],
predicting the enhancement of the superfluid phase because of a reduction
of the on-site interaction U of the bosons. With our approach, we are able
to go beyond this renormalization of the local U and incorporate further
interaction effects.

Figure 9.2 shows the numerical results for the coupling constants as a func-
tion of the fermionic filling %F . As stated above, the particle-hole symmetry
manifests itself in the couplings as gd(%F ) = gd(1− %F ). For the case of zero
or unity fermionic filling it should be mentioned, that the coupling constants
are zero in these two cases, whereas the limit lim%F→0,1 gd(%F ) = g0(%F ) is
unequal to zero. This effect can be understood when looking at figure 9.3.

Figure 9.3 shows the dependence of the couplings on the distance d for
selected densities %F . One can see a periodic modulation of the couplings,
with the wavelength of the modulation given by 1/%F (for %F <

1
2
, otherwise

the wavelength is given by 1/(1 − %F )). Therefore, for %F → 0 (or 1)
the wavelength diverges and all couplings approach the g0(%F ) value. The
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Figure 9.3: Dependence of the coupling strength for selected densities
%F = 0, 1/20, 1/8, 1/4, 1/2 on the distance d. The periods of the oscilla-
tions are 1/%F = ∞, 20, 8, 4, 2. For all cases, the signs in the minima are
negative and the maxima positive with a strict alternation from site to site
for the case of half filling.

behavior of the couplings is typical for induced couplings of the RKKY-type
(Rudermann-Kittel-Kasuya-Yosida) [230, 231, 232]. The most interesting
case can be found for %F = 1/2. In this case, the wavelength of 2 leads to a
strict alternation in the sign of the couplings from site to site. As a result, the
effective Hamiltonian (8.14) displays repulsive nearest-neighbor, attractive
next-nearest-neighbor, repulsive next-next-nearest-neighbor interaction and
so on. See [208] for a similar, numerical study in this case for two dimensions.

From figure 9.4, the reason why a deeper consideration is inevitable in terms
of a back-action can be seen. There, the dependence of the coupling constants
is plotted for a larger region of distances for selected %F . More precisely, the
absolute value of the minima, i.e. −gm/%F (%F ) for m ∈ N is shown on a
double logarithmic plot. From the figure it can be seen, that the long-range
decay of the coupling constants is given by

gd(%F ) ∼ 1

d
. (9.17)

Concerning the fitting procedure of the couplings to the numerical data
it should be mentioned, that the first few distances were left out and
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Figure 9.4: Absolute value of the couplings g m
%F

(%F ) as a function of distance

d for selected densities %F . Points are the numerical integration of the double
integral and the solid lines are a linear fit in the double logarithmic plot. As
indicated, the fitting yields a decay of the couplings inverse to the distance
for all densities %F . The slight deviation of the exponent from one can be
attributed to the limited set of fitting points.

that the exponent is slightly less than one because of the finite number
of fitting points1. This slow decay of the couplings demands to introduce
a renormalization procedure, which can be seen from the following argument:

From the numerical data in figure 7.3, we conclude the existence of a CDW
phase at double half filling %F = %B = 1

2
as also reported in [89, 205] for

slightly different choice of the system parameters. This CDW phase is the
result from the induced interactions. A simple explanation at vanishing
bosonic hopping JB can be found by subsequently adding bosons to the
system starting from zero filling up to the CDW filling %B = 1

2
: The

first boson will occupy any site, for instance site 0. When the second
boson is added to the system, the energy will be minimized in site 2 (or
−2), since here the density-density interaction is negative, and the overall
energy is reduced. All additional particles will continue occupying all even
sites, ending up in the CDW phase at half filling %B = 1/2. But in this
configuration, the decay of the couplings with 1

d
leads to a divergence of the

total energy in the thermodynamic limit. Since this argument still holds
for JB > 0, this would result in a CDW of full amplitude ηB = 1 for any

1When increasing the number of fitted data points, the exponents saturate at one.
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Figure 9.5: Amplitude of the bosonic CDW as a function of the bosonic
hopping JB for V = 1.25 and JF = 10. Since the effective theory predicts a
CDW for any hopping JB (dashed lines), the necessity of a renormalization
scheme is evident. Additionally the non-zero amplitude of the fermionic
CDW is in strong contrast to the underlying ansatz and another indication
of a more involved physics. The numerical data are obtained from DMRG
for lattice of 512 sites and NF = NB = 256.

hopping2. As can be seen in figure 9.5, where the amplitude of the CDW
obtained from DMRG simulations is plotted as a function of the bosonic
hopping, the amplitude of the CDW drops for growing JB, which is in
contrast to the results from the coupling constants for free fermions. We
attribute this error to the back-action of the bosons on the fermions which is
disregarded in the effective Hamiltonian by now. Evidence for the existence
of this back-action can also be found from the fermionic CDW amplitude
plotted in figure 9.5. Despite the fact, that the effective theory relies on a
homogeneous fermion distribution (for %F = 1/2) with a proper prediction
of a bosonic CDW, the numerics show that the fermions are also found in a
CDW phase, with some small, but non-vanishing amplitude ηF . This means,
that the inclusion of a possible back-action is essential in the understanding
of the phase diagram of the BFHM in the limit of fast fermions. These
arguments also hold in the case of a fermionic density %F 6= 1

2
, with a ground

state which has a boson at every 1
%F

-th site3.

2This means an alternation of filled and empty sites.
3If the period of the oscillations is commensurable with the lattice. Otherwise, the

situation gets much more complicate.
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But before we move onto a scheme including this back-action for %F = 1
2

we consider the properties of the coupling constants in momentum space.
This will provide a valuable tool to judge the performance of the upcoming
renormalization.

9.3 Couplings in momentum space

A different aspect of the nature of the couplings gd(%F ) can be seen from the
Fourier transform of the couplings:

g̃%F (k) =
∑
d

gd(%F )eikd. (9.18)

The analytic form of the couplings (in this case for the free fermion case)
shows that the only dependence on the distance d occurs in the numerator
of (9.12). The Fourier transform of the numerator is given by

∞∑
d=−∞

cos dξ cos dξ′eikd =
π

2

∞∑
l=−∞

∑
C1,C2=±1

δ(2πl − C1ξ − C2ξ
′ − k). (9.19)

as proven in section A.1 in the appendix. The calculation of (9.18) can be
simplified by expanding the integration limits to infinity and introducing Θ
functions, since then the evaluation of the δ function is straightforward:

g̃%F (k) ∼ −
%F π∫
0

dξ

π∫
%F π

dξ′
∑

d cos(dξ) cos(dξ′)eikd

cos(ξ)− cos(ξ′)
(9.20)

= −π
2

%F π∫
0

dξ

∞∫
−∞

dξ′
∑
l,C1,C2

Θ(π − ξ′)Θ(ξ′ − π%F )δ(2πl − C1ξ − C2ξ
′ − k)

cos(ξ)− cos(ξ′)

Performing the integral over ξ′ finally gives

g̃%F (k) = − V 2

4πJF

∑
l,C1,C2

%F π∫
0

dξ × (9.21)

Θ(π − 2πlC2 + C1C2ξ + C2k)Θ(2πlC2 − C1C2ξ − C2k − π%F )

cos(ξ)− cos(C1ξ + k)

as the result for the Fourier transformation of the coupling constants. This
form already shows the 2π periodicity of g̃%F (k) due to the sum over l
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Figure 9.6: Direct summation of the couplings from figure 9.4 for k = 0.
On can see the convergence for s → ∞ to −1; this agrees with the limit
limk→0 g̃ 1

2
(k).

(times 2π) and the cosine in the denominator. Therefore it is sufficient
to restrict the range of k to k ∈ [−π, π]. With this restriction, the range
of possible l values giving non-zero kernels for the integrals (due to the
Θ functions) is strongly limited. For k = 0 it turns out that the integral
kernel in (9.21) is not well defined. g̃ 1

2
(0) therefore has to be evaluated by

a direct summation of the numerically integrated real space couplings taken
from figure 9.4 for %F = 1

2
. This is shown in figure 9.6, where the Fourier

transform is approximated by a finite sum with increasing limits, yielding
g̃ 1

2
(0) = limk→0 g̃ 1

2
(k) = − V 2

4πJF
.

Figure 9.7 shows the couplings in momentum space as a function of the
momentum k and the density %F . From the figure a divergence for k = ±2π%F
may be seen4. This divergence (van Hove-singularity [233]), also reported for
instance in [117, 213] is directly connected to the earlier discussed divergence
of the energy. For arbitrary fermionic density %F , filling the system with
bosons up to a density %B = %F results in a distribution of the bosons where
the distance between the bosons is given by the wavelength of the coupling
constant as presented in figure 9.3. The total energy of this configuration
is related to the Fourier transform of the corresponding wavelength, thus
being divergent, leading to the peculiarities discussed earlier. With these

4This strictly holds for %F < 1
2 . For %F > 1

2 , the divergence is situated at
k = ±2π(1− %F ) due to the particle-hole symmetry.
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Figure 9.7: Numerical results for the Fourier transform of the couplings from
equation (9.21). Shown are the couplings for selected values of %F . The
divergence at±2π%F indicating the need for a renormalization of the fermions
is very sharp.

indications for the necessity of including the back-action of bosons to the
fermions, our next step in the understanding of the bosonic phase diagram
is the renormalization of the fermionic system, resolving issues coming from
the divergence of the coupling constants.





CHAPTER 10

Renormalization of the fermionic system and

the effective Hamiltonian

In the present chapter we introduce a renormalization scheme for the
calculation of the fermionic cumulant in (8.13). The back-action of bosons
on fermions is incorporated by the introduction of the bosonic mean-field
amplitude ñj in equation (8.3). A natural choice of these amplitudes is
apparent from the discussion in the previous chapter. As discussed, the
ansatz of free fermions drives the bosonic system in a CDW phase with a
divergent energy in the thermodynamic limit. This bosonic CDW in turn
has an influence onto the fermionic system. Our approach incorporates
this influence by a mean-field amplitude ñj, following the CDW oscillations
of the bosonic subsystem. The bosonic CDW will act as a background
potential for the fermions. A drawback of our method is the slightly limited
range of applicability. Due to the complexity of the method, only the case of
%F = 1/2 is easily tangibly. Although we can generalize the method to other
commensurate fermionic fillings %F = 1/m with m ∈ N (as done formally
in appendix A.4), we restrict ourselves to half fermionic filling. Finally,
the renormalized cumulants are used to calculate and analyze the effective
coupling constants together with a short discussion of the arising effective
bosonic Hamiltonian.

For the case of a bosonic CDW the mean-field amplitude ansatz1 is given by

ñj = %B
[
1 + ηB(−1)j

]
= %B(1− ηB) + 2%BηB δ(sin(π

j

2
)), (10.1)

1A similar ansatz is used in [81] to study the influence of the wavelength of the bosonic
CDW on the fermionic system.

81
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where the latter form serves as a simplification in the following calculation.
Here we introduced the amplitude of the bosonic CDW ηB as a free pa-
rameter. Figure 9.5 shows, that this amplitude drops to zero for increasing
hopping JB.

The main task in this chapter is to calculate the fermionic cumulants used in
the effective bosonic Hamiltonian (8.14), i.e., free fermions in an alternating
potential, given by

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V 2%BηB

∑
j

δ(sinπ
j

2
)m̂j. (10.2)

In this Hamiltonian, a global energy shift V %B(1− ηB)%F from the potential
is left out and a solution can be found straightforwardly, since the Hamilto-
nian is only quadratic in the creation and annihilation operators. Although
the solution is easy by means of a canonical transformation as presented in
appendix A.4 and in [178, 234], the resulting expressions are rather involved
and the quantities needed are hard to express. Here we employ a Green’s
function approach, extracting all needed quantities for the full calculation of
the bosonic Hamiltonian for double half filling.

10.1 General framework and initial defini-

tions

Before going into details, we introduce the framework of the calculation. In
order to calculate the second order cumulant 〈〈m̂j(T )m̂j+d(0)〉〉F with respect
to the ground state of the fermionic Hamiltonian (10.2) we make use of the
Green’s function technique [220]. The second order cumulant factorizes by
use of Wick’s theorem [220, 235, 236] into a product of the advanced and
retarded Green’s functions

〈〈m̂j(T )m̂j+d(0)〉〉F =
〈
ĉ†j(t+ T )ĉj+d(t)

〉〈
ĉj(t+ T )ĉ†j+d(t)

〉
= G(+)

j,j+d(t+ T, t) G(−)
j,j+d(t+ T, t). (10.3)

Here we used T > 0 and the definition of the Green’s functions

G(+)
j,j+d(t+ T, t) =< T ĉ†j(t+ T ) ĉj+d(t) >

G(−)
j,j+d(t+ T, t) =< T ĉj(t+ T ) ĉ†j+d(t) > .

(10.4)

To find a solution of the problem it is more convenient to switch to momentum
space. The Hamiltonian (10.2) can be transformed to momentum space by
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the Fourier transformation (9.2), which gives

ĤF = −2JF

L/2−1∑
k=−L/2

cos(2π
k

L
) f̂ †k f̂k + V ηB%B

L/2−1∑
k=−L/2

∑
α=±1

f̂ †
k+L

2
α
f̂k (10.5)

apart from a constant energy shift V ηB%B%F which is neglected. Here it
should be mentioned that the summation over α only includes those terms
which fulfill |k| < L

2
. To denote Green’s functions in momentum space

change indices as j → k and j + d→ k′.

Due to the perturbation of the ground state from the potential V , we first
calculate the Green’s functions (10.4) for the unperturbed system, i.e., the
ground state of Hamiltonian (10.2) for ηB = 0. This state is the aforemen-
tioned Fermi-sphere (9.5). A straightforward calculation gives for the Green’s
functions

G(0+)
k,k′ (t, t′) = Θ(t− t′)Θ(εF − εk)eiεk(t−t′)δk,k′

−Θ(t′ − t)Θ(εk − εF )eiεk(t−t′)δk,k′

G(0−)
k,k′ (t, t′) = Θ(t− t′)Θ(εk − εF )eiεk(t′−t)δk,k′

−Θ(t′ − t)Θ(εF − εk)eiεk(t′−t)δk,k′

(10.6)

in the time domain and

G(0±)
k,k′ (ω) = ±δk,k′

i√
2π

1

εk ∓ ω ⊕ iδ
(10.7)

in the frequency domain. Here, the frequency domain is defined by the (time)
Fourier transformation

G(0±)
k,k′ (ω) =

1√
2π

∞∫
−∞

dT G(0±)
k,k′ (t+ T, t) e−iωT e±δT . (10.8)

The last term in the integral kernel is introduced to assure convergence and
will be properly removed later on. In equation (10.6) we introduced the
dispersion relation

εk = −2JF cos(2π
k

L
) (10.9)

of the free particle and

⊕ =

{
+ k ∈ KF
− k 6∈ KF

(10.10)
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distinguishes between momentum modes within the Fermi sphere and those
outside.

Following the technical details presented in [220], we immediately arrive at a
Dyson equation for the Green’s function since the induced potential is only
quadratic in the fermionic operators. In the frequency domain this gives

G(+)
k,k′(ω) = G(0+)

k,k′ (ω) +
i

~
√

2πV ηB%B G(0+)
k,k (ω)

∑
α=±1

G(+)

k+L
2
α,k′

(ω) (10.11)

for the advanced Green’s function and the retarded Green’s function is given
by

G(−)
k,k′(ω) = G(0−)

k,k′ (ω) +
i

~
√

2πV ηB%B G(0−)
k′,k′ (ω)

∑
α=±1

G(−)

k,k′+L
2
α
(ω). (10.12)

These equations allow for an algebraic solution.

10.2 Solution of the Dyson equations

For the solution we only discuss the case of the advanced Green’s function,
the situation for the retarded one is exactly the same.

The solution of equation (10.11) can be found by considering

G(+)

k±L
2
,k′

(ω) = G(0+)

k±L
2
,k′

(ω) +
i

~
√

2πV ηB%B G(0+)

k±L
2
,k±L

2

(ω)G(+)
k,k′(ω), (10.13)

which are the contributions in the latter part of equation (10.11). Here it

should be mentioned that the contribution from G(+)
k±L,k′(ω) vanishes since

the momentum modes are limited to the first Brillouin zone k ∈ [−L
2
, L

2
]

with k±L 6∈ [−L
2
, L

2
]. Plugging these two Green’s functions into (10.11) and

solving for G(+)
k,k′(ω) finally gives the solution of the Green’s functions in terms

of the unperturbed ones:

G(+)
k,k′(ω) =

G(0+)
k,k′ (ω) + i

~

√
2πV ηB%B G(0+)

k,k (ω)
[
G(0+)

k+L
2
,k′

(ω) + G(0+)

k−L
2
,k′

(ω)
]

1 +
2πV 2η2B%

2
B

~2 G(0+)
k,k (ω)

[
G(0+)

k+L
2
,k+L

2

(ω) + G(0+)

k−L
2
,k−L

2

(ω)
] .

(10.14)
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From (10.7) we note that G(0±)
k,k′ (ω) ∼ δkk′ and therefore only the terms

G(+)
k,k (ω), G(+)

k,k±L
2

(ω) and G(+)

k±L
2
,k

(ω) of the full Green’s functions are non-zero.

Applying the same procedure to G(−)
k,k′(ω) gives a similar expression. The final

form for the Green’s functions in momentum space and time domain is found
by using the precise form of G(0±)

k,k′ from (10.7) and simplifying the resulting
expressions giving

G(±)
k,k (ω) = ± i√

2π

εk ± ω ⊕ iδ
(εk ∓ ω ⊕ iδ)(εk ± ω ⊕ iδ) +

V 2η2B%
2
B

~2

(10.15)

and

G(±)

k,k±L
2

(ω) =
iV ηB%B√

2π~

(εk ∓ ω ⊕ iδ)(εk ± ω ⊕ iδ) +
V 2η2B%

2
B

~2

= G(±)

k±L
2
,k

(ω). (10.16)

Here, again ⊕ distinguishes between momentum modes k within or outside
the Fermi sphere KF .

This is the main result of this section. It has to be completed by transforming
back to the time domain which can be found in appendix A.2. After the
Fourier transformation, introducing the renormalized dispersion relation

ε̄k =

√
ε2
k +

V 2η2
B%

2
B

~2
, (10.17)

the Green’s functions in momentum space and time domain are found to read

G(±)
k,k (t+ T, t) =

1

2
e−iε̄kT

(
1∓ εk

ε̄k

)
(10.18)

G(±)

k±L
2
,k

(t+ T, t) = −V ηB%B
2~

1

ε̄k
e−iε̄kT . (10.19)

These expressions allow to calculate the density-density correlations for the
fermionic Hamiltonian.

10.3 Green’s function in real space

The missing final step, the Fourier transformation from momentum space
to real space will be performed together with the transition to the ther-
modynamic limit. As above, we restrict ourselves on the calculation of
G(+)
j,j+d(t+ T, t), since the calculation for G(−)

j,j+d(t+ T, t) is similar.
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Using the definition

G(+)
j,j+d(t+ T, t) =

〈
T ĉ†j(t+ T ) ĉj+d(t)

〉
(10.20)

of the Green’s functions and the Fourier transformation to momentum space
(9.2), the real space Green’s functions are connected to the momentum space
Green’s functions by

G(+)
j,j+d(t+ T, t) =

1

L

L/2−1∑
k1,k2=−L/2

e−2πi
(k1−k2)

L
je−2πi

k1
L
dG(+)

k2,k1
(t+ T, t). (10.21)

From the previous discussions we know, that only certain Green’s functions
in momentum space are non-zero. This is incorporated by including

δk1k2 + δk1+L
2
k2

+ δk1−L
2
k2

(10.22)

to the summation, picking out the non-zero elements. After performing the
summation over k2, a slight restructuring of the exponentials and an appli-
cation of the symmetry of the Green’s functions (10.16), the final result is
found to be2

G(+)
j,j+d(t+ T, t) =

1

2L

∑
k

e−2πi k
L
d

[
(1− εk

ε̄k
)− (−1)j

V ηB%B
~

1

ε̄k

]
e−iε̄kT .

(10.23)
For a detailed analysis of the Green’s functions, it is more convenient to
switch to the thermodynamic limit. As stated earlier, this is achieved by
substituting ξ = k

L
and changing 1

L

∑
k to

∫
dξ. Furthermore including the

definition of the free fermion dispersion (10.9) as well as the renormalized
dispersion (10.17) and introducing an amplitude factor

a =
V ηB%B
2~JF

(10.24)

the real space Green’s functions in time domain can be written as

G(±)
jj+d(t+ T, t) =

1

2π

π∫
0

dξ cos(dξ) e−iT2JF
√

cos2(ξ)+a2

(
1± cos(ξ)√

cos2(ξ) + a2

)

− (−1)j
a

2π

π∫
0

dξ cos(dξ)
e−iT2JF

√
cos2(ξ)+a2√

cos2(ξ) + a2
.

(10.25)

2The retarded form G(−)
j,j+d(t+ T, t) is found from a similar analysis.
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This result is the starting point for the calculation of the density-density cor-
relator. Note that the integration in (10.25) cannot be carried out explicitly
for general arbitrary d.

10.4 Expectation values and the density-

density correlator

The calculation of the Green’s functions does not only allow to calculate of
the density-density correlator in equation (8.13) but also gives a prediction
of the behavior of the fermionic system, as long as the bosonic CDW
amplitude ηB is known. Here we first look at the solution of the fermionic
problem itself, i.e., all numerical data shown are calculated for the Hamil-
tonian (10.2), i.e., only the fermionic problem with an external potential is
simulated; not the full Bose-Fermi-Hubbard Hamiltonian.

a) Local density

The first quantity to study is the fermionic density predicted by the renor-
malization procedure. With the result for the Green’s function in equation
(10.25) an analytic form for the fermionic density can be found. Using

〈m̂j〉F = G(+)
j,j+0(t+ 0, t) (10.26)

the fermionic density evaluates as

〈m̂j〉F =
1

2π

π∫
0

dξ

(
1 +

cos(ξ)√
cos2(ξ) + a2

)
− (−1)j

a

2π

π∫
0

dξ
1√

cos2(ξ) + a2

=
1

2
− (−1)j

a

π
√

1 + a2
K

[
1

1 + a2

]
. (10.27)

The first important result from the renormalization procedure therefore is

〈m̂j〉F =
1

2

[
1− ηaF (−1)j

]
, (10.28)

where ηaF = 2a
π
√

1+a2
K
[

1
1+a2

]
and K[x] is the complete elliptic integral of

the first kind [237]. This means, the renormalization procedure results
in the prediction of a fermionic CDW with some amplitude ηaF which
is in agreement with the numerical results from figure 9.5. Figure 10.1



88 CHAPTER 10. RENORMALIZATION AND EFFECTIVE MODEL

0 0.5 1 1.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

<
m

j>

potential strength V η
B
/J

F

 

 

odd sites (DMRG)
even sites(DMRG)
analytic

Figure 10.1: Expectation value of the fermionic density operator for even
and odd sites for the ground state of the effective renormalized fermionic
Hamiltonian (10.2). Points are the numerical results from DMRG calcula-
tions with 300 sites and JF = 10. Solid lines are the analytic results from
equation (10.28). Shown are the numerical results for 〈m̂150〉F and 〈m̂151〉F.

shows numerical calculation of the amplitude of the fermionic CDW from
DMRG calculations for the Hamiltonian (10.2) as a function of the potential
strength V ηB along with the analytic results.

Another feature of (10.28) which will be important for the later discussion
of the full Bose-Fermi-Hubbard model is the minus sign in front of the
site dependent part. This is a direct consequence of the alternating boson
potential ansatz. Since the interaction V is chosen positive, i.e., repulsion
between bosons and fermions, it is expected that the phase of the bosonic
and fermionic density wave is shifted by π compared to each other. For the
case of attractive interaction, both density waves are in phase. This is in
full agreement with the numerical results presented in the discussion of the
results for the full Bose-Fermi-Hubbard model in chapter 12. In the limit
a → 0, corresponding to the free fermion case the result for the density
reduces to the result for free fermions at half filling, i.e., 〈m̂j〉F = 1

2
.

