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Abstract

More than 20 years ago, the �rst Bose-Einstein condensate was observed experimentally [1]. This
marked the beginning of a new research area in physics focusing on quantum gases in the regime of
ultracold temperatures. While �rst experiments demonstrated the coherent control on the single
particle level, nowadays we reach a regime of realizing interesting many-body states of atomic matter
[2, 3]. Solid state systems typically lack the potential to coherently control and manipulate the system
parameters at will and they are moreover impure. In contrast to this, quantum gases allow to realize
condensed matter analogues with high precision and control. To give an example, single atoms or
arrays of single atoms can be trapped in con�gurable lattice structures [4, 5]. Their internal states
can be controlled and detected locally providing a full state tomography.

For many applications such as quantum computation [6–9] and quantum simulation [10–12]
long coherence times are essential. To this end, much progress has been done in isolating quantum
systems from their environment. Another compelling approach is to incorporate the coupling to the
environment or even to engineer a proper environment to stabilize interesting quantum states. This
is the research area of open many-body systems. In particular, the competition between reservoir
coupling and external drive with the internal atomic interactions may lead to steady states exhibiting
novel properties, which lie beyond possible realizations in solid state systems. Therefore, it is of
current interest to study nonequilibrium steady states, their relaxation dynamics as well as possible
critical behavior.

A particularly interesting platform exploiting strong and quasi long-range interactions are Rydberg
atoms [13]. On the one hand, these systems are inherently open as their internal states are controlled
by an external coherent laser �eld and the �nite Rydberg state lifetime. On the other hand, the large
dipole-dipole interactions between Rydberg states o�er the study of many-body systems. This makes
them an ideal platform to study quantum optics [14–17], ultracold chemistry [18–20] and many-body
physics of correlated matter [21, 22]. One consequence of the strong interactions between Rydberg
states manifests itself in the so-called dipole blockade [23, 24]. Here, a single Rydberg atom suppresses
the excitation of neighboring atoms to the Rydberg state within a certain volume. This regime was
studied extensively over the past years and the creation of long-range ordered states was investigated.
In turn, the presence of a Rydberg excitation can also enhance the atomic transition rates. This is
the so called antiblockade regime [25, 26], where an o�-resonant excitation laser compensates the
Rydberg induced level shift.

In the present thesis, I will study nonequilibrium dynamics of driven dissipative Rydberg gases.
Starting with an introduction of the basic concepts used throughout this thesis, I discuss Rydberg
gases in the antiblockade regime. Based on an experiment-theory collaboration with the group
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Abstract

of Herwig Ott, the possibility of a bistable phase in an open many-body system is explored. The
experiment analyzes the excitation dynamics of large Rydberg lattice gases using a continuous
o�-resonant laser excitation. I contribute to the characterization of the experiment and develop a
simple model for understanding the highly correlated excitation dynamics. The results indicate that
the system consists of many small excitation clusters, which are incompatible with a phase transition
to a global bistable phase. However, the prolongation of the characteristic timescale indicates that
the system is in a metastable state. I support the experimental results with numerical simulations
obtaining qualitative and partially quantitative agreement.

The dipole blockade of a mesoscopic atomic ensemble represents an e�ective spin model and
leads to the concept of a superatom. In the regime of strong dissipation, the excitation rates to the
single excited Rydberg state are collectively enhanced. I study a regular array of these superatoms
in the antiblockade regime resulting in a high, almost universal, Rydberg excitation density 2/3.
Furthermore, I characterize the transient relaxation towards the steady state exploiting a coarse-
grained excitation model and the steady state itself. It is shown that the non-trivial nonequilibrium
dynamics can be understood in terms of excitation holes, i.e., ground state atoms surrounded by two
excited superatoms. Numerical simulations were performed using a newly developed superatom rate
equation model.

The superatom concept already shows that the impact of dissipation and dense atomic ensembles
can lead to exaggerated excitation dynamics compared to the few particle case. This leads to an
anomalous facilitation mechanism in an inhomogeneously broadened Rydberg gas. It is shown that
facilitation is possible although the detuning does not compensate the interaction-induced level shift.

A key tool to the investigation of coherent lattice spin models is a controllable interaction strength.
I discuss the realization of a tunable XXZ model using Rydberg atoms and the existence of mobile
bound states of Rydberg excitations. It is shown that this spin model can be realized by a regular
array of driven atoms, where the excited state represents the spin-up state and a Rydberg-dressed
ground state the spin-down state. I discuss bound states of excitations and their increased mobility
due to resonant two-site hopping processes. The increased mobility allows to study the competition
between kinetic and interaction e�ects, which was however not subject of the present thesis.

While photons do barely interact with each other, the coupling to Rydberg states in a con�guration
supporting electromagnetically induced transparency, allows to transfer the strong interactions
to a mixture of matter and quantized light – a Rydberg polariton. Recent progress in the �eld of
arti�cial gauge �elds demonstrated the creation of photonic Landau levels in a twisted cavity setup.
The combination of both, strong interactions and arti�cial magnetic �elds in a photonic cavity, is a
promising setup for the preparation of fractional quantum Hall states for photons. To this end, a
growing scheme is discussed, which consists of adiabatic transfer of �ux quanta using a dense atomic
medium as a mediator and a single photon pump.
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Kurzfassung

Vor über 20 Jahren wurde das erste Bose-Einstein Kondensat experimentell beobachtet [1]. Dies
erö�nete das neue Forschungsfeld der ultrakalten Quantengase. Bereits erste Experimente demon-
strierten die kohärente Kontrolle eines Quantensystems auf Einteilchenebene. Heutzutage erreichen
wir einen Bereich, in dem es möglich ist interessante Vielteilchenzustände der atomaren Materie
zu erzeugen [2, 3]. Während viele Festkörpersysteme unrein sind und keine kohärente Kontrolle
und Manipulation der Systemparameter ermöglichen, erlauben Quantengase die Realisierung von
Modellen aus der kondensierten Materie mit hoher Präzision. Ein Beispiel ist das Fangen einzelner
Atome und Anordnen von diesen in kon�gurierbaren Gitterstrukturen [4, 5]. Eine lokale Kontrolle
der internen Zustände dieser Atome erlaubt sogar eine volle Zustandstomographie.

Für viele Anwendungen, wie etwa Quantencomputer [6–9] oder Quantensimulatoren [10–12],
werden lange Kohärenzzeiten benötigt. Um das zu erreichen wird versucht Quantensysteme immer
besser von ihrer Umwelt zu isolieren. Ein anderer beeindruckender Ansatz befasst sich mit o�enen
Vielteilchensystemen und nimmt dabei die Umgebung mit in die Beschreibung des Systems auf oder
versucht eine Umgebung zu scha�en, die interessante Quantenzustände erzeugen kann. Insbesondere
das Zusammenspiel zwischen externer Kopplung und der Wechselwirkung mit einer Umgebung
gegenüber den internen atomaren Wechselwirkungen kann zu stationären Zuständen mit neuen
Eigenschaften führen, welche in Festkörpersystemen nicht realisiert werden können. Darum ist es
interessant Nichtgleichgewichtszustände, deren Relaxationsverhalten, sowie mögliches kritisches
Verhalten zu studieren.

Eine besonders interessante Plattform macht sich die starke und quasi langreichweitige Wechsel-
wirkung von Rydbergatomen zunutze [13]. Auf der einen Seite sind diese Systeme intrinsisch o�en,
da ihre internen Zustände mithilfe eines externen, kohärenten Lichtfeldes kontrolliert werden können
und Rydbergzustände eine endliche Lebensdauer haben. Auf der anderen Seite ermöglicht die starke
Dipol-Dipol-Wechselwirkung das Studium von Vielteilchene�ekten. Beides macht Rydbergatome zu
einer idealen Plattform um Fragestellungen aus Quantenoptik [14–17], ultrakalter Chemie [18–20]
und Vielteilchenphysik der korrelierten Materie [21, 22] zu untersuchen. Eine direkte Konsequenz aus
der starken Wechselwirkung zwischen Rydbergzuständen ist die sogenannte Dipolblockade [23, 24].
Hierbei unterdrückt eine Rydberganregung die Anregung von benachbarten Grundzustandsatomen
in den Rydbergzustand in einem endlichen Volumen. Dieses Phänomen wurde in den letzten Jahren
ausgiebig diskutiert und die Möglichkeit langreichweitiger Ordnung wurde untersucht. Im Gegenzug
dazu kann eine Rydberganregung auch zu einer erhöhten Übergangswahrscheinlichkeit führen.
Dies ist das sogenannte Antiblockade-Regime [25, 26], indem eine verstimmte Laseranregung die
Energieverschiebung durch den Rydbergzustand ausgleicht.
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Kurzfassung

In der vorliegenden Doktorarbeit studiere ich die Nichtgleichgewichtsdynamik getriebener dissipa-
tiver Rydberggase. Nach einer Einführung in die für diese Arbeit benötigten grundlegenden Konzepte,
diskutiere ich zunächst Rydberggase im Antiblockade-Regime. Basierend auf der Zusammenarbeit
mit der Experimentalgruppe von Prof. Herwig Ott, wird die Möglichkeit einer bistabilen Phase in
einem o�enen Vielteilchensystem untersucht. Das Experiment analysiert die Anregungsdynamik
von Rydbergatomen in einem Gitter unter dem Ein�uss eines verstimmten kontinuierlichen Laser-
feldes. Ich trage zu der Charakterisierung des Experiments, sowie der Erstellung eines vereinfachten
Modells zur Erklärung der korrelierten Anregungsdynamik bei. Die Resultate deuten darauf hin,
dass das System aus vielen kleinen Anregungsclustern besteht, was im Gegensatz zu einer globalen,
bistabilen Phase steht. Die Zunahme der charakteristischen Zeitskala lässt darauf schließen, dass das
System in einem metastabilen Zustand ist. Die experimentellen Befunde werden durch numerische
Simulationen untermauert, die sowohl qualitative als auch teilweise quantitative Übereinstimmung
aufzeigen.

Die Dipolblockade eines mesoskopischen, atomaren Ensembles lässt sich auf ein e�ektives Spin-
Modell zurückführen und wird durch das Konzept eines Superatoms beschrieben. Im Fall starker
Dissipation wird die Anregungsrate zum angeregten Rydbergzustand kollektiv verstärkt. Ich studiere
ein eindimensionales Gitter aus Superatomen im Antiblockade-Regime und zeige, dass die Rydber-
ganregungsdichte einen hohen, nahezu konstanten Wert von 2/3 annimmt. Zusätzlich charakterisiere
ich die Relaxation in den stationären Zustand durch ein makroskopisches Modell sowie den sta-
tionären Zustand selbst. Es zeigt sich, dass die nicht triviale Nichtgleichgewichtsdynamik durch die
Einführung von Anregungslöchern, d.h. Grundzustandsatomen umgeben von je zwei benachbarten
angeregten Superatomen, verstanden werden kann. Auf Basis eines neuentwickelten Superatom-
Ratengleichungsmodells wurden numerische Simulationen durchgeführt.

Die Einführung eines Superatoms zeigt bereits, dass der Ein�uss von Dissipation und dichter
atomarer Ensembles zu interessanter Anregungsdynamik führen kann, gegenüber dem Fall weniger
Teilchen. Dies zeigt sich in einem anomalen Anregungsmechanismus im Antiblockade-Regime bei
inhomogen, verbreiterten Rydberggasen. Es wird gezeigt, dass die verstärkte Anregung möglich ist
in einem Bereich, indem die Verstimmung des Laserfeldes nicht die Energieverschiebung durch die
Wechselwirkung kompensieren kann.

Eine wichtige Eigenschaft für die Untersuchung kohärenter Spin-Modelle ist die Fähigkeit die
Wechselwirkungsstärke zu regulieren. Ich diskutiere eine Realisierung eines durchstimmbaren XXZ
Spin-Modells basierend auf Rydbergatomen und zeige, dass darin bewegliche, gebundene Zustände
von Rydberganregungen existieren. Es wird gezeigt, dass das Spin-Modell in einem getriebenen
System einer eindimensionalen atomaren Kette entsteht, wobei ein Spinzustand eine Mischung aus
Grundzustand und Rydberganregung ist und der andere Spinzustand ein weiterer Rydbergzustand
ist. Ich diskutiere den Ein�uss langreichweitiger Hüpfprozesse auf die Beweglichkeit gebundener
Zustände von Spin-Anregungen. Dies erlaubt die Untersuchung von konkurrierenden E�ekten von
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kinetischer Energie und Wechselwirkungsenergie, was allerdings nicht Bestandteil dieser Arbeit ist.
Während Photonen nicht miteinander wechselwirken, kann deren Ankopplung an Rydbergzustände

mithilfe der elektromagnetisch induzierten Transparenz zu einer Wechselwirkung zwischen soge-
nannten Rydberg-Polaritonen, d.h. einer Mischung zwischen Materie und quantisiertem Licht, führen.
In einem Experiment wurde gezeigt, dass künstliche Magnetfelder für Photonen und damit die Real-
isierung photonischer Landau-Niveaus durch geschickte Anordnung optischer Resonatoren möglich
ist. Die Kombination von starker Wechselwirkung und magnetischen Feldern für Photonen in einem
optischen Resonator kann die Präparation von fraktionalen Quanten-Hall-Zuständen ermöglichen.
Es wird ein Protokoll zum Wachsen dieser Zustände diskutiert, welches zum einen aus dem adia-
batischen Einführen von Flussquanten mittels eines dichten atomaren Mediums besteht und zum
anderen aus einer Ein-Photonen-Pumpe.
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Chapter 1

Introduction

1.1 Open �antum Systems

Although many theoretical studies assume isolated quantum systems, which are decoupled from their
environment, this can only be an approximation for su�ciently small timescales. In practice, there
are no completely isolated quantum systems. Besides the measurement process, which in quantum
mechanics projects the system to a speci�c state, all systems interact with their environment – a
reservoir with many degrees of freedom. Typically, this introduces a decoherence mechanism of the
system. In particular the coherent control of quantum systems required for applications, such as
quantum computation and quantum simulation, poses the challenge of isolating and interacting with
the system at the same time. Therefore, for quantum technology applications proper isolation is
required.

In recent years, a paradigm shift occurred, which incorporates the reservoir as a tool for manipu-
lating the system. While the coupling to the reservoir typically introduces decoherence of the system,
it can also lead to novel and interesting features in the steady state of the system. Moreover, these
stationary states may be more robust against perturbations compared to a pure quantum state.

Below, we introduce a description of open quantum systems. A full characterization of the
interaction between reservoir and the system is challenging. Typically, we do not have knowledge
about all microscopic details of the reservoir and thus the coupling to the system. The large number
of degrees of freedom of the reservoir makes a solution of the system and reservoir equations of
motion almost impossible. Nevertheless we can �nd an e�ective description of a system in contact
with an environment without detailed knowledge of the underlying reservoir couplings. This section
is based on Ref. [27–30].

1.1.1 Master Equation

Formally, system and reservoir can be described by a density matrix χ. By eliminating the degrees of
freedom of the reservoir

ρ̂ = trr{χ}, (1.1)

i.e. calculating the partial trace over all reservoir degrees of freedom, we obtain the density matrix ρ̂
of the system. Now, ρ̂ contains only information about the system, but not the reservoir. For ρ̂ to be
a proper density matrix, we demand the following conditions:
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Chapter 1 Introduction

system reservoir

Figure 1.1: Sketch of the system-reservoir approach. It is assumed that the reservoir has many
more degrees of freedom than the system. Furthermore, we assume the reservoir is in a
stationary state, e.g. a thermal state.

(i) The density matrix is a hermitian operator, i.e. ρ̂ = ρ̂† and thus all eigenvalues are real.

(ii) ρ̂ is positive semi-de�nite, i.e. all eigenvalues are larger or equal to zero.

(iii) We demand that
tr{ρ̂} ≡

∑
n

〈Ψn| ρ̂ |Ψn〉 = 1,

where {|Ψn〉} is an orthogonal basis for the system. The normalization allows an interpretation
in terms of probabilities. The total probability is conserved, since d

dttr{ρ̂} = 0.

Using the density matrix ρ̂ we can calculate the expectation value of all relevant physical observables
Ô with 〈Ô〉 = tr{ρ̂Ô}. Two-time correlations can be calculated using the regression theorem [28].

In many quantum optical setups, the coupling to reservoirs is Markovian and thus the time
evolution of the system can be described by a master equation in Lindblad form for the density matrix
ρ̂,

∂tρ̂ = − i
~

[Ĥs, ρ̂] +
1

2

∑
µ

(
2L̂µρ̂L̂

†
µ − L̂†µL̂µρ̂− ρ̂L̂†µL̂µ

)
≡ L[ρ̂]. (1.2)

The �rst part accounts for the coherent evolution of the system with Hamiltonian Ĥs. The latter
part includes Lindblad jump operators L̂µ describing the impact of the coupling between system
and reservoir. These jump operators can be deduced from �rst principle calculations or may be
constructed by analyzing the underlying physical processes. Examples of both will be discussed
within this thesis. Now we will review the main steps and approximations in the derivation of the
master equation.

Derivation of the master equation

Suppose we can describe the full system and reservoir with a Hamiltonian Ĥ = Ĥs + Ĥr + Ĥsr , as
illustrated in Fig. 1.1. In the interaction picture, rotating with the Hamiltonian of the system Ĥs and
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1.1 Open Quantum Systems

reservoir Ĥr , the evolution of the full system-reservoir is described by the von Neumann equation

∂tχ̂(t) = − i
~

[Ĥsr(t), χ̂(t)], (1.3)

where χ̂(t) is the density matrix for both, system and reservoir. The coupling between the system
and reservoir is denoted by the Hamiltonian Ĥsr, as indicated in Fig. 1.1. By formally integrating
Eq. (1.3) and reinserting, this equation can be rewritten as an integro-di�erential equation

∂tχ̂(t) = − i
~

[Ĥsr(t), χ̂(0)]− 1

~2

∫ t

0
dτ
[
Ĥsr(t), [Ĥsr(τ), χ̂(τ)]

]
. (1.4)

Let us assume that initially at time t = 0, system and reservoir are decoupled, i.e.

χ̂(0) = ρ̂(0)⊗ ρ̂r(0), (1.5)

where ρ̂r is the reservoir density matrix. Since we are only interested in the system dynamics, we
furthermore assume that trr{[Ĥsr(t), ρ̂(0) ⊗ ρ̂r(0)]} = 0. For instance, when the reservoir is in
a thermal state, this is ful�lled since the coupling elements are typically linear in the system and
reservoir operators. Equation (1.4) is the starting point for further approximations:

Born approximation We assume that the system and the reservoir are weakly coupled in their
time evolution. Thus, in second order of Ĥsr , we can set χ̂(τ) ' ρ̂(τ)⊗ ρ̂r(τ). Furthermore, since
the reservoir is large, having many degrees of freedom, it is almost unaltered by the coupling to the
system. We assume that the reservoir stays in a stationary state and thus approximate

χ̂(τ) ' ρ̂(τ)⊗ ρ̂r(0). (1.6)

Markov approximation On top of that we assume that reservoir correlations decay on a timescale
which is short compared to the intrinsic timescales of the system. In other words, the reservoir has no
memory. In Eq. (1.4), the impact of the past is hidden in the integration over previous times τ ∈ (0, t).
The Markov approximation assumes

χ̂(τ) ' ρ̂(t)⊗ ρ̂r(0). (1.7)

We obtain the master equation in Born-Markov approximation by tracing over the reservoir degrees
of freedom

∂tρ̂(t) = − 1

~2

∫ t

0
dτ trr

{[
Ĥsr(t), [Ĥsr(τ), ρ̂(t)⊗ ρ̂r(0)]

]}
. (1.8)

The validity of the approximations made above have to be justi�ed for each speci�c system. For
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many experiments in the regime of ultracold gases, the Born-Markov approximation is justi�ed.
A further evaluation requires knowledge of the system and reservoir. For simplicity, we discuss a
coupling between the reservoir and the system of the form

Ĥsr = ~Ŝ · R̂, (1.9)

where Ŝ and R̂ are hermitian operators acting on the system and the reservoir, respectively. For
generic bosonic or spin systems we refer to Ref. [28]. Inserting into Eq. (1.8), we obtain

∂tρ̂(t) =

∫ t

0
dτ
[
〈R̂(t)R̂(τ)〉

(
Ŝ(t)ρ̂(t)Ŝ(τ)− Ŝ(t)Ŝ(τ)ρ̂(t)

)
〈R̂(τ)R̂(t)〉

(
Ŝ(τ)ρ̂(t)Ŝ(t)− ρ̂(t)Ŝ(τ)Ŝ(t)

) ]
. (1.10)

Within the Markov approximation we assume that the reservoir operators are δ-correlated in time, i.e.
〈R̂(t)R̂(τ)〉 = (Γ + i∆)δ(t− τ), where Γ,∆ ∈ R. Then, replacing the upper limit of the integration
by t→∞, we obtain

∂tρ̂(t) = − i
~

[~∆Ŝ(t)Ŝ(t), ρ̂(t)] + Γ
(
2Ŝ(t)ρ̂(t)Ŝ(t)− Ŝ(t)Ŝ(t)ρ̂(t)− ρ̂(t)Ŝ(t)Ŝ(t)

)
, (1.11)

which has the form of a Lindblad master equation (1.2). The coupling to a reservoir may result
in coherent (∆) and incoherent (Γ) contributions to the time evolution. Equation (1.2) serves as a
prototype for various systems discussed within this thesis. A detailed derivation and justi�cation for
all systems presented here is beyond the scope of this thesis. Importantly, the master equation in
Lindblad form preserves the properties (i)-(iii) for the density matrix ρ̂. The Lindblad jump operators
will be motivated by the underlying physical processes.

1.1.2 Rate Equation Model

Single atom dynamics

In atomic systems it is common to model the light-matter interaction using a two-level approxima-
tion. For a coherent drive with a laser in the optical wavelength regime, this is typically a good
approximation when the energy di�erence ωge between the two relevant states, denoted by |g〉 and
|e〉, is nearly resonant with the laser carrier frequency ω and all other transition frequencies are far
detuned. A detailed derivation and discussion of the relevant approximations, namely the dipole and
rotating wave approximation, can be found in standard textbooks, see e.g. Ref. [30]. This results in
the Hamiltonian (~ = 1)

Ĥ = Ω (σ̂ge + σ̂eg)−∆σ̂ee, (1.12)
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1.1 Open Quantum Systems

where we de�ned the atomic transition operator σ̂ge = |g〉 〈e| and the projection operator σ̂ee =

|e〉 〈e|. The coupling strength Ω (Rabi frequency) between the two states includes the electric �eld
strength and the relevant dipole moment. When the laser frequency ω is resonant with the atomic
transition frequency ωge, the detuning ∆ = ω − ωge vanishes. Additionally, we consider a �nite
lifetime of the excited state, which decays with rate Γs. Therefore, it is convenient to introduce a
Lindblad jump operator,

L̂s =
√

Γsσ̂ge, (1.13)

which describes the impact of the coupling between the atomic system to its environment. The decay
rate Γs mainly originates from the coupling to the vacuum of the electromagnetic �eld. However,
other sources, such as collisions, leading to a �nite excited state lifetime can be included. Similarly,
we include in the description dephasing of the excited state with respect of the ground state by a
Lindblad jump operator,

L̂d =
√

Γdσ̂ee. (1.14)

Sources of dephasing are e.g. �uctuations in the laser frequency ω as well as thermal motion of
the atoms. As will be seen below, dephasing leads to a decay of coherence in the system. While
dephasing preserves the energy, a spontaneous decay of the excited state does not.

In terms of the master equation in Lindblad form, the equations for the density matrix can be cast
as

∂tρ = L̂ρ, (1.15)

with a vector representation ρ = (ρgg, ρee, ρeg, ρge)
T of the elements of the density matrix and

Lindblad superoperator (Lindbladian)

L̂ =


0 Γs iΩ −iΩ
0 −Γs −iΩ iΩ

iΩ −iΩ −i∆− γ 0

−iΩ iΩ 0 i∆− γ

 . (1.16)

The decoherence rate γ = 1
2(Γs+ Γd) describes the relaxation of the coherences ρge and ρeg . Solving

for the steady state, i.e. ∂tρ = 0, we obtain the steady state excited state population

ρee =
2Ω2γ

4Ω2γ + Γs (γ2 + ∆2)
, (1.17)

and the corresponding linewidth
w =

√
4Ω2γ/Γs + γ2. (1.18)

Clearly, the steady state population is bounded by ρee ≤ 0.5 even for resonant laser excitation.
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Chapter 1 Introduction

Figure 1.2: Real parts of the eigenvalues λk of the matrix L̂ in Eq. (1.16) versus the decoherence rate
γ for Ω/Γs = 25 and ∆ = 0. The relaxation rate −(Γex + Γde) (with a minus sign) of the
rate equation model is indicated by a red dashed line and the bifurcation point γb by a
blue arrow. For strong decoherence rate γ, the rate equation approximation matches well
the exact relaxation rate of the system.

For large rate γ � Ω, the coherences decay on a fast timescale compared to the coherent dynamics
and it is justi�ed to adiabatically eliminate them. Setting ∂tρge = ∂tρeg = 0, we obtain rate equations
for the transitions between the populations ρgg and ρee,

∂tρgg = −Γexρgg + Γdeρee, (1.19a)

∂tρee = +Γexρgg − Γdeρee, (1.19b)

with excitation and deexcitation rates

Γex =
2Ω2γ

γ2 + ∆2
, Γde = Γex + Γs. (1.20)

The rate equation model Eq. (1.19) preserves the total population ρgg + ρee = 1. Within this
approximation the relaxation of the two-level system is given by the sum of both rates, Γex + Γde.

Let us compare the rate equation model to the exact relaxation rates. To this end, we diagonalize
the matrix in Eq. (1.16), which determines the evolution of the density matrix ρ(t). The corresponding
eigenvectors ρ̂k and eigenvalues λk ∈ C with k = 0, 1, 2, 3 fully characterize the two-level dynamics.
Importantly, the real parts Re[λk] ≤ 0 (apart from a minus sign) determine the relaxation rates of
the system. Explicitly, we have for the case ∆ = 0,

λ0 = 0, (1.21a)

λ1,2 = −1
2γ −

1
2Γs ± 1

2

√
(γ − Γs)2 − 16Ω2, (1.21b)

λ3 = −γ. (1.21c)
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1.1 Open Quantum Systems

The value λ0 corresponds to the stationary state, since ∂tρ̂0 = 0 and determines the steady state values
for the populations ρgg, ρee and the coherences ρge, ρeg . The smallest value |Re[λk≥1]| describes the
slowest timescale for relaxation. In Fig. 1.2 the exact relaxation rates are shown and compared to
the total relaxation rate Γex + Γde of the rate equation model. The bifurcation point γb = 4Ω + Γs

indicates a transition where all eigenvalues λk become real for γ ≥ γb. This is the regime where we
expect excellent agreement with the rate equation model in Eq. (1.19). However, already for γ/Ω & 2

we obtain similar relaxation rates in the exact model and the rate equation approximation. For γ < γb

coherent dynamics can be observed in the form of damped Rabi oscillations.

Many-body dynamics and numerical simulation

Now, we extend the rate equation description to the case of many atoms within the two-level
approximation. Besides the atom-light coupling introduced before we include interactions between
atoms in the excited state. These interactions stem from coupling to Rydberg states and will be
discussed in the next section. For a system with L atoms we consider the Hamiltonian (~ = 1),

Ĥ =
L∑
i

[
Ω
(
σ̂ieg + σ̂ige

)
−∆σ̂iee

]
+

L∑
i<j

Vij σ̂
i
ee ⊗ σ̂jee. (1.22)

Here, Vij is the interaction strength between the ith and jth atom in the excited state. As discussed
in Ref. [31–33], the level shift due to the interaction can be cast as an e�ective detuning in the rate
equation approximation. To be speci�c, the resulting detuning of the ith atom in the presence of all
other atoms j is,

∆i ≡ ∆−
∑
j 6=i

Vij σ̂
j
ee. (1.23)

The e�ective detuning ∆i depends on the current state of all atoms and changes in time. In the limit
γ � Ω, we replace the detuning ∆ in the single atom rates in Eq. (1.20) by the e�ective detuning ∆i.
This leads to a set of 2L nonlinear equations,

∂tρ
(i)
gg = −Γ(i)

ex ρ
(i)
gg + Γ

(i)
deρ

(i)
ee , (1.24a)

∂tρ
(i)
ee = +Γ(i)

ex ρ
(i)
gg − Γ

(i)
deρ

(i)
ee , (1.24b)

with the constraint ρ(i)
ee + ρ

(i)
gg = 1 and transition rates

Γ(i)
ex =

2Ω2γ

γ2 + ∆2
i

, Γ
(i)
de = Γ(i)

ex + Γs, with ∆i ≡ ∆−
∑
j 6=i

Vijρ
j
ee. (1.25)
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We include the interaction shift ∆i from all excited atoms in the denominator. Note that we replaced
in the rate equation approximation the operator-valued e�ective detuning in Eq. (1.23) by a real
number. While an analytic solution is challenging, this system can be easily solved numerically. An
e�cient algorithm is a Monte Carlo technique, which we describe below.

At a given time, the classical state of the system can be described by a vector s of length L, where
each element, si ∈ {0, 1} with i = 1, . . . , L, is either 1 if site i is an excited state or 0 if site i is a
ground state. We have 2L di�erent con�gurations and thus a simulation in terms of the full density
matrix is infeasible for large systems. Instead, using a Monte Carlo approach we simulate a set of
states {sk(t)|k = 1, . . . , N} for a speci�c time t. We can use each representation sk(t) and calculate
expectation values 〈O(t)〉k of any observable O. Then, the average 〈O(t)〉 = 1

N

∑
k〈O(t)〉k is used

as an approximation to the exact solution of Eq. (1.24). The complexity is hereby hidden in the
simulation of many N � 1 faithful representations.