Figure 10.2 shows the numerical results for the amplitudes ηaF as a function
of ηB from figure 9.5 as well as the analytic prediction according to equation
(10.28). The numerical data comes from the full Bose-Fermi-Hubbard model.
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Figure 10.2: Amplitude ηaF of the fermionic CDW versus the bosonic ampli-
tude ηB for different numerical data. Shown are the numerical results (data
points) presented in figure 9.5 and for V = 2.4 and JF = 10. The solid lines
are the analytic results for ηaF .

b) First-order correlations

Beside the calculation of the the local density, the Green’s function (10.25)
allows to calculate the first-order correlations〈

ĉ†j ĉj+d

〉
= G(+)

j,j+d(t+ 0, t). (10.29)

Unfortunately, the integral expression for the Green’s function cannot be
evaluated analytically for arbitrary distance d, making a numerical integra-
tion necessary. This is done in figure 10.3, where the first-order correlations
for the numerical data shown in figure 10.1 are presented. The perfect agree-
ment prooves the validity of the obtained expression for the Green’s function.

c) Density-density correlations

Finally we calculate the density-density correlations used in the expression
for the coupling constants (8.13) with the renormalized fermionic model.
Having a closer look at the result for the Green’s function (10.25) it can be
seen that both Green’s functions are of the general form

G(±)
j,j+d(t+ T, t) = A± − aB. (10.30)
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Figure 10.3: First-order correlations < ĉ†j ĉj+d > calculated from the fermion
model (10.2). Solid lines are the theoretical results from a numerical integra-
tion of (10.25). The points are the numerical results from the data used in
figure 10.1. Left: Distance dependence of the correlations for three different
interactions V ηB. Right: Dependence of the correlations for a wide range of
interactions V ηB for selected distances d.

The definitions of A± and B are obvious from equation (10.25). In equation
(10.3) we already noted that the density-density cumulant splits up into the
product of advanced and retarded Green’s function, which may be written
as

〈〈m̂j(T )m̂j+d(0)〉〉F = A+A− − a(A+ + A−) + a2B2. (10.31)

From the definition of the coupling constants (8.13) we can see, that they
are proportional to V 2, since they are a second order correction in the
effective Hamiltonian (8.14). This means, that in order V 2, only the first
term in (10.31) is relevant.

Following this argument, the renormalized form of the density-density cumu-
lant reads

〈〈m̂j(t+ T )m̂j+d(t)〉〉 =
1

4π2

π∫
0

π∫
0

dξdξ′ cos(dξ) cos(dξ′)

× e−iT2JF

(√
cos2(ξ)+a2+

√
cos2(ξ′)+a2

)
(10.32)

×

(
1 +

cos(ξ)√
cos2(ξ) + a2

)(
1− cos(ξ′)√

cos2(ξ′) + a2

)
.

This is the main result from the renormalization procedure. Comparing the
renormalized result to that of free fermions (at %F = 1

2
) in equation (9.9)
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one can see, that the corresponding limit a → 0 gives the same result as
equation (9.9). Note, that the last line in (10.32) serves as a cutoff function
which constrains the integration limits to the free fermion values in the limit
a→ 0. In this limit, the free fermion solution is recovered.

10.5 Discussion of the renormalized cou-

plings

As already done in chapter 9, the second order cumulant needs to be inte-
grated over time according to equation (8.13) in order to obtain the effective
coupling constants of the bosonic model. Following the same arguments as
in section 9.1b), the time integration may be performed using the Riemann-
Lebesgue lemma. The condition, that the integral kernel is a L1 function is
fulfilled since the absolute value of the kernel is less than 1

a
(1 − a−2) (mod-

ulo some prefactors). This gives an upper bound which reduces in the limit
a→ 0 to the free fermion which has already been proven to be L1. Thus the
Riemann-Lebesgue lemma is applicable, giving for the coupling constants the
closed form

gd(a) = − V 2

8π2JF

π∫
0

π∫
0

dξdξ′
cos(dξ) cos(dξ′)√

cos2(ξ) + a2 +
√

cos2(ξ′) + a2

×

(
1 +

cos(ξ)√
cos2(ξ) + a2

)(
1− cos(ξ′)√

cos2(ξ′) + a2

) (10.33)

for the density-density interaction couplings strengths in the effective
bosonic Hamiltonian. Since we restrict ourselves to the case of half filling for
the fermions, the additional index %F is dropped here but the dependence of
the renormalized couplings on the amplitude factor a is explicitly written.
The result is in accordance to the free fermion case since in the limit a→ 0
the second line of equation (10.33) gives a factor of 4 together with a
limitation of the integration limits to ξ ∈ [0, π

2
] and ξ′ ∈ [π

2
, π] as in (9.12).

Let us discuss the properties of the renormalized coupling constants. Figure
10.4 shows the absolute values for the couplings as a function of the distance
d for fixed a = 0.1 compared to the free fermion case a = 0. Whereas the
couplings in the latter case decay as 1/d as discussed in chapter 9, the
renormalized couplings decay much faster. This leads to the important
conclusion, that the divergence for k = ±π as shown in figure 9.7 is lifted.
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Figure 10.4: Comparison of the couplings for the free fermion case (a = 0)
and the renormalized couplings for a = 0.1. The free fermion couplings decay
as 1

d
, whereas the renormalized couplings decay much faster, preventing the

divergence of the energy for the ground state.

Considering the Fourier transform of equation (10.33), the lifting of the di-
vergence can be understood more easy. Using the method introduced in the
derivation of equation (9.21) for the free fermions, the Fourier transform of
the renormalized couplings is given by

g̃a(k) = − V 2

16πJF

∑
l,C1,C2

π∫
0

dξ× (10.34)

Θ(π − 2πlC2 + C1C2ξ + C2k)Θ(2πlC2 − C1C2ξ − C2k)√
cos2(ξ) + a2 +

√
cos2(C1ξ + k) + a2

×

(
1 +

cos(ξ)√
cos2(ξ) + a2

)(
1− cos(C1ξ + k)√

cos2(C1ξ + k) + a2

)
.

Again, a detailed discussion of the arising Θ-functions is necessary to
understand the contributions from the triple sum. Additionally, the 2π
periodicity of g̃a(k) can easily be seen from the equation.

In chapter 9 we already realized, that the divergence of the total energy of
the system in the thermodynamic limit is connected to the Fourier trans-
form at the CDW wave vector k = ±2%Fπ = ±π. Luckily, the Fourier
transform given in equation (10.34) may be evaluated analytically at k = ±π
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Figure 10.5: Fourier transform of the renormalized couplings g̃a(k) for dif-
ferent amplitude factors a. At k = ±π, the divergence for a → 0 is clearly
observable. For k = 0 the situation is more complicated and a short discus-
sion can be found in the main text.

and k = 0. For k = ±π, an analysis of the triple sum in (10.34) shows
that the only contributions to the integral come from the combinations
(l, C1, C2) = (±1,±1,±1) and (0,∓1,∓1), (0,−1, 1) as well as (0, 1,−1)
for k = 0. In both situations, the integration can be done exactly. This gives

g̃a(±π) = − V 2

8πJF

1√
1 + a2

(
2K[

1

1 + a2
]− E[

1

1 + a2
]

)
(10.35)

g̃a(0) = − V 2

8πJF

1√
1 + a2

E[
1

1 + a2
], (10.36)

with E[x] being the complete elliptic integral of second kind [237].

At this point some remarks about the continuity of the coupling constants in
Fourier space are necessary. Studies with numerical integration of equation
(10.34) show, that the limits lima→0 and limk→0 are not interchangeable. This
discontinuity can be seen in figure 10.5, where the Fourier transform of the
coupling constants is plotted for different amplitude factors a. Fixing the
momentum k = 0 and then performing the limit lima→0 gives

lim
a→0

g̃a(0) = − V 2

8πJF
, (10.37)
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where on the other hand the limit k → 0 with a = 0 gives

lim
k→0

g̃0(k) = − V 2

4πJF
. (10.38)

For k → 0 at given a = 0, the kernel in equation (10.34) roughly behaves
like a step function of height 1/k and a support of width k. This resembles
the properties of Dirac’s δ-function, leading to the discontinuity. In our later
studies, we will nevertheless use the result for the limit a→ 0 at fixed k = 0
since this turns out to be the proper choice.

10.6 The renormalized Hamiltonian

After the initial discussions we are now able to write down the effective
bosonic Hamiltonian for a fixed fermion filling %F = 1/2. It reads

Ĥeff
B = −JB

∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1)

− µ̄
∑
j

n̂j −∆
∑
j

n̂j(−1)j +
∑
j

∑
d

gd(a) n̂jn̂j+d. (10.39)

together with the induced chemical

µ̄ = 2%B g̃a(0)− V/2 (10.40)

and an induced alternating potential

∆ = 2%BηB g̃a(π) + V ηaF/2, (10.41)

which are a direct consequence of the fermionic density wave

〈m̂j〉F =
1

2

[
1− ηaF (−1)j

]
(10.42)

with amplitude ηaF/2. The coupling constants of the induced density-density
interaction are given by (10.33) with the amplitude factor a = V ηB%B

2~JF
. For

the Fourier transform, the identities∑
d

gd(a) = g̃a(0) and
∑
d

(−1)d gd(a) = g̃a(π), (10.43)

hold.
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This Hamiltonian (10.39) is the major result in this part. It opens the route
for an understanding of the bosonic phase diagram and allows for a straight-
forward perturbative approach. As stated earlier, this Hamiltonian still has
a free parameter a ∼ ηB which has to be chosen self-consistently. This pa-
rameter describes the bosonic density wave

ñj = %B
[
1 + ηB(−1)j

]
(10.44)

with averaged density %B.

The influence of the correction terms in (10.39) to the plain Bose-Hubbard
Hamiltonian are discussed in chapter 12, whereas in the next chapter we first
discuss the self-consistent determination of the bosonic amplitude ηB from
the renormalization scheme.





CHAPTER 11

Self-consistent determination of ηB

In the previous chapter we introduced a bosonic CDW amplitude ηB as a free
parameter. Here we present two approaches for a self-consistent calculation
of this amplitude. The general idea is to use a suitable ansatz for the ground
state of the system which fulfills the initial condition (10.44) for the bosonic
CDW. With this ansatz, the expectation value for the energy in the system
is calculated and a minimization of the energy gives the amplitude ηB.

11.1 Coherent state

A first, simple choice for the ground state of the system are local coherent
states |α〉 [238]. With these, the calculation of the expectation value of the
Hamiltonian (10.39) for the effective system is straightforward. We use the
ansatz

|Ψ〉coh =
∞∏

j=−∞

|α+〉2j |α−〉2j+1 (11.1)

and require

coh 〈Ψ| n̂j |Ψ〉coh =
1

2

[
1 + ηB(−1)j

]
. (11.2)

This is equivalent to

|α±|2 =
1

2
± 1

2
ηB. (11.3)
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Assuming real coherent amplitudes α± =
√

1
2
± 1

2
ηB, the expectation value

for the energy of the effective Hamiltonian is given by

coh 〈Ψ| Ĥeff
B |Ψ〉

coh =
∑
j

[
−JB

√
1− η2

B +
U

8
(1 + η2

B) (11.4)

−1

2
∆ηB −

1

2
µ̄+

∑
d

1

4
gd(a)

[
1 + (−1)dηB

]
+

1

2
g0(a)

]
.

Unfortunately, the coherent state energy functional has a drawback. Since
the coherent states inherit contributions from all number states, the inter-
action part in (11.4) proportional to U dominates. As we are interested in
the double half filling case with approximately no occupation of higher num-
ber states n > 1, we may neglect these contributions. Using the results for
the strength ∆ of the induced alternating potential (10.41) and the induced
chemical potential µ̄ (10.40) the energy functional can be written

E [ηB] = −JB
√

1− η2
B +

1

2
g0(a)− 1

4
V ηaFηB −

1

4
g̃a(π)η2

B −
1

4
g̃a(0). (11.5)

We stress that the amplitude factor a = V ηB
4~JF

as well as the fermionic am-
plitude ηaF also depend on ηB. The last step is to minimize the energy with
respect to ηB as a function of the parameters of the Bose-Fermi-Hubbard
model. This needs to be done numerically, since the analytic form of the
Fourier transformed couplings are too involved. A further simplification
should be mentioned. Since the numerical evaluation of g0(a) is time con-
suming, we use an approximative formula for the region a ∈ [0, 1] which gives
a very good agreement to the exact integrals. This is given by

g0(a) ≈ − V 2

8JFπ2

(
π2 − 9.92786 a+ 5.41095 a2 − 1.26419 a3

)
(11.6)

and the relative error to the numerical integration is less than 10−5 which is
sufficient for our purpose.

Figure 11.1 compares the self-consistent prediction of the bosonic CDW am-
plitude as a function of the bosonic hopping JB to the numerical data from
figure 9.5 and to data for V = 2.4 and JF = 10. One can see that the co-
herent approach gives a qualitatively good agreement for small JB, but the
quantitative agreement is rather poor in particular for larger JB because of
the strongly simplified ansatz used here.
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Figure 11.1: Self-consistent determination of the amplitude of the bosonic
CDW from the minimization of the energy for the effective Hamiltonian with
respect to a coherent state ansatz. Shown are the same numerical results as
in figure 9.5 (left plot, L = 512) as well as results for V = 2.4 and JF = 10
(right, L = 256). One can see the rather poor quantitative agreement with
a general qualitative agreement.

11.2 Matrix product state

Better results for the CDW amplitude may be found from a matrix product
like ansatz. Using a different description of the two-site blocks by the ansatz

|Ψ〉MPS =
∞∏

j=−∞

1∑
i1,i2=0

Ai1i2 |i1〉2j |i2〉2j+1 , (11.7)

the problems arising from the higher number states are ruled out by def-
inition. With the introduction of the prefactors Ai1i2 which are chosen to
be real1, we introduce four free parameters which have to be minimized in
general. This set of parameters can be reduced by further constraints:

• the norm of the two-site block states needs to be unity

A2
00 + A2

10 + A2
01 + A2

11 = 1 (11.8)

• the density expectation value for even sites must fulfill equation (10.44)

MPS 〈Ψ| n̂j |Ψ〉MPS = A2
10 + A2

11 =
1

2
[1 + ηB] , (11.9)

1A detailed analysis shows that this assumption is justified.
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• the density expectation value for odd sites must fulfill equation (10.44),
too

MPS 〈Ψ| n̂j |Ψ〉MPS = A2
01 + A2

11 =
1

2
[1− ηB] . (11.10)

This set of equations allows to reduce the complexity. Introducing three sign
functions α, β, γ = ±1 which are still to be determined, the coefficients have
the form

A01 = αA− A10 = βA+ A11 = γA00 (11.11)

with

A± =

√
1

2
(1± ηB)− A2

00, (11.12)

which gives a set of parameters which is more easy to handle. The evalu-
ation of the expectation value of the energy as a function of the remaining
free parameters is, with exception of the splitting in even and odd sites,
straightforward. The result

E[ηB, A00, α, β, γ] =
1

2
(1−η2

B)
[
g0(a)−g1(a)

]
− V

2
ηaFηB−

1

2
g̃a(π)η2

B−
1

2
g̃a(0)

+ 2g1(a)A2
00 − 2γJB

[
αβ

γ
A+A−

(
1 + 2A2

00

)
+ A2

00

(
1− 2A2

00)
)]

(11.13)

shows, that the choice (α, β, γ) = (1, 1, 1) directly minimizes the energy. The
remaining free parameters are ηB and A00. For these, a numerical mini-
mization has to be performed. Beforehand, a further look at the second line
reveals, that only there A00 shows up. Analyzing the dependence of the hop-
ping contribution on A00 shows, that it is minimal for A00 = 0, which means
that the state minimizing the energy might have been chosen to be

|Ψ〉MPS =
∞∏

j=−∞

(
A10 |1〉2j |0〉2j+1 + A01 |0〉2j |1〉2j+1

)
(11.14)

from the beginning. This simplification brings the energy functional to its
final form, which allows for an easy numerical determination of the minimum:

E[ηB] = −JB
√

1− η2
B −

V

2
ηaFηB −

1

2
g̃a(π)η2

B −
1

2
g̃a(0).

+ (1− η2
B)
[1
2
g0(a)− 1

2
g1(a)

]
.

(11.15)

For the couplings g1(a) again a series expansion in a is used:

g1(a) ≈ V 2

2JFπ2

(
0.67492− 0.11149 a− 3.395 a2 + 7.4324 a3 − 5.8053 a4

)
(11.16)
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Figure 11.2: Self-consistent determination of the amplitude of the bosonic
CDW from the minimization of the energy for the effective Hamiltonian with
respect to a matrix product state ansatz. Shown are the same numerical
results as for figure 9.5 (left plot, L = 512) and results for V = 2.4 and
JF = 10 (right, L = 256). One can see the better quantitative agreement
compared to the result for the coherent state in figure 11.1 for small amplitude
factor a, i.e., for small interaction V .

The corresponding numerical results for the minimization can be found in
figure 11.2. The quantitative agreement is slightly better compared to the
coherent state approach for smaller interaction V but still the strong sim-
plification of the ansatz pays its tribute. For larger V , the made matrix
product ansatz seems to fail. We believe this to be connected to the in-
creasing induced alternating potential which forsters higher number states.
Nevertheless, the two presented self-consistent determinations of the ampli-
tude ηB show that this free parameter in principle may be calculated with
more sophisticated ansatzes involving higher number states. As will be seen
in the next chapter, an exact calculation of ηB as a function of the bosonic
hopping is not of importance however.





CHAPTER 12

Phase diagram of the effective bosonic model

We now use the effective bosonic Hamiltonian

Ĥeff
B = −JB

∑
j

(
â†j âj+1 + â†j+1âj

)
+
U

2

∑
j

n̂j (n̂j − 1)

− µ̄
∑
j

n̂j −∆
∑
j

n̂j(−1)j +
∑
j

∑
d

gd(a) n̂jn̂j+d (12.1)

from equation (10.39) to calculate the full phase diagram and compare it to
the numerical results from figure 7.3. As a reminder, the potentials µ̄ and ∆
are given by

µ̄ = 2%B g̃a(0)− V/2 ∆ = 2%BηB g̃a(π) + V ηaF/2. (12.2)

The calculation itself is done in the same way as in part I for the Bose-Fermi-
Hubbard model with immobile fermions. The calculation of the incompress-
ible phases is accomplished by calculating the energy of the relevant ground
state within the incompressible phase as well as with one particle added or re-
moved. From these energies, the chemical potentials are deduced. In the first
section we will restrict ourselves to the zero-hopping limit JB = 0 whereas
in the second section we will employ a full degenerate perturbation theory
in order to calculate the small JB behavior of the phases. Concerning the
bosonic amplitude ηB it should be mentioned, that both, in the zero hopping
limit1 as well as in the small hopping region, ηB = 1. In the latter situation
this is the case because the perturbation theory starts at JB = 0 and all
energies and quantities are to be calculated for this case.

1Here the amplitude naturally equals one.
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12.1 Zero-hopping phase diagram

The calculation of the chemical potentials for JB = 0 is straightforward.
Here we only summarize the results; the calculation of some exemplary
energies can be found in appendix A.3. We however make some remarks on
the nature of the ground state and the notation used.

In the following we deal with states containing a fixed number of particles,
or, to be more precise, having a fixed density. For the classification of these
states we use a short graphical notation. For instance the ground state of
the CDW (with full amplitude) is written as∣∣ΨN=L/2

〉 ∧
= • ◦ • ◦ ‖ • ‖ ◦ • ◦ •, (12.3)

where an open circle ”◦” means no boson and a filled circle ”•” means the
presence of a boson. This corresponds to the ansatz (10.44) made for the
bosonic CDW. With the ansatz (10.44), we explicitly break the symmetry
of the system, demanding the bosons to be situated at even sites. This
is marked by the introduction of the vertical lines and the boson at site j = 0.

For the calculation of the energies we make a suitable ansatz for the sought
states and replace the number operators in the Hamiltonian (12.1) by real
numbers according to the particular state. This is done for the three incom-
pressible phases presented in figure 7.3 which are at %B = 0, 1

2
, 1. For each,

an exemplary calculation can be found in the appendix A.3. The ansatz in
(10.44) together with the bosonic density allows not only for the description
of the CDW at half filling with amplitude one (%B = 1

2
, ηB = 1), but also for

a possible CDW at unity filling with amplitude two (%B = 1, ηB = 1) and a
pure Mott insulator (%B = 1, ηB = 0).

a) CDW phase %B = 1
2

The relevant states for the calculation of the chemical potentials for the
upper and the lower boundary of the incompressible CDW region are given
for particle numbers N = L/2 − 1, L/2 and L/2 + 1. For the first two, the
ground state can be found easily. Only the case N = L/2 + 1 is a bit more
complicated.

The energy of the ground state at double half filling, given by the bo-
son distribution shown in (12.3) can be calculated by plugging the density
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nj = ñj = 1
2

[1 + (−1)j] into the expectation value of the Hamiltonian. This
gives

E(L/2) = E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] = −1

2
µ̄L− 1

2
∆L+

1

4
L [g̃a(0) + g̃a(π)] (12.4)

which naturally depends on the length of the system. But since we are only
interested in the chemical potentials

µ±1
2

= ±
(
E(L/2± 1)− E(L/2)

)
, (12.5)

this dependence drops out.

For the calculation of the lower boundary we consider the case of a missing
particle. The position, at which the particle is removed, is unimportant,
since the system is translationally invariant with a period two. Therefore the
energy for this situation is given by

E(L/2− 1) = E[• ◦ • ◦ ‖ ◦ ‖ ◦ • ◦ •] (12.6)

= E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] + µ̄+ ∆− g̃a(0)− g̃a(π) + g0(a)

and the chemical potential for the lower bound results in

µ−1
2

=
V

2
− V

2
ηaF − g0(a). (12.7)

As mentioned earlier, we have to choose the amplitude factor
a = V ηB%B

2~JF
= V ηB

4~JF
for ηB = 1 and %B = 1

2
.

The calculation for the upper lobe is a bit more involved, because the
suitable ground state is not obvious. Here, two possible situations occur:

• ◦ • ◦ ‖ • ‖ • • ◦ • ⇒ nj = ñj + δj,1, (12.8)

• ◦ • ◦ ‖ •• ‖ ◦ • ◦ • ⇒ nj = ñj + δj,0. (12.9)

As shown in appendix A.3, the energies for these two configurations are given
by

E[• ◦ • ◦ ‖ • ‖ • • ◦ •] = E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] (12.10)

− µ̄+ ∆ + g̃a(0)− g̃a(π) + g0(a)
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and

E[• ◦ • ◦ ‖ •• ‖ ◦ • ◦ •] = E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] (12.11)

+ U − µ̄−∆ + g̃a(0) + g̃a(π) + g0(a).

From the energy difference

E[• ◦ • ◦ ‖ •• ‖ ◦ • ◦ •]− E[• ◦ • ◦ ‖ • ‖ • • ◦ •] = U − V ηaF , (12.12)

a detailed study reveals that for fast fermions ( V
JF
� 1) the ground state

is always such that the additional particle goes to an odd site instead to
the double occupation. Thus, for the energy equation (12.10) holds and the
chemical potential is given by

µ+
1
2

=
V

2
+
V

2
ηaF + g0(a). (12.13)

b) Unity filling %B = 1

To calculate the ground state of the Mott insulator with unity filling, there
are again two possible states. The easiest choice for the ground state is

• • • • ‖ • ‖ • • • • ⇒ nj = 1, (12.14)

which is the typical Mott-insulating ground state (ηB = 0). However

•• ◦ •• ◦ ‖ •• ‖ ◦ •• ◦ •• ⇒ nj = 1 + (−1)j (12.15)

(ηB = 1) competes with the Mott state. With the effective Hamiltonian
(12.1) for the bosonic density %B = 1, the calculation of the corresponding
energies is straightforward. Defining ā = V ηB%B

2~JF
= V ηB

2~JF
= 2a, the energies

are given by
E[• • • • ‖ • ‖ • • • •] = L [−µ̄+ g̃0(0)] (12.16)

for the Mott state (ā = 0) and

E[
•• ◦ •• ◦ ‖ •• ‖ ◦ •• ◦ ••] = L

[
U

2
− µ̄−∆ + g̃ā(0) + g̃ā(π)

]
(12.17)

for the CDW of amplitude two (ηB = 1, ā = V
2~JF

). The decision for the
ground state is again made by determining the energy difference

E[
•• ◦ •• ◦ ‖ •• ‖ ◦ •• ◦ ••]− E[• • • • ‖ • ‖ • • • •] = (12.18)

U

2
− V

2
ηāF − g̃ā(0)− g̃ā(π)− g̃0(0)
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which is always positive. This means, that the MI state always has lower
energy compared to the double occupied CDW and thus serves as the ground
state. Using this result we are able to calculate the energy for the addition or
removal of a particle. The actual calculation is again done in the Appendix
A.3 with the result

E(L± 1) = E(L) +
U

2
(1± 1)∓ µ̄∓∆± 2g̃0(0) + g0(0). (12.19)

Note that ηB = 0 and therefore ∆ = 0. The chemical potentials

µ±1 = ±
(
E(L± 1)− E(L)

)
(12.20)

are hence given by

µ±1 =
U

2
(1± 1) +

V

2
± g0(0), (12.21)

which completes the calculation for unity filling.

c) Zero filling %B = 0

The discussion for this case is the simplest. For the empty system, the
energy is naturally zero, whereas the energy for a single particle described
by nj = δj0 evaluates straightforwardly as

E(1) =
V

2
+ g0(0). (12.22)

Again the amplitude factor a has to be chosen to be zero since there is no
bosonic CDW renormalizing the fermionic system. With this, the chemical
potential is given by

µ+
0 =

V

2
+ g0(0). (12.23)

d) Discussion of the phase diagram

Above we derived the chemical potentials for the different incompressible
lobes for the effective Hamiltonian given in equation (12.1). These are given
by

µ−1 =
V

2
− g0(0), (12.24)

µ±1
2

=
V

2
± V

2
ηaF ± g0(a), (12.25)

µ+
0 =

V

2
+ g0(0), (12.26)
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Figure 12.1: Phase diagram of the effective bosonic Hamiltonian for vanishing
bosonic hopping JB = 0. Data points are the numerical and the solid lines
are the analytic results. The shaded region depicts the region where the
extent of the CDW phase overlaps with the Mott insulators giving a phase
of coexistence of these two.

which together with the results for the couplings gd(a) and the fermionic
CDW amplitude ηaF from chapters 9 and 10 allow to construct the phase
diagram at zero bosonic hopping. This is shown in figure 12.1, where the
chemical potentials are displayed as a function of the interaction V for a
fixed fermionic hopping JF . Note that the chemical potentials µ±1

2

for the

CDW lobe enclose the chemical potentials µ+
0 and µ−1 for the Mott lobes.

The shaded region in figure 12.1 depicts exactly this region. This behavior
is uncommon, since it indicates a negative compressibility

κ =
∂〈N̂〉
∂µB

< 0. (12.27)

Starting with the case of half filling, adding particles will lead to a formation
of a spatially connected region of unity filling (for sufficient small hopping).
This can be seen as follows: the first additional particle can go to any empty
site of the CDW. The next particle will occupy a previously unoccupied site
closest to the first additional particle since this requires the lowest energy
due to the attractive long-range interaction for even distances. A similar
argument can be made for the third particle and so on. Thus, within this
region of the (µB, JB)-phase diagram, there is a phase separation between a
Mott insulator and a CDW. These kind of coexistence phases are not new
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(see e.g. [200, 205, 206, 208] for a variety of different coexistence phases),
but the coexistence of a Mott insulator and a CDW phase has to our
knowledge not been reported before.

The data points are obtained from numerical results, where the Mott insula-
tors are calculated using a finite size extrapolated exact diagonalization and
the numerical results for the CDW are resulting from DMRG calculations
where the boson distribution is fixed, acting as a potential to the fermions.
This procedure is necessary here, since the full DMRG for this system has
severe problems in obtaining the proper ground state. The reason for this is
on the one hand the sensitivity of the system to the boundary in the open
boundary DMRG and on the other hand the problem of seeking the ground
state within the energy manifold with many close-lying meta-stable states.
This complicates the numerical calculation enormously. A detailed discussion
of these issues can be found in the last section of this chapter.

12.2 2nd order strong-coupling theory

After the discussion of the phase diagram for zero hopping JB = 0, showing
the existence of phases of coexistence between Mott insulator and CDW,
we aim in this section at a perturbation theory in the hopping amplitude
JB to generate the full phase diagram in the (µ − JB) plane. Since the
methodology of the perturbation theory will also be used in part IV, we
restrict ourselves on the presentation of the basic ideas here. The details of
the calculation may be found in part IV.

In order to perform a second order perturbation theory we need the energy
of the involved ground states as a function of the bosonic hopping JB.
For the states corresponding to the filling of the incompressible phases
this is quite easy. In this case, the ground state is non-degenerate and
simple perturbation theory is sufficient. When adding or removing a
single particle, the ground state is degenerate, since all possible positions
of the extra or less particle are allowed2. The resulting ground-state
manifold consisting of states |Ψ〉j3 requires a non-degenerate perturba-
tion theory, where several equivalent formulations are available as for
instance used in [97] for the pure and disordered Bose Hubbard model.

2The removing is of course only allowed if a particle exists in this site for the ground
state.

3The index j labels the different states within the manifold. For the Mott insulators,
the additional particle is located at the site j, for the CDW phase at site 2j + 1.
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Here we use Kato’s expansion [159, 170, 239, 240], which relies on the
calculation of an effective Hamiltonian (in arbitrary order) within the
degenerate subspace. The last step is to solve this effective Hamiltonian
and obtain the ground-state energy as a function of the perturbation
parameter. In part I we already made use of this method in the derivation
of the effective model for the composite particles according to [121, 158, 160].

Before we discuss the analytic results, we at least outline the used method.
Up to second order, Kato’s expansion is given by

Ĥeff = E0 + PĤ1P + PĤ1Q
1

E0 − Ĥ0

QĤ1P , (12.28)

where P is the projector onto the degenerate subspace, Q = 1 − P the
orthogonal projector and E0 is the zero order energy of the manifold. Here,
the Hamiltonian is written in the form

Ĥ = Ĥ0 + Ĥ1, (12.29)

where Ĥ1 is the perturbation, i.e., the hopping in our case. The calculation of
the effective Hamiltonian is now straightforward. The first step is to take any
state |Ψ〉j from the degenerate subspace and apply a single hopping operation
to this state. Those parts which are still within the subspace (found by the
projector P) give a first-order contribution and connect the state |Ψ〉j to
the state |Ψ〉m; for those outside the manifold (surviving the projector Q)
the second order term holds. For this term, the energy resolvent for the
intermediate state is evaluated and the final hopping brings the state back
to the initial state |Ψ〉j, or, if possible, to another state |Ψ〉k within the

manifold. Thus the action of the effective Hamiltonian Ĥeff on the state |Ψ〉j
has the form

Ĥeff |Ψ〉j = E0(|Ψ〉j)+J1

[
|Ψ〉j−1 + |Ψ〉j+1

]
+J2

[
|Ψ〉j−2 + |Ψ〉j+2

]
+W |Ψ〉j .

(12.30)
The special form of the perturbation in our case is already taken into account
(see part IV for a more general form of the perturbation). This (maximally)
tridiagonal matrix representation of the effective Hamiltonian can be solved
by a Fourier transform, which gives the energy

E = E0 + 2J1 cos(2π
k

L
) + 2J2 cos(4π

k

L
) +W, (12.31)

where the k mode has to be chosen such that the energy is minimal. In
this system this is typically the case for k = 0 since both J1 ∼ JB and
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J2 ∼
J2
B

E0−〈Ĥ0〉
are negative (the energy resolvent for the intermediate state is

always negative). This procedure has to be done for all involved ground states
with the proper number of particles, i.e., N = 1, L/2−1, L/2, L/2+1, L−1, L.
The calculation is lengthy and does not provide a deeper insight. Nevertheless
we give a graphical representation of the intermediate states as well as the
final states in figure 12.2. This gives deeper insight into the possible processes
in second order, where inversion symmetric processes are not shown. A
crucial point comes from the nature of the effective bosonic Hamiltonian
in (12.1). Since the density-density interaction is long ranged, the energy
denominator depends on the distance of the particle performing the first
hopping process from the reference site where the additional particle (hole)
is situated. This needs to be taken into account for the calculation of the
chemical potentials.

As a result, we will here only give the chemical potentials for the considered
lobes. These are given by

µ+
0 =

V

2
+ g0(0)− 2JB (12.32)

µ−1
2

=
V

2
− V

2
ηaF − g0(a) + 2J2

B

(
1

V ηaF + 2g0(a)− 4g1(a) + 2g2(a)

− 1

V ηaF + 4g0(a)− 4g1(a)
−
∑
m even

[
1

V ηaF + 2g0(a)− 2g1(a)
(12.33)

− 1

V ηaF + 2g0(a)− 2g1(a) + 2gm(a)− 2gm+1(a)

])

µ+
1
2

=
V

2
+
V

2
ηaF + g0(a)− 2J2

B

(
4

U + V ηaF + 4g0(a)− 4g1(a)

− 1

V ηaF + 4g0(a)− 4g1(a)
+

1

V ηaF + 2g0(a)− 4g1(a) + 2g2(a)

+
2

U − V ηaF
−
∑
m even

[
1

V ηaF + 2g0(a)− 2g1(a)
(12.34)

− 1

V ηaF + 2g0(a)− 2g1(a) + 2gm(a)− 2gm−1(a)

])
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Figure 12.2: Visualization of intermediate processes in the derivation of the
energy in second order perturbation theory. Double arrows are contributions
in first order, the single arrows are the steps in the second order processes.
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Figure 12.3: Analytic results for the phase diagram together with the numer-
ical results from figure 7.3. The agreement between the analytics and the
numerics is quite reasonable with the natural deterioration for larger hop-
ping JB due to the perturbative treatment. Though the critical point for the
vanishing of the CDW lobe is underestimated, the general agreement is quite
satisfactory.

µ−1 =
V

2
− g0(0) + 2JB − 4J2

B

(
1

U
+

1

U + 4g0(0)− 4g1(0)
(12.35)

− 1

U + 2g0(0)− 4g1(0) + 2g2(0)
+
∑
m

[
1

U + 2g0(0)− 2g1(0)

− 1

U + 2g0(0)− 2g1(0) + 2gm+1(0)− 2gm(0)

])

A major problem is the aforementioned dependence of the results on all
coupling strengths gd(a), which need to be calculated up to a large distance.
For the analytic results used in figure 12.3 it turns out, that d ≈ 100 is
sufficient to gain convergence. A possible series expansion of the summands
for the CDW case does not work out because all parts in the denominator are
of the same order. Using (12.32)-(12.35) and directly plugging in numbers
for the data from figure 7.3 allows for the determination of the behavior of
the incompressible lobes. This gives

µ+
0 = 0.605469− 2JB, (12.36)

µ−1
2

= 0.583612 + 33.076J2
B, (12.37)
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µ+
1
2

= 0.666388− 45.4392J2
B, (12.38)

µ−1 = 0.644531 + 2JB − 4.12927J2
B (12.39)

for the chemical potentials which are shown together with the numerical re-
sults in figure 12.3. From the figure it may be seen, that the overall agreement
is quite reasonable, whereas the quantitative prediction, especially of the tip
of the CDW lobe, is not that satisfying.

12.3 Boundary effects in an effective model

with long-range interactions

As already mentioned at several places, boundary effects play an important
role in this system. The long-range character of the fermion mediated
interactions leads to a substantial modification of the system dynamics
even for relatively large systems4. This can directly be seen for the case of
the CDW phase, where we first discuss the zero hopping case. Assuming
the bosons (within the effective Hamiltonian) to be in CDW phase, i.e.,
half filling, and adding an additional particle to the system, this particle
occupies an odd site (i.e., a previously unoccupied site). If the particle
would choose the site close to the center of the system, the energy to be
paid is

∑L/4
d=−L/4 g2d+1, whereas a particle at the border will only pay the

energy
∑L/2

d=0 g2d+1. Remember that all the couplings at odd distances are
positive. Because of the decay of the couplings with distance, the first
sum is much larger then the latter one, resulting in the particle to pin to
the border. Now, with a second additional particle, the same argument
holds and the particle also pins to the border. Because of the attractive
next-nearest-neighbor interaction, this takes place at a distance of two from
the first additional particle as was the case in the infinite system discussed
before. This gives a ground state, where a Mott plateau is continuously
building up from the boundary, reaching further and further into the CDW
phase when adding more particles. As long as the hopping is small compared
to the energy difference between the state with a particle pinned close to the
border and the state with the additional particle at the center, the reduction
of the interaction energy due to the pinning to the boundary dominates the
increase of the kinetic energy. When removing a particle from the system,
i.e., going below half filling, the same arguments apply.

4Also the convergence of the DMRG seems to be affected by the boundaries
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Figure 12.4: Phase diagram of the full Bose-Fermi-Hubbard model with open
boundaries. One can see that the lobes bend apart from each other, resulting
in an extent region where the CDW and the Mott insulator exist together
(filled green region), but with a spatial phase separation (PS). The data are
obtained with DMRG and open boundary conditions for a fixed length of
L = 128 sites. The other parameters are JF = 10 and V = 1.25. Black
crosses show the points where the density profiles in figure 12.5 are taken
from. The dashed lines are to guide the eye.

This means as in the case of an infinite system that there is a region in the
(µB, JB)-phase diagram where we have a phase separation between a Mott
insulator and a CDW. However, the (open) boundary leads to a different
dependence of the chemical potential on the particle number. While in the
infinite case we found negative compressibility at least in the vicinity of
integer or half fillings, this is no longer the case here, where

κ =
∂〈N̂〉
∂µB

> 0. (12.40)

Figure 12.4 shows the DMRG results, where the system is exposed to
open boundaries. There it can be seen that all the incompressible lobes
bend away different from the analytic results for the infinite case in figure
12.3, not overlapping anymore. For the different phases occurring in this
finite size phase diagram, figure 12.5 illustrates the bosonic and fermionic
density profile. Figure 12.6 shows a cut along the chemical potential axis
for three different, fixed hoppings JB. From 12.5, the incompressible regions
(CDW and Mott insulators) are easily seen while 12.6 clearly shows the
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Figure 12.5: Density profile obtained by DMRG for various numbers of parti-
cles. From bottom to top: NB = 20, 64, 86, 101 for a system of L = 128 sites.
The lower three are for JB = 0.01 and the uppermost for JB = 0.07. One
can immediately see the pinning of the additional particles to the boundary
resulting in a phase separation of Mott insulator and CDW. In the upper-
most plot, the fermionic state is roughly given by a homogeneous distribution
according to the Friedel oscillations whereas the bosons behave as interact-
ing bosons. This can be seen from the additional solid line which gives the
density profile for the same choice of parameters but without interaction,
decoupling the bosons and the fermions. The positions of the data set for
the density cuts in the phase diagram are depicted by the small marks in
figure 12.4.

positive compressibility. Interestingly, in our system the so-called Devil’s
staircase as described in [202, 241, 242] for the case of a dipolar Bose gas
with density-density interactions decaying as gd ∼ 1

d3
does not exist. Most

presumably this is because of the alternating sign in our coupling constants
together with the alternating potential, where a detailed discussion of this
fact might be an interesting supplement to the present work.

For the infinite size case, the coexistence phase is unstable preferring the
CDW state if the chemical potential rather than the particle number is fixed,
i.e., for the grand-canonical ensemble. From a canonical point of view, it
inherits the phase separation between CDW and Mott insulator, since here
the energy is minimal. Thus, in the canonical picture, the phase separation
between CDW and Mott insulator is always present with a pinning to the
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Figure 12.6: Density cut along the chemical potential axis in figure 12.4 for
three different bosonic hoppings JB = 0.01, 0.04, 0.07 (from left to right).
Shown is the density as a function of the chemical potential. Clearly the
CDW and the Mott plateaus are visible, indicated by the extend region
of constant filling, where there is no devil’s staircase as might be expected
because of the long-range interactions. For JB = 0.01, some data points are
missing due to some convergence problems of the DMRG.

borders for open boundaries. In the treated parameter regime, we did not
observe a supersolid phase so far.

For the phase diagram with open boundaries as presented in 12.4, the extend
of the phase-separated phase (PS) is sketched without a rigorous numerical
analysis for rather small systems. The boundaries are determined from the
behavior of the order parameter

O =
∑
j

|〈m̂j〉 − 〈m̂j+1〉| , (12.41)

which accounts for the CDW amplitude of the fermionic subsystem. Figure
12.7 shows the behavior of the order parameter as a function of the bosonic
hopping for NB = 24 and L = 64. The phase boundary is clearly visible from
the sharp drop around JB = 0.02. For larger hopping, the system enters
a phase where the fermions finally behave as free fermions, i.e., showing a
homogeneous density and the bosons have the density profiles according to
that of interacting bosons (in the finite system).
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Figure 12.7: Determination of the boundary of the phase separation using
the order parameter O =

∑
j |〈m̂j〉 − 〈m̂j+1〉| for open boundary conditions

as function of the bosonic hopping. The transition from the phase separation
to the crossover regime is seen by the non-analyticity of the order parameter.
Data points are obtained for V = 1.25, JF = 10 and 24 bosons on 64 sites
using DMRG.

Finally, we mention how the DMRG results in figure 7.3 were obtained. As
discussed above, the analytic theory relying on the thermodynamic limit
forces the additional (less) particle to be added (removed) close to the
center. For larger hopping, this state is reproduced by the DMRG, where
the overall convergence problem of the method due to the highly degenerate
subspace with many close-lying meta-stable states forced us to perform a
post-selection of the numerical data. In the figure, only those data points
where used, where the numerical results show the additional (less) particle
to be situated at the center. This perfectly reproduces the analytic results
and is well justified. For small hopping, the DMRG data is replaced by data
from exact diagonalization, since here the boundaries become dominant as
described above. All described effects were observed numerically even for
relatively large system sizes L, indicating the trustworthiness of the analytic
results in the thermodynamic limit.

In summary, the derived effective Hamiltonian allows for a full understanding
of the physics on the ultrafast-fermion regime.



CHAPTER 13

Conclusion and outlook

The derivation of an effective bosonic Hamiltonian allows for a comprehen-
sive understanding of the bosonic phase diagram in the limit of ultrafast
fermions. For double half filling, the physics is dominated by induced
long-range density-density interactions alternating in sign, leading to the
emergence of a bosonic charge-density wave phase. Divergences arising
from the full decoupling of the fermions are overcome by a renormalization
scheme which includes the back-action of the bosonic CDW on the fermions.
Beyond half filling, the induced interactions lead to thermodynamically
unstable regions in the (µB, JB)-phase diagram, displaying coexistence of
CDW and Mott insulating phases, i.e., a phase separation between CDW
and Mott insulator. Numerical results obtained by DMRG for the full
Bose-Fermi-Hubbard model are in a reasonable agreement with our analytic
predictions. Application of our effective theory to Bose-Bose of Fermi-Fermi
mixtures is straightforward.

Mainly focussing on the study of the incompressible and the phase-separated
phases, the nature of the phase transition or crossover for double half filling
remains open. Exponentially decaying first-order correlations even beyond
the numerically detectable extent of the CDW phase indicate further physical
processes in this system for larger bosonic hopping. Here bosonization could
give an understanding of the behavior of the correlation functions as well as
the nature of the phase transition. Furthermore, the question of supersolidity
in the effective model is yet unanswered, where the interplay of the induced
potential and the long-range interactions could lead to new effects. Focussing
on low densities %B < 1, the nature of the different phases for larger boson
densities is not studied so far and should give a variety of further phases.
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Part III

Nonlinear and multi-band
corrections to the single-band
Bose-Fermi-Hubbard model
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CHAPTER 14

Introduction

Recent experimental results for bosonic atoms in optical lattices [243]
revealed that the importance of further contributions in the Hamiltonian
beyond the single-band approximation with nearest-neighbor hopping and
local two-particle interactions [59]. By means of quantum phase diffusion,
the value of the two-body interaction U in the Bose-Hubbard model
was measured directly. These experiments have also revealed additional
three- and four-body interaction constants not occurring in the single-band
Bose-Hubbard Hamiltonian. Because of the nature of the continuous
Bose-Hubbard Hamiltonian (1.1), these contributions cannot directly when
introducing a localized basis. Johnson et al. [244] presented a perturbative
approach resulting in higher-order interactions. Within this approach, higher
Bloch bands are incorporated initially1 but eliminated. As a consequence,
virtual transitions of the bosons lead to new effective many-body interactions.

For the mixture case, the situation is even more involved. After the first
experiments on Bose-Fermi mixtures in optical lattices [37, 38] displaying
a decrease of the bosonic visibility due to the fermions, the nature of the
effect of the fermions to the bosonic superfluid to Mott-insulator transition
was discussed controversially. Explanations ranged from localization effects
of bosons induced by fermions [38, Mering2008] to heating because of the
admixture [37, 247]. Numerical results also predicted an opposite behavior,
i.e., the enhancement of bosonic visibility because of fermions [88] with a
more detailed discussion in [248]. The situation remained unclear until the
systematic study of the dependence of the shift in the bosonic superfluid

1See for instance [245, 246] for discussions of the physics in the higher bands.
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to Mott-insulator transition on the boson-fermion interaction [84] and the
subsequent observation of higher-order interactions measured by means of
quantum phase diffusion in the mixture. This showed, that higher-band
effects need to be taken into account.

The idea of including further contributions to the Hamiltonian coming
from higher-band effects can be tackled by two different approaches. In
the first approach one assumes that the single-particle Wannier functions
are altered due to the fermions and the higher bands [86], which are then
calculated from a self-consistent ansatz. The agreement of these results to
experiments is very reasonable for repulsive boson-fermion interactions (see
[84]), but the method suffers from the fact that it can only be applied to
the Mott-insulating state. The second approach, including higher bands
in an elimination scheme leading to an effective single-band Hamiltonian
[90, 244, 249] is more promising in this sense, but so far did not result
in reliable predictions due to the usage of the harmonic oscillator ap-
proximation. Further methods including higher-band effects are currently
in development such as a multi-band dynamical mean-field theory [250],
slave-boson mean-field theory [251] or Gutzwiller approach [252].

Independently to [90, 244, 249] we here develop an adiabatic elimination
scheme of the higher Bloch bands, resulting in an effective first-band Hamil-
tonian. For the renormalized Bose-Hubbard parameters U and JB, extended
by the renormalization due to the fermions, corrections are found in a closed
form, including an arbitrary amount of higher bands. All interaction ampli-
tudes are calculated from Wannier functions without approximations such
as the harmonic oscillator wavefunctions. Furthermore we found that there
are additional corrections resulting from the interaction term in the original
continuous Hamiltonian already within the first band. This allows for a di-
rect study of the influence of the interactions on the bosonic superfluid to
Mott-insulator transition, both in one and three dimensions.



CHAPTER 15

Derivation of the multi-band

Bose-Fermi-Hubbard model

For the derivation of the multi-band Bose-Fermi-Hubbard Hamiltonian we
follow the usual route presented in the introduction in chapter 1. In our
treatment, the higher bands are incorporated in an adiabatic approximation
resulting in a renormalization of the physics in the first band as well as addi-
tional nonlinear terms. In this adiabatic elimination, only virtual processes
to the empty higher bands are taken into account which corresponds to a
second order perturbation theory in the interband coupling. This second
order approach is equivalent to the assumption, that higher Bloch bands are
uncoupled to each other and it suffices to calculate the effect of an individual
band to the renormalization of the first band and finally sum up all higher
bands. Thereby, depending on the symmetry, different virtual processes can
occur.

Within this approach, the resulting Hamiltonian for the full multi-band Bose-
Fermi-Hubbard model takes the form

Ĥ = Ĥ1 +
∞∑
b=2

Ĥb +
∞∑
b=2

Ĥ1b, (15.1)

where Ĥ1 is the Hamiltonian of the first band, Ĥb the (free) b-th-band Hamil-
tonian and Ĥ1b couples the first band to the b-th band. For a detailed deriva-
tion it is convenient to rewrite the continuous Hamiltonian (1.26) for a mix-
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ture of bosons and fermions in the form

Ĥ =
∑

X∈{B,F}

{∫
dzΨ†X(z)

[
− ~2

2mX

∆ + V X
Pot(z)

]
ΨX(z)

+
gBX

2

∫
dzΨ†B(z)Ψ†X(z)ΨX(z)ΨB(z)

}
.

(15.2)

The notation with X ∈ {B,F} denoting the species allows for a simplified
treatment of the upcoming algebra. The intra- and interspecies interaction
constants are defined as

gBB =
4π~2

mB

aBB gBF =
4π~2

mR

aBF (15.3)

with mR = mBmF

mB+mF
being the reduced mass and aBB/BF the intra- and in-

terspecies scattering length, respectively. Whereas in the standard approach
the field operators in (15.2) are expanded in terms of Wannier functions for
the first band only, we here use an expansion to all orders of higher Bloch
bands:

ΨX(z) =
∞∑
b=1

∑
j

âXb,j w
X
b (z − ja). (15.4)

For the moment we stick with all bands and make a reduction to a single
higher band later. a is the lattice spacing of the optical lattice. The operator
âXb,j means the annihilation of a particle (X = B a boson and X = F a
fermion) in the b-th band on site j and wXb (z − aj) is the corresponding
Wannier function of the b-th band located at site j.

Using the expansion of the field operator, the full multi-band Bose-Fermi-
Hubbard Hamiltonian is given by

Ĥ =
∑
X

{∑
b1,b2

∑
j1,j2

JX;b1,b2
j1,j2

(
âXb1,j1

)†
âXb2,j2 (15.5)

+
1

2

∑
b1,b2,b3,b4

∑
j1,j2,j3,j4

UX;b1b2b3b4
j1j2j3j4

(
âBb1,j1

)† (
âXb2,j2

)†
âXb3,j4 â

B
b4,j4

}
.