The given initial con�guration s0 is the same for all di�erent trajectories. We describe now the
numerical procedure how we obtain a single trajectory s(tj) with time steps tj . The time tj denotes
the point in time, where one element of the vector s(tj−1) has changed (0 ↔ 1). The algorithm
produces a Markov chain {tj , s(tj)} until a given time tj > T is reached, where T is the longest
time of interest. Essentially, the algorithm consists of two iterative steps:

1. Determine the next point in time tj+1

First, we calculate the total rate of change Γ. Each element si, corresponding to the ith atom,
in the vector s is �ipped with a rate

Γi = Γ(i)
ex (1− si) + Γ

(i)
desi. (1.26)

Thus, the total rate of change is Γ =
∑

i Γi. We calculate a waiting time τ for the next event
using a random number generator from a Poisson distribution with mean waiting time 1/Γ.
Then, the next point in time is given by tj+1 = tj + τ .

2. Calculate the updated con�guration s(tj+1)

To decide which atom i �ips its state, we calculate the corresponding weights wi = Γi/Γ for
any transition. Using a random number between 0 and 1 we choose one atom i according to
the weights wi and change its internal state (0↔ 1).

The algorithm can be repeated many times and averages over many trajectories can be used to
calculate the relevant observables. Further information on the algorithm and its validity can be found
in Ref. [25, 32–34].
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1.2 Rydberg Atoms

1.2 Rydberg Atoms

While the typical interaction between atoms in quantum gases is short-range, the use of so called
Rydberg atoms o�ers a way to generate strong and quasi long-range interactions. The study of Rydberg
atoms is an active research �eld, which includes quantum optics [14–16], ultracold chemistry [18–20,
35] and many-body physics [10, 21, 22, 36]. This section is based on Ref. [37, 38]. For a detailed
discussion see also Ref. [13].

Single Particle Physics

Rydberg atoms are atoms where the valence electron is in a state with a high principal quantum
number n� 1. The typical size of the electronic wavefunction scales as rn ∝ n2a0, where a0 is the
Bohr radius, and can reach large values rn ∼ 100 nm for n = 20− 100. Since the valence electron
is classically far away from the nucleus and the remaining electrons, Rydberg atoms are similar to
hydrogen atoms. In particular, the energy of an atom in state |α〉 = |n, l, s, j,mj〉 is given by

Eα = − Ry

(n− δnl)2
, (1.27)

where Ry ' 13.6 eV is the Rydberg constant and δnl denotes the quantum defect. The latter
is a correction to the bare hydrogen energy formula and includes the interaction of the valence
electron with the nucleus and the inner electrons. Rydberg atoms show extreme properties in their
scaling behavior with the principal quantum number n, such as a long lifetime τs ∝ n3 and a
large polarizability αp ∝ n7. While long lifetimes make Rydberg atoms an interesting platform for
quantum optical applications, the huge polarizability means that they are very sensitive to electric
�elds.

Two Particle Physics

Let us consider two Rydberg atoms in the frozen gas approximation [39] at positions R1 and R2

with relative position R = R2 − R1. When the distance R = |R| is larger than the size of the
electronic wavefunction, the interaction between two Rydberg atoms can be cast in the dipole-dipole
approximation

Ĥdd =
1

4πε0

d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

R3
, (1.28)

where r̂ = R/R and d̂i is the electric dipole operator of the ith atom. Three di�erent regimes can be
distinguished.
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van der Waals regime In the absence of interactions, two atoms in the same state |α, α〉 ≡
|α〉 ⊗ |α〉 have an energy Eαα = Eα + Eα. We assume that the state |α, α〉 is not degenerate
with any other state |β, γ〉 with energy Eβγ and that the Hamiltonian Eq. (1.28) can be treated
as a perturbation. While the �rst order correction typically vanishes, we obtain in second order
perturbation theory an energy correction to the state |α, α〉

∆Eαα =
∑
β,γ

| 〈α, α| Ĥdd |β, γ〉 |2

Eαα − Eβγ
. (1.29)

The resulting energy shift scales as ∆Eαα ' ~C6
R6 with distance R and can be interpreted as a van

der Waals type interaction. The coe�cient C6 may depend on the angle between the two dipoles and
scales as C6 ∝ n11 with the principal quantum number n. The interaction between two Rydberg
atoms can be directly measured [40] and the interaction strength can be on the order of several MHz

at a distance of several microns.
One implication of the strong interaction between atoms in their Rydberg state is the phenomenon

of the dipole blockade [23, 24]. Let us consider two atoms excited to the Rydberg state as is sketched in
Fig. 1.3a. When the distance R between the two atoms is large, we can neglect interactions and both
atoms can be resonantly excited. However, for small distances R . aB, where aB is the blockade
distance, the interaction induced level shift cannot be disregarded. The state with two Rydberg
excitations is shifted out of resonance and the system shares at most one excitation. The blockade
radius is de�ned by the distance where the interaction lineshift exceeds the linewidth w,

aB =

(
C6

w

)1/6

. (1.30)

Due to the van der Waals scaling this transition appears typically rather sharp as a function of the
separation of the atoms and thus often allows to approximate the interaction with a hard sphere
model [33] in cold gases or with a nearest neighbor approximation in lattice systems [32].

When a mesoscopic ensemble of atoms is con�ned within the blockade radius, the system is
termed superatom [41, 42]. Again, resonant excitation of the ensemble drives a transition between a
state with zero excitation and maximal one excitation. Rydberg superatoms were already realized in
several experiments [22, 36, 43–45]. A detailed description and physical consequences are discussed
in Chapter 3.

Förster resonance If the two atom state |α, α〉 is degenerate with another pair state |β, γ〉, then
one can neglect the contributions from second order perturbation theory with other nonresonant
states. The corresponding level shift from resonant dipole-dipole interaction scales as ~C3

R3 . In general,
these states are not degenerate, but have a small energy mismatch ~δw = Eαα−Eβγ which is called
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Figure 1.3: (a) Illustration of the dipole blockade [23, 24] using a resonant excitation laser with Rabi
frequency Ω. Red �lled circles denote Rydberg state atoms and open circles ground state
atoms. The excitation of two atoms with distance R smaller than the blockade radius aB

is suppressed due to the strong Rydberg-Rydberg interaction induced level shift exceeding
the linewidthw. (b) Typical interaction strengthV of the dipole-dipole interaction between
Rydberg atoms versus the distance R. Also shown are Coulomb interactions (highest
interaction strength), magnetic and van der Waals interactions between ground state
atoms (smallest interaction strength). The �gure is taken from Ref. [38].

Förster defect. Due to di�erent polarizabilities of the atomic states |α〉 , |β〉 , |γ〉, their energies can be
tuned by applying electric �elds [46]. For a �xed Förster defect δw, there is a transition from the
Förster resonance regime for small distances R to a van der Waals regime for large R. The crossover
between the two regimes occurs around Rc ' (C3/δw)1/3.

In Fig. 1.3b a typical example of the interaction strength between atoms in their Rydberg state
is shown. While the Rydberg-Rydberg interaction is clearly smaller than the Coulomb interaction
for charged particles, it can be many orders of magnitude larger than interactions between neutral
ground state atoms. For small distances in the Förster resonance regime the interaction scales as
∝ 1/R3 and for large distances in the van der Waals regime it scales as ∝ 1/R6.

Resonant dipole-dipole interaction Finally, consider the case where two atoms are initially in
two di�erent Rydberg states |αβ〉 [47]. This state is directly coupled by the dipole-dipole interaction
to the state |βα〉. Since both states have the same energy Eαβ = Eβα, this process is resonant and
we have

Ĥdd '
~C3

R3

(
|αβ〉 〈βα|+ |βα〉 〈αβ|

)
, (1.31)

where the interaction coe�cient scales with the principal quantum numbern asC3 ∝ n4. Interpreting
the two di�erent Rydberg states as two pseudo-spin states, this realizes a long-range XY spin
Hamiltonian.
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Figure 1.4: Measurement of the Hall resistance RH = 1/σH and and the longitudinal resistance R
versus the magnetic �eld, taken from Ref. [52]. The fractions follow a sequence f =
n/(2n+ 1), where n is an integer.

1.3 Fractional �antum Hall E�ect

In this section we summarize the main concepts of the fractional quantum Hall e�ect. A full
explanation of quantum Hall physics is beyond the scope of this thesis. For detailed discussions of
the underlying mechanisms we refer to Ref. [48, 49].

In 1982 – only two years after the discovery of the integer quantum Hall e�ect by von Klitzing [50]
– Tsui, Stormer and Gossard [51] discovered precisely quantized plateaus of the Hall conductivity at

σH = f
e2

h
, (1.32)

where f is a fraction. In the following years a hole sequence of fractions f was observed, see Fig. 1.4.
While the integer quantum Hall e�ect could be explained by noninteracting electrons in a magnetic
�eld, the occurrence of fractions required to take the Coulomb interaction between electrons into
account.
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Figure 1.5: (a) Sketch of the Landau level energy structure. The quantum number n labels the Landau
level and ` the angular momentum. Landau levels are gapped by the cyclotron frequency
ωc. The lowest Landau level (n = 0) is fully occupied with electrons realizing a magnetic
�lling ν = 1 integer quantum Hall phase. (b) Eigenstates φn,`(r, ϕ) in the lowest Landau
level (n = 0) with di�erent angular momentum ` versus the distance r in units of the
magnetic length `B . Only the ` = 0 mode has a nonvanishing amplitude at the center of
the system r = 0.

Model Consider N electrons con�ned in a two-dimensional disc geometry with a strong magnetic
�eld. The system is described by the Hamiltonian,

Ĥ =
∑
i

1

2me
(pi − eA(ri))

2 +
∑
i<j

V (|ri − rj |), (1.33)

where me is the electron mass and A(r) = B/2(−y, x, 0)T the vector potential in symmetric gauge,
which leads to a magnetic �eld in z-direction of strength B. The electrons interact via a repulsive
Coulomb interaction

V (r) =
e2

4πε0r
, (1.34)

which depends only on the mutual distance r between two electrons. Here, ε0 is the permittivity.
This model assumes spin-polarized particles without additional disorder.

1.3.1 Noninteracting Case & Integer �antum Hall E�ect

Let us �rst neglect interactions between electrons, setting V (r) = 0. Then, the spectrum of the
Hamiltonian (1.33) is described in terms of Landau levels En = ~ωc(n+ 1

2) with cyclotron frequency
ωc = eB/me as shown in Fig. 1.5a. The corresponding eigenfunctions φn,` are labeled by the Landau
level n = 0, 1, . . . and the angular momentum ` = −n,−n+ 1, . . .. Note that the eigenenergies En
do not depend on the angular momentum ` and have therefore a large degeneracy.

Consider N electrons occupying an area A with density ρ = N/A. The extent of the cyclotron
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orbits 2π`2B is determined by the magnetic length

`B =
√

~/eB. (1.35)

Comparison of the density to the area of a cyclotron orbit leads to the de�nition of the magnetic
�lling factor

ν = 2π`2Bρ =
N

Nφ
, (1.36)

where Nφ counts the number of �ux quanta in the system. In particular, for ν being an integer,
electrons �ll all ν−1 Landau levels. This is an incompressible state gapped by the cyclotron frequency
ωc and gives a �rst hint for the quantization of the Hall conductivity σH at integer values of the
magnetic �lling ν.

At low temperatures kBT � ~ωc and ν = 1, all electrons occupy states within the lowest Landau
level (LLL) n = 0. The corresponding single-particle wavefunctions are

φ0,`(z, z
∗) =

z`√
2π`

2(`+1)
B 2``!

exp

(
−|z|

2

4`2B

)
, (1.37)

where we used the complex coordinate z = x− iy. For the case of N electrons, we can construct the
fermionic many-body wavefunction using the Slater determinant and obtain

Ψν=1(z1, . . . , zN ) = N
∏
i<j

(zi − zj) exp

−∑
j

|zj |2

4`2B

 , (1.38)

where N is a normalization constant. Besides the Gaussian factor, the wavefunction depends only
on the relative distances zi − zj between the particles. The product

∏
i<j (zi − zj) is termed Jastrow

factor.

1.3.2 Interacting Case & Fractional �antum Hall E�ect

Let us discuss the case of interacting electrons. We assume that we are in a regime of low temperatures
compared to typical interaction energies ∆int and the cyclotron frequency ωc, i.e. kBT � ~∆int �
~ωc. Furthermore, we discuss here only the case of magnetic �lling ν ≤ 1. Then, it is su�cient to
project the Hamiltonian (1.33) to the LLL,

P̂LLLĤP̂LLL = N
1

2
~ωc + P̂LLL

∑
i<j

V (|ri − rj |)P̂LLL, (1.39)
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where P̂LLL is the projector to the LLL. Now, the only relevant energy scale is given by the repulsive
Coulomb interaction and we cannot solve the problem perturbatively.

Haldane’s pseudopotentials A method to quantify the interaction V (r) between electrons in
the LLL was presented by Haldane in 1983 [53]. Consider the case of two particles with relative
angular momentum m and center of mass angular momentum M . Evaluating the interaction part in
Eq. (1.39) yields

P̂LLLV (r)P̂LLL =
∑
M,M ′

∑
m,m′

|M,m〉 〈M,m|V (r) |M ′,m′〉 〈M ′,m′|

=
∑
M,m

Vm |M,m〉 〈M,m| , (1.40)

where we used that the interaction potential depends only on the relative coordinate r and an-
gular momentum is a conserved quantity. The values Vm = 〈m|V (r) |m〉 are called Haldane’s

pseudopotentials. For the case of Coulomb interaction, we explicitly have

Vm =
e2

8πε`B

Γ(m+ 1
2)

Γ(m+ 1)
, (1.41)

where Γ(x) is the Gamma function. The pseudopotentials quickly drop with increasing relative
angular momentum m.