The generalized hopping amplitude (still containing local contributions)

JX;j1j2
b1b2

=

∫
dz w̄Xb1(z − j1a)

[
− ~2

2mX

∆ + V X
Pot(z)

]
wXb2(z − j2a), (15.6)
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and the generalized interaction amplitudes

UX;j1j2j3j4
b1b2b3b4

= gBX

∫
dz w̄Bb1(z−j1a)w̄Xb2(z−j2a)wXb3(z−j3a)wBb4(z−j4a) (15.7)

are defined corresponding to the discussion in the introduction in section 1.2.
We restrict our model in such a way, that only terms of interest are kept.
Furthermore, many of the matrix elements vanish because of the symmetry
of the Wannier functions.

15.1 Contributing hopping matrix elements

The generalized hopping amplitude (15.6) incorporates several physical pro-
cesses. These are the typical intraband hopping processes (b1 = b2 and
|j1 − j2| = 1) and the energy of the particles within a band (b1 = b2 and
j1 − j2 = 0). Interband transitions are not present because of the orthogo-
nality of the Bloch functions. This gives, as remaining contributions

a) the band energy

∆X
b =

∫
dz w̄Xb (z)

[
− ~2

2mX

∆ + V X
Pot(z)

]
wXb (z), (15.8)

b) the intraband nearest-neighbor hopping

JXb =

∫
dz w̄Xb (z − a)

[
− ~2

2mX

∆ + V X
Pot(z)

]
wXb (z). (15.9)

In summary, the part of the multi-band Hamiltonian resulting from the gen-
eralized hoppings reads

Ĥ =
∑
X,j,b

JXb

[(
âXb,j
)†
âXb,j+1 +

(
âXb,j+1

)†
âXb,j

]
+ ∆X

b

(
âXb,j
)†
âXb,j, (15.10)

where hopping between sites with |j1 − j2| = 2 is omitted since it is small
compared to the nearest-neighbor hopping (see figure 1.6). Figure 15.1 shows
a graphical representation of the different processes.

15.2 Contributing interaction matrix ele-

ments

a) Discussion of the matrix elements

The discussion for the remaining contributions from the interaction term
is more involved. This stems on the one hand side from the large number
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Figure 15.1: Different processes coming from the generalized hopping ampli-
tudes depicted for the first three bands. The shaded circles represent either
bosons or fermions with no difference for the Hamiltonian. ∆X

b is the energy
of the b-th band and JXb is the intraband nearest-neighbor hopping in the
b-th band.

of possible matrix elements and on the other hand from the simplification
within our ansatz. The full calculation of the Hamiltonian without these
simplifications is of course doable, but due to its complexity the physical
processes behind it would become intransparent. To summarize, we calculate
the matrix elements in (15.7) with the following assumption:

All Wannier functions used in (15.7) not coming from the first band,
have to come from the same band.

This assumption assures that the irrelevant (in the sense of the adiabatic
elimination) contributions are left out. These are for instance, the density-
density interaction between higher bands, transitions between the higher
bands and transitions from the first to the b1-th band together with a
transition from the b2-th to the b3-th band. All these matrix elements do
not contribute in the adiabatic elimination in second order. Additionally,
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intraband density-density interactions are neglected for the higher bands.

Performing this analysis, the resulting terms may be grouped as follows,
where the pure first-band terms are left out.

One Wannier function from a higher band

For this case, the discussion depends on the band index b. As mentioned
earlier, the Wannier function for the first band and all other odd bands is
axisymmetric and mirror-symmetric for any even band. This means, that all
matrix elements vanish if the higher band is an even one. For the odd ones,
with the shortened definition

UX
b1b2b3b4

= gBX

∫
dz w̄Bb1(z)w̄Xb2(z)wXb3(z)wBb4(z), (15.11)

the Hamiltonian is given by

Ĥb
X,1 =

1

2

∑
j

[
UX
b111n̂

X
1

(
âBb
)†
âB1 + UX

1b11n̂
B
1

(
âXb
)†
âX1

+UX
11b1

(
âX1
)†
âXb n̂

B
1 + UX

111b

(
âB1
)†
âBb n̂

X
1

]
.

(15.12)

Here we have dropped the site index j from the operators for notational
simplicity. All contributions have in common that a single particle makes a
transition from the first (the higher) band to the higher (the first) band with
another particle being in the lowest band. Note again, that the higher band
has to be an odd one.

Two Wannier functions from the higher band

This situation is the most complex since the symmetry of the Wannier func-
tions does not play a role. Altogether, six contributions emerge, for which a
detailed discussion can be found in figure 15.2. Using above definition of the
interaction constants, the Hamiltonian results in

Ĥb
X,2 =

1

2

∑
j

[
UX
bb11

(
âBb
)† (

âXb
)†
âX1 â

B
1 + UX

b1b1

(
âBb
)† (

âX1
)†
âXb â

B
1

+ UX
b11bn̂

X
1 n̂

B
b + UX

1bb1n̂
X
b n̂

B
1

+UX
1b1b

(
âB1
)† (

âXb
)†
âX1 â

B
b + UX

11bb

(
âB1
)† (

âX1
)†
âXb â

B
b

]
,

(15.13)

where again the site index is dropped. Several of the interaction constants
are the same because of symmetry. A detailed discussion of the symmetries
will be given later.
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Figure 15.2: Matrix elements for the coupling of any higher Bloch band to
the first band via the generalized interaction (15.7) for two Wannier functions
from the higher bands. Bosons are shown as filled circles and shaded circles
are bosons or fermions depending on X, solid arrows are bosonic processes,
dashed arrows are processes corresponding to the species X and double ar-
rows give a density-density interaction. UX

bb11 describes the transition of a
boson and a X-particle from the first (higher) to the higher (first) band and
UX
b1b1 gives the transition of a boson from the first (higher) to the higher

(first) band together with a transition of a X-particle from the higher (first)
band to the first (higher) band. The remaining two UX

b11b and UX
1bb1 give

density-density interactions between the two bands.

Three Wannier functions from the higher band

Similar to the discussion of a single Wannier function in the higher band,
again only odd bands with axis-symmetric Wannier functions contribute.
The Hamiltonian is therefore given by

Ĥb
X,3 =

1

2

∑
j

[
UX

1bbbn̂
X
b

(
âB1
)†
âBb + UX

b1bbn̂
B
b

(
âX1
)†
âXb

+UX
bb1b

(
âXb
)†
âX1 n̂

B
b + UX

bbb1

(
âBb
)†
âB1 n̂

X
b

]
.

(15.14)

and this completes the derivation of the matrix elements connecting the first
band to higher bands. Figure 15.3 shows the corresponding processes for this
case together with the results for the case of a single Wannier function in the
higher band.
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Figure 15.3: Matrix elements for the coupling of the odd higher bands to
the first band for one or three Wannier functions from the higher bands via
the generalized interaction (15.7). The notation is the same as in figure
15.2. Additionally, the bidirectional arrows are local density contributions
as stated in the main text. All processes feature the interband transition of
a single particle together with a density interaction, either from the higher
or the first band.
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b) Complete Hamiltonian for the b-th band from the
interaction

Combining all results for the different cases and exploiting the symmetries
of the generalized coupling constants, the full Hamiltonian for the coupling
of the first to the b-th band is given by

Ĥb
X = Ĥb

X,1 + Ĥb
X,2 + Ĥb

X,3 + Ĥb
X,4

=
∑
j

[
UX
b11b

2
n̂X1,jn̂

B
b,j +

UX
1bb1

2
n̂Xb,jn̂

B
1,j

+
UX
bb11

2

((
âBb,j
)† (

âXb,j
)†
âX1,j â

B
1,j +

(
âBb,j
)† (

âX1,j
)†
âXb,j â

B
1,j

+
(
âB1,j
)† (

âXb,j
)†
âX1,j â

B
b,j +

(
âB1,j
)† (

âX1,j
)†
âXb,j â

B
b,j

)]∣∣∣∣∣
all bands

+
∑
j

[
UX
b111

2

(
n̂X1,j

(
âBb,j
)†
âB1,j +

(
âB1,j
)†
âBb,jn̂

X
1,j

)
+
UX

1b11

2

(
n̂B1,j

(
âXb,j
)†
âX1,j

+
(
âX1,j
)†
âXb,jn̂

B
1,j

)
+
UX

1bbb

2

(
n̂Xb,j

(
âB1,j
)†
âBb,j +

(
âBb,j
)†
âB1,jn̂

X
b,j

)

+
UX
b1bb

2

(
n̂Bb,j

(
âX1,j
)†
âXb,j +

(
âXb,j
)†
âX1,jn̂

B
b,j

)]∣∣∣∣∣
odd bands

.

(15.15)

For the interaction amplitudes, the following symmetry relations hold and
have been used:

UX
abcd = UX

dbca = UX
acbd. (15.16)

This results from the structure of the Wannier functions which are real val-
ued.

15.3 Full (relevant) multi-band Bose-Fermi-

Hubbard Hamiltonian

With the above results, we are able to pin down the full multi-band Bose-
Fermi-Hubbard model. Using Uabcd := UB

abcd for the boson-boson interaction
and Vabcd = UF

abcd for the boson-fermion interaction, the Hamiltonian includ-
ing the first band as well as all relevant couplings to an arbitrary higher band
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is given by

Ĥb = Ĥ free
1st + Ĥ free

bth + Ĥ int, any
bth + Ĥ int, odd

bth (15.17)

with the Hamiltonian of the 1st

Ĥ free
1st = JB1

∑
j

(
â†1,j â1,j+1 + â†1,j+1â1,j

)
+
U1111

2

∑
j

n̂1,j(n̂1,j − 1)

+ JF1
∑
j

(
ĉ†1,j ĉ1,j+1 + ĉ†1,j+1ĉ1,j

)
+
V1111

2

∑
j

n̂1,jm̂1,j

+ ∆B
1

∑
j

n̂1,j + ∆F
1

∑
j

m̂1,j

(15.18)

and the free Hamiltonian of the b-th band

Ĥ free
bth = JBb

∑
j

(
â†b,j âb,j+1 + â†b,j+1âb,j

)
+ ∆B

b

∑
j

n̂b,j

+ JFb
∑
j

(
ĉ†b,j ĉb,j+1 + ĉ†b,j+1ĉb,j

)
+ ∆F

b

∑
j

m̂b,j

(15.19)

whith b ∈ 2 . . .∞, the interaction Hamiltonian

Ĥ int, any
bth =

∑
j

Ubb11

2

[(
â†b,j

)2

â2
1,j + 4n̂b,jn̂1,j +

(
â†1,j

)2

â2
b,j

]

+
∑
j

[
Vb11b

2
m̂1,jn̂b,j +

V1bb1

2
m̂b,jn̂1,j

+
Vbb11

2

(
â†b,j ĉ

†
b,j ĉ1,j â1,j + â†b,j ĉ

†
1,j ĉb,j â1,j

+ â†1,j ĉ
†
b,j ĉ1,j âb,j + â†1,j ĉ

†
1,j ĉb,j âb,j

)]
(15.20)

coupling any band and



134 CHAPTER 15. DERIVATION OF THE MULTI-BAND BFHM

Ĥ int, odd
bth =

∑
j

[
Ub111

(
n̂1,j â

†
b,j â1,j + â†1,j âb,jn̂1,j

)

+ U1bbb

(
n̂b,j â

†
1,j âb,j + â†b,j â1,jn̂b,j

)]

+
∑
j

[
Vb111

2
m̂1,j

(
â†b,j â1,j + â†1,j âb,j

)
+
V1b11

2
n̂1,j

(
ĉ†b,j ĉ1,j

+ ĉ†1,j ĉb,j

)
+
V1bbb

2
m̂b,j

(
â†1,j âb,j + â†b,j â1,j

)

+
Vb1bb

2
n̂b,j

(
ĉ†1,j ĉb,j + ĉ†b,j ĉ1,j

)]
(15.21)

coupling only the odd bands. For the bosonic interaction amplitudes the
additional symmetry relation Uabcd = Ubacd = Uabdc = Uadcb = . . . holds. This
Hamiltonian now incorporates all relevant terms needed for the derivation of
the effective single-band model.
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Adiabatic elimination of higher bands and

nonlinear corrections

16.1 Adiabatic elimination and effective

single-band Hamiltonian

With the full Hamiltonian (15.17), the adiabatic elimination follows the same
route as performed in chapter 8 for the case of fast fermions, but, instead of
tracing out the fermions, the trace is performed over the higher bands. The
Hamiltonian is split up into a free and an interaction part, defined as

Ĥb = Ĥfree + ĤI (16.1)

with

Ĥfree = Ĥ free
1st + Ĥ free

bth (16.2)

ĤI = Ĥ int, any
bth + Ĥ int, odd

bth . (16.3)

In the interaction picture, the dynamics of the free part is incorporated by
the time dependent interaction Hamiltonian ĤI(τ) = e−

i
~ Ĥfreeτ ĤI e

i
~ Ĥfreeτ

and the scattering matrix of the full system is given by

Ŝ = T exp

− i~
∞∫

−∞

dτĤI(τ)

 . (16.4)

Tracing over the higher-band degrees of freedom assuming vacuum in that
band and using the cumulant expansion (8.7) up to second order as described

135
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in chapter 8, the effective scattering matrix for the lowest band reads

Ŝ1st
eff = T exp

− i~
∞∫

−∞

dτ

(
− i

2~

) ∞∫
−∞

dT 〈〈T ĤI(τ + T )ĤI(τ)〉〉bth

 .

(16.5)
From the first order in the cumulant expansion no contributions occur since
either the number of creation and annihilation operators in the higher band
applied on the vacuum state is unequal or the higher band operators are
normal ordered.

The calculation of the second order cumulant is rather lengthy and can be
found in appendix B.1. Together with a subsequent Markov approximation
already used in chapter 81, the effective Hamiltonian for the first-band Bose-
Fermi-Hubbard model is given by

Ĥeff
1st = Ĥ free

1st +
∑
jd

{
U2
bb11IdBB,b

2

(
â†j+d

)2

â2
j +

V 2
bb11IdBF,b

4
â†j+dĉ

†
j+dĉj âj

+ U2
b111IdB,b â

†
j+dn̂j+dn̂j âj +

Ub111Vb111IdB,b
2

m̂j+dâ
†
j+dn̂j âj

+
Vb111Ub111IdB,b

2
â†j+dn̂j+dm̂j âj +

V 2
b111IdB,b

4
m̂j+dâ

†
j+dm̂j âj

+
V 2

1b11IdF,b
4

n̂j+dĉ
†
j+dn̂j ĉj

}
.

(16.6)

Here, explicit distinction between even and odd bands is omitted for nota-
tional simplicity. The first two terms account for any band whereas all other
terms come into play only for odd bands2. In the Hamiltonian, the time
integrals over the bosonic and fermionic correlators are defined as

IdB,b = − i
~

∞∫
0

dT CTB,b(d), IdBB,b = − i
~

∞∫
0

dT
(
CTB,b(d)

)2
, (16.7)

IdF,b = − i
~

∞∫
0

dT CTF,b(d), IdBF,b = − i
~

∞∫
0

dT CTF,b(d)CTB,b(d), (16.8)

1The Markov approximation here is justified because the absolute value of the hopping
amplitudes in the higher bands are larger than in the first band. See [110, 253] and section
1.2 for details.

2As a rule of thumb, terms with an odd number of “b”’s in the interaction amplitudes
U and V only stem from odd bands.
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with

CTB,b(d) = 〈âb,j+d(τ + T )â†b,j(τ)〉bth, CTF,b(d) = 〈ĉb,j+d(τ + T )ĉ†b,j(τ)〉bth.
(16.9)

As shown in B.2, these evaluate to

〈âb,j+d(τ + T )â†b,j(τ)〉bth =
1

L

∑
k

e−2πid k
L e

i
~Tε

B,b
k (16.10)

〈ĉb,j+d(τ + T )ĉ†b,j(τ)〉bth =
1

L

∑
k

e−2πid k
L e

i
~Tε

F,b
k (16.11)

which, together with the time integration, give

IdX,b =
1

π

π∫
0

dξ
cos(dξ)

εX,b(ξ)
(16.12)

IdBX,b =
1

π2

π∫
0

dξ

π∫
0

dξ′
cos(dξ) cos(dξ′)

εB,b(ξ) + εX,b(ξ)
(16.13)

in the thermodynamic limit3. εX,b(ξ) = 2JXb cos(ξ) + ∆X
b is the energy of a

free particle (either bosonic or fermionic) in the higher band and the further
details can be found in appendix B.3.

16.2 Nonlinear corrections for the first band

From equation (16.6), the structure of the effective first-band Hamiltonian
can be seen. As one can see, for a proper derivation of the effective first-band
Hamiltonian, the approximations commonly used for the first-band interac-
tion amplitudes are too stringent and need to be expanded. Since nonlocal
density-density interactions and density-mediated hopping processes are a
direct consequence of the couplings to higher bands, these should also be
included in the pure first-band treatment. Doing so, the generalized inter-
action (15.7) needs to be extended by terms featuring either a two-particle
(equal distance) hopping

U2d
1111

(
â†j+d

)2

â2
j , (16.14)

V 2d
1111 â

†
j+dĉ

†
j+dĉj âj, (16.15)

3As in part II, the thermodynamic limit is reached for L → ∞ by setting ξ = k
L and

changing 1
L

∑
k to

∫
dξ.
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or density mediated hoppings

U3d,B
1111 â†j+d (n̂j+d + n̂j) âj,

V 3d,B
1111 â†j+d (m̂j+d + m̂j) âj, (16.16)

V 3d,F
1111 ĉ†j+d (n̂j+d + n̂j) ĉj,

both for bosons and fermions. The interaction amplitudes are defined via
the generalized interaction amplitudes as

U2d
1111 = UB;j+d,j+d,j,j

1111 ,

V 2d
1111 = UF ;j+d,j+d,j,j

1111 ,

U3d,B
1111 = UB;j+d,j+d,j+d,j

1111 , (16.17)

V 3d,B
1111 = UF ;j+d,j+d,j+d,j

1111 ,

V 3d,F
1111 = UF ;j+d,j+d,j,j+d

1111 ,

where the upper index 2d (3d) denotes two (three) Wannier functions shifted
by one lattice site according to (15.7). For the amplitudes, it does not
matter whether the two (three) Wannier functions stem from the site j + d
or j.

The upcoming contributions to the Hamiltonian are also reported in
[254, 255] and in the following will be referred to as nonlinear hopping
corrections. They renormalize the single- and two-particle hopping processes
and will give a major influence on the location of the phase transition as
will be discussed in the following sections.

It should be noted that these terms have been missed out in earlier, non-
systematic discussions of higher-band effects [90, 249].
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16.3 Full effective single-band Bose-Fermi-

Hubbard Hamiltonian

In summary, the full effective Hamiltonian for the first band reduced to
hopping contributions and local interactions is given by

Ĥeff =
∑
j

[U3

6
n̂j (n̂j − 1) (n̂j − 2) +

V3

2
m̂jn̂j (n̂j − 1)

+
U2

2
n̂j (n̂j − 1) + V n̂jm̂j

]
+
∑
j

∆B
1 n̂j +

∑
j

∞∑
d=−∞
d6=0

â†j+d JB[d; n̂j, n̂j+d, m̂j, m̂j+d] âj

+
∑
j

∆F
1 m̂j +

∑
j

∞∑
d=−∞
d6=0

ĉ†j+d JF [d; n̂j, n̂j+d] ĉj

+
∑
j

∞∑
d=−∞
d6=0

[
J

(2)
B (d)

(
â†j+d

)2

â2
j + J

(2)
F (d) â†j+dĉ

†
j+dĉj âj

]
.

(16.18)

For a definition of the constants refer to appendix B.4. In comparison
to the usual single-band picture, the emergence of some new terms can
be seen. The inclusion of the higher bands leads on the one hand to a
renormalization of the local interaction amplitudes and on the other hand
to (long-range), density mediated hopping processes as well as correlated
two-particle tunneling. Most prominent is the appearance of the three-body
interaction U3 which has been measured experimentally recently by means
of quantum phase diffusion [243]. Using the method for the calculation of
the Wannier functions presented in the next chapter, the value of U3 turns
out to be of the same sign as seen in the experiments (and analytic theory in
[244] using the harmonic oscillator approximation), whereas the ratio U3/U2

is only correct up to an order of magnitude. This is not surprising, since
there are further contributions of higher order in the interband coupling
not included in our second-order approach. Nevertheless, the accordance of
this simple quantity already shows that our used method allow for a proper
description of the influence of the higher bands.

In order to discuss the phase transition of the bosonic subsystem, we
furthermore reduce the Hamiltonian to the relevant parts. These are,
compared to the pure single-band nonlinear Bose-Hubbard model the on-site
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interaction as well as the nearest-neighbor hopping. We start our discussion
coming from the Mott insulator, thus the local number of particles is
approximately given by the integer filling of the system, i.e., 〈n̂j〉 ≈ n. This
is used to replace the number operators in the hopping terms by the filling
n, giving a reasonable approximation for the calculation of the renormalized
hoppings. For the fermionic species, we also replace the number operator
by the fermionic filling m̂j → m = 1, assuming a homogeneous filling of
the fermions in the lattice. Having an experimental realization with cold
atoms in mind, this specific case is a valid assumption in the center of the
harmonic trap at least for attractive inter-species interactions. It should
be valid however also for sufficiently small inter-species repulsion. This
assumption is also supported by the results from [84], where the fermionic
density did not influence the transition from a Mott-insulator to a superfluid
(for medium and large filling). It also agrees with the result in [86] which is
based on this assumption, showing a good agreement to the experimental
results. All further contributions in the Hamiltonian as the three-particle
interaction and two-particle hoppings are neglected in the following.

With these approximations, the renormalized Bose-Hubbard Hamiltonian is
given by

Ĥeff = −J [n,m]
∑
j

(
â†j âj+1 + â†j+1âj

)
+
U [n,m]

2

∑
j

n̂j (n̂j − 1) (16.19)

with

J [n,m] = JB1 + 2n
U3d,B

1111

2
+ 2m

V 3d,B
1111

2
(16.20)

+
∑
b>1
b odd

I1
B,b

[
U2
b111 n

2 + 2
Ub111Vb111

2
nm+

V 2
b111

4
m2
]

U [n,m] = U1111 +
∑
b>1

U2
bb11I0

BB,b +
∑
b>1
b odd

2 U2
b111I0

B,b (16.21)

+m
∑
b>1
b odd

[
2 Ub111Vb111I0

B,b +
V 2

1b11I0
F,b

2

]

For the correlator integrals I0
X,b and I1

X,b, equation (16.12), simple expressions
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can be found:

I0
X,b =

1√
(∆X

b )2 − (2JXb )2

I1
X,b =

1

2JXb
(
1−∆X

b I0
X,b

) . (16.22)

This Hamiltonian serves as the starting point for the discussion of the in-
fluence of the boson-fermion interaction on the Mott-insulator to superfluid
transition as studied in the experiments in [37, 38, 84]. This will be done
after a short summary of the relevant experimental parameters and their
implications on the discussions so far.





CHAPTER 17

Real (experimental) parameters

17.1 Optical lattice effects

With the knowledge of the full form of the effective first-band Hamiltonian,
the next step is to calculate the Wannier functions and the interaction am-
plitudes. In the introduction 1.2 we showed, how the Wannier functions are
calculated for the optical lattice. For the mixture case, another important
effect needs to be taken into account. Since the optical lattice is generated
by an off-resonant standing laser field, the potential itself results from the
ac-Stark shift. As shown in [13, 91] the potential induced by the Stark shift
is given by

Vpot(r) =
3πc2

2ω3
0

Γ

∆
I(r) (17.1)

for a single line. If the laser field couples to more lines but is sufficiently
detuned from each one, the potential may be calculated by the independent
sum of the contributions from each of these lines. For typical alkali atoms
Li, Rb and K, the most dominant contribution comes from the coupling to
the D-line doublet. Thus, the potential is given by [91]

Vpot(r) =
3πc2

2

(
ΓD1

ω3
0,D1

∆D1

+
2ΓD2

ω3
0,D2

∆D2

)
I(r) (17.2)

and depends on the properties of the D1 and D2 lines. These are the
decay rates ΓD1,2 of the excited states, ∆D1,2 = ωlaser − ω0,D1,2 the detun-
ings of the laser frequency ωlaser from the atomic transition frequencies
ω0,D1,2 and I(r) = I0 sin2(kr) the laser intensity. Since for different
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atomic species (in general even for different isotopes but here the effect is
marginal), the atomic transition frequencies differ, i.e., all species in the
optical setup experience different amplitudes of the optical lattices1. This
influences the Wannier functions which we take into account in the following.

Conveniently, all energies in the system are normalized to the so-called recoil
energy, which is defined as the change in kinetic energy of an atom upon ab-
sorption of a photon from the optical lattice laser. In our case, we normalize
to the recoil energy of the bosonic species, given by

EB
rec =

~2k2

2mB

, (17.3)

with the wavenumber k of the optical lattice. It is useful to rewrite the
optical lattice potential for the fermionic atoms with respect to the bosonic
optical lattice. Following the notation in [110], the optical lattice potential
for the second (fermionic) species is written in the form

V F
pot(r) = ηF sin2(kr) (17.4)

where ηF = 3πc2

2

(
ΓF
D1

(ωF
0,D1

)
3
∆F

D1

+
2ΓF

D2

(ωF
0,D2

)
3
∆F

D2

)
I0. The definition of the am-

plitude ηF allows for an easy connection of the fermionic potential to the
bosonic one as

ηF =

ΓF
D1

(ωF
0,D1

)
3
∆F

D1

+
2ΓF

D2

(ωF
0,D2

)
3
∆F

D2

ΓB
D1

(ωB
0,D1

)
3
∆B

D1

+
2ΓB

D2

(ωB
0,D2

)
3
∆B

D2

ηB = f̃ ηB. (17.5)

The prefactor f̃ connects the bosonic and fermionic potential depth. For the
calculation of the prefactor, the values for the different atomic species can
be found for typical isotopes in [256, 257, 258] or at the NIST2 homepage
[259].

For the calculation of the Wannier functions for the fermions using the
Schrödinger equation[

− ~2

2mF

∆ + ηF sin2(kr)

]
Φ(r) = E Φ(r), (17.6)

1If the one species is red, the other species blue detuned, the two species do not just
experience different amplitudes but also different positions of the minima of the potential.

2National Institute of Standards and Technology
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the normalization to the bosonic recoil energy leads to additional fac-
tors which originate from the mass difference. This gives the fermionic
Schrödinger equation[

− ~2

2mB

∆ +
mF

mB

f̃ ηB sin2(kr)

]
Φ(r) =

mF

mB

E Φ(r). (17.7)

Note, that the depth of the optical lattice potential for the fermions is altered
by a prefactor mF

mB
f̃ compared to the bosonic one and the energy of the

fermionic system is altered by mF

mB
. This factor in the energy demands a

careful treatment of the intraband hopping JFb and the band energy ∆F
b . For

a fixed amplitude η of an optical lattice (in units of the recoil energy3), they
are given by the Fourier transform of the energy dispersion respectively the
mean value as shown in section 1.2. This gives

Jb =
1

2

1∫
−1

dp Eb(p) e
−iπp ∆b =

1

2

1∫
−1

dp Eb(p), (17.8)

where Eb(p) is the dispersion of the b-th band. For the calculation of the
energy dispersion, the free Hamiltonian (17.6) was normalized to the recoil
energy, giving, for the fermionic species, the hopping and the band energy
with respect to the fermionic recoil energy. In bosonic units, the factor

EF
rec

EB
rec

=
mB

mF

(17.9)

needs to be included, giving the dependence of the hopping and the band
energy as a function of ηB (by using the prefactor f̃ mF

mB
) in units of the

bosonic recoil energy.

At this point, we specify the experimental system. In the following, we
analyze the experiment reported in [84] and use the parameters given there.
The experiment treats the visibility of the bosonic cloud in the optical lattice
as a function of the boson-fermion scattering length aBF tuned by a Feshbach
resonance [13, 260, 261]. A mixture of bosonic 87Rb and fermionic 40K is
cooled and put into an optical lattice with λL = 755 nm. For Rubidium
[258] and Potassium [259, 262], the transition wavelengths and decay rates

3Here we discuss the general case and therefore remove any index B or F .
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are given by

λKD1
= 766.5 nm λRbD1

= 795.0 nm

ΓKD1
= 38.7× 106 Hz ΓRbD1

= 36.1× 106 Hz (17.10)

λKD2
= 769.9 nm λRbD2

= 780.2 nm

ΓKD2
= 38.2× 106 Hz ΓRbD2

= 38.1× 106 Hz.

Using these values the prefactor f̃ in equation (17.5) evaluates to

f̃ = 2.04043, (17.11)

which means, that the fermionic lattice potential, in terms of the bosonic
recoil energy is twice as deep as the bosonic one. Nevertheless it should be
noted that the fermionic lattice potential normalized to the fermionic recoil
energy is roughly the same as the bosonic potential normalized to the bosonic
recoil energy as stated in [84], since

EF
rec

EB
rec

=
mB

mF

= 2.175 (17.12)

which almost compensates f̃ in (17.7). Nevertheless, the mass factor persists
in the hopping and the band energy when normalizing the fermionic quanti-
ties to the bosonic recoil energy. In [84] it is stated, that the wavelength of
the optical lattice is chosen such that the overlap between the bosonic and
fermionic Wannier functions is maximal. To a good approximation, this is
reached as mF

mB
f̃ = 0.93. In the following we assume a perfect matching of

the Wannier functions which only leaves a difference between the bosons and
the fermions in the hopping and the band energies as stated above. This, in
particular, has the consequence, that the bosonic and fermionic interaction
integrals are equal apart from the prefactor gBX . Along with the results for
perfect matching, we shortly discuss the influence of a small deviation of the
potential depth for the different species.

17.2 Dimensional effects

The derivation of the effective first-band Hamiltonian in chapter 16 relies on
one important restriction: a one-dimensional lattice setup. In one dimen-
sion, the atomic interaction is different from the three-dimensional case and
demands an effective description, relating the real three-dimensional (which
we will always refer to) scattering amplitude gBX to their one-dimensional
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counterpart. Under the assumption of a three-dimensional gas in a strong
cigar-shaped trap, Olshanii derived the effective one-dimensional scattering
amplitude [263] for a point like interaction between two atoms. With a
strong confinement of the atomic cloud in the transversal direction given
by ω⊥ � ω‖, the effective one-dimensional scattering amplitude g1D for a
two-particle interaction4 results in

g1D =
g3D

πl2⊥

1

1 + ζ(1
2
) a3D

l⊥

. (17.13)

g3D = 2π~2
mR

a3D is the scattering amplitude, mR is the reduced mass of the
scattering partners, a3D is the scattering length for the treated scattering
process in three dimensions and ζ(x) is the Riemann-Zeta function. Because
of the strong harmonic confinement in the transversal direction, the value

of the oscillator length l⊥ =
√

~
µω⊥

is of major importance. The transversal

trap frequency is typically in the range of some kHz [63, 264, 265] depending
on the actual realization of the trap. In the following we use the value of
ω⊥ ≈ 80kHz given in [264].

For the calculation of the one-dimensional scattering amplitude, the last
missing ingredient is the three-dimensional scattering length. For the Rb-Rb
interaction, the experimental (background) scattering length is measured to
be a87Rb = aBB = 108 a0, with the Bohr radius a0 = 0.053nm [266]. The
boson-fermion scattering length aBF from now on serves as a free, tunable
parameter, used to study the influence of the fermions to the bosonic
superfluid to Mott-insulator transition. The background value and reference
point for the mixture of 87Rb and 40K is aBF = −205 a0, i.e., is attractive
[37, 38].

In the derivation of the effective one-dimensional scattering amplitude g1D it
is assumed, that the two particles which scatter experience the same transver-
sal confinement. For a homonuclear scattering process, this is true. For the
heterogeneous scattering between bosons and fermions, this does not neces-
sarily hold. But usually, the cigar-shaped optical potential is created by a
strong far off-resonant dipole trap. The large detuning to both, bosons and
fermions then leads roughly to the same transversal confinement for both
species. This is seen in our situation by comparing the intensities of the
optical dipole trap, calculated using equation (17.5) for a typical laser setup

with λdipole = 1030 nm. The prefactor f̃ ≈ 0.9 turns out to be close to

4Here we omit the index X since the discussion does not depend on it.
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n = 1 n = 2 n = 3 n = 4

1D 4.65 7.86 11.04 14.23

3D 29.34 49.83 70.11 90.32

Table 17.1: Critical ratio U/J in the Bose-Hubbard model for the Mott-
insulator to superfluid transition in one and three dimensions. 1D: results
from strong-coupling theory [97]. 3D: For the first lobe, the exact quantum
monte-carlo result from [267] is used. For the higher lobes, analytic field
theory results from [173] are used. For details see the main text.

unity and therefore, both species are attributed to the same dipole trapping
geometry and the assumptions in the derivation of the scattering strength
are valid even in the mixture case.

17.3 Bose-Hubbard phase transition

Before we discus the net effect of the fermions, the higher bands and
nonlinear hopping corrections on the phase diagram of the Bose-Hubbard
model, we shortly summarize the results for the Mott-insulator to superfluid
transition in the pure bosonic system. This serves as an example which
shows how to calculate the transition point of the phase transition and gives
the starting point for the analysis of the shift of the transition as a function
of the boson-fermion scattering length aBF .

The key feature for the determination of the Mott-insulator to superfluid
transition is the ratio of interaction to kinetic energy, U/J . Several analytic
[14, 97, 170, 173, 181, 240] and numerical [183, 211, 267] results for this
transition exist, with slight deviations coming from the different methods
but all are in good agreement with each other. For the experiments, the
transition is found by calculating the interaction amplitude U and the
hopping amplitude J as a function of the optical lattice depth η and seek
for the value of η, at which the ratio U/J equals the analytic or numeric
results for the transition point for a fixed filling n. Here we make use of the
strong-coupling results from [97] in one dimension as well as a combination
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Figure 17.1: Ratio U/J as a function of the optical lattice depth for a three-
dimensional setup. The critical point, where the Mott-insulator to superfluid
transition occurs is found at the place, where U/J reaches the critical value
determined by numerical or analytic methods. Also shown are the transition
points for the first four Mott lobes.

of the analytic results from [173] and the numerical ones from [267] in
three dimension. Table 17.1 shows a list of the transition points in one
and three dimensions. For three dimensions, the critical ratio for n = 1
lobe is taken from the high precision quantum monte-carlo result in [267].
The other lobes are calculated with the analytic result in [173], where the
overestimation from the approximative field theory of about 3% for the
first lobe is also substracted from the analytic results for the higher lobes.
These values are in good agreement with the numerical results from [170]
and are preferable to be used because they are given in a closed analytic form.

Figure 17.1 shows how the transition point is determined as a function of the
lattice depth η as described in [15]. Plotting the ratio U/J as a function of
η, the crossing point of this ratio with the calculated transition points from
table 17.1 gives the position of the Mott-insulator to superfluid transition for
the different Mott lobes. For the pure Bose-Hubbard model plotted in figure
17.1, this prediction is in reasonable agreement with the experimental result
of ηcrit ≈ 12.5 Erec [15]. Using this method, the influence of the different
corrections to the pure Bose-Hubbard model is studied in the next chapter.





CHAPTER 18

Evaluation of the extensions to the

Bose-Hubbard model

The derivation of the corrections to both the bosonic interaction U and
the hopping J presented in chapter 16 together with the discussion of the
real experimental parameters in chapter 17 brings us to the point, where
their influence on the bosonic Mott-insulator to superfluid transition can
be studied in depth. According to the experimental results presented
in [84], we consider the shift of the bosonic transition as a function of
the boson-fermion interaction determined by the scattering length aBF .
The results from [84] are shown in figure 18.1, together with theoretical
predictions from [86] calculated numerically from a self-consistent approach.
Although the predictions from Lühmann et al. are in good agreement with
the experimental results, the applied method uses a completely different
approach which might have some drawbacks. Their point of view, as well
as used by other authors [268, 269, 270, 271] is, that the description of the
system in terms of single-particle Wannier functions is not suitable. This
basically leads to the alteration of the Wannier function itself. With these
renormalized Wannier functions, the system is reconsidered, giving a new
estimate for the transition point. An essential drawback of the self-consistent
approach is that it can be applied only to integer filling, while our treatment
is in principal general. Furthermore, the self-consistent approach does not
provide a satisfactory explanation of the physics for repulsive boson-fermion
interaction.

As described earlier, our approach relies on the assumption that the effects
of the higher bands do not alter the Wannier functions but renormalize
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Figure 18.1: Experimental results for the shift of the bosonic Mott-insulator
to superfluid transition taken from [84]. Data points (blue and yellow) are
from the same experiment with different fermion numbers, the lines are var-
ious theoretical predictions. For details see [84] and [86].

the parameters in the Hamiltonian itself and provide new nonlinear terms.
This approach is similar to the one chosen in Ref. [90, 244, 249]. The
main difference between our approach and the mentioned works is, that all
three rely on the harmonic oscillator assumption. Furthermore, they restrict
themselves to a rather small number of higher bands. Though these assump-
tions easily allow to apply the higher-band corrections to dimensions larger
than one, they are inaccurate when comparing to the experimental results
as the correct form of the Wannier functions is important as demonstrated
in this chapter. For instance, the ground state of a harmonic oscillator is
a strictly positive function, while the Wannier function in the lowest band
has small negative parts with a sizeable effect on overlap integrals involving
Wannier functions of different sites. Finally, nonlinear hopping corrections
have been neglected in [90, 244, 249] which play an important role however.

After these initial comments, we first discuss our results for one dimension
and afterward give some preliminary results for three dimensions.
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18.1 One-dimensional lattice

Hamiltonian (16.19) describes both the nonlinear corrections and the effects
from the higher bands. Using the dependence of the hopping amplitudes
and the interaction amplitudes on the boson-fermion scattering length, the
influence on the phase transition is studied. Figure 18.2 shows, how the ratio
U/J changes upon inclusion of the different corrections. Shown is the ratio
as a function of the lattice depth η for four different situations:

• pure bosonic
From the definition of the plain Bose-Hubbard Hamiltonian, the inter-
action and hopping amplitudes are calculated using the real Wannier
functions1

• nonlinear bosonic
Beside the plain amplitudes, the nonlinear corrections are taken into
account. For repulsive bosons, the net effect is an increase of the hop-
ping amplitude and therefore a shift of the transition to higher lattice
depths.

• nonlinear bosonic with bands
An additional inclusion of the band effects leads dominantly to an in-
crease of the interaction amplitude together with a slight decrease of
the hopping resulting in a reduction of the transition point compared
to the nonlinear case. This defines the transition point in the pure
bosonic system for the study of the influence of the fermions.

• nonlinear bosonic and fermionic with bands
The addition of the (attractively interacting) fermions with unity filling
leads to a slight reduction of the interaction amplitude and a (relatively)
large reduction of the hopping. The overall effect gives a shift of the
transition to smaller lattice depths.

This example shows, that the addition of the different levels of corrections to
the pure Bose-Hubbard model results in a shift of the bosonic Mott-insulator
to superfluid transition. Figure 18.3 shows the shift of this transition for
the first four lobes as a function of the boson-fermion scattering length a3D

BF
2. The solid lines include all corrections described earlier. For the results,

1The Wannier functions are calculated numerically without any approximations as
presented in section 1.2.

2The superscript 3D is used in this section to emphasize that the scattering length is
the one for the three-dimensional scattering process
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Figure 18.2: Determination of the transition point for a one-dimensional
system. Shown are the different levels of corrections as described in the
main text. Upon inclusion of the fermionic corrections, the location of the
phase transition shifts to smaller lattice depths. Treated is the third lobe
n = 3 with a perfect match of the fermionic and bosonic wave functions for
attractive boson-fermion interaction with a scattering length a3D

BF = −205 a0.

the first 50 bands are summed up which gives a satisfying convergence
of the resulting amplitudes U and J . Additionally, the results for a sole
inclusion of the nonlinear corrections are shown as a dashed line. As an
important further information, the gray-filled region shows the deviation of
the transition point if the Wannier functions of bosons and fermions do not
perfectly match; here the results are shown for a mismatch of the bosonic
and fermionic lattice depth of ±30%, which shows to have a strong impact
on the precise position of the transition. This should be kept in mind when
experimental results are analyzed.

For the discussion of the experimental results in figure 18.1 together with
the application of our method in the next section, two more features should
be observed. Figure 18.3 shows, that the corrections due to the higher bands
always shift the transition point to smaller lattice depths. Secondly, the
combination of the nonlinear corrections with the higher-band corrections
for positive scattering lengths, i.e., repulsive boson-fermion interaction sum
up in such a way, that the net effect is an overall reduction of the transition
point, at least for the higher fillings. All these features resembles precisely
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Figure 18.3: Shift of the bosonic Mott-insulator to superfluid transition as a
function of the boson-fermion scattering length a3D

BF for different lobes (solid
lines) in one dimension. The gray-shaded region depicts the influence of a
mismatch of the bosonic and fermionic lattice depth. The dashed lines give
the shifts of the transition solely from the nonlinear corrections.

the behavior of the experimental results in figure 18.1 for the transition
point and the visibility in the same experiment [84, figure 2 therein].

Finally, figure 18.4 shows the effect of the different levels of corrections to the
first lobe in the phase diagram of the Bose-Hubbard model. The transition
points for a fixed chemical potential µ are calculated using the 3rd-order
strong-coupling in [97] and the ratio U/J is translated in the lattice depth
ηB for the pure Bose-Hubbard parameters (dashed blue line in figure 18.2).
For this lattice depth, the different corrected parameters are calculated and
displayed in the phase diagram to visualize the influence of those on the
phase diagram. Again, the gray-filled region gives the results for a mismatch
of the potential depths. In general, the effect of the fermionic atoms depends
on the sign of the boson-fermion interaction. For negative a3D

BF , the fermion
and higher-band corrections increase the superfluid region. Generally, the
analysis of the transition shift in one dimension already resembles all features
seen in the experiment.
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Figure 18.4: Shift of the boundary of the first Mott insulating lobe for differ-
ent levels of corrections in a one-dimensional setup. For negative scattering
length, i.e., attractive interaction, the superfluid region is enlarged.

18.2 Three-dimensional lattice

While the situation in one dimension is rather easy, the three-dimensional
case adds some subtle points. The first, and most important one is the
degeneracy of higher bands. In contrast to the one-dimensional case, where
all higher bands are non-degenerate, in three dimensions most higher bands
consist of different orbitals. Writing down the Hamiltonian for the (non-
degenerate) first-band together with a single higher-band manifold blows up
the calculation enormously. The reason is, that beside interband transitions
to a single orbital (which is the equivalent to the processes studied earlier),
also mixed orbital transitions occur. Furthermore, the dynamics in the
higher-band manifold becomes coupled between the different orbitals, not
allowing for a simple solution. An additional peculiarity comes into play
from the order of the bands. While in the harmonic oscillator approximation
all band manifolds with the same total energy are degenerate, in the real
system the ordering of the bands will change as a function of the lattice
depth. This finally demands a full summation over all possible higher-band
manifolds, with an inclusion of all intra- and interband and orbit-mixing
contributions.

This is not done here. For the moment we restrict ourself to the nonlinear
hopping corrections introduced in the one-dimensional case. Rewriting the
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one-dimensional Bose-Hubbard Hamiltonian to the three-dimensional case is
straightforward and gives

Ĥeff = −J [n,m]
∑
〈ij〉

(
â†i âj + â†j âi

)
+
U

2

∑
j

n̂j (n̂j − 1) . (18.1)

〈ij〉 is the sum over nearest neighbors. Since in the lowest-band approxima-
tion only corrections to the hopping occur, the bosonic interaction amplitude
is given by

U = gBB

[∫
dz
∣∣wB1 (z)

∣∣4]3

. (18.2)

This results from the fact that the three-dimensional Wannier function at
site r is the product of the one-dimensional ones:

wB1 (r) = wB1 (x)wB1 (y)wB1 (z). (18.3)

Employing the same arguments as before, the leading correction to the hop-
ping amplitude is given by the nonlinear hopping. Again replacing the num-
ber operators by the fillings, the hopping reads

J [n,m] = JB1 + 2n
Unl
2

+ 2m
Vnl
2
. (18.4)

Note, that this is the same as in the one-dimensional case without the higher-
band corrections. In three dimensions, the hopping amplitude

JB1 =

∫
d3r w̄B1 (r− aêx)

[
− ~2

2mB

∆ + V B
Pot(r)

]
wB1 (r)

=

∫
dz w̄B1 (x− a)

[
− ~2

2mB

∂2

∂x2
+ V B

Pot(x)

]
wB1 (x)

(18.5)

equals the one for the one-dimensional case since all other terms are zero
due to the properties of the Wannier functions [113]. The nonlinear hopping
corrections in the three-dimensional setup are defined via the one-dimensional
ones according to

Unl =
1

g2
BB

U3d,B
1111 (U1111)2 Vnl =

1

g2
BF

V 3d,B
1111 (V1111)2 . (18.6)

With these definitions, we are in the position to discuss the influence of the
nonlinear hopping corrections to the shift of the transition.
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U/J with the transition point U/J = 29.34 for n = 1.

The method to determine the transition point is shown in figure 18.5. From
the crossing point of the ratio U/J with the transition point, the location of
the transition in terms of the potential depth is found. For the transition
points, the results from [173, 267] are used as discussed in section 17.3.

Figure 18.6 shows the shift of the transition as a function of the boson-
fermion scattering length. Compared to the one-dimensional case, two main
differences can be seen. The first is, that the relative shift in three dimensions
is much larger than in one dimension. Secondly, the influence of a mismatch
in the lattice potentials for fermions and bosons is much more pronounced.
This is an important feature in the analysis of the experimental data. A
direct comparison of the experimental data to the results for the nonlinear
corrections shows, that the inclusion of the effects of higher bands, which
compared to the one-dimensional case should further reduce the transition
point, promises a good understanding of the experimental results. This also
holds for the case aBF > 0. Finally, figure 18.7 shows the influence of the
transition shift on the phase diagram of the Bose-Hubbard model.
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CHAPTER 19

Conclusion and outlook

Inclusion of higher-band effects to the single-band Bose-Fermi-Hubbard
model allows for a precise study of the effect of admixed fermionic atoms
to the bosonic superfluid to Mott-insulator transition. Here we derived an
analytic theory, renormalizing the Bose-Hubbard parameters U and JB by
means of virtual transitions from the first to the higher bands. Furthermore
we showed that it is important to include non-local contributions when
treating the originally continuous interaction Hamiltonian which leads to
a nonlinear hopping correction. Using real Wannier functions rather than
harmonic oscillator states, the shift of the transition point is studied as a
function of the boson-fermion interaction. For one dimension, all features of
the experimental results are recovered even for repulsive interactions between
bosons and fermions. For three dimensions, the inclusion of the nonlinear
hopping corrections already gives a reasonable qualitative agreement.

Extending our results to three dimensions demands a full treatment of the
three-dimensional band structure which has not been done here. Although
the band structure displays a high degree of complexity, a full numerical
analysis of the couplings to the different bands can be performed. For the
solution of the free dynamics in the higher bands with intra-orbital mixing,
further simplifications allow for the treatment of any level of degeneracy of
the higher band. In higher-order perturbation theory effective many-body
interactions will arise similar to the one-dimensional case, which will be im-
portant for the interpretation of the experimental results.

161





Part IV

Jaynes-Cummings-Hubbard
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CHAPTER 20

Introduction

Cavity-based setups [272] or ion chains [273] are promising realizations
of certain quantum many-body systems. Representing Bose-Hubbard-like
model Hamiltonians, implementations of this kind open new perspectives
to the study and control of quantum systems. Of particular interest in this
context is the Jaynes-Cummings-Hubbard model, describing the coupling of
two-level atoms to a bosonic field [274, 275]. The most interesting feature
of the Jaynes-Cummings-Hubbard model is the existence of Mott-insulating
lobes, not of the bosonic species but of combined excitations of the bosonic
and atomic degrees of freedom.

For these Mott lobes, mean-field results [275, 276, 277] give a first in-
sight into the physics. Those results are supported by further numerical
[278] and analytic calculations [276, 279, 280, 281, Mering2009]. Apart
from the phase diagram, other quantities such as the spectral function
[279, 280, 281, 282], the sound velocity [282, 283], spectral gap [283], band
structure [276], and the dynamic structure factor [282] have been studied.
Further investigations look for the dynamics of different aspects in this
system [272, 274, 284, 285, 286, 287].

Analytic treatments of the Jaynes-Cummings-Hubbard model are based
so far on strong-coupling theory [279, 280, 281], the polariton mapping
[277, 283, 284] or single-excitation approaches [276, 287, Mering2009],
each allowing for the calculation of different quantities. Though being
applicable to the Jaynes-Cummings-Hubbard model with nearest-neighbor
hopping, an easy extension of most methods to arbitrary long-ranged
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hoppings is out of reach. Ivanov et al. recently showed [Ivanov2009] that
transversal excitations of cold ions in a linear chain implement this kind
of Jaynes-Cummings-Hubbard model, thus pointing out the need for a
simplified treatment of long-ranged hopping.