Laughlin’s wavefunction The �rst successful attempt to describe the ground state in the case
of fractional �lling ν = f was made by Laughlin in 1983 [54]. Using the variational wavefunction
(Laughlin wavefunction),

ΨLN(z1, . . . , zN ) = NLN

∏
i<j

(zi − zj)m exp

−∑
j

|zj |2

4`2B

 , (1.42)

the Hall resistance series with fractions f = 1/m, where m is an odd integer, could be explained.
In the case of interacting fermions, m has to be an odd integer to maintain the anti-symmetry. The
Laughlin wavefunction has a similar form as in the case of noninteracting electrons as per Eq. (1.38),
but with additional Jastrow factors. Since a Jastrow factor with power m increases the relative
particle distance and thus screens the pseudopotentials V0, . . . , Vm, it reduces the interaction energy.
Additionally, it attaches m �ux quanta to each particle. Note that a Laughlin state can also exist for
bosonic particles with m being an even integer [55, 56].
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�asi-excitations Finally, let us comment on the low-energy excitations of the Laughlin wave-
function, which are termed quasi-hole excitation. For a system with few, i.e. m � N quasi-hole
excitations, the state can be described by the wavefunction

Ψmqh(z1, . . . , zN ) =
∏
j

zmj ΨLN. (1.43)

Due to the factor
∏
j z

m
j additional �ux is attached to the center of the system and thus produces a

hole excitation.
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Chapter 2

Bistability vs. Metastability

The transition between di�erent phases of matter, such as between a liquid and a gas, is an active and
interesting research �eld in physics. For many years, two di�erent categories of phase transitions,
classi�ed by the nature of �uctuations, were explored: On the one hand, quantum phase transitions

[57] occur at zero (or very low) temperatures, when the system is in its ground state. Upon system
parameter changes the ground state properties may change drastically, which indicates a phase
transition. Examples are supraconductivity, the super�uid-to-Mott-insulator transitions [2] and the
quantum Ising model [57]. Hereby, the transition is driven purely by quantum �uctuations. On the
other hand, a system in its thermal equilibrium can undergo a classical or thermal phase transition

upon changes in the temperature T [58]. This transition is driven by thermal �uctuations. For a �nite
temperature T , the system can no longer be described by a pure ground state. Rather, the system is
in a thermal (Gibbs) state. Prominent examples are a liquid-gas transition, the emergence of a Bose-
Einstein condensate at low temperatures and the Ising model. The latter plays a fundamental role in
the explanation of ferromagnetism and describes a transition from a disordered spin con�guration
with zero magnetization to an ordered ferromagnetic phase. In the case of continuous (or second
order) phase transitions di�erent physical systems behave in a universal fashion when approaching a
critical point. Then, the correlation length ξ and correlation time τc diverge upon reaching a critical
point ∆c,

ξ ∝ (∆−∆c)
−ν , τc ∝ ξz ∝ (∆−∆c)

−νz, (2.1)

where ∆ is a tuning parameter and ν, z are the critical exponents.
While quantum and thermal phase transitions occur in equilibrium, much less is known about the

transition between di�erent phases in nonequilibrium systems. We are particularly interested in open
quantum systems, where the competition between coherent drive, interactions and dissipation may
lead to novel steady states, so called nonequilibrium steady states. Upon system parameter changes a
phase transition may occur driven by both, quantum and classical �uctuations. While these states
can strongly di�er from a thermal state [59, 60], they may show similar critical behavior as seen in
thermal and quantum phase transitions. However, also novel properties can emerge as shown in
Ref. [61].

In contrast to thermal equilibrium, where the state is determined solely by maximizing the entropy
at a given temperature, in a nonequilibrium system the steady states are obtained by solving a partial
di�erential equation. This makes a full theoretical description challenging. Starting from early
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considerations of phase transitions in open many-body quantum systems [61, 62], many theoretical
approaches were developed. Due to the large size of the Hilbert space, exact numerical methods are
limited to small system sizes [63, 64]. Therefore, advanced numerical methods such as open system
TEBD (time evolving block decimation algorithm) [34, 65], cluster mean �eld descriptions [66] and
variational approaches [67, 68] were developed. However, these methods are often restricted to low
dimensions and require that correlations decay on a short length scale. The method employed in
this chapter is based on a rate equation model, as discussed in Sec. 1.1.2, which is only valid in the
strongly dissipative regime [31, 32]. Since rate equation models are amenable to e�cient Monte Carlo
simulations this approach does allow to model large systems even on long time scales. A promising
analytical approach uses a Keldysh technique for open quantum systems [69–71]. This approach
considers the long wavelength properties of the system and may thus be applicable to describe phase
transitions. Another commonly used technique is mean �eld theory [72–76], which typically results
in a set of nonlinear equations for the steady state. In this case, multiple steady state solutions may
exist, which is of particular interest for what follows. However, it is already known from thermal
phase transitions that mean �eld approximations can result in wrong predictions. These results
should thus be contrasted with those from advanced numerical methods. The nonlinear character of
mean-�eld equations may lead to the prediction of bistable or multi-stable solutions in the steady
state, while an exact numerical treatment suggests a unique steady state [65, 67, 68, 77].

The notion of bistability in a driven dissipative environment was already discussed several years
ago in the context of optical systems [78]. In a nonlinear single mode cavity subject to photon
losses two disjunct states of the semi-classical dynamics can occur, one with low and one with high
photon number. The steady state of the full quantum dynamics is however unique. Starting with
either one of the bistable states, quantum tunneling to the unique steady state occurs on very long
timescales. It was shown that two stable steady states emerge under a proper thermodynamic limit
[64]. This thermodynamic limit is however arti�cial as it requires a diverging photon number in
the considered mode. Later, the single photonic cavity was extended to an array of coupled cavities,
where a thermodynamic limit in the conventional sense can be introduced which requires the number
of coupled cavities to go to in�nity [65, 76, 79–81]. It was argued that the competition between
strong interactions and photon losses may lead to a global bistable phase in large cavity systems.

Similarly the possibility of bistable steady states was discussed in interacting spin models with
dissipation [69, 82]. Rydberg lattice systems are one interesting platform for studying dissipative
spin models. Here, the strong van der Waals interaction between atoms in their Rydberg state
and the coherent drive compete with dephasing and the Rydberg state lifetime. Due to the large
�exibility of the individual parameters, Rydberg systems are an ideal platform to study open many-
body systems. An essential ingredient thereby is the large separation of timescales and the quasi
long-range interactions realizing spin models with kinetic constraints [71, 83–88].

The possibility of the existence of bistable steady states attracted much attention in the case of o�-

28



resonantly driven Rydberg gases. In the so called facilitation or antiblockade regime an o�-resonant
seed excitation triggers an excitation cascade and leads to interesting dynamics and microscopic
structures [89–91]. First theoretical approaches [72–74] showed that the resulting state exhibits
strong �uctuations. While exact numerical simulations were limited to small system sizes, analytical
mean �eld theories predicted the existence of a bistable steady state. Experimental investigations
of this regime further supported this idea: Firstly, in cold atom experiments [92, 93], the counting
statistics of Rydberg excitations was measured. A bimodal distribution with a peak at low and high
number of Rydberg excitations and strong Rydberg state number �uctuations was observed. These
are indications for the existence of a bistable phase. However, as argued in Ref. [77] the experiments
were performed on short timescales and therefore do not probe the steady state. Secondly, in thermal
vapor cells [94–97] a hysteresis was observed. Here, parameter sweeps of the detuning in forward
and backward direction yield a �nite hysteresis area and a slowing down of the relaxation timescale.
In Ref. [97] it was argued that the underlying interaction mechanism stems from ions rather than
interacting Rydberg atoms. More advanced theoretical approaches precluded the existence of two
disjunct steady states [67, 68, 77]. However, in Ref. [98] it was argued that bistable states may exist in
experiments with mixed power law interactions in combination with atomic motion, which support
the mean �eld prediction. Whether or not true bistability exists in Rydberg systems under conditions
of facilitation is still an open question and we will address this issue in the following.

In the work presented here we use a combined theory-experiment approach to study the question
of bistability in o�-resonantly driven Rydberg gases on a lattice. The experiment allows to observe
the long time dynamics of a driven Rydberg gas and thus should re�ect the true stationary state
of the system. Based on measuring an in-situ Rydberg ion signal, temporal correlation functions
are analyzed. This yields insight into the underlying structure of the system and allows to make
a comparison to a theoretical model for the formation of small excitation clusters. These clusters
originate from initial seed excitations and act as independent parts of the steady state for small
Rydberg excitation densities. Within this model we estimate the typical cluster size and lifetime
as well as the number of clusters in the system. Furthermore, we perform advanced numerical
simulations using a many-body rate equation approach. This allows us to access microscopic details
and we calculate a counting distribution and hysteresis sweeps. Altogether, we conclude that the
underlying phase is a metastable [99, 100] rather than a bistable state.

This chapter is organized as follows: We start with a de�nition of bistability and metastability in
open many-body systems in Sec. 2.1 and discuss their direct consequences for phase transitions upon
system parameter changes. In Sec. 2.2 we describe the experiment and the underlying microscopic
model, which is the basis of our further discussion. In Sec. 2.3, we start with a discussion of a
simpli�ed model of the Rydberg excitation dynamics. Speci�cally, we introduce a single cluster
model, which can explain various features of the steady state. Finally, we use this model to explain
the experimental �ndings in Sec. 2.4. We further support the experimental results with numerical
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Chapter 2 Bistability vs. Metastability

studies.
The present chapter is based on the publication [FL4], partially with text overlap.

2.1 Bistability in Open �antum Systems

2.1.1 Definition

Let us start by de�ning bistability in open quantum systems and contrast it to metastability. We
assume a system coupled to a large reservoir, which is described by a master equation in Lindblad
form for the density matrix ρ̂ [29, 101]. The Lindblad master equation and the corresponding
approximations were already discussed in Sec. 1.1. We can cast the time evolution of a state ρ (vector
of density matrix elements) using a Lindblad superoperator L̂ as

∂tρ = L̂ρ. (2.2)

The so called Lindbladian L̂ is the generator of the dissipative system dynamics. It includes both, a
coherent part described by a Hamiltonian Ĥ as well as couplings to reservoirs described by jump
operators L̂µ. The superoperator L̂ is not necessarily hermitian, i.e. L̂ 6= L̂†. Nevertheless, we
assume that L̂ can be diagonalized,

L̂ρ̂k = λkρ̂k, (2.3)

where ρ̂k denotes the right eigenstate and λk ∈ C the corresponding eigenvalue. We will assume
that k is an ordered index with Re[λk] ≥ Re[λk+1] and the largest eigenvalue is λ0 = 0. The states
ρ̂k are in general no proper density matrices, since tr{ρ̂k} = 0 for λk 6= 0. However, there is a subset
of states

S = {ρ̂k |λk = 0, tr{ρ̂k} = 1} (2.4)

having a vanishing real eigenvalue and a trace equal to one. These are the stationary states of the
system, since ∂tρ̂k = 0. Now, if S contains exactly one state ρ̂0, it is the unique steady state of the
system and we call the system monostable. If S contains exactly two linear independent stationary
solutions ρ̂0, ρ̂1, both of which are true density matrices, we call the system bistable. For the case
where S contains more than two stationary states, we call the system multistable.

The solution of Eq. (2.2) with initial value ρ(t = 0) can be formally written as

ρ(t) = eL̂tρ(0) =
∑
k

ckρ̂ke
λkt, (2.5)

with coe�cients ck = tr{ρ̌kρ(0)} and ρ̌k being a left eigenstate of L̂, i.e. ρ̌kL̂ = λkρ̌k. Here, we
used the orthogonality relation tr{ρ̌kρ̂l} = δkl. Clearly, the real parts of the eigenvalues Re[λk] ≤ 0
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2.1 Bistability in Open Quantum Systems

correspond to the relaxation rates (with a minus sign) of the system and characterize the damping
spectrum. Consider the long time limit t→∞, where a system approaches a steady state ρss. The
impact of all states ρ̂k with nonvanishing relaxation rates decays to zero. For a monostable system,
we have a unique steady state ρss = ρ0 with c0 = 1. Conditions on the uniqueness of steady states
are discussed in Refs. [102–104]. The steady state of a bistable system can be described by a convex
sum of the two stationary states,

ρss = pρ̂0 + (1− p)ρ̂1, (2.6)

where p = tr{ρ̌0ρ(0)}. In this case, the �nal steady state depends on the initial condition ρ(0) of the
system.

Here, we are interested in many-body systems with a linear system size L. We assume that
interactions as well as reservoir couplings are local, i.e. independent reservoirs act only on a �nite
space of the system. As an example, the spontaneous decay of an atom is a local process. In general,
these systems have a unique steady state as long as the system is �nite and the reservoir couplings
are not �ne-tuned (see e.g. Ref. [105] for a system where symmetries generate multiple degenerate
stationary states).

Experiments are always performed in a �nite system within a �nite observation time. Thus, the
question is how can we determine whether a system is bistable or not? To this end, we consider the
damping spectrum and assume a �nite system L <∞ with a unique steady state. The spectral gap
|Re[λ1]| determines the longest timescale τ = |Re[λ1]|−1 for relaxation towards the steady state.
For times t� τ , the system is essentially in the steady state ρss ' ρ̂0. On top of that, if the system
has a separation of relaxation rates

|Re[λ1]| � |Re[λk]| for k ≥ 2, (2.7)

we call it metastable. Then the transient relaxation is determined by a much shorter timescale
τ ′ = |Re[λ2]|−1 � τ . For times τ ′ . t . τ the system may appear stationary, as was discussed in
Ref. [99, 100].

2.1.2 Long-range order and critical slowing-down

Upon increasing the linear system size L, the relaxation rate |Re[λ1]| may decrease. Nevertheless,
for any �nite size the system is metastable. If in the thermodynamic limit |Re[λ1]| vanishes, we
obtain a truly bistable system with two stationary states. The relaxation rate may also approach an
asymptotic value when the system size is increased and exceeds some length scale. In this case the
system is metastable. As we will argue below true bistability requires the absence of such a critical
length scale and is thus connected to long-range order. The two possibilities of a metastable and
a bistable system are indicated in Fig. 2.1. The transition to a bistable regime constitutes a phase

31



Chapter 2 Bistability vs. Metastability

Figure 2.1: Schematic damping spectrum−Re[λk] depending on the system sizeL for (a) a metastable
system and (b) a bistable system. In the case of a metastable system, the spectral gap
|Re[λ1]|, which determines the slowest timescale for relaxation, approaches a �nite value
in the thermodynamic limit L→∞. For the bistable case, the spectral gap vanishes and
we obtain two stable states ρ̂0, ρ̂1 with ∂tρ̂0 = ∂tρ̂1 = 0.

transition in an open quantum system. Similar to the case of thermal and quantum phase transitions
[57, 58] we expect an algebraic scaling of the relaxation time

τ ∼ Lα>0 (2.8)

diverging with the system size L. The exponent α thereby depends on the system. An indication of a
bistable phase is therefore a critical slow down of the relaxation dynamics with increasing system
size L. True bistability can be distinguished from a metastable system by considering the scaling of
the relaxation timescale with the system size. In a metastable system, the slowest relaxation time
approaches a constant value τ <∞ in the thermodynamic limit L→∞, see Fig. 2.1a.

Let us consider a bistable system, which has two stationary states in the thermodynamic limit
L→∞. We assume that each of the possible stationary states is characterized by a di�erent order
parameter. As will be shown below, this implies long-range order. However, in the corresponding
�nite system in the scenario of Fig. 2.1b we have a unique steady state and expect also a �nite
correlation length ξ. Thus, approaching the thermodynamic limit we presume that correlation
lengths ξ diverge algebraically with the system size L,

ξ ∼ Lβ>0, (2.9)

where β is a system dependent parameter.

Bistable steady state and long-range order

Here, we proof that a translational invariant system which supports a bistable steady state has
long-range order. To this end, consider the bistable state Eq. (2.6). We assume that a local observable
x̂j exists which distinguishes both stationary states ρ̂0 and ρ̂1. Here the index j represents a position
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2.1 Bistability in Open Quantum Systems

or compact region in space. Without loss of generality we set

〈x̂j〉0 ≡ tr{x̂j ρ̂0} = +1 ∀j, (2.10)

〈x̂j〉1 ≡ tr{x̂j ρ̂1} = −1 ∀j. (2.11)

Thus, the expectation value of the local operator x̂j of the steady state in Eq. (2.6) is given by

〈x̂j〉ss = p〈x̂j〉0 + (1− p)〈x̂j〉1 (2.12)

= p− (1− p) = 2p− 1. (2.13)

The covariance for two operators X̂ and Ŷ is de�ned as

〈〈X̂, Ŷ 〉〉 ≡
〈(
X̂ − 〈X̂〉

)(
Ŷ − 〈Ŷ 〉

)〉
= 〈X̂Ŷ 〉 − 〈X̂〉〈Ŷ 〉. (2.14)

Since the covariance is positive semi-de�nite we have 〈〈X̂, X̂〉〉 ≥ 0. If we de�ne an operator
X̂ =

∑
j x̂j , then we have explicitly,

〈〈X̂, X̂〉〉 =
∑
j,k

(〈x̂j x̂k〉 − 〈x̂j〉〈x̂k〉)

=
∑
j,k

〈〈x̂j , x̂k〉〉 ≥ 0. (2.15)

Since this holds for both stationary states ρ̂0 and ρ̂1, we can estimate∑
j,k

〈x̂j x̂k〉0,1 ≥
∑
j,k

〈x̂j〉0,1︸ ︷︷ ︸
=±1

〈x̂k〉0,1︸ ︷︷ ︸
=±1

= L2 (2.16)

Note that the two expectation values have always the same sign. Inserting the estimate in Eq. (2.15),
we obtain for the steady state

〈〈X̂, X̂〉〉ss ≥ L2(p+ (1− p))− L2(2p− 1)2

= L24p(1− p). (2.17)

In a translational invariant system, only the relative distance d = j − k should be relevant. Thus, we
can cast the covariance for the steady state as

〈〈X̂, X̂〉〉ss = L
∑
d

〈x̂0x̂d〉ss − 〈x̂0〉ss〈x̂d〉ss

= L
∑
d

〈〈x̂0, x̂d〉〉ss (2.18)
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Chapter 2 Bistability vs. Metastability

Figure 2.2: (a) Schematic relaxation behavior of the antiferromagnetic open quantum system de-
scribed in Ref. [59]. The timescale TR denotes the relaxation timescale to one of the two
checkerboard con�gurations. The timescale TS describes the switching between the two
checkerboard con�gurations. (b) The time evolution of a single trajectory shows the
switching in the occupation number of each sublattice as indicated by the color code in (a).
(c) Scaling of the switching time TS indicated in (a) with linear system size L. The error
bars indicate the stochastic uncertainty in the retrieved switching time and the dashed
line indicates an algebraic �t function in the system size L. We used Γ↑/Γ↓ = 4 and thus
p0 = 0.8 with periodic boundary conditions.

In total, combining the last two equations we obtain the inequality∑
d

〈〈x̂0, x̂d〉〉ss ≥ L 4p(1− p). (2.19)

In general, this can only be ful�lled when 〈〈x̂0, x̂d〉〉ss approaches a constant value for d→∞ in the
thermodynamic limit L→∞. Otherwise, for vanishing 〈〈x̂0, x̂d〉〉ss we can always �nd a system
size L, which violates the above inequality. Unless p = 0 or p = 1 we have long-range order.

2.1.3 Example: Antiferromagnetic Order in Rydberg Superatom La�ices

To give an example of a phase transition to a bistable mixed steady state, we discuss the Rydberg
superatom model of Ref. [59]. It was shown that this system hosts a phase transition from an
unordered to an ordered state upon increasing the resonant excitation probability p0. A 2D lattice
composed of Rydberg superatoms is continuously excited to the Rydberg state under conditions
of nearest neighbor blockade. In the strong driving regime p0 ≥ 0.749 the translational lattice
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2.1 Bistability in Open Quantum Systems

symmetry is spontaneously broken and the Rydberg excitations arrange in one of two checkerboard-
type sublattices [106, 107], as indicated in Fig. 2.2a. As will be discussed in Chapter 3, Rydberg
superatoms allow for a strong driving strength p0 → 1. For simplicity, we assume a strong nearest
neighbor interaction (hard core) and neglect the quasi long-range van der Waals interaction on the
next nearest neighbors. Within this hard core approximation, we can describe the system dynamics
with the following Lindblad jump operators

L̂
(x,y)
↓ =

√
Γ↓σ̂

(x,y)
gr ,

L̂
(x,y)
↑ =

√
Γ↑σ̂

(x,y)
rg (σ̂(x−1,y)

rr − 1)(σ̂(x+1,y)
rr − 1)(σ̂(x,y−1)

rr − 1)(σ̂(x,y+1)
rr − 1). (2.20)

This model is reminiscent of a hard core lattice gas [107, 108] with excitation probability p0 =

Γ↑/(Γ↑ + Γ↓). It is however a stochastic model, where the number of excited hard spheres �uctuates
dynamically. For large driving strength Γ↑ � Γ↓ an antiferromagnetic state emerges, which has
long-range order. For any �nite system, we have a unique steady state with equal weights for
both checkerboard con�gurations. The initial relaxation time TR to one of both checkerboard
con�gurations was extracted in Ref. [59] and is schematically sketched in Fig. 2.2a. This time scales
with the linear system size L as TR ∝ L2.22±0.10, where the uncertainty stems from the algebraic
�t function. Observing the system on an even longer timescale, we extract a switching time TS
between both checkerboard con�gurations. As an example, a single trajectory of the system dynamics
governed by Eq. (2.20) is shown in Fig. 2.2b. We extract a switching time scaling with the linear
system size as

TS ∝ L2.3±0.5 (2.21)

and is shown in Fig. 2.2c. Note that both the exponents for relaxation and switching are compatible
within their uncertainty in the algebraic �t and diverge in the thermodynamic limit. This indicates a
phase transition to a bistable steady state, where the system may relax to any of the two checkerboard
con�gurations. For times t . TR, the system appears metastable and the state is an admixture of the
stationary state ρ̂0 and the �rst eigenstate ρ̂1 [99].

The results for the exponents are compatible with the dynamical critical exponent in kinetic Ising
models without long-range interactions [109, 110]. A simple argument for α = 2.3±0.5 is as follows:
To switch the checkerboard con�guration a defect line (domain wall) has to move through the whole
2D lattice which implies α = 2 and α > 2 including �uctuations of the speci�c system. However, as
argued in Ref. [111–113] the switching time attains an exponential correction in the linear system
size scaling as TS ∝ Lα exp(κL) in the case of a two-dimensional kinetic Ising model. This is a
result of the interfacial tension (included in the constant κ) of one-dimensional domain walls. For
the driven Rydberg lattice gas and within the error bars of our numerical data in Fig. 2.2c we cannot
verify the existence of exponential corrections which become dominant for large system sizes L.

35



Chapter 2 Bistability vs. Metastability

Figure 2.3: Schematic sketch of the experimental setup: Atoms in a large 3D optical lattice are
continuously driven to a Rydberg state with Rabi frequency Ω and detuning ∆ > 0. Open
circles denote atoms in the ground state, red circles in the Rydberg state and blue circles
indicate vacancies due to ionization. Ions are guided to a detector by applying a small
electric �eld.

2.2 Characterization of the Experiment

In what follows we describe an experiment performed in the group of Herwig Ott. The study
addresses the question whether the observed dynamics in an o�-resonantly driven Rydberg gas
resembles a metastable or bistable system. This question was discussed inconclusively in many
experiments [92–95, 97] and theoretical works [67, 72, 77, 98, 114, 115]. We start with a description
of the experiment and a microscopic model. The microscopic model cannot be solved exactly and
thus we �rst construct a simpli�ed cluster model for the excitation dynamics. The model will then be
supported by numerical simulations of the full model using a rate equation approximation.

2.2.1 Experiment and Measurement

Rubidium atoms are prepared in a Mott insulating phase in a 3D optical lattice with unit �lling. The
lattice constant in x- and y-direction is ax,y = 374 nm and in z-direction az = 529 nm. The number
of atoms in the system is approximately Nat ' 20 000. The atomic ground state |g〉 = |5S1/2〉 is
coupled continuously to a Rydberg state |e〉 = |25P1/2〉 via a one-photon transition at a wavelength
of λ = 297 nm. The corresponding transition Rabi frequency Ω is varied in the range of 2π× 10 kHz

to 2π × 500 kHz and the laser is blue detuned up to ∆ = 2π × 100 MHz. Atoms in the Rydberg
state interact with a potential V (r) = Cp/r

p. In Fig. 2.3 the experiment is sketched. Additionally
we assume the following incoherent contributions: First, the Rydberg state has an e�ective lifetime
of τs = Γ−1

s ' 20 µs. This lifetime includes black-body induced transitions to other Rydberg states.
Second, we estimate a bare decoherence rate of γ0 ≥ 300 kHz. Additional dephasing due to the
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Figure 2.4: (a) Measured ion signal R(t) for a single (red) and averaged-over-40 (blue) experimental
realization. The single measurement already indicates strong number �uctuations beyond
Poisson-distributed �uctuations. (b) Corresponding second order temporal correlation
function g(2)(τ) from the ionization signal in (a). Experimental parameters are Ω =
2π × 77 kHz and ∆ = 2π × 13 MHz. The correlation function shows super-Poissonian
�uctuations with a bunching amplitude g(2)(0)� 1.

Rydberg-Rydberg interaction in a lattice with �nite width of the trapping potential [116, 117] will be
discussed later.

The excitation dynamics is monitored using ionization of Rydberg atoms with small rate Γion =

2 kHz, which stems from photoionization caused by the dipole trap lasers. Ionized atoms produce
vacancies in the 3D optical lattice and may therefore alter the excitation dynamics. Using a weak
electric �eld of strength 90 mVcm−1 ions are guided towards a detector. The retrieved ion rate R(t)

is proportional to the number of excited Rydberg atoms N(t), corrected by the detector e�ciency of
40%,

R(t) = ΓionN(t). (2.22)

More details on the experimental setup can be found in Ref. [FL4] and [118]. The experimental
observation time T ' 100 ms is several orders of magnitude larger than the Rydberg state lifetime.
This is an indication that the experiment probes the steady state regime. In contrast, other experiments
probe the excitation dynamics on timescales T ' 10 µs [92, 93]. We assume that atom loss due to
ionization does not alter the steady state properties. The detector signal R(t) is recorded over several
individual experimental trajectories.

Using the ion rate R(t) we calculate the ensemble averaged second order temporal correlation
function

g(2)(τ) ≡ 〈R(t+ τ)R(t)〉
〈R(t+ τ)〉〈R(t)〉

. (2.23)

Since atoms are lost during the ionization process, the temporal correlation function strictly speaking
depends on two points of time. However, atom loss does alter the excitation dynamics only on longer
timescales and thus g(2)(τ) should only depend on the relative time τ between two detector events.
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In Fig. 2.4a a typical ionization signal is shown. An individual trajectory (red line) shows strong
�uctuations of the Rydberg excitation number. The coarse-grained ion signal (blue line) shows
a decreasing ion signal in time displaying the slow atom loss of the system. The corresponding
temporal correlation function is shown in Fig. 2.4b. Using an exponential �t function

g(2)(τ) =
(
g(2)(0)− 1

)
e−τ/τc + 1, (2.24)

we extract the two relevant parameters discussed in the following, namely the correlation time τc
and the bunching amplitude g(2)(0). For a noninteracting system of atoms, the excitation dynamics
follows a Poisson distribution and the bunching parameter is g(2)(0) = 1 [34, 36]. In this case, the
correlation time τc = τs is determined by the Rydberg state lifetime. The experimental data clearly
show the �ngerprints of a strongly interacting gas of Rydberg atoms with an o�-resonant laser
excitation scheme. Besides strong excitation bunching g(2)(0)� 1, an increase in the correlation
time τc � τs is observed. As will be discussed later in details, this behavior can be attributed to the
formation of excitation clusters. While an excitation event in a spatially extended region of ground
state atoms is rare using a strongly detuned laser, the �rst seed excitation can trigger an excitation
cascade. This leads to a strong bunching in the detected ion signal. Now, the cluster grows and
shrinks in time. The size of the cluster is limited by the �nite Rydberg state lifetime and collisions
with other clusters. Thus, the retrieved correlation time is a measure of the cluster lifetime.

2.2.2 Microscopic Description

We describe the experiment in a system-reservoir approach using the Lindblad master equation
introduced in Sec. 1.1. The coherent dynamics of the system is described by a Hamiltonian (~ = 1)

Ĥ =
∑
k

[
Ω
(
σ̂keg + σ̂kge

)
−∆σ̂kee

]
+
∑
k>k′

V (rk, rk′) σ̂
k
ee ⊗ σ̂k

′
ee. (2.25)

We assume a spatially and temporally uniform laser �eld driving the transition between ground state
|g〉 and Rydberg state |e〉 with laser carrier frequency ω and Rabi frequency Ω. In particular, we
are interested in the excitation dynamics for large detunings ∆ = ω − ωge � Ω, where ωge is the
atomic transition frequency. Here, σ̂keg = |e〉k 〈g| denote the atomic transition and σ̂kee = |e〉k 〈e|
the projection operators to the Rydberg state of the kth atom. Atoms in their Rydberg state interact
via a potential V (r) = Cp/r

p. The potential curves for two atoms at distance r were calculated by
Oliver Thomas and are shown in Fig. 2.5a. To this end, an exact diagonalization of the interaction
Hamiltonian up to quadrupole-quadrupole interaction was used in a subspace containing∼ 1600 pair
states in the energetic vicinity of the state |ee〉 [119]. Since the experiment operates on small length
scales ax,y (compared to the extent of the Rydberg wavefunction) we expect deviations from a van der
Waals type scaling with p = 6. Indeed, we �t a repulsive interaction curve and obtain an approximate
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Figure 2.5: (a) Interaction potentials of the pair state |25P1/2, 25P1/2〉 obtained from exact diago-
nalization of the interaction Hamiltonian up to quadrupole-quadrupole interaction. The
di�erent potential curves correspond to di�erent superpositions of mj states. We �t a re-
pulsive interaction curve (green dashed line) V (r) = C9/r

9 with C9 = 2π× 2.1 kHzµm9.
(b) Schematic of the inhomogeneous broadening. The ground state atom wavefunction
(green shaded region) has a �nite width σ. Using an o�-resonant excitation scheme, the
e�ective detuning ∆− V (x) depends strongly on the distance x between ground state
and Rydberg state atom. The coupling to the manifold of scattering states (black line)
introduces an e�ective broadening mechanism.

scaling V (r) = C9/r
9 with C9 ' 2π × 2.1 kHz µm9. Note that a black-body induced transition to

neighboring Rydberg states may introduce a second energy scale stemming from resonant dipole-
dipole interactions. This drastically increases the complexity of the problem and we do not include
these e�ects in the description.

Furthermore, let us discuss incoherent contributions to the system dynamics. First, we include the
�nite Rydberg state lifetime. We model this process using a Lindblad jump operator of the kth atom
from the Rydberg state back to the ground state,

L̂ks =
√

Γsσ̂
k
ge. (2.26)

Second, we include the ionization of Rydberg atoms leading to atom loss. We mimic this process by a
transition to an auxiliary state |a〉 which is decoupled from the system dynamics,

L̂kion =
√

Γionσ̂
k
ae. (2.27)

An atom transferred to the auxiliary state |a〉 is decoupled from the residual excitation dynamics.
Therefore, this process is similar to an atom loss. Next, we include dephasing of the Rydberg state by
a Lindblad jump operator,

L̂kd =
√

Γdσ̂
k
ee, (2.28)

with γ0 = 1
2(Γs + Γd) ' Γd/2. Furthermore, we include an additional inhomogeneous broadening
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mechanism, which is discussed below and results from a �nite spatial distribution of atoms with width
σ and the strong Rydberg-Rydberg interaction [116, 117]. To this end, we add to the bare decoherence
rate γ0 an inhomogeneous broadening rate depending on the positions of all surrounding excited
Rydberg atoms,

γ = γ0 +
∑
j′

|∂rV (r = rj)|σ/
√
π. (2.29)

In the experimental relevant parameter regime, dephasing is dominant, i.e. γ � Ω. Thus, a rate
equation approximation as discussed in Sec. 1.1.2 is suitable for the numerical simulation of the
excitation dynamics [31, 34].