Here we develop a simple approximative solution [Mering2009] for the cal-
culation of the phase diagram of the Jaynes-Cummings-Hubbard model,
which, most importantly, is also applicable to arbitrary long-ranged hop-
ping. Comparing this solution to numerical and perturbative results for
nearest-neighbor hopping first, we discuss the accuracy of our method in the
determination of the phase diagram. The closed analytic form of the bound-
aries of the Mott insulators allows to study the behavior of the Mott lobes
as a function of the different parameters in the system. Finally, the critical
hopping where the Mott insulators vanish are calculated and compared to
perturbative results for the long-ranged hopping case.



CHAPTER 21

Lattice bosons coupled to spins

21.1 Jaynes-Cummings and

Jaynes-Cummings-Hubbard model

The interaction of a single spin-1
2

system with a single bosonic mode is well
described by the Jaynes-Cummings-Hubbard model [288, 289, 290], a well
known, exactly solvable model of quantum optics. It also describes the
physics of a two-level atom in a cavity and within rotating wave approxi-
mation [291], the Hamiltonian is given by

Ĥ = ωâ†â+ ∆σ̂+σ̂− + g
(
σ̂+â+ â†σ̂−

)
. (21.1)

The bosonic creation and annihilation operators â, â† belong for instance to
the cavity mode with resonance frequency ω and the spin operators σ̂+, σ̂−

describe the two-level atom with energy ∆ in the excited state. Since the
total number of excitations

N̂ = â†â+ σ̂+σ̂− (21.2)

commutes with (21.1), the Hamiltonian becomes block-diagonal in the
excitation-number subspaces. For zero excitations, we find the ground state

|0〉 = |↓, 0〉 , (21.3)

which is given by the vacuum for the cavity mode and the ground state of the
two-level atom. For arbitrary number n > 0 of excitations, the eigenstates
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within the subspace of given excitation number are denoted as [292]

|±, n〉 =
[χn ∓ (ω −∆)] |↑, n− 1〉 ± 2g

√
n |↓, n〉√

2
√
χ2
n ∓ (ω −∆)χn

(21.4)

:= α±n |↑, n− 1〉 ± β±n |↓, n〉 (21.5)

with χn =
√

(∆− ω)2 + 4ng2 and the eigenenergies are given by

E±n = nω +
∆− ω

2
± 1

2
χn. (21.6)

The eigenenergies show the important feature, that the higher level for
n excitations always lies above the lower level for n + 1 excitations in
the interesting parameter regime. This allows to restrict ourselves in the
following to the states |−, n〉 when discussing the ground state of coupled
Jaynes-Cummings systems. Figure 21.1 shows the points in the (ω,∆)-plane
where E−n+1 = E+

n . Below each line, only the states |−, n〉 are important.

Well known extension of the Jaynes-Cummings model are the so-called Dicke
[293] or Tavis-Cummings [294] model, which describes the coupling of N two-
level atoms to a single bosonic mode or the multimode Jaynes-Cummings
model. The model considered in this part of the thesis is the so-called
Jaynes-Cummings-Hubbard model [274, 275], which describes an ensemble
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of coupled Jaynes-Cummings systems. It is defined by the Hamiltonian

Ĥ = ω
L∑
j=1

â†j âj + ∆
L∑
j=1

σ̂†j σ̂
−
j + g

L∑
j=1

(
σ̂†j âj + â†jσ̂

−
j

)
+
∑
d

td

L∑
j=1

(
â†j âj+d + â†j+dâj

) (21.7)

and inherits besides a collection of L single-mode Jaynes-Cummings systems
at sites j the exchange of bosons between the different sites, governed by
the hopping Hamiltonian in the second line of (21.7). Here we consider a
general long ranged hopping with amplitudes td. Throughout this part, the
atom-photon coupling g is set as the energy scale, i.e., g = 1.

There are several physical systems which are described by the Jaynes-
Cummings-Hubbard model. The most prominent ones are realizations using
arrays of high-Q cavities or other cavity based systems [272] (and references
therein). Recently, Ivanov et al. [Ivanov2009] suggested the realization of
the Jaynes-Cummings-Hubbard model using cold ions in a linear Paul trap.
In this system, the model describes the transversal phonon excitations of
a linear chain of ions coupled to an external laser field tuned to the red
motional sideband with Coulomb mediated short-range hopping. In the
following we focus on the ion chain realization in the thermodynamic limit
and present a novel approach to the solution of the Jaynes-Cummings-
Hubbard Hamiltonian. We compare the result of our method to the usual
strong-coupling results, a mean-field theoretical approach and numerical
data obtained by DMRG.

Before deriving the solution of the Jaynes-Cummings-Hubbard model, we
discuss the phase diagram in the zero hopping limit. For td = 0, Hamiltonian
(21.7) decouples in the site index j and the ground state is given by a product
state of the local Jaynes-Cummings ground states. For an arbitrary filling
% = N/L with N being the total number of excitations in a system of L sites,
Mott insulating states can be found for integer filling. The operator for the
total number of excitations

N̂ =
∑
j

(
â†j âj + σ̂+

j σ̂
−
j

)
(21.8)

commutes with Hamiltonian (21.7) and thus its eigenvalues serve as good
quantum numbers. For integer filling n, the ground state results in a Mott
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Figure 21.2: Mott insulating lobes in the Jaynes-Cummings-Hubbard model
for zero hopping td = 0 and g = 1 for ω = 1.

insulator, where the chemical potentials for the upper and lower boundary
are easily calculated to be

µ+
n = E−n+1 − E−n = ω − χn+1

2
+ (1− δn0)

χn
2

+ δn,0
∆− ω

2
, (21.9)

for any n and

µ−n = E−n − E−n−1 = ω − χn
2

+ (1− δn1)
χn−1

2
+ δn,1

∆− ω
2

, (21.10)

for n > 0. As found in [275], the Mott insulators extend over a wide region
for the energy in the excited state ∆ as can be seen in figure 21.2. Our goal
here is to derive closed expressions for the phase diagram for non-vanishing
hoppings td..

21.2 Thermodynamic limit of the Jaynes-

Cummings-Hubbard model for ion

chains

As discussed in [Ivanov2009], a linear ion chain coupled to an external field
in the red motional sideband and in the Lamb-Dicke regime [295, 296] is
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described by the Jaynes-Cummings-Hubbard model, where the hopping cor-
responds to phonon transfer through Coulomb interaction. Due to the equi-
librium positions of the ion in the harmonic axial potential [297], the bosonic
frequencies and the hopping amplitudes become site-dependent. The full
Hamiltonian

Ĥ =
L−1∑
j=0

ωj â
†
j âj + ∆

∑
j

σ̂†j σ̂
−
j + g

∑
j

(
σ̂†j âj + â†jσ̂

−
j

)

+
L−2∑
j=0

L−j−1∑
d=1

tj,j+d

(
â†j+dâj + â†j âj+d

) (21.11)

depends on the number of ions L through the equilibrium positions uj of

the ions which can be determined as shown in [297]. â†j and âj describe
the creation and annihilation of a local transversal phonon at the jth site
(ion), σ̂±j are the spin flip operators between the internal states of the ion,
∆ is the detuning of the external laser field from the red motional sideband.
g describes the phonon-ion coupling in the Lamb-Dicke limit and defines
the energy scale through g = 1; for precise definitions of the quantities see
[Ivanov2009]. The local oscillation frequencies ωj and the hopping amplitudes
tj,j+d are determined by the longitudinal and transversal trap frequencies ωz
and ωx via

ωj = − ω2
z

2ωx

L−1∑
l=0
l 6=j

1

|uj − ul|3
tj,j+d =

ω2
z

2ωx

1

|uj − uj+d|3
. (21.12)

For sufficiently large L, the equilibrium positions uj of the ions at the center
are approximately equidistant, giving uj = j ũ, with ũ being the distance of
two adjacent ions. With this, the oscillation frequencies and the hopping am-
plitudes (21.12) can be rewritten for L→∞, yielding position independent
phonon energies ωj ≡ −ω and hopping amplitudes tj,j+d ≡ td satisfying

td =
ω2
z

2ωxũ3

1

d3
= t

1

d3
, (21.13)

ω = 2
ω2
z

2ωxũ3
ζ(3) = 2t ζ(3), (21.14)

where in the following t = ω2
z

2ωxũ3
acts as a small parameter and ω > 0. ζ(x) is

the Riemann ζ-function. In the expressions (21.13) and (21.14) one notices
a negative oscillator energy −ω and a negative effective mass, which is a
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result of the positive hopping strength t which will be of importance later on.

Figure 21.3 shows the accuracy of the assumption of homogeneous phonon
energies for different numbers of ions L. Shown is the difference of the exact
summation over the ion positions for a finite chain of length L as found in
the original expression (21.12) for equidistant ions compared to the infinite
size results from (21.14). Beside the larger deviations close to the ends of
the ion chain, the approximative results are quite satisfying, supporting the
validity of the homogeneous system assumption in the thermodynamic limit.



CHAPTER 22

Approximative calculation of the phase

diagram

This chapter presents two different approximations for the determination of
the phase diagram. First, a new approach referred to as fermion approxi-
mation is introduced. The second approximation is similar to the strong-
coupling expansion common for Hubbard-like Hamiltonians [97] and already
applied to the calculation of the phase diagram of the Jaynes-Cummings-
Hubbard model in lower order [276, 277, 280, 284, 283]. We here present
the full derivation of the second order strong-coupling expansion using the
formulation of [97]. Though in [280] a second order treatment is used, the
authors do not discuss the phase diagram but focus on the excitation spec-
trum. Recent work presented in [298] applies a field theoretic approach for
finite temperature T to the simple cubic Jaynes-Cummings-Hubbard model.

22.1 Fermion approximation

From (21.7) we note that all terms of the Jaynes-Cummings-Hubbard Hamil-
tonian are quadratic. These kinds of models are in general suited for an exact
solution by means of a Fourier transform (9.2). The problem at this point
is however, that the commutation relations of spin operator σ̂±j are not as
simple as that of bosons or fermions. Naively defining the Fourier transform
of the spin operators as

σ̂−k =
1√
L

∑
j

e−2πi kj
L σ̂−j (22.1)
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destroys the commutator relation for the spins in momentum space:

[σ+
k , σ

−
k′ ] =

2√
L
σzk−k′ 6= 2 σzk δkk′ . (22.2)

Thus, a Fourier transformation of the spins is not useful. The often used
usual trick of a prior Jordan-Wigner transformation [299], transforming the
spin operators to fermionic operators, is not applicable in this case, since
the interaction part is linear in the spin operators, so the Jordan-Wigner
factors do not cancel out. Thus both transformations cannot be carried
out exactly without increasing the descriptional complexity of the problem.
Nevertheless the Hamiltonian can be diagonalized by a Fourier-transform in
an approximate way introducing fermionic operators.

As noted above, all modes decouple for td = 0. For this reason, the spin-
operators are in this limit equivalent to fermionic operators. Assuming the re-
placement σ̂+

j 7→ ĉ†j to hold also for small values of td, the Jaynes-Cummings-
Hubbard model (21.7) can be rewritten in a fermionic approximation

Ĥ = ω
∑
j

â†j âj + ∆
∑
j

ĉ†j ĉj + g
∑
j

(
ĉ†j âj + â†j ĉj

)
+
∑
d

td
∑
j

(
â†j âj+d + â†j+dâj

)
.

(22.3)

Within this approximation, a Fourier transform of both, the bosonic and
fermionic degrees of freedom can be easily accomplished as defined in (9.2).
Doing so, and transforming the momentum-space fermionic operators back
to spins, the Jaynes-Cummings-Hubbard Hamiltonian transforms to that of
uncoupled Jaynes-Cummings systems in k-space

Ĥ =
∑
k

ωkâ
†
kâk + ∆

∑
k

σ̂+
k σ̂
−
k + g

∑
k

(
σ̂+
k âk + â†kσ̂

−
k

)
(22.4)

with mode dependent phonon energies

ωk = ω + 2
∑
d

td cos(2π
kd

L
). (22.5)

The ground state in any mode is given by the Jaynes-Cummings ground state
(21.4) with frequency ωk and the energy of mode k with n excitations is

En
k = (1− δn0)

[
nωk +

∆− ωk
2

− 1

2

√
(∆− ωk)2 + 4ng2

]
. (22.6)



22.1. FERMION APPROXIMATION 175

Since still the total number of excitations N̂ (in momentum space) in the
system commutes with the Hamiltonian (22.4), a common basis can be
chosen. Thus the full solution of (22.4) for a fixed total number of excitations
N is given by the distribution n = {nk1 , nk2 , . . . } of N excitations on L
momentum modes with minimal energy EN [n] =

∑
k E

nk
k , together with the

constraint
∑

k nk ≡ N . Note that the number of momentum modes L is
equal to the number of ions (sites).

To construct the phase diagram as usual, the energy for N = nL−1, N = nL
and N = nL+ 1 excitations needs to be calculated. In the limit of vanishing
hopping (td ≡ 0) and for commensurate filling, i.e., N = nL, the distribu-
tion of occupation numbers which has the lowest energy is n = {n, n, . . . , n}.
This corresponds to a Mott-insulating state with an integer number of exci-
tations on every lattice site. The phase is gapped with a particle-hole gap
as described in chapter 21. When td is increased, the gap slowly closes and
eventually a quantum phase transition occurs from the Mott insulator to the
superfluid phase at some critical value of t. The only remaining task in order
to calculate the chemical potentials is to find the momentum mode where the
addition (removal) of an excitation gives the maximum (minimum) reduction
(increase) in the total energy. This yields

µ+
n = En+1

k′ − E
n
k′ µ−n = En

k − En−1
k , (22.7)

where k′ [k] is chosen such that µ+
n (k′) [µ−n (k)] is minimal [maximal]. The

actual values of k and k′ depend mainly on the sign of the hopping amplitudes
td.

Interpretation of the approximation

The transformation used above is not a transformation in the strict sense; it
has to be seen as a valid replacement for td ≡ 0. To understand its validity in
terms of a proper transformation, we apply a Jordan-Wigner transformation

σ̂+
j = eiπ

∑
l<j ĉ

†
l ĉl ĉj =

∏
l<j

(
1− 2ĉ†l ĉl

)
ĉj (22.8)

which connects spin degrees of freedom and fermions. The spins and fermions

are equivalent, if one neglects the phase factor eiπ
∑

l<j ĉ
†
l ĉl which takes care

of the proper commutation relation within the transformation. This is done
in our case as approximative scheme, which ignores effects arising from the
commutator between different sites.
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22.2 Strong-coupling

The second, more systematic approximative scheme is a strong-coupling
expansion in the hopping td. This method is well known and determines the
energy of the ground state in a second order perturbative treatment. Having
the energy as a function of the hopping, the calculation of the chemical
potentials is straightforward.

a) Initial considerations

For the following discussion it will be useful to consider the action of a single
bosonic creation or annihilation operator on a given (single-site) Jaynes-
Cummings eigenstate |±, n〉. This establishes the main influence of the hop-
ping operator, since no atomic degrees come up in the perturbation theory.
Defining1

A±n =

{√
n α±n β

−
n+1 ±

√
n+ 1 β±n α

−
n+1 n > 0

α−1 n = 0
, (22.9)

B±n =

{√
n α±n β

+
n+1 ∓

√
n+ 1 β±n α

+
n+1 n > 0

−α+
1 n = 0

, (22.10)

C±n =

{√
n− 1 α±n β

−
n−1 ±

√
n β±n α

−
n−1 n > 1

0 n ≤ 1
, (22.11)

D±n =

{√
n− 1 α±n β

+
n−1 ∓

√
n β±n α

+
n−1 n > 1

±β±1 δn,1 n ≤ 1
, (22.12)

the action of â† and â on the state Jaynes-Cummings eigenstate |±, n〉 can
be seen to be

â† |±, n〉 = A±n |+, n+ 1〉+B±n |−, n+ 1〉 (22.13)

â |±, n〉 = C±n |+, n− 1〉+D±n |−, n− 1〉 , (22.14)

i.e., â† and â connect the manifold of states |±, n〉 to the manifolds |±, n+ 1〉
and |±, n− 1〉 respectively as expected. As already discussed in chapter 21
and figure 21.1, all contributions from the excited Jaynes-Cummings states
|+, n〉 can be neglected. This means, that the annihilation (creation) opera-
tor on the Jaynes-Cummings ground state acts precisely as the annihilation

1The definition of α±
n and β±

n can be found in (21.4).
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(creation) operator on a number state, i.e., connecting the state |−, n〉 to
the state |−, n± 1〉, together with a prefactor2. This similarity basically
allows the application of the perturbation theory to the pure Bose-Hubbard
model with only slight modifications3.

b) Corrections to the energy in second order

In order to calculate the phase boundaries of the Mott insulating lobes for
the Jaynes-Cummings-Hubbard model, we follow the scheme already used in
chapter 12. In the following we present a detailed derivation of this scheme.
The task is to calculate the energy of the ground state with N excitations
as function of the hoppings td. Here we explicitly discuss the situation
of one additional excitation, i.e., N = nL+1, which is the most complex one.

We make again use of Kato’s expansion as presented in [159]. This allows to
derive an effective Hamiltonian within the degenerate ground states {|Ψ〉j}
for the N = nL + 1 manifold, which is L-fold degenerate. Degenerate
perturbation theory is straightforward because the hopping processes couple
the different states within the manifold already in first order. The detailed
calculation can be found in appendix C.1. Here we shortly summarize the
main steps and results.

The ground-state manifold for N = nL+ 1 excitations is L-fold degenerate,
leading to a coupling of all degenerate states via the hopping operator

V̂ =
∑
d

td
∑
j

(
â†j âj+d + â†j+dâj

)
. (22.15)

This coupling is taken into account by the derivation of an effective Hamil-
tonian within the degenerate manifold [159], where the matrix elements of
the effective Hamiltonian up to second order are defined by

q 〈Ψ| Ĥeff |Ψ〉p =q 〈Ψ| Ĥ0 + PV̂ P + PV̂Q 1

E0 − Ĥ0

QV̂ P |Ψ〉p . (22.16)

P projects onto the degenerate manifold, Q = 1 − P and E0 is the
ground-state energy of the manifold.

2Here, the prefactors are given by B−
n and D−

n , whereas the action on a simple number
state would be given by

√
n and

√
n+ 1, respectively.

3Replacing the expressions for the energy and the prefactors
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The matrix elements of the effective Hamiltonian given in (C.19) show, that
the additional excitation behaves as a free particle within the manifold. Intro-
ducing fermionic operators ĉ†j, ĉj, which describe the two-dimensional Hilbert
space consisting of the states |1〉 =̂ |−, n+ 1〉 and |0〉 =̂ |−, n〉, the effective
model is given by the Hamiltonian

Ĥ =
∑
d

T̃d
∑
j

(
ĉ†j ĉj+d + ĉ†j+dĉj

)
+ ∆

∑
j

ĉ†j ĉj. (22.17)

The local energy ∆ reads

∆ = E−n+1 + 2

(
B−n+1D

−
nD

−
n+2B

−
n−1

E−n+1 + E−n − E−n+2 − E−n−1

+(L− 2)
B−nD

−
nB
−
n−1D

−
n+1

2E−n − E−n−1 − E−n+1

)∑
d

t2d

(22.18)

and the modified hopping constants T̃d are

T̃d = B−nD
−
n+1td +

B−nD
−
nB
−
n−1D

−
n+1

2E−n − E−n−1 − E−n+1

Td (22.19)

with Td (which is of order t2d) given in (C.18).

The solution of the effective fermion Hamiltonian in (22.17) is straightfor-
ward. Applying a Fourier transformation (9.2) to the Hamiltonian gives

Ĥ =
∑
k

[
∆ + 2

∑
d

T̃d cos

(
2π
kd

L

)]
ĉ†kĉk =

∑
k

Ωk ĉ
†
kĉk. (22.20)

The ground state for the single additional excitation case is equivalent to
the determination of the minimum in the dispersion relation Ωk. Thus,
the energy in second order of the hopping amplitudes for the additional
excitation state is given by E(N = nL + 1) = Ωq, where q has to be
determined from the dispersion. If all td are of the same sign, the minimum
is easy to find, where for td < 0 the mode q = 0 gives the minimum and for
td > 0 the minimum is found for q = L/2. In all intermediate situations, i.e.,
if the td have different signs, the situation has to be analyzed more carefully.
This result generalizes the findings from [277, 280] to arbitrary hoppings td.

A similar treatment finally allows to calculate the energy of the Mott insula-
tor as well as for the system with one excitation less. The slightly deviating
expressions for ∆ and T̃d are not given explicitly here, however. From these
energies, the chemical potentials are defined as usually, giving the boundary
of the Mott insulator through µ±n = ±E(nL± 1)∓ E(nL).
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22.3 Mean-field theory

The simplest numerical method to obtain a qualitative phase diagram is
the so-called mean-field theory. As described for instance in [181, 272, 275,
292, 300], a mean-field theory can be implemented by introducing an order
parameter Ψ, which in our case is chosen to be homogeneous and real valued.
Decoupling the hopping term by using

â†j âl 7→ Ψ
(
â†j + âl

)
− |Ψ|2 , (22.21)

the Jaynes-Cummings-Hubbard Hamiltonian (21.7) in the grand-canonical
ensemble uncouples in real space to a local Hamiltonian

ĤMF = (ω − µ) â†â+ (∆− µ) σ̂+σ̂− + g
(
â†σ̂− + âσ̂+

)
− 2J̃Ψ

(
â† + â

)
+ 2J̃ |Ψ|2 . (22.22)

At this point, we omitted the spatial index because the problem is purely
local. The modified hopping amplitude J̃ = −

∑
d td gives the effective cou-

pling within the mean-field scheme. The phase diagram is now found by
diagonalizing the mean-field Hamiltonian (22.22) either exactly by means
of perturbation theory [181] or numerically, setting an upper bound for the
maximal number of bosonic excitations in the system. The ground-state en-
ergy is then given by minΨE[Ψ] and the Mott insulator is distinguished from
the superfluid by the value of Ψ for the minimal energy. For Ψ ≡ 0, the sys-
tem is in a Mott insulating state, for Ψ > 0, the ground state is superfluid.
This sets the point of the Mott-insulator to superfluid transition. It should
be mentioned at this point, that this method gives inadequate results in one
dimension (D = 1) but is exact for D → ∞. Additionally, the effective

hopping J̃ must be larger than zero to yield any result.





CHAPTER 23

Benchmarking against the

Jaynes-Cummings-Hubbard model with

nearest-neighbor hopping

In this chapter, we benchmark the newly introduced fermion approximation
on the simple cubic Jaynes-Cummings-Hubbard model with nearest-neighbor
hopping td = −tδd1. This is the natural choice, since for this variant of the
model, well established numerical results from DMRG calculations [278] as
well as earlier (perturbative) analytic results exist. Furthermore, the results
of the introduced mean-field theory are well understood in this case.

The simple cubic Jaynes-Cummings-Hubbard model with nearest-neighbor
hopping is given by

Ĥ = ω
∑
j

â†j âj + ∆
∑
j

σ̂†j σ̂
−
j + g

∑
j

(
σ̂†j âj + â†jσ̂

−
j

)
− t
∑
j

(
â†j âj+1 + â†j+1âj

)
,

(23.1)

where we focus on the resonant case, i.e., ω = ∆.

23.1 Strong-coupling results

To calculate the chemical potentials using the strong-coupling approximation,
we first have to determine the momentum mode q and q′ which minimizes
the energy (22.20). Since td < 0 for any distance d, this is found for q = 0.

181



182 CHAPTER 23. BENCHMARKING AGAINST NN-JCHM

Furthermore, the coefficients in (21.4) are α±n = 1√
2

= β±n and therefore

B−n =

{√
n+
√
n+1

2
n > 0

− 1√
2

n = 0

}
= D−n+1. (23.2)

This allows for a conclusive calculation of the chemical potentials which are
not shown here. Nevertheless, we give the approximative results for the tip
of the lobe in the first order perturbation theory. The chemical potentials
are found to be

µ+
n = ω − 1

2
χn+1 +

1− δn0

2
χn − t

(√
n+
√
n+ 1

)2

2− δn0

, (23.3)

for any n and

µ−n = ω − 1

2
χn +

1− δn1

2
χn−1 + t

(√
n+
√
n− 1

)2

2− δn1

, (23.4)

for n > 0, which gives the tip of the Mott lobe, defined by µ+
n = µ−n to be

tcrit/g = 2
2
√
n−
√
n+ 1−

√
n− 1

(
√
n+
√
n+ 1)2 + (

√
n+ δn1 +

√
n− 1)2

. (23.5)

A comparison of these results to the numerical results from DMRG is given
in figure 23.1

23.2 Fermion approximation

Secondly we apply the fermion approximation to this model. With the given
system parameters, the momentum dependent phonon energies (22.5) are
ωk = ω − 2t cos(2π k

L
) and the energy (22.6) in the kth momentum mode for

a given filling n reads

En
k = (1− δn0)

[
nω − 2n t cos(2π

k

L
) + t cos(2π

k

L
)−

√
t2 cos2(2π

k

L
) + ng2

]
.