Inhomogeneous broadening

We can give an intuitive explanation of the additional dephasing mechanism Eq. (2.29) in a 1D lattice
geometry. As shown in Fig. 2.5b a ground state atom is excited to a Rydberg state in the presence of
a Rydberg atom �xed at position x = 0. The e�ective detuning of the ground state atom ∆− V (x)

depends sensitively on the atomic position x. Atoms in an optical lattice are localized within a
�nite spatial width σ. Importantly, a steep gradient ∂xV (x) of an interaction potential V (x) on
the relevant length scale σ can introduce a broad energy scale and a strong mechanical force. As
discussed in Ref. [116, 117] the coupling to the manifold of scattering states with di�erent energies
introduces then a strong decoherence mechanism in the excitation dynamics. Here, we will justify
the inhomogeneous broadening introduced in Ref. [116, 117] using a simpler semi-classical ansatz.

The rate equation approach assumes point-like atoms. In this case, we can cast the excitation rate
of a ground state atom at position x in the presence of an already excited Rydberg atom at position
x = 0 as

Γ0
↑(x) =

2Ω2γ0

γ2
0 + (∆− V (x))2

. (2.30)

Now, we consider a ground state atom trapped in an optical lattice. Note that Rydberg atoms
are typically not trapped [120]. In a semi-classical approximation we analyze the excitation rate
weighted by a probability distribution p(x) for �nding an atom centered around the position x0 with
width σ = 60 nm. A derivation of the experimental trap width can be found in Appendix A. The
resulting excitation rate

Γ↑ =

∫ ∞
−∞

dx p(x) Γ0
↑(x) (2.31)

strongly depends on the spatial width σ. In Fig. 2.6a we show Γ↑ for di�erent lattice distances x0 to the
Rydberg state using typical experimental parameters versus the detuning ∆. For distances x0 & 2ax

the e�ect of the Rydberg level shift is negligible. However, for the nearest neighbor (x0 = ax) and
next nearest neighbor (x0 =

√
2ax) we observe a strong broadening and suppression of the excitation

rate for blue detuning ∆ > 0. In the case where we are close to the resonance, i.e. when ∆ ' V (x0),
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Figure 2.6: (a) Excitation rate versus detuning ∆ in Eq. (2.31) for three relevant lattice distances x0.
The Rabi frequency is Ω = 2π × 500 kHz and the bare decoherence rate is γ0 = 300 kHz.
We use the �tted interaction coe�cient from Fig. 2.5. The excitation rate for x0 = 2ax
matches already the uncorrelated excitation rate for x0 →∞. (b) Comparison of the full
excitation rate Eq. (2.31) and the approximate excitation rate using the inhomogeneous
decoherence rate Eq. (2.29). We use the same parameters as in (a) with x0 = ax. While for
∆/2π & 18 MHz both rates agree well, the rates di�er substantially for ∆/2π . 18 MHz
(gray shaded area) . Insets: Some plot with linear scale.

we can approximate the excitation rate Eq. (2.31) using a linear interaction potential. In this limit we
obtain a suppressed excitation rate Γ↑ ' 2Ω2

γinh
with γinh = |∂xV (x = x0)|σ/

√
π [116]. However, as

discussed in Ref. [117] the linearized interaction potential cannot describe the excitation rate for all
detunings.

In general, we have to evaluate a 3D integral taking into account the interaction shift of all excited
Rydberg atoms at positions rj . Consider a ground state atom localized at position r with spatial
distribution p(r). Then we can cast Eq. (2.31) as

Γ↑ =

∫
d3r p(r)

2Ωγ0

γ2
0 +

(
∆−

∑
j V (r, rj)

)2 , (2.32)

where the sum in the denominator includes all positions rj of Ryberg excited atoms. The numerical
evaluation of a 3D integral for Nat � 1 atoms using a stochastic rate equation model is challenging.
Instead, we replace the bare decoherence rate γ0 in Eq. (2.30) with a rate including the inhomogeneous
broadening γinh as per Eq. (2.29). The decoherence rate γ depends on the position of all excited
Rydberg atoms and can be easily evaluated for large-scale numerical simulations. In Fig. 2.6b we
compare this ansatz with the full excitation rate Γ↑ as per Eq. (2.31). This suggests that for detunings
∆ & 2π×18 MHz, both excitation rates agree well. However, for ∆ . 2π×18 MHz the approximate
decoherence rate γ is not valid and both excitation rates deviate substantially. This indicates that the
approximate decoherence rate is a good estimate of the excitation rates for ∆ & 2π × 18 MHz.
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Besides the inhomogeneous broadening we include in the simulated excitation dynamics an
uncorrelated background noise signal with rate Γn. The noise follows a Poisson distribution with
mean time Γ−1

n between two subsequent events. In particular for large detunings, where all excitation
rates are suppressed, noise has a strong in�uence on the second order correlation function g(2)(τ).
For our discussion we choose a noise rate Γn = 1 kHz, which is of similar magnitude than the
ionization rate Γion. Noise may originate from atoms trapped in the outer region of the optical lattice.
Since the atomic density falls o� exponentially, the mean particle distance is larger and Rydberg
atoms do not interact with each other. The noise signal may depend on Ω and ∆, which we disregard
from now on.

We perform stochastic rate equation simulations on a lattice with up to Nat = 8000 atoms using
the approximations described above. A snapshot of a 3D lattice is shown in Fig. 2.3 including excited
atoms (in red) and ionized atoms (in blue). Open circles denote ground state atoms. Already for
Nat = 1000 �nite size e�ects are reduced. We use the simulated Rydberg excitation signal to calculate
the second order temporal correlation function g(2)(τ). As discussed later on, the results are then
compared to the experimental data.

2.3 Single Cluster Model & Dynamics in a 1D la�ice

Before we turn to the discussion of the experiment and their full numerical simulation, we start the
discussion of the excitation dynamics using a simpli�ed 1D model. Consider a chain of atoms in an
equidistant lattice described by the Hamiltonian (2.25). We include only �nite Rydberg state lifetime
and strong dephasing as per Eq. (2.26) and (2.28). In particular, we discuss the steady state properties
in a regime of strong decoherence. The simpli�ed cluster model is capable of describing many of the
experimentally accessible observables. Later, we compare this simple model to the experimental data.

2.3.1 Facilitation and Timescales

Consider a blue detuned (∆ > 0) excitation laser and a repulsive interaction potential V (r). In the
so called facilitation regime [25, 26, 89], the Rydberg-Rydberg interaction shift is compensated by the
detuning ∆ leading to an enhanced excitation mechanism. Suppose two atoms are separated by a
distance a. We denote the ground state with |g〉 and the excited Rydberg state with |e〉. As shown in
Fig. 2.7a and in Ref. [77, 121] there are two di�erent excitation scenarios: (i) shows a two-photon
transition (|gg〉 ↔ |ee〉) which is resonant at 2∆ = V (r). Here, the resulting e�ective Rabi frequency
scales as ∼ Ω2/∆ and is therefore suppressed for Ω/∆� 1. (ii) corresponds to a two-step process
(|gg〉 → |ge〉 → |ee〉), where a �rst atom is excited o�-resonantly with a small probability ∼ Ω2

∆2 ,
followed by a subsequent fast excitation at ∆ = V (r).

Both processes can be distinguished by probing the full spectrum of small lattice systems with
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Figure 2.7: (a) Schematics of the two di�erent facilitation mechanisms in the antiblockade regime.
Ground state atoms are indicated by open circles and Rydberg states by red circles. In
(i) the laser couples via a two-photon transition from the ground state |gg〉 to the two
Rydberg excitation state |ee〉. In (ii) a two-step excitation is indicated. (b) The steady
state Rydberg excitation number 〈N〉 is shown versus the detuning ∆. For a small 2D
lattice indicated in the inset, we compare an approximate rate equation method (REM)
to a full Monte Carlo wavefunction (MCWF) approach. The parameters are Γd/Ω = 1.5,
Γs/Ω = 0.1 and V (a) = 5w where a is the lattice constant and w the single particle
linewidth. Apart from the two-photon transition (i) the REM agrees well with the MCWF
simulations.

discrete resonance peaks. In Fig. 2.7b we show the mean number of Rydberg atoms 〈N〉 using an
exact numerical simulation. The con�guration consists of 6 atoms arranged in a small 2D lattice as
indicated in the inset. Probing the spectrum we can identify (i) the two-photon excitation mechanism
at ∆ = V (a)/2 and (ii) the two-step excitation mechanism at ∆ = V (a). In addition, we compare
the exact result to a rate equation approach introduced in Sec. 1.1.2. The rate equation model matches
very well the mean excitation number for a broad range of detunings. The coherent two-photon
transition (indicated by the gray dashed line (i) in Fig. 2.7b) cannot be described by a rate equation
approach and thus leads to a small error. For strong decoherence γ � Ω2/∆, the two-photon process
is highly suppressed and can be neglected in the further discussion. Importantly, for our further
discussions the two-step excitation process is the most relevant one and is well described by the rate
equation approximation.

Consequently, we deduce the relevant timescales in the facilitation regime using the rate equation
model. To start with, the timescale for an initial seed excitation is determined by the seed rate

Γseed =
2Ω2γ

γ2 + ∆2
. (2.33)

For a system containing L atoms, we expect a �rst excitation within τseed/L, where τseed = Γ−1
seed.
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The seed process is strongly suppressed whenever Ω/∆� 1. Suppose we have a second atom with
distance a to the �rst one. The excitation rate of the second atom is modi�ed by the presence of the
�rst excited Rydberg atom. Including the interaction strength V (a), we obtain an excitation rate

Γ↑ =
2Ω2γ

γ2 + (∆− V (a))2
. (2.34)

The rate Γ↑ is peaked at ∆ = V (a). Upon changing the detuning ∆, we can change the ratio
Γ↑/Γseed. For Γ↑ � Γseed, i.e. ∆ ' V (a), we expect an excitation avalanche in a large lattice
system. This will lead to the formation of large excitation clusters [90, 92, 93]. For Γ↑ . Γseed we
expect primarily uncorrelated excitation events. Besides the rates Γ↑,Γseed, we also have to take into
account deexcitation. Having two excited neighboring Rydberg atoms, each of them decays with
rate Γ↓ + Γs, where the induced deexcitation rate is Γ↓ = Γ↑ and Γs is the decay rate of the Rydberg
state. Here, we are interested in a regime, where we have the following hierarchy of rates,

Γseed � Γs � Γ↑,Γ↓, (2.35)

corresponding to facilitated excitation dynamics.

2.3.2 Single Cluster Model

Now, we discuss the microscopic dynamics of the birth, growth and decay of a single cluster starting
from an initial seed excitation. The detuning is chosen to compensate the interaction shift for the
neighboring atoms, i.e. ∆ = V (a). As an example we show in Fig. 2.8a con�gurations of the initial
dynamics as well as the relevant transition rates. The �rst seed is the starting point of the cluster
formation process with a cluster size m = 1. This triggers a fast excitation cascade of the two
neighboring atoms in the 1D chain with distance a. The number of facilitated ground state atoms is
mainly determined by the geometry of the system. In the 1D chain facilitated excitations occur at
both ends of the cluster and we introduce a coordination number z0 = 2. Thus, we have a transition
rate z0Γ↑ between a con�guration with cluster size m = 1 to a cluster with m = 2. The excitation
cluster may shrink again with rate z0(Γ↑ + Γs) which includes that each of the two atoms can decay
spontaneously. Without the spontaneous decay rate Γs, the cluster dynamics renders a random
walk where the spreading is proportional to ∼

√
z0Γ↑t. In our example in Fig. 2.8a, the cluster

grows further with rate z0Γ↑ to a cluster with size m = 3. Then, a spontaneous decay of the middle
Rydberg states splits the cluster into two parts. Importantly, the reexcitation of the middle ground
state atom is highly suppressed and happens only with the very small seed rate Γseed. While one
of the neighboring Rydberg states compensates the detuning, the second Rydberg excitation leads
to an additional energy shift V (a) and therefore reduces the excitation rate again. Hence, we can
assume that the two parts of the cluster cannot merge to a single one on the relevant timescale of the
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Figure 2.8: (a) Sketch of the initial dynamics of a single cluster starting from a seed excitation. Red
circles correspond to Rydberg excitations and white open circles to ground state atoms.
Facilitated atoms are indicated with a blue glowing ring. In the last con�guration, the
two Rydberg states prevent the excitation of the atom in the middle. Thus, a cluster
which is split cannot merge. (b) The con�guration space can be spanned by the size
of the cluster m and the number of splittings n. The transition rates between di�erent
con�gurations are indicated by arrows. The thickness of the arrows indicates the strength
of the transition. (c) Simpli�ed cluster model projecting to the cluster size axis. To this
end the bare geometric coordination number z0 is replaced by an e�ective coordination
number z. (d) Sketch of the cluster dynamics. The temporal separation between two
seeded excitations is determined by τseed. The lifetime of the corresponding cluster is
determined by τc.

cluster dynamics. In principle the two parts perform their own random walk and may separate from
each other. If the separation is larger than two lattice sites, each constituent will contribute to an
increase in the coordination number. In Fig. 2.8b we illustrate various transitions in a small part of
the con�guration space spanned by the cluster size m and the number of splittings n.

We are mostly interested in the cluster size m and not in the internal microscopic structure of an
individual cluster. Thus, we disregard the number of splittings n and project the cluster dynamics to
the cluster size axis m, see Fig. 2.8c. In the weak driving regime clusters are small and splittings can
be neglected. In this case we approximately have a constant coordination number z0. However, for
stronger driving we expect that splitting of clusters becomes important and thus we can no longer
neglect the impact of an increased coordination number. To this end, we introduce a single e�ective
coordination number z, which will be determined self-consistently later. This allows us to obtain a
simple cluster model as sketched in Fig. 2.8c, which is still valid at stronger drive. The equations of
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Figure 2.9: (a) Quasi-equilibrium distribution pm of the cluster size m. The parameters are γ/Γs = 2,
Ω/Γs = 6, z = 2 and V (a) = ∆ = 10w, where w is the single atom linewidth. We
use the full width half maximum value m̄ as an estimate for a typical cluster size. (b)
Comparison of Monte Carlo simulations (solid lines) of the cluster lifetime using Eq. (2.36)
and the quasi-equilibrium distribution (dashed lines) with Eq. (2.37). The parameters are
the same as in (a) with varying Rabi frequency Ω. The simulations include 1000 individual
trajectories. Error bars are small and neglected for simplicity.

motion for the probabilities pm of having a cluster of size m ≥ 0 are

∂tp0 = −LΓseedp0 + Γsp1, (2.36a)

∂tp1 = +LΓseedp0 − (zΓ↑ + Γs)p1 + (zΓ↑ + 2Γs)p2, (2.36b)

∂tpm = +zΓ↑pm−1 + (2zΓ↑ +mΓs)pm + (zΓ↑ + (m+ 1)Γs)pm+1 for m ≥ 2. (2.36c)

To estimate the lifetime of a single cluster we precede in two ways: First, we use a stochastic
Monte Carlo simulation of the Eq. (2.36) and measure the cluster lifetime distribution using many
individual realizations. The distribution decays exponentially and we extract the lifetime τc by an
exponential �t ∼ exp(−t/τc). Second, we use the probability distribution pm to retrieve a typical
cluster size m̄. We conjecture that the approximate lifetime is determined by

τc = m̄/Γs. (2.37)

Intuitively, it requires on average m̄ consecutive decay events of timescale τs for the cluster to vanish.
This heuristic approach will be compared to full-scale stochastic cluster simulations later on.

To obtain a stationary probability distribution of a single cluster we have to neglect the initial
creation process with rate Γseed and the �nal cluster annihilation process with rate Γs. In this way we
project to the case of having always one cluster. We consider the case where the rate Γ↑ � Γs,Γseed

is much faster such that the system relaxes to a quasi-equilibrium state before it �nally decays. Then,
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Figure 2.10: (a) Correlation length ξc and Rydberg state chain length ξd versus the Rabi frequency
Ω in a system with parameters Γd/Γs = 10, γ = Γs/2 + 2Γd and V (a) = ∆ = 10w,
wherew =

√
4Ω2γ/Γs + γ2 is the linewidth. The system size isL = 1000 with periodic

boundary conditions. (b) Rydberg excitation density ρR versus Rabi frequency Ω for
di�erent detuning ∆. For each detuning we set interaction strength V (a) = ∆. Other
parameters as in (a).

assuming detailed balance we obtain a recursive relation for the cluster distribution

pm =
zΓ↑

zΓ↑ +mΓs
pm−1. (2.38)

With the additional constraint
∑

m≥1 pm = 1, we can determine all probabilities pm. As an example
we show the quasi-equilibrium distribution pm in Fig. 2.9a. We use the full width half maximum
value m̄ as a de�nition of the cluster size in Eq. (2.37). Finally, we compare the stochastic simulations
and the cluster distribution ansatz in Fig. 2.9b and �nd excellent agreement. In turn, we now can
estimate a typical cluster size m̄ from the measurement of the lifetime τc.

2.3.3 Full Numerical Simulation

Using the rate equation approximation, we simulate the facilitated excitation dynamics in a large 1D
chain. We observe the system for timescales T � τs and thus probe the steady state. Numerically,
we checked that for system sizes L� 100 �nite size e�ects are negligible. Using the rate equation
simulation we have access to the microscopic details of the Rydberg excitation clusters. To this end,
we calculate the second order spatial correlation function (de�ned on a discrete lattice)

g(2)(d) =
〈σ̂ieeσ̂i+dee 〉
〈σ̂iee〉〈σ̂i+dee 〉

. (2.39)

Using an exponential �t similar to Eq. (2.24) we extract a correlation length ξc. As long as di�erent
clusters are spatially separated, the correlation length ξc is a measure of the cluster extent. Ad-
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ditionally, we extract a length scale ξd for the individual constituents of a cluster. We calculate a
probability distribution pl for having a Rydberg excitation chain of length l ≥ 1. Using an exponential
�t ∼ exp(−(l − 1)/ξd) we obtain a length scale for the constituents ξd. In Fig. 2.10a we compare
both length scales for di�erent driving strength Ω. For the discussed parameter regime all correlation
length are small ξc, ξd � L and we do not have long-range order. For weak driving Ω/Γs . 3 both
correlation length are similar, ξc ' ξd. This is intuitive, since in the weak driving regime clusters are
small and the splitting of clusters can be neglected. For larger driving strength, the cluster extent
ξc grows while the length of the individual constituents saturates at ξd ≤ 2. The correlation length
reaches a maximum at Ω/Γs ' 8 and decreases then. This can be attributed to cluster collisions and
will be explained later on.

In Fig. 2.10b we show the Rydberg excitation density ρR =
∑

j〈σ̂
j
ee〉/L for varying Ω/Γs and

di�erent interaction strengths V (a) = ∆. As expected, the excitation density ρR increases with
increasing Rabi frequency Ω. With an increase in the detuning ∆ the seed time τseed increases as
well, see Fig. 2.8d. This is the relevant timescale with which new clusters are created. For larger seed
time, the number of clusters and thus the number of Rydberg excitations is reduced. Note that the
Rydberg excitation density is bounded by ρR ≤ 0.5.

We now analyze the g(2)(τ) function de�ned in Eq. (2.23), which is a measure of the temporal
correlations in the Rydberg excitation signal. In particular we extract the correlation timescale τc and
the bunching amplitude g(2)(0). The timescale τc measures the time of correlated excitation growth.
While individual seed excitations are Poisson distributed, the subsequent excitation cascade will be
identi�ed in the correlation time τc. Thus, measuring τc allows to quantify the lifetime of a cluster
and a typical cluster size.

To compare these results to the simple cluster model, we �rst determine the coordination number
z as discussed above in a self-consistent way. While the bare coordination number z0 = 2 stems
from the geometry of the lattice, we have to include an increase in z due to splitting of clusters. We
presume the number of splittings increases with the cluster lifetime and set

z = z0 +
τc − τs
τs

. (2.40)

We use this ansatz to evaluate the cluster model and compare it to our full rate equation description.
In Fig. 2.11a we show the cluster lifetime versus the Rabi frequency Ω for three di�erent interaction
strength. While for small driving Ω/Γs . 3 all curves, including the result from the cluster model
(dashed line) match, for stronger driving deviations occur. These can be attributed to cluster collisions
which become more important for smaller detunings ∆. To understand this, let us consider �rst
the rates needed for determining the cluster size distribution Γ↑,Γs. Both are independent on the
detuning for ∆ = V (a) and the single cluster model estimates the cluster lifetime τc independent on
the detuning ∆, as shown in Fig. 2.11a (dashed line). However, the seed rate Γseed scales as ∼ 1

∆2
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Figure 2.11: Evaluation of the second order temporal correlation function g(2)(τ) using the same
parameters as in Fig. 2.10. Dashed lines correspond to results of the single cluster model.
We use z ' z0 + (Ω/Γs)

2 /8 from the initial correlation time growth with Ω/Γs as per
Eq. (2.40). (a) The correlation time τc as per Eq. (2.24) versus the driving strength Ω/Γs
(b) The bunching amplitude (g(2)(0)− 1) scaled by the system size L versus the driving
strength Ω/Γs.

and thus for smaller detuning more clusters are created. The increase in the number of clusters will
lead to cluster collisions and limit the free growth of excitation clusters. Comparing the maximal
cluster lifetime to the Rydberg density in Fig. 2.10 we deduce a critical Rydberg excitation density
ρR ' 0.2, where cluster collisions become important. A detailed analysis of the interactions between
clusters is beyond the scope of this thesis.

Finally, let us consider the bunching amplitude of the temporal correlation function shown in
Fig. 2.11b. The value g(2)(0)− 1 measures intrinsic �uctuations of the system. These �uctuations
stem from the competition between processes occurring on di�erent timescales, namely a slow seed
process and a fast excitation cascade. Note that the bunching amplitude scales with the inverse
system size L. To compare the bunching value to our cluster model we scale it with the system size.
We interpret the scaled value L × (g(2)(0) − 1) as a measure for intrinsic �uctuations of a single
cluster. Using the cluster size distribution in Eq. (2.38) we can easily evaluate

g(2)(0) =
〈m(m− 1)〉
〈m〉2

. (2.41)

Since now the initial seed process is relevant for determining �uctuations, we include creation and
annihilation of a single cluster from Eq. (2.36) and normalize the probability distribution accordingly,
i.e.

∑
m≥0 pm = 1. We �nd good agreement between the numerical simulation and the cluster

model. Hence, we believe that also �uctuations are well described by the cluster model. The bunching
parameter decreases with increasing driving strength Ω, which can be explained as follows: First,
the seed time τseed ∼ ∆2

Ω2 shrinks leading to the creation of many independent clusters. Second, the
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Figure 2.12: (a) Experimentally measured correlation time τc versus detuning ∆ for di�erent Rabi
frequencies Ω. The right axis denotes the corresponding cluster size m̄ per Eq. (2.37). The
gray dashed line indicates the Rydberg state lifetime τs. Inset: Corresponding bunching
amplitudes g(2)(0)− 1. Error bars correspond to the uncertainty in the exponential �t
Eq. (2.24). (b) Experimentally determined number of clusters Nc as per Eq. (2.42) versus
detuning ∆ for di�erent Rabi frequencies Ω.

lifetime of each cluster grows as well. Both increase the number of Poisson distributed events and
therefore reduce g(2)(0)− 1.

2.4 Experimental Results & Cluster Dynamics in 3D La�ices

Now, we turn back to the original question whether the steady state properties observed in the
experiment can be attributed to a bistable or metastable phase. We use the cluster model presented in
the previous section to interpret the experimental data. While the cluster model was a good approxi-
mation to the full system dynamics in a 1D chain, we have to verify it using the 3D experimental
data. Using a rate equation model, we discuss hysteresis behavior and Rydberg number distributions
which are not directly accessible in the experiment.

2.4.1 Experimental Results

Cluster size

The experimental results of the second order temporal correlation function are shown in Fig. 2.12a.
Using the cluster model we extract a typical cluster size m̄ versus the detuning ∆ for various Rabi
frequencies Ω. As seen in the 1D chain, by increasing the driving strength, the cluster size increases.
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Experimentally, we retrieve a maximal cluster size m̄ ≤ 10. For large detunings all rates are strongly
suppressed and we obtain a cluster size of m̄ ' 1 corresponding to an uncorrelated Rydberg excitation.
Decreasing the detuning ∆ the cluster size increases. This is compatible with an increase in the
facilitated excitation rate Γ↑ as can be seen in Fig. 2.6. Note that for small detuning or large Rabi
frequency atom loss may dominates and the system decays on a timescale comparable to or faster
than the cluster lifetime. In this regime we do not probe the steady state of the system and neglect
these data points. The inset in Fig. 2.12a shows Rydberg excitation number �uctuations encoded in
g(2)(0). Probing the spectrum for ∆ > 0 we obtain values up to ∼ 13 indicating strong excitation
bunching. The bunching amplitude peaks at a detuning value, which coincides with a cluster size
m̄ ' 2. While for larger detuning the cluster size approaches unity and uncorrelated noise dominates
the bunching parameter, for smaller detuning the cluster size increases leading to an increase in
a Poisson distributed Rydberg excitation signal. Both reduce the bunching amplitude to a value
g(2)(0) ' 1.

Number of clusters

To estimate the number of clusters, we assume a nearly constant atom number Nat ' 20 000 and
thereby neglect atom loss due to photoionization on a timescale of τc. Furthermore, we assume a
small Rydberg excitation density ρR � 1. Then, new seed events occur on a timescale ∼ τseed/Nat.
Comparing this time to the cluster lifetime τc we can estimate the number of clusters Nc in the
system,

Nc ' NatΓseedτc. (2.42)

The seed rate Γseed is determined experimentally independently by an analysis of the �rst ion signal
arrived at the detector. As can be seen in Fig. 2.12b, the number of clusters increases strongly with
the driving frequency Ω. For large detuning, when all excitation rates are suppressed, the number
of clusters decreases. We estimate a maximal cluster number of Nc ' 500 in the experimentally
accessible regime.

Both, the analysis of cluster size m̄ and cluster number Nc suggest that the steady state of the
large 3D system is composed of many individual clusters of small size. The correlation length should
be of similar magnitude as the cluster size m̄ and thus the system size exceeds the typical correlation
length. Since both, correlation length as well as correlation time remain �nite, we conclude the
corresponding phase is incompatible with a global bistable phase. Nevertheless, the characteristic
relaxation time given by the cluster lifetime well exceeds the typical relaxation time given by the
Rydberg state lifetime. This suggests that the system is metastable.
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Chapter 2 Bistability vs. Metastability

Figure 2.13: Validation of the cluster model. Using the maximum of the ion signalR(t) we can estimate
the Rydberg excitation density ρR. Similarly, we use the cluster model parameters and
calculate the expected Rydberg excitation density ρ(c)

R . The color code denotes di�erent
Rabi frequencies and was already used in Fig. 2.12. The dashed line indicates ideal
agreement with unity slope, i.e. ρR = ρ

(c)
R .

Validity of the cluster model

So far we assumed that the cluster model discussed in Sec. 2.3 is a reasonable description for the 3D
experimental setup. To further support the interpretation in terms of excitation clusters, we compare
the Rydberg excitation density ρR retrieved experimentally from independent data to an estimate of
the Rydberg excitation density ρ(c)

R using the cluster model. In the ideal case, we have ρR = ρ
(c)
R ,

which would indicate that the cluster model is a fairly good description of the steady state phase.
The experimental Rydberg excitation density ρR is estimated using the maximal ionization signal

Rmax
ion = max[R(t)]. Using Eq. (2.22) we �nd

ρR =
Rmax

ion

NatΓion
. (2.43)

Here, we assume that the maximal ion signal Rmax
ion re�ects the steady state value without atom loss.

However, we expect that in the strong driving regime where many Rydberg atoms are immediately
ionized the true steady state value may be larger and we obtain a smaller excitation density ρR ≤ ρ(c)

R .
The Rydberg excitation density can be estimated from the cluster model by a combination of the
cluster number Nc and cluster size m̄. We obtain

ρ
(c)
R =

Ncm̄

Nat
, (2.44)

assuming that the system is described by independent clusters.
In Fig. 2.13 the results of the Rydberg excitation density are shown. As can be seen directly, all data
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Figure 2.14: (a) Numerical simulation of the system dynamics using the rate equation method. The
evaluation of g(2)(τ) results in the cluster lifetime τc and bunching amplitude g(2)(0)−1
(inset). The parameters are chosen according to the experiment discussed in Sec. 2.2 with
Nat = 1000. The color code used is the same as in Fig. 2.12. The gray shaded region
indicates the parameter regime where the inhomogeneous decoherence rate is no longer
a good approximation. The gray dashed line indicates the Rydberg state lifetime τs. (b)
Finite size scaling of the cluster lifetime with the linear system size L. We used a Rabi
frequency Ω/2π = 160 kHz and three di�erent detunings ∆. The dashed lines indicate
an exponential �t discussed in the main text.

points for di�erent Rabi frequencies (color-coded) fall on top of each other. For weak driving and
small excitation density ρR . 10−3, the cluster model approach agrees well with the experimentally
retrieved excitation density. Deviations are seen for strong driving and ρR & 10−3. We believe that
in this regime cluster collisions and atomic loss become important and the simple cluster model
cannot describe all features of the experiment. We have already seen in Sec. 2.3, that for strong
driving and thus large Rydberg excitation density, cluster collisions become relevant. Since cluster
collisions reduce the actual cluster growth we may overestimate the Rydberg excitation density by
the cluster model, ρR ≤ ρ(c)

R .