(23.6)
Finally, following (22.7), the momentum modes k′ (k) which minimize (max-
imize) the chemical potentials need to be found. In the present case (t1 < 0),
these are k′ = 0 and k = L

2
. Thus the resulting chemical potentials are

µ+
n − ω = −2t+ tδn0 −

√
t2 + (n+ 1)g2 + (1− δn0)

√
t2 + ng2, (23.7)
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Figure 23.1: Comparison of the ground-state phase diagram of the one-
dimensional simple cubic Jaynes-Cummings-Hubbard model with nearest-
neighbor hopping (23.1) obtained by DMRG (red crosses, from Rossini and
Fazio [278]) as well as mean-field results (black dash-dotted line) with the
prediction from our approaches (red dash-dotted, solid line: strong-coupling
theory; dashed line: fermion approximation) for ∆ = ω = 1 and g = 1.
Taking into account the simplicity of both approaches, the agreement with
the DMRG data is rather good while the mean-field predictions are rather
poor as expected for 1D systems. The critical hopping amplitudes estimated
from the DMRG data agree surprisingly well with those predicted within the
fermion approximation, although the shape of the Mott lobe is different.

for any n and

µ−n − ω = 2t− tδn1 −
√
t2 + ng2 + (1− δn1)

√
t2 + (n− 1)g2, (23.8)

for n > 0. A closed form for the critical hopping can be derived, but is
rather lengthy and is therefore be skipped.

We now compare the analytic results to both the DMRG [278]1 and
mean-field results [275], shown in figure 23.1. For the mean-field results

(see equation 22.22), the modified hopping amplitude evaluates as J̃ = t.
From the figure, it can be seen that the strong-coupling result gives a
much better agreement to numerical DMRG data in first order as well as
in second order; especially the slopes of the lobes agree perfectly for small

1Thanks to D. Rossini for the permission to use their DMRG results.
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hopping. The fermion approximation overestimates the size of the Mott
lobe. In particular, while the lower boundaries are rather well reproduced,
the upper boundaries have the wrong slope. For this behavior we do not
have an explanation yet, which could point out a possible improvement
of the approach for instance by including an additional prefactor to the
hopping. Surprisingly, the critical hopping amplitudes from the fermion
approximation seem to agree much better with the DMRG data than the
results obtained from the strong-coupling theory as depicted by the dashed
vertical line.

Although the fermion approximation is quantitatively worse than the strong-
coupling theory, it provides a simple approximative solution to the Jaynes-
Cummings-Hubbard model beyond the mean-field level which has the advan-
tage of giving a closed form of the ground state. A detailed analysis of the
implications of the approximation demands some deeper work.



CHAPTER 24

Application to the ion-chain setup

The first thing to notice in the Hamiltonian for the ion-chain setup in the
thermodynamic limit is the negative oscillator energy ωj = −ω < 0 (21.14)
as well as the negative effective mass td = t 1

d3
> 0 (21.13). This nega-

tive mass is the reason why the application of the mean-field theory is not
that straightforward. Simply calculating the modified hopping amplitude
J̃ = −t

∑
d

1
d3

= −tζ(3) as defined in section 22.3, the hopping becomes neg-
ative and therefore mean-field theory is inapplicable. This problem can be
overcome by first applying a canonical transformation to all used operators.
The transformation

âj 7→ (−1)j âj (24.1)

for the annihilation operator and accordingly to all the other operators
â†j,σ̂

±
j , maps the Jaynes-Cummings-Hubbard model (21.7) onto itself, but

with td 7→ (−1)dtd. After this transformation, the modified hopping evalu-

ates to J̃ = −t
∑

d
(−1)d

d3
= 3tζ(3)/4, being positive. Now the application of

the mean-field theory is straightforward, following the usual route.

Starting with the effective strong-coupling theory described in detail in
section C.1, the chemical potentials for the upper and lower boundary of the
lobes can be calculated. The proper momentum modes q, q′, which minimize
(maximize) the chemical potentials are both found to be q = q′ = L/2,
which results from the negative mass. Due to the complexity of the problem,
especially the analytic form of B−n and D−n , analytic expressions of the
chemical potentials are omitted. Up to second order, the results for the
phase diagram are shown in figure 24.3, together with a comparison to the
mean-field results and the fermion approximation.
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Figure 24.1: Energies of the Jaynes-Cummings-Hubbard Hamiltonian in mo-
mentum space after application of the fermion approximation for fixed filling
n. Shown are the energies (22.6) for the five lowest fillings 0 . . . 4 (from top
to bottom) for ∆ = 0 and g = 1. Solid lines: t/g = 0.02; Dash-dotted lines:
t/g = 0.2. One clearly recognizes the minimum at k = L/2 and the flat
dispersion for t/g → 0.

Following the approximative method from section 22.1, the Hamiltonian for
the uncoupled Jaynes-Cummings models is given by (22.4), with the phonon
energies

ωk = −ω + 2t
∑
d

cos(2π kd
L

)

d3
, (24.2)

according to (22.5). Note that since ω = 2t ζ(3), all ωk’s are negative. Using

the polylogarithm Lin (x) =
∑∞

d=1
xd

dn
they can be written explicitly as

ωk = t
[
Li3

(
e2πi k

L

)
+ Li3

(
e−2πi k

L

)
− 2ζ(3)

]
. (24.3)

The minimum value of ωk = −7tζ(3)/2 is attained for k = L
2

as expected
from the positive sign of the hopping term. The energies for each momentum
mode are given by the solution (22.6) of the Jaynes-Cummings model and the
corresponding spectrum is shown in figure 24.1. Note the minimum at k = L

2
.

From the dispersion relation for different fillings, it is now easy to construct
the phase diagram. As discussed in section 22.1, the flat dispersion for t = 0



CHAPTER 24. APPLICATION TO THE ION-CHAIN SETUP 187

0.001 0.01 0.2

−1.5

−1

−0.75

−0.5

−0.35

−0.2

c
h

e
m

ic
a

l 
p

o
te

n
ti
a

l 
µ

/g

 

 

0.001 0.01 0.2

−1.5

−1

−0.75

−0.5

−0.35

−0.2

hopping t/g

 

 

0.001 0.01 0.2

−1.5

−1

−0.75

−0.5

−0.35

−0.2

 

 

second order fermion approximation mean field

∆/g=0.8∆/g=0∆/g=−0.8

Figure 24.2: Phase diagram of the Jaynes-Cummings-Hubbard model for a
linear ion chain for three depicted values ∆/g = −0.8, 0, 0.8. Shown are the
upper boundary of the zero filling lobe (always lowest line) and the bound-
aries of the lobes with filling from 1 to 5 on a double logarithmic scale. Beside
the used approximations (solid line: fermion approximation, crosses: second
order perturbation theory) the results from the mean-field theory (dashed
line) are shown. It can be seen, that the fermionic approximation again
overestimates the phase boundary (compared to the more reliable effective
strong-coupling theory) but gives a better agreement compared to the mean-
field theory (mind the logarithmic scale).

leads to the ground state having an equal number of excitations in every
momentum mode k. The chemical potentials for t > 0 are then determined
by the k′ and k values which minimize or maximize equation (22.7), respec-
tively. From the dispersion in figure 24.1, one recognizes that this is given
for k′ = L/2 and k = 0 and thus the chemical potentials read

µ+
n = En+1

L
2

− En
L
2

µ−n = En
0 − En−1

0 , (24.4)

which together with the analytic form (22.6) yields

µ−n =
1− δn1

2

√
4(n− 1)g2 + ∆2 − 1

2

√
4ng2 + ∆2 +

δn1

2
∆, (24.5)
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Figure 24.3: Phase diagram of the Jaynes-Cummings-Hubbard model for a
linear ion chain from the fermion approximation. Boundaries of the Mott
lobes (from bottom to top) for n = 2, 3, 4. The lobes n = 0 and n = 1 are
not displayed since they are unbounded for ∆→ −∞.

and

µ+
n =

1

2

[
−

√
4(n+ 1)g2 +

(
7

2
ζ(3)t+ ∆

)2

− 7

1 + δn0

ζ(3)t+ δn0∆

+ (1− δn0)

√
4ng2 + (

7

2
ζ(3)t+ ∆)2

]
. (24.6)

This allows to determine the resulting phase diagram shown in figure 24.2
for three values of ∆ comparing the different approaches. One recognizes
the typical lobe structure of the Mott insulator phases with a closing of the
lobes at some value tcrit

n (∆). While the mean-field results underestimate the
extent of the Mott insulating regions greatly (note the logarithmic scale), the
fermionic approach overestimates them but with a better agreement to the
strong-coupling theory than the mean-field solution. The main advantage of
the fermionic approximation is the closed form for the chemical potentials for
the ground state. Figure 24.3 shows the full phase diagram of the model as
a function of the detuning ∆ obtained from the fermionic approximation only.

The critical hopping amplitude tcrit
n (∆) can be calculated from the analytic

expressions for the chemical potential given above. Figure 24.4 shows
the dependence of the critical hopping amplitude on the detuning ∆ for
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Figure 24.4: Critical hopping amplitude tcrit
n (∆) which gives the point where

the Mott-insulator to superfluid transition takes place. From top to bottom:
n = 1 . . . 8, all for g=0.05. The crosses present the results for the strong-
coupling theory whereas the solid lines are the results from the fermionic
approximation.

the different Mott lobes. Note the unboundedness of the first lobe, i.e.,
tcrit
n (∆) → ∞ as ∆ → −∞. Additionally, the figure shows the critical

hopping calculated from the strong-coupling theory for the first lobe giving
a reasonable agreement of both methods.





CHAPTER 25

Conclusion and outlook

Approximating the spin-degrees of freedom in the Jaynes-Cummings-
Hubbard model as fermions results in an easy analytic solution of the
Hamiltonian, yielding closed expressions for the phase diagram. Although
the used approximation is not fully understood yet, the predictions based
on it give quite reasonable results compared to DMRG or strong-coupling
theory. Being applicable to arbitrary long-ranged hopping, we constructed
the phase diagram for a system describing ions in a linear ion chain. This
solution of allows for an easy estimate of the position of the phase transition,
not available from other methods, yet.

Though providing reasonable results, the used fermionic approximation lacks
some important features. The missing understanding limits its trustworthi-
ness where further extensions of the approximation should improve the re-
sults compared to perturbation theory, especially for the upper boundaries
of the Mott insulators. Nevertheless, applications to the dynamics in the
Jaynes-Cummings-Hubbard model or extensions thereof such as the spin-
boson model will provide a deeper understanding of the model as well as
further benchmarks of the approximation.
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APPENDIX A

Ultrafast Fermions

A.1 Fourier transform of the coupling con-

stants

As discussed in section 9.3 in part II, the Fourier transform of the couplings
(9.12) is governed by the Fourier transform of the numerator. At this place
we will prove the result given in the main text using the Poisson sum formula
[301]

∞∑
d=−∞

f(d) =
∞∑

l=−∞

∞∫
−∞

f(x)e−2πilxdx. (A.1)

Using the definition of the Fourier transform (9.18) together with a rewriting
of the cosine parts, the Fourier transformation can be written as

∞∑
d=−∞

cos dξ cos dξ′eikd =
1

4

∑
C1,C2=−1,1

∞∑
d=−∞

eid(C1ξ+C2ξ′+k) (A.2)

:=
1

4

∑
C1,C2=−1,1

∞∑
d=−∞

eidα. (A.3)

For the last term, we now apply the Poisson sum formula:

∞∑
d=−∞

eiαd =
∞∑

l=−∞

∞∫
−∞

eixαe−2πilxdx (A.4)
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=
∞∑

l=−∞

∞∫
−∞

ei(α−2πl)xdx (A.5)

= 2π
∞∑

l=−∞

δ(α− 2πl). (A.6)

Together with the definition of α we end up in the stated relation

∞∑
d=−∞

cos dξ cos dξ′eikd =
π

2

∞∑
l=−∞

∑
C1,C2=−1,1

δ(2πl − C1ξ − C2ξ
′ − k). (A.7)

A.2 Fourier transform of the Green’s func-

tions

In section 10.2, the solution of the Dyson equation for the Green’s function
is presented. At this point we summarize the important points in the Fourier
transform of the Green’s functions, going back from the frequency domain
to time domain. From equations (10.15) and (10.16) and with the definition
of the Fourier transform

G(±)
kk′ (t+ T, t) =

1√
2π

∞∫
−∞

dω G(±)
kk′ (ω)eiωT , (A.8)

the calculation of G(±)
kk′ (t+ T, t) is straight forward.

a) Equal momentum

For G(±)
kk (t+ T, t), the Fourier transformation together with (10.15) gives

G(±)
kk (t+ T, t) = ± i

2π

∞∫
−∞

dω
εk ± ω ⊕ iδ

ε2
k ⊕ 2iδεk − δ2 − ω2 +

V 2η2B%
2
B

~2

eiωT . (A.9)

Since the convergence factor δ is chosen in the limit δ → 0, the δ2 in the
denominator may be neglected. Looking at the dispersion of the free fermions
(10.9) and taking into account the definition of ⊕, the combination ⊕εk is
always of negative sign, since for k ∈ KF , ⊕ means + but εk < 0. In the
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other case the signs are just the other way around. Neglecting the factor of
2 before the δ and defining the renormalized dispersion

ε̄k =

√
ε2
k +

V 2η2
Bη

2
B

~2
, (A.10)

the Green’s function calculates as

G(±)
kk (t+ T, t) = ± i

2π

∞∫
−∞

dω
εk ± ω ⊕ iδ
ε̄2
k − ω2 − iδ

eiωT . (A.11)

This integration is done by means of residue integration [302], where the con-
tour is closed in the upper half plain, enclosing the pole at ω0 = −

√
ε̄2
k − iδ.

Finally, after performing the limit δ → 0, the Green’s function is given by

G(±)
kk (t+ T, t) =

1

2
e−iε̄kT

(
1∓ εk

ε̄k

)
. (A.12)

b) Unequal momentum

The calculation for G(±)

kk+L
2

(t+T, t) follows the same route as described above.

Using the result for the Green’s function in the frequency domain (10.16) and
the same argument for the combination ⊕εk as above, the Fourier transform
is calculated from

G(±)

k±L
2
k
(t+ T, t) = i

V ηB%B
2π~

∞∫
−∞

dω
1

ε̄2
k − ω2 − iδ

eiωT . (A.13)

Again closing the contour in the upper half plain with the same pole as above,
the residue integration gives

G(±)

k±L
2
k
(t+ T, t) = −V ηB%B

2~
1

ε̄k
e−iε̄kT (A.14)

as stated in the main text.

A.3 Zero-hopping energies for the phase dia-

gram

Chapter 12 shows, how to calculate the phase diagram of the effective bosonic
Hamiltonian analytically. Here we present exemplary the calculation of the
energies for the three different incompressible phases.
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a) CDW phase %B = 1
2

As discussed in the main text, the ground state for precisely half filling is
given by the distribution

• ◦ • ◦‖ • ‖ ◦ • ◦ • ∧
= nj = ñj =

1

2

[
1 + (−1)j

]
. (A.15)

Adding a single particle results in the two possible situation, where the ad-
ditional particle goes to a double occupation at an even site or to an odd site
having only single occupations.

i) Double occupation

In the case for the double occupation, the boson distribution is written as

• ◦ • ◦‖ •• ‖ ◦ • ◦ • ⇒ nj = ñj + δj,0. (A.16)

Plugging this into the effective Hamiltonian (12.1), the energy may be cal-
culated straightforwardly.

E[• ◦ • ◦ ‖ •• ‖ ◦ • ◦ •]

=
U

2

∑
j

(ñj + δj,0) (ñj + δj,0 − 1)− µ̄
∑
j

(ñj + δj,0) (A.17)

−∆
∑
j

(ñj + δj,0)(−1)j +
∑
j

∑
d

gd(a)(ñj + δj,0)(ñj+d + δj+d,0)

=
U

2

∑
j

[
2ñjδj,0 + δ2

j,0 − δj,0
]
− µ̄−∆

+
∑
j

∑
d

gd(a) [ñjδj+d,0 + ñj+dδj,0 + δj,0δj+d,0] (A.18)

− µ̄
∑
j

ñj −∆
∑
j

ñj(−1)j +
∑
j

∑
d

gd(a)ñjñj+d

= E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] (A.19)

+ U − µ̄−∆ +
1

2

∑
d

gd(a)
(
1 + (−1)d

)
+ g0(a)

= E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] (A.20)

+ U − µ̄−∆ + g̃a(0) + g̃a(π) + g0(a).
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ii) Single occupation

For the single occupation, the calculation of the energy follows exactly the
same route. The boson occupation may be written as

• ◦ • ◦‖ • ‖ • • ◦ • ⇒ nj = ñj + δj,1 (A.21)

and the energy gives:

E[• ◦ • ◦ ‖ • ‖ • • ◦ •]

=
U

2

∑
j

(ñj + δj,1) (ñj + δj,1 − 1)− µ̄
∑
j

(ñj + δj,1) (A.22)

−∆
∑
j

(ñj + δj,1)(−1)j +
∑
j

∑
d

gd(a)(ñj + δj,1)(ñj+d + δj+d,1)

=
U

2

∑
j

[
2ñjδj,1 + δ2

j,1 − δj,1
]
− µ̄+ ∆

+
∑
j

∑
d

gd(a) [ñjδj+d,1 + ñj+dδj,1 + δj,1δj+d,1] (A.23)

− µ̄
∑
j

ñj −∆
∑
j

ñj(−1)j +
∑
j

∑
d

gd(a)ñjñj+d

= E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •] (A.24)

− µ̄+ ∆ +
1

2

∑
d

gd(a)
(
1− (−1)d

)
+ g0(a)

= E[• ◦ • ◦ ‖ • ‖ ◦ • ◦ •]− µ̄+ ∆ + g̃a(0)− g̃a(π) + g0(a). (A.25)

b) Mott insulator %B = 1

Now, for ηB ≡ 0, the calculation of the energy for the addition or removal of
a single particle is straightforward. The states themselves are given by

• • • • ‖ •• ‖ • • • • ⇒ nj = 1 + δj,0 (A.26)

and

• • • • ‖ ◦ ‖ • • • • ⇒ nj = 1− δj,0. (A.27)
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Using the effective Hamiltonian (10.39) for ηB ≡ 0 we can calculate the
energy for both configurations at once. This gives

E(L± 1) = ±U
2

∑
j

(1± δj,0)δj,0 − µ̄
∑
j

(1± δj,0) (A.28)

−∆
∑
j

(−1)j(1± δj,0) +
∑
j

∑
d

gd(0)(1± δj,0)(1± δj+D,0)

= ±U
2

(1± 1)− Lµ̄∓ µ̄∓∆ (A.29)

+
∑
j

∑
d

gd(0) [1± δj+D,0 ± δj,0 + δj,0δj+D,0]

= E(L) +
U

2
(1± 1)∓ µ̄∓∆± 2g̃0(0) + g0(0). (A.30)

A.4 Green’s function approach to spinless

fermions in an alternating potential

Chapter 10 provides a renormalization procedure for the case of double half
filling of the fermions and bosons. In this chapter we generalize these results
to arbitrary fillings of the form %F = 1

m
, where m ∈ N and %B = %F . As

already discussed in chapter 9, the fermions trigger a bosonic CDW at the
same density, where the term CDW for m > 2 is not that accurate. For
instance for m = 4, i.e., %F = %B = 1

4
, the bosonic distribution according to

the induced couplings is given by the case where a boson is found in every
fourth site. So as a starting point for the renormalization of the fermionic
system, the potential influencing the fermions is that of a potential with a
singular peak in every fourth site. For general m, the fermionic problem is
thus given by the bosonic mean-field amplitude

ñj = %B(1− ηB) +m%BηB δ(sin(π
j

m
)), (A.31)

as introduced in chapter 10 and together with this, the fermionic Hamiltonian
from (8.3) looks like

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V m

∑
j

δ(sin(π
j

m
))ĉ†j ĉj. (A.32)

Here we replaced the factor V ηB%B by V since our result is more general
than only renormalizing the coupling constants as a function of ηB. Again,
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m=3

m=4

m=2

V

Figure A.1: Visualization of the Dirac comb potential for different periods
m.

the constant energy %F%B(1 − ηB) is neglected and in the following we will
refer to this model as to free fermions in a Dirac comb potential. Figure A.1
visualizes the underlying potential in this problem for different values of m.

In the direct solution for the case m = 2 we switched into momentum space
since this turned out to be much simpler. This still holds for the general-
ized Hamiltonian (A.32) which in momentum space, after application of the
Fourier transform (9.2) is given by

ĤF =

L/2−1∑
k=−L/2

εk f̂
†
k f̂k + V

m−1∑
α=−(m−1)

α 6=0

L/2−1∑
k=−L/2

f̂ †
k+ L

m
α
f̂k, . (A.33)

The summation over α is restricted because of the limitation in the possible
momentum modes k ∈ [−L

2
, L

2
−1] and the α = 0 term is neglected because it

would only give a constant energy. The single particle energies are given by
εk = −2JF cos(2π k

L
). This Hamiltonian is the starting point for the calcula-

tion of the Green’s function as already done in chapter 10. But before using
the perturbative treatment, we discuss the possibility of a direct solution of
the real space version (A.32) of the model.

a) Exact solution via canonical transformation

The considered Hamiltonian (A.32) is quadratic in the creation and anni-
hilation operators and can be solved analytically by means of a canonical
transformation. This can be easily seen after rewriting the Hamiltonian such
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that the quadratic structure becomes obvious:

Ĥ =
∑
l

ĉ †l


0 −JF
−JF V −JF

−JF 0 −JF
. . . . . . . . .

−JF 0

 ĉl. (A.34)

Here ĉl = (ĉlm−1, ĉlm, ĉlm+1, . . . , ĉlm+m−1)T. The transformation can now be
found by diagonalizing the matrix ¯̄M = [· · · ] = U †DU from above Hamilto-
nian and defining new fermionic operators êl = U ĉl (a similar approach is
presented in [178, 234]). The diagonalized Hamiltonian is then given by

Ĥ =
∑
l

m−1∑
n=−1

εn+2 ê
†
lm+nêlm+n =

∑
j

ε̃j ê
†
j êj, (A.35)

where εp is the p−th eigenvalues of ¯̄M and the on-site energies ε̃j are defined
as

ε̃j =

{
ε1 + εm+1 rem(j,m) = m− 1

εrem(j,m)+2 else
. (A.36)

rem(j,m) is the remainder after division of j by m.

Since for any m the system is periodic, the single particle energies ε̃j have
period m, too and are typically non-degenerate. The solution of this Hamil-
tonian for a fixed fermionic density

%F =
∑
j

ĉ†j ĉj =
∑
j

ê†j êj (A.37)

is straightforward. Defining the set J of minimal single particle energies

J = {j ∈ Z
∣∣ε̃j = min

p=0...m−1
ε̃p}, (A.38)

the ground state of Hamiltonian (A.35) manifold is given by any possible
combination of particles located at sites, where only sites from J are occu-
pied. For the typical case of a unique minimal value ε̃j and a finite lattice of
length L, the cardinality of the set J is equal to %FL and the ground state
is given by

|Ψ〉 =
∏
j∈J

ê†j |0〉 . (A.39)
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Although this solution of Hamiltonian (A.32) using the canonical transforma-
tion is straightforward, the resulting ground state is nontrivial and therefore
the transformation back to the original system will not be done. Instead
we will apply a Green’s functions approach for the calculation of different
expectation values of the ground state of Hamiltonian (A.33).

b) Green’s functions approach

So far, the derivation of the Dyson equation for the Green’s function does
not strongly differ from the results already presented in section 10.1. The
only difference is given by the different range of the sum over α (compare the
Hamiltonian (A.32) to the m = 2 Hamiltonian from (10.5)). This leads, re-

stricting our discussion to the case of the advanced Green’s function G(+)
k,k′(ω),

to the Dyson equation

G(+)
k,k′(ω) = G(0+)

k,k′ (ω) +
i

~
√

2πV G(0+)
k,k (ω)

m−1∑
α=−m+1
α 6=0

G(+)

k+ L
m
α,k′

(ω) (A.40)

in both momentum and frequency space. This Dyson equation allows for a
straightforward solution in the case m = 2 as presented in chapter 10 with
more difficulties for other m. Nevertheless, a full algebraic solution may be
found. Recognizing that above Dyson equation may be rewritten in the form

G(0+)
kk′ (ω) =

m−1∑
α=−(m−1)

Γk,α G(+)

k+ L
m
α,k′

(ω) (A.41)

and that according to the properties of the unperturbed Green’s function
G(0+)
k,k′ ∼ δk,k′ only the contributions of the form G(+)

k+p L
m
,k′

are non-zero, all

Dyson equations for the non-zero elements may be put into matrix form:

G(0+)

k+m−1
m

L,k′
(ω)

G(0+)

k+m−2
m

L,k′
(ω)

...