2.4.2 Full Rate Equation Simulations

The experimental setup only give access to volume-integrated obervables and precludes the observa-
tion of microscopic structures. To gain insight to the latter, we simulate the full system dynamics
using the rate equation method discussed in Sec. 1.1.2. Since the rate equation model goes well
beyond the single cluster model, we have full access to the microscopic details of the system. We can
explore �nite size e�ects and hysteresis behavior that are not easily accessible in the experiment.
All parameters are given or estimated by the experiment in Sec. 2.2. In particular, we include the
inhomogeneous broadening approximation and a weak ionization channel. Similar to the experiment
we calculate the second order temporal correlation function g(2)(τ) and extract the correlation time
τc and bunching parameter g(2)(0). The results of the numerical simulation, shown in Fig. 2.14a,
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∆/2π [MHz] τ∞c [µs] m̄ = τ∞c /τs L0 c

20 122(3) 6.1 6.2(6) 1.00(4)

25 64(1) 3.2 4.8(7) 0.76(6)

30 41(1) 2.5 3.5(4) 0.49(4)

Table 2.1: Fitted parameters for the �nite size scaling in Fig. 2.14b using the �t function (2.45).

are compared to the experimental data in Fig. 2.12a. Despite the large parameter space given by
the microscopic model, the experimental data and numerical simulations show qualitatively the
same behavior. In particular, the magnitude of the cluster lifetime τc agrees fairly well with the
experimental results. Since the approximation for the inhomogeneous broadening is only valid for
∆ & 2π × 18 MHz, the evaluation of the temporal correlation function in the gray shaded region is
not reliable. The structure of the g(2)(0) peak corresponds to a cluster size m̄ ' 2, as it was already
seen in the experiment. However, the numerically simulated system size is a factor of 20 smaller than
the experimental system size. Thus, we would expect a much larger bunching amplitude g(2)(0) in
the numerical simulations than in the experiment, which is however not the case. This discrepancy
is yet not fully understood. A possible explanation may be black-body induced transitions to other
Rydberg states or atomic motion which e�ectively reduce the system size. Overall the numerical
simulations agree su�ciently well with the experimental results and thus are a good approximation
for the Rydberg excitation dynamics.

Finite size scaling of the cluster size

We have already seen that the system is metastable in the relevant parameter regime with a relaxation
timescale determined by the cluster lifetime. To check whether the system is bistable we consider the
scaling of the cluster lifetime with the linear system size L with Nat = L3. In Fig. 2.14b we display
the scaling behavior of the cluster lifetime for typical parameters in the experiment. We identify an
exponential scaling of the cluster lifetime and �t the numerical data using a function

τc = τ∞c

(
1− ce−L/L0

)
. (2.45)

The extracted data are summarized in Table 2.1. The cluster lifetime saturates for a linear system
size L � L0. The characteristic relaxation length scale L0 is thereby comparable or larger than
the cluster size m̄ = τ∞c /τs. Since we extract an exponential saturation rather than an algebraic
divergence of the cluster lifetime we infer, as discussed in Sec. 2.1 that the system is not bistable in
the relevant parameter regime amenable to a rate equation model.
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Figure 2.15: Excitation number distribution pN obtained from the numerical simulation for Rabi
frequency Ω = 2π × 185 kHz and detuning ∆ = 2π × 15 MHz. The counting statistics
is recorded after 1 ms for three di�erent linear system sizes L.

Counting distribution

In Ref. [92, 93] the Rydberg excitation number distribution pN was experimentally observed. The
retrieved bimodal distribution shows peaks at low (N = 0) and high Rydberg excitation number N .
It was argued that bi-modality is an indicator of a bistable system. However, we will argue here that
a bimodal counting distribution can also occur as a �nite size e�ect for metastable systems when
correlation length ξ become comparable to the system size L.

Using our numerical simulation we extract the distribution pN for three di�erent linear system
sizes L, see Fig. 2.15. The distribution is determined after 1 ms continuous excitation and thus probes
the steady state. For L = 3 we obtain a single peaked distribution at a low Rydberg excitation number.
In this case, seed events are rare and clusters cannot grow due to the smallness of the system size.
The excitation dynamics in a system of linear size L = 6 shows a dynamical switching between low
and high Rydberg excitation number N . In this case the cluster size m̄ is comparable to the system
size and we obtain a bimodal counting statistics. For an even larger system size L = 10 the bimodal
structure disappears and �nite size e�ects are already strongly reduced. Instead the distribution pN
is now a single peaked Gaussian with a large mean Rydberg excitation number.

We conclude that the bimodal structure strongly depends on the cluster size m̄ and thus the
correlation length ξ ∼ m̄ relative to the system size L: For a system where correlation length and
system size are similar, bimodality can be observed. However, when the system size far exceeds the
correlation length, we can subdivide the 3D system into ∼ (L/ξ)3 independent spatial regions. For
L/ξ � 1 the central limit theorem applies and we obtain a single peaked Gaussian distribution pN .

Dynamic hysteresis

Finally, we discuss the hysteresis behavior as seen in Ref. [94, 98]. It was argued that the observed
hysteresis upon parameter changes on a timescale τsweep is an indicator for bistability. Hysteresis
can however be observed in metastable systems, too. Interestingly, the characteristic sweep time
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Figure 2.16: (a) Hysteresis scan in the detuning parameter for Ω = 2π × 160 kHz and L = 10. The
sweep time in the forward (blue line) and backward (red line) directions are τsweep =
0.88 ms and τsweep = 88 ms. The Rydberg excitation number is averaged over 500
trajectories and the standard deviations are shown by the shaded area. (b) Mismatch
between the equilibrium Rydberg excitation number N̄(0) and the Rydberg excitation
numberN(τsweep) after a �nite sweep time τsweep. The hysteresis scan starts at a detuning
∆ = 2π × 40 MHz and ends at ∆ = 2π × 10 MHz. Same parameters as in (a). The
dashed line shows a scaling with ∼ 1/τsweep.

at which the hysteresis disappears can be surprisingly large. Naively, one would expect that this
happens when the sweep time τsweep is longer than the relaxation timescale T . However, due to
algebraic corrections hysteresis can be seen even for timescales τsweep & T , see e.g. [122]. While, as
we have seen before, �nite size e�ects vanish when the system size L exceeds the correlation length
ξ, a hysteresis can still persist independent on the system size.

In Fig. 2.16a we numerically perform sweeps in the detuning ∆ and observe the Rydberg excitation
number N . We linearly increase the detuning from an initial value ∆0 to a �nal value ∆1 within
a time τsweep. For the relevant detuning regime, the relaxation rate T is on the order of the cluster
lifetime τc ∼ 100 µs. We numerically veri�ed this by simulating quench dynamics for di�erent
detunings. Although a sweep time τsweep = 0.88 ms exceeds the relaxation time, we can clearly
identify a hysteresis area. For a sweep time τsweep = 88 ms, which is three orders of magnitude
larger as the relaxation timescale, the dynamic hysteresis disappears. We will show below that the
relaxation of the Rydberg excitation number N towards the equilibrium value N̄ attains besides the
exponential relaxation algebraic corrections scaling as ∼ T/τsweep.

As will be outlined in detail in the following, we model the relaxation behavior using a sequence
of small parameter quenches. Linearizing the equilibrium Rydberg excitation number N̄(x) with
x = ∆1−∆

∆1−∆0
∈ (0, 1) we obtain after a �nite sweep time τsweep and assuming a constant relaxation
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time T ,

N(τsweep)− N̄(0) =
(
N(0)− N̄(0)

)
e−τsweep/T

+
T

τsweep
× dN̄(x)

dx

∣∣∣∣
x=0

[
1− e−τsweep/T

(
1 +

τsweep

T

)]
+O

(
T 2

τ2
sweep

)
.

(2.46)

The �rst term corresponds to the usual exponential relaxation, while the second term indicates
algebraic corrections in lowest order in T/τsweep. Importantly, in the long time dynamics, the
algebraic relaxation becomes important and we expect a slow decrease of the hysteresis area. As
an example, in Fig. 2.16b we show the relaxation of the Rydberg excitation number N(τsweep) with
respect to the equilibrium Rydberg excitation number N̄(x = 0) versus the sweep time. To conclude,
hysteresis behavior is expected in metastable systems with a slow algebraic relaxation behavior. This
may explain the experimental results seen in Ref. [94, 97].

Model for the hysteresis relaxation behavior

We now want to describe the hysteresis relaxation behavior based on a model of many small parameter
quenches. This yields algebraic corrections in time t to the otherwise exponential relaxation to the
equilibrium value. To be speci�c, we discuss the relaxation behavior of the Rydberg excitation number
N(t) upon parameter changes in the detuning ∆.

Single quench First, we consider the relaxation after a single parameter quench. Starting from
a Rydberg excitation number N0 and detuning ∆0, we quench the system to another detuning ∆1.
For a detuning ∆1, we denote the equilibrium Rydberg excitation number N̄1 and the relaxation
timescale T1. Then, typically the system relaxes exponentially in time and is described by

N(t) = N̄1 + (N0 − N̄1)e−t/T1 . (2.47)

Multiple quenches Now, we consider the relaxation dynamics of the Rydberg excitation number
for a �nite parameter sweep. We describe the hysteresis as a sequence ofM small parameter quenches
∆j → ∆j+1 as illustrated in Fig. 2.17. We denote the equilibrium Rydberg excitation number at
detuning ∆j with N̄j ≡ N̄(∆j) and the relaxation time Tj ≡ T (∆j). After each quench the system
relaxes on a timescale τ = t/M before the next quench starts, where t is the total sweep time.
We denote the Rydberg excitation number after time t = jτ with Nj ≡ N(jτ). Starting from a
nonequilibrium Rydberg excitation numberN0 the system can relax on a timescale τ after a parameter
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Figure 2.17: Schematic model for the hysteresis relaxation behavior in the number of Rydberg excita-
tions N . We model the relaxation behavior as a sequence of small parameter quenches
∆j → ∆j+1 with relaxation time step τ . (a) The tuning parameter ∆ versus time t. (b)
Corresponding relaxation of the Rydberg excitation number Nj and the equilibrium
Rydberg excitation number N̄j in time t (or detuning as shown in (a)). The gray dashed
line indicates the relaxation as per Eq. (2.47) after each parameter quench.

quench ∆0 → ∆1 to a Rydberg excitation number

N1 = N0e
−τ/T1 + N̄1

(
1− e−τ/T1

)
. (2.48)

Subsequently, we quench the system from ∆1 to ∆2 and let it relax for time τ . The resulting excitation
number is

N2 = N1e
−τ/T2 + N̄2

(
1− e−τ/T2

)
= N0e

−τ/T1e−τ/T2 + N̄1

(
1− e−τ/T1

)
e−τ/T2 + N̄2

(
1− e−τ/T2

)
(2.49)

Iteration yields a formula for the nonequilibrium Rydberg excitation number after M subsequent
quenches,

NM = N0 exp

− M∑
j=1

τ

Tj

+

M∑
j=1

N̄j

(
1− e−τ/Tj

)
exp

− M∑
k=j+1

τ

Tj

 . (2.50)

We perform a continuum limit M → ∞ and assume a constant sweep rate ∆̇ = δ/τ , where
δ ≡ ∆j+1 −∆j → 0 and τ → 0. This allows us to approximate,

1− e−τ/Tj ' τ

Tj
, (2.51)
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where we assumed a �nite relaxation time Tj . Replacing the sum with an integral we directly obtain

N(t) = N0 exp

(
− 1

∆̇

∫ ∆M

∆0

d∆

T (∆)

)
+

1

∆̇

∫ ∆M

∆0

d∆

[
N̄(∆)

T (∆)
exp

(
−
∫ ∆M

∆

d∆̃

T (∆̃)

)]
. (2.52)

In the case of a constant relaxation rate T we can further simplify the excitation number N(t)

N(t) = N0e
−t/T +

t

T

∫ 1

0
dx N̄(x)e−

t
T
x, (2.53)

with x = ∆M−∆
∆M−∆0

∈ (0, 1). Clearly, for a constant mean excitation number N̄ we obtain the previous
result for a single quench in Eq. (2.47). In the case, where the mean excitation number changes with
the detuning ∆, we obtain algebraic corrections in (T/t). To see this, we use a Taylor expansion of
N̄(x) around x = 0,

N̄(x) = N̄(0) +
dN̄(x = 0)

dx
x+

d2N̄(x = 0)

dx2
x2 +O(x3). (2.54)

Inserting into Eq. (2.52) yields

N(t) ' N0e
−t/T + N̄M

(
1− e−t/T

)
+

(
t

T

)−1 dN̄(x)

dx

∣∣∣∣
x=0

[
1− e−t/T

(
1 +

t

T

)]
+

(
t

T

)−2 d2N̄(x)

dx2

∣∣∣∣
x=0

[
2− e−t/T

(
2 + 2

t

T

)
+
t2

T 2

]
(2.55)

This is equivalent to Eq. (2.46) upon replacing t with τsweep and N̄M with N̄(x = 0) Clearly, for
timescales t & T , the algebraic correction scaling as ∼ 1/t becomes the dominant part for relaxation.

Conclusion

In this chapter we discussed the possibility of a phase transition to a bistable steady state in a driven
dissipative Rydberg lattice gas in the antiblockade regime. Both, a careful experimental analysis and
numerical simulations suggest the absence of a global bistable phase in the experimentally relevant
decoherence-dominated regime.

In particular, we characterized and analyzed the experimental data and compared them to a cluster
model and a numerical simulation of a rate equation model. The simpli�ed cluster model agrees
well with the experimental results and suggests that the system consists of many small independent
excitation clusters. This shows that correlation lengths are �nite within the experimentally accessible
parameter regime. Furthermore, using the cluster model we explained the prolongation of the
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characteristic timescales, which is compatible with a metastable state.
Moreover, we found that a bistable steady states has in the thermodynamic limit long-range

order and a diverging relaxation time. Using a rate equation model of the full microscopic model,
we numerically checked that correlation lengths and correlation times remain �nite even in the
thermodynamic limit. This suggests the absence of a bistable phase in the experimentally relevant
parameter regime of strong decoherence. However, our results on bimodal counting distributions
and hysteresis sweeps show that it is possible to observe both in �nite and metastable systems. Our
results are therefore compatible with experiments in the antiblockade regime.

The controversial discussion in literature shows that the identi�cation of open system phase
transitions in small atomic ensembles requires a careful analysis in terms of system size scaling and
correlation functions. Due to the large complexity of the problem, numerical simulations should
be contrasted to experimental data. While our results suggest the absence of a bistable phase in a
system with strong decoherence, it remains an open question whether a bistable phase can exist in
the coherent regime. However, numerical simulations in this regime can only be performed for small
system sizes which makes it di�cult to gain insight into the properties in the thermodynamic limit.
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Chapter 3

Hole Dynamics in a Chain of Rydberg
Superatoms

When a su�ciently con�ned mesoscopic ensemble of atoms is driven to a high lying Rydberg state,
the strong Rydberg-Rydberg interactions may suppress all but one Rydberg excitation [24, 33, 36].
This leads to the concept of Rydberg superatoms [33, 41, 42, 123] representing an e�ective spin-1/2
model. Due to the large number of atoms within a superatom