G(0+)
k,k′ (ω)

...

G(0+)

k−m−2
m

L,k′
(ω)

G(0+)

k−m−1
m

L,k′
(ω)


= ¯̄Γ



G(+)

k+m−1
m

L,k′
(ω)

G(+)

k+m−2
m

L,k′
(ω)

...

G(+)
k,k′(ω)

...

G(+)

k−m−2
m

L,k′
(ω)

G(+)

k−m−1
m

L,k′
(ω)


(A.42)
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with

¯̄Γ =



1 Γ̃m−1
m

Γ̃m−1
m

. . . 0 0 0

Γ̃m−2
m

1 Γ̃m−2
m

. . . Γ̃m−2
m

0 0
...

. . .
...

Γ̃0 Γ̃0 . . . 1 . . . Γ̃0 Γ̃0
...

. . .
...

...

0 0 Γ̃−m−2
m

. . . Γ̃−m−2
m

1 Γ̃−m−2
m

0 0 0 . . . Γ̃−m−1
m

Γ̃−m−1
m

1


. (A.43)

Here Γ̃β = Γk+βL,1 and Γk,α = δα0−(1−δα0) i~
√

2πV G(0+)
k,k simplify the writing.

This matrix equation can be solved for G(+)
k,k′ by inverting the matrix ¯̄Γ and

considering the proper entries. All further results rely on this procedure,
where the remaining task in the solution is not the inversion of the matrix
¯̄Γ which is (only) of size (2m − 1) × (2m − 1), but the following Fourier
transformation of the Green’s function into time domain. For m = 2 this
may be done easily whereas for larger m numerical residue integration
turns out to be more suitable. Together with the numerical evaluation of
the Fourier transform, this now allows for the calculation of the real space
Green’s functions and the expectation values of the system from these.

c) Expectation values

Above algebraic equation allows for the calculation of the Green’s function
G(+)
k,k′(ω) which is directly connected to all needed expectation values. The real

space Green’s function connects to the momentum space Green’s functions
as

G(+)
j,j+d(ω) =

1

L

L/2−1∑
k1,k2=−L/2

e−2πi
(k1−k2)

L
je−2πi

k1
L
dG(+)

k2,k1
(ω). (A.44)

Again, the summation over the second index is limited because of the prop-
erties of the Green’s function, in general incorporated by including the term

m−1∑
n=−(m−1)

δk1+ n
m
L,k2 (A.45)

to the summation. This results in

G(+)
j,j+d(ω) =

1

L

∑
k

m−1∑
n=−m+1

e−2πi k
L
de−2πi n

m
jG(+)

k1+ n
m
L,k1

(ω) (A.46)
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which together with

G(±)
j,j+d(t+ T, t) =

1√
2π

∞∫
−∞

dω G(±)
j,j+d(ω)eiωT (A.47)

at the end gives the final expression for the calculation of the expectation
values.





APPENDIX B

Multi-band physics

B.1 Calculation of the second order cumulant

We present the derivation of the effective first-band Hamiltonian from the
scattering matrix in (16.5) together with the full interaction Hamiltonian. In
the reduced scattering matrix of the multi-band Bose-Fermi-Hubbard model,
the second order cumulant

〈〈T ĤI(τ + T )ĤI(τ)〉〉bth (B.1)

in the interaction picture needs to be calculated with respect to the vacuum
in the b-th band. Because of the average over the vacuum, the evaluation of
the cumulant simplifies considerably. For instance, from the last interaction
Hamiltonian at time τ , only those terms with no annihilation operators in
the b-th band contribute. This strongly reduces the computational effort.
For a detailed analysis, we first rewrite the interaction Hamiltonian ĤI(σ)
in such a way, that the occurring contributions become apparent. Omitting
the explicit time dependence σ, the Hamiltonian in the interaction picture is
given by

Ĥ int
bth =

∑
j

{
Ubb11

2

(
â†b,j

)2

â2
1,j

::::::::::::::::::
À

+
Ubb11

2

(
â†1,j

)2

â2
b,j

À

+ 4
Ubb11

2
n̂b,jn̂1,j

+
Vbb11

2
â†b,j ĉ

†
b,j ĉ1,j â1,j

:::::::::::::::::::
Á

+
Vbb11

2
â†1,j ĉ

†
1,j ĉb,j âb,j

Á

+
Vb11b

2
m̂1,jn̂b,j

(B.2)

207
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+
Vbb11

2
â†b,j ĉ

†
1,j ĉb,j â1,j +

Vbb11

2
â†1,j ĉ

†
b,j ĉ1,j âb,j +

V1bb1

2
m̂b,jn̂1,j

+ Ub111n̂1,j â
†
b,j â1,j

::::::::::::::::
Â

+ Ub111â
†
1,j âb,jn̂1,j

Â,Ã

+ U1bbbn̂b,j â
†
1,j âb,j

+
Vb111

2
m̂1,j â

†
b,j â1,j

:::::::::::::::::
Ã

+
Vb111

2
m̂1,j â

†
1,j âb,j

Â,Ã

+ U1bbbâ
†
b,j â1,jn̂b,j

+
V1b11

2
n̂1,j ĉ

†
b,j ĉ1,j

::::::::::::::::
Ä

+
V1b11

2
n̂1,j ĉ

†
1,j ĉb,j

Ä

+
V1bbb

2
m̂b,j â

†
1,j âb,j

+
V1bbb

2
m̂b,j â

†
b,j â1,j +

Vb1bb
2

n̂b,j ĉ
†
1,j ĉb,j +

Vb1bb
2

n̂b,j ĉ
†
b,j ĉ1,j

}
.

(B.3)

Interaction amplitudes U or V with an even number of higher-band indices
b contribute for any bands, those with an odd number only for odd bands.
A wavy underline corresponds to the terms with non-vanishing action
onto the vacuum, i.e., those terms relevant for the application of ĤI(τ).
Double underlines accordingly highlight the terms relevant in the subsequent
application of ĤI(τ + T ). The circled numbers denote the combination
of operators which after all give a non-zero matrix element. This means,
that the calculation of 〈〈A

:
À
B

À
〉〉 gives a non-zero contribution; other

combinations give a zero. The remaining terms not underlined give no
contribution in second order of the cumulant expansion.

The calculation of the second order cumulant is straightforward and for T > 0
evaluates to

〈〈ĤI(τ + T )ĤI(τ)〉〉bth =
∑
jl

{
U2
bb11

4

(
â†1,j+d

)2

â2
1,j〈〈â2

b,j+d

(
â†b,j

)2

〉〉bth

+
V 2
bb11

4
â†1,j+dĉ

†
1,j+dĉ1,j â1,j〈〈ĉb,j+dâb,j+dâ†b,j ĉ

†
b,j〉〉bth

+ U2
b111CTB,b(d)â†1,j+dn̂1,j+dn̂1,j â1,j +

Ub111Vb111

2
CTB,b(d)m̂1,j+dâ

†
1,j+dn̂1,j â1,j

+
Vb111Ub111

2
CTB,b(d)â†1,j+dn̂1,j+dm̂1,j â1,j +

V 2
b111

4
CTB,b(d)m̂1,j+dâ

†
1,j+dm̂1,j â1,j

+
V 2

1b11

4
CTF,b(d)n̂1,j+dĉ

†
1,j+dn̂1,j ĉ1,j

}
.

(B.4)

Here, the time dependence of each operator is encoded in the underlines. The
time-argument of the underlined operators is τ + T , whereas the argument
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for the others is τ . The higher-band cumulants are defined as

CTB,b(d) = 〈âb,j+d(τ + T )â†b,j(τ)〉bth CTF,b(d) = 〈ĉb,j+d(τ + T )ĉ†b,j(τ)〉bth (B.5)

and, as will turn out in the next section, only depend on the distance d
between j and l. The higher cumulants simplify according to [226] and [227]
to

〈〈â2
b,j+d(τ + T )

(
â†b,j(τ)

)2

〉〉bth = 2
(
CTB,b(d)

)2
(B.6)

〈〈ĉb,j+d(τ + T )âb,j+d(τ + T )â†b,j(τ)ĉ†b,j(τ)〉〉bth = CTB,b(d)CTF,b(d). (B.7)

For T < 0, the time ordering operator interchanges the times, which has the
net effect that T in the higher-band cumulants has to be replaced by −T .

B.2 Bosonic and fermionic correlators

Using the free Hamiltonian

Ĥ free
bth = JBb

∑
j

(
â†b,j âb,j+1 + â†b,j+1âb,j

)
+ ∆B

b

∑
j

n̂b,j

+ JFb
∑
j

(
ĉ†b,j ĉb,j+1 + ĉ†b,j+1ĉb,j

)
+ ∆F

b

∑
j

m̂b,j,
(B.8)

within the b-th band, we calculate the bosonic and fermionic correlators used
in B.4. In both cases, this is done in momentum space. For the simple two-
point correlators the interaction terms are always irrelevant and are thus left
out. Since the structure of both, the bosonic and fermionic components, are
equal the calculation of the correlators is roughly the same. Focussing on the
fermionic component with the free Hamiltonian

Ĥ free
bth = JFb

∑
j

(
ĉ†b,j ĉb,j+1 + ĉ†b,j+1ĉb,j

)
+ ∆F

b

∑
j

m̂b,j (B.9)

the calculation of the fermionic correlator 〈ĉb,j+d(τ+T )ĉ†b,j(τ)〉bth with respect
to the vacuum state is straightforward. Using the Fourier transform of the
bosonic or fermionic operators presented in (9.2), the fermionic correlator
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evaluates as

〈ĉb,j+d(τ + T )ĉ†b,j(τ)〉bth =
1

L

∑
k1k2

e−2πij
k1−k2

L e−2πid
k1
L 〈ĉb,k1(τ + T )ĉ†b,k2(τ)〉bth

=
1

L

∑
k1k2

e−2πij
k1−k2

L e−2πid
k1
L 〈ĉb,k1e

i
~TĤ

free
bth ĉ†b,k2〉bth

=
1

L

∑
k1k2

e−2πij
k1−k2

L e−2πid
k1
L e

i
~Tε

F,b
k2 〈ĉb,k1 ĉ

†
b,k2
〉bth

=
1

L

∑
k

e−2πid k
L e

i
~Tε

F,b
k . (B.10)

From the second to the third line it is used that in momentum space only
the k2 mode with energy εF,bk = 2JFb cos(2πk) + ∆F

b is occupied and from

the third to fourth line that 〈ĉb,k1 ĉ
†
b,k2
〉bth = δk1k2 . Accordingly, the bosonic

correlator evaluates as

〈âb,j+d(τ + T )â†b,j(τ)〉bth =
1

L

∑
k

e−2πid k
L e

i
~Tε

B,b
k , (B.11)

with εB,bk = 2JBb cos(2πk) + ∆B
b . Note that the correlators only depend on

the difference T in time and the distance d between the operator sites.

B.3 Time integration of the correlators

The final step to perform is to integrate the correlators as shown in equation
(16.8). With

CTX,b(d) =
1

L

∑
k

e−2πid d
L e

i
~Tε

X,b
k (B.12)

describing both bosonic and fermionic correlators, the two different kinds of
time integrals are given by

IdX,b = − i
~

∞∫
0

dT CTX,b(d) IdBX,b = − i
~

∞∫
0

dT CTX,b(d)CTB,b(d).

(B.13)
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For the single correlator, straightforward calculation yields

IdX,b = − i
~

1

L

∑
k

e−2πid k
L

∞∫
0

dT e
i
~Tε

X,b
k (B.14)

=
1

L

∑
k

e−2πid k
L

εX,bk

. (B.15)

In the last step, the Riemann-Lebesgue lemma (9.10) applies. Going to
the thermodynamic limit L → ∞ by introducing ξ = k

L
and substituting

1
L

∑
k 7→

∫
dξ, the result in its final form is found to be

IdX,b =

1
2∫

− 1
2

dξ
e−2πidξ

εX,b(ξ)
. (B.16)

For the double correlators, the product of the two correlators turns into a
double integration, which, in the thermodynamic limit is given by

IdBX,b =

1
2∫

− 1
2

dξ

1
2∫

− 1
2

dξ′
e−2πidξe−2πidξ′

εB,b(ξ) + εX,b(ξ)
. (B.17)

B.4 Definition of the constants

In the effective single-band Hamiltonian (16.18), several interaction and hop-
ping amplitudes were introduced. These are defined as

U3 = 6
∑
b>1
b odd

U2
b111I0

B,b, (B.18)

U2 = U1111 +
∑
b>1

U2
bb11I0

BB,b +
∑
b>1
b odd

2 U2
b111I0

B,b, (B.19)

V3 =
∑
b>1
b odd

[
2 Ub111Vb111I0

B,b +
V 2

1b11I0
F,b

2

]
, (B.20)

V =
V1111

2
+
∑
b>1

V 2
bb11I0

BF,b

4
+
∑
b>1
b odd

[
V 2
b111I0

B,b

4
+
V 2

1b11I0
F,b

4

]
, (B.21)
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JB[d; n̂j, n̂j+d, m̂j, m̂j+d] = JB1 δ|d|,1

+
U3d,B

1111

2
(n̂j+d + n̂j) +

V 3d,B
1111

2
(m̂j+d + m̂j)

+
∑
b>1
b odd

[
U2
b111IdB,b n̂j+dn̂j +

Ub111Vb111IdB,b
2

m̂j+dn̂j

+
Vb111Ub111IdB,b

2
n̂j+dm̂j +

V 2
b111IdB,b

4
m̂j+dm̂j

]
,

(B.22)

JF [d; n̂j, n̂j+d] = JF1 δ|d|,1 +
V 3d,F

1111

2
(n̂j+d + n̂j)

+
∑
b>1
b odd

V 2
1b11IdF,b

4
n̂j+dnj,

(B.23)

J
(2)
B (d) =

U2d
1111

2
+
∑
b>1

U2
bb11IdBB,b

2
, (B.24)

J
(2)
F (d) =

V 2d
1111

2
+
∑
b>1

V 2
bb11IdBF,b

4
. (B.25)



APPENDIX C

Jaynes-Cummings-Hubbard model

C.1 Degenerate perturbation theory

Here we present the application of degenerate perturbation theory as de-
scribed in [159] to calculate the energy corrections in second order. Though
the system treated here is quite different, all arguments also apply to the
calculation of the phase diagram for the effective bosonic model derived in
part I and II and to Hubbard-like models in general.

Focussing on the situation with one additional excitation N = nL + 1, the
states within the degenerate manifold are defined by

|Ψ〉+1
p := |−, n+ 1〉p

∏
l 6=p

|−, n〉l . (C.1)

The different matrix elements of the effective Hamiltonian are given by

+1
q 〈Ψ| Ĥeff |Ψ〉+1

p =+1
q 〈Ψ| Ĥ0 + PV̂ P + PV̂Q 1

E0 − Ĥ0

QV̂ P |Ψ〉+1
p . (C.2)

In the following we use

V̂ =
∑
d

td
∑
j

(
â†j−d + â†j+d

)
âj =

∑
d

td
∑
j

â†j (âj+d + âj−d) . (C.3)

a) Zeroth order

The zeroth order Ĥ0 is nothing but the energy of the manifold, given by
+1
q 〈Ψ| Ĥeff |Ψ〉+1

p = E−n+1δq,p. (C.4)
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b) First order

The first order in the hopping operator V̂ gives a direct coupling of the
different states within the manifold. Because of the treatment of the long-
range hopping td for any d > 0, the matrix elements of (C.2) result in

+1
q 〈Ψ| Ĥeff |Ψ〉+1

p =+1
q 〈Ψ|

∑
d,j

td

(
â†j−d + â†j+d

)
âj |Ψ〉+1

p , (C.5)

which together with the action of the annihilation and creation operator on
the Jaynes-Cummings states (22.14) gives

= B−nD
−
n+1

∑
d

td (δq,p+d + δq,p−d) (C.6)

c) Second order

The calculation of the second order matrix elements are more involved. This
stems from the large number of intermediate steps, whose energies are ac-
counted by the resolvent 1

E0−Ĥ0
. Furthermore we have to distinguish, whether

the first application of the hopping operator annihilates an excitation at site
p or j 6= p

V̂ |Ψ〉+1
p =

∑
d

td

(
â†p−d + â†p+d

)
âp |Ψ〉+1

p (C.7)

+
∑
d

td
∑
j 6=p

(
â†j−d + â†j+d

)
âj |Ψ〉+1

p , (C.8)

since the first term acting on site p just gives the first order expression and
hence has to be neglected. Defining the intermediate states as

|Ψ〉abcpqr := |−, n+ a〉p |−, n+ b〉q |−, n+ c〉r
∏
l 6=pqr

|−, n〉l , (C.9)

accounting for the deviation of the intermediate state from the Mott insulator
|Ψ〉 =

∏
l |−, n〉l, the action of the first annihilation operator as described

above is found to be

QV̂ |Ψ〉+1
p = QD−n

∑
d

td
∑
j 6=p

(
â†j−d + â†j+d

)
|Ψ〉+1,−1

p,j .
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Here, a distinction whether the creation operators create on site p or any
other site is necessary, because the subsequent energy denominator gives
different factors in both cases. This gives

QV̂ |Ψ〉+1
p = QD−n

∑
d

td

 ∑
j 6=p
j−d6=p

â†j−d |Ψ〉
+1,−1
p,j +

∑
j 6=p
j+d 6=p

â†j+d |Ψ〉
+1,−1
p,j


+QD−n

∑
d

td

(
â†p |Ψ〉

+1,−1
p,p+d + â†p |Ψ〉

+1,−1
p,p−d

)

= B−nD
−
n

∑
d

td

 ∑
j 6=p
j 6=p+d

|Ψ〉+1,−1,+1
p,j,j−d +

∑
j 6=p
j 6=p−d

|Ψ〉+1,−1,+1
p,j,j+d

 (C.10)

+B−n+1D
−
n

∑
d

td

(
|Ψ〉+2,−1

p,p+d + |Ψ〉+2,−1
p,p−d

)
.

The projector Q is dropped because the intermediate states are not from the
treated manifold. For these states, the energy denominators are

1

E0 − Ĥ0

|Ψ〉+1,−1,+1
p,j,j±d =

1

2E−n − E−n−1 − E−n+1

:=
1

∆1

, (C.11)

1

E0 − Ĥ0

|Ψ〉+2,−1
p,p±d =

1

E−n+1 + E−n − E−n+2 − E−n−1

:=
1

∆+
2

. (C.12)

Applying the remaining second hopping operator to the second term in (C.10)
and restricting to only those output states within the manifold1 gives

PV̂ [2nd] =
B−n+1D

−
n

∆+
2

∑
d,d′

tdtd′
(
â†p−d′ âp + â†p+d′ âp

)(
|Ψ〉+2,−1

p,p+d + |Ψ〉+2,−1
p,p−d

)
=
B−n+1D

−
nD

−
n+2

∆+
2

∑
d,d′

tdtd′
(
â†p−d′ + â†p+d′

)(
|Ψ〉+1,−1

p,p+d + |Ψ〉+1,−1
p,p−d

)
= 2

B−n+1D
−
nD

−
n+2B

−
n−1

∆+
2

∑
d

t2d |Ψ〉
+1
p . (C.13)

In the last line, half of the terms drop out since d, d′ > 0 and because of the
final P , the final state has to be within the degenerate manifold.

1Thus passing the final projector P.
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For the first term in (C.10), a simplification arises from the observation that
due to the final P , the creation operator has to be situated at site j, which
gives

PV̂ [1st] =
B−nD

−
nB
−
n−1

∆1

∑
d′

td′
∑
d

td (âj+d′ + âj−d′)
∑
j 6=p
j−d6=p

|Ψ〉+1,+1
p,j−d (C.14)

+
B−nD

−
nB
−
n−1

∆1

∑
d′

td′
∑
d

td (âj+d′ + âj−d′)
∑
j 6=p
j+d 6=p

|Ψ〉+1,+1
p,j+d .

The annihilation operator in each case has two possibilities, either being
applied to the site p or the site j ± d. All other possibilities are ruled out
because of the final projection P , which together with d > 0 gives:

PV̂ [1st] = 2(L− 3)
B−nD

−
nB
−
n−1D

−
n+1

∆1

∑
d

t2d |Ψ〉
+1
p (C.15)

+
B−nD

−
nB
−
n−1D

−
n+1

∆1∑
dd′

td′td

[
|Ψ〉+1

p−d′−d + |Ψ〉+1
p+d′−d + |Ψ〉+1

p−d′+d + |Ψ〉+1
p+d′+d

]
Altogether, the matrix elements of the effective Hamiltonian in second order
are given by

+1
q 〈Ψ| Ĥeff |Ψ〉+1

p = δq,p E
−
n+1 +B−nD

−
n+1

∑
d

td (δq,p+d + δq,p−d) (C.16)

+ 2

(
B−n+1D

−
nD

−
n+2B

−
n−1

∆+
2

+ (L− 3)
B−nD

−
nB
−
n−1D

−
n+1

∆1

)∑
d

t2d δq,p

+
B−nD

−
nB
−
n−1D

−
n+1

∆1

∑
dd′

td′td (δp−d′−d + δp+d′−d + δp−d′+d + δp+d′+d) .

For the sum in the last line, a resummation turns out to be more convenient.
After some algebra, it can be rewritten as∑

dd′

td′td (δp−d′−d + δp+d′−d + δp−d′+d + δp+d′+d) (C.17)

= 2
∑
d

t2d δq,p +
∞∑
d=1

Td (δq,p−d + δq,p+d) ,
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where the modified hoppings Td are defined as

TD =
D−1∑
d=1

tdtD−d +
∞∑

d=D+1

tdtd−D +
∞∑
d=1

tdtD+d. (C.18)

This finally gives the second order effective Hamiltonian for the state with
an additional excitation which in this form is given by

+1
q 〈Ψ| Ĥeff |Ψ〉+1

p = δq,p E
−
n+1 +B−nD

−
n+1

∑
d

td (δq,p+d + δq,p−d) (C.19)

+ 2

(
B−n+1D

−
nD

−
n+2B

−
n−1

∆+
2

+ (L− 2)
B−nD

−
nB
−
n−1D

−
n+1

∆1

)∑
d

t2d δq,p

+
B−nD

−
nB
−
n−1D

−
n+1

∆1

∑
d

Td (δp−d + δp+d) .

Applying the same method to the situation with one excitation less as well
as the (non-degenerate) Mott insulator2, the matrix elements of the effective
Hamiltonian for these cases are given by

−1
q 〈Ψ| Ĥeff |Ψ〉−1

p = δq,p E
−
n−1 +B−n−1D

−
n

∑
d

td (δq,p+d + δq,p−d) (C.20)

+ 2

(
B−nD

−
n−1D

−
n+1B

−
n−2

∆−2
+ (L− 2)

B−nD
−
nB
−
n−1D

−
n+1

∆1

)∑
d

t2d δq,p

+
B−nD

−
nB
−
n−1D

−
n+1

∆1

∑
d

Td (δp−d + δp+d) .

and

〈Ψ| Ĥeff |Ψ〉 = δq,p E
−
n + 2L

B−nD
−
nB
−
n−1D

−
n+1

∆1

∑
d

t2d δq,p (C.21)

with ∆±2 = E−n±1 + E−n − E−n±2 − E−n∓1.

2Which is naturally not necessary since simple perturbation theory suffices.
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[117] H. P. Büchler and G. Blatter, Supersolid versus phase separation in
atomic Bose-Fermi mixtures, Phys. Rev. Lett. 91, 130404, (2003).

[118] L. Mathey and D.-W. Wang, Phase diagrams of one-dimensional Bose-
Fermi mixtures of ultracold atoms, Phys. Rev. A 75, 013612, (2007).



BIBLIOGRAPHY 233
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Französisch, Schulkenntnisse

EDV

Betriebssysteme Linux (Administratortätigkeit), Windows

Sprachen Shell-Skripte, HTML, Pascal, Fortran, C

Anwendungen Matlab, Mathematica, LATEX, Word, Excel



Danksagung
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Erwähnung verdienen die kreativen Illustrationen des David D.

Nicht zu vergessen sind die Personen, die immer wieder durch Diskussionen
zum Thema beigetragen haben, sei dies auf Konferenzen, Seminaren oder
auf unserem Flur gewesen.

Auch danke ich meiner Frau Marena, die mich stets unterstützt und meine
kleinen und großen Macken geduldig ertragen hat und erträgt. Vor allem
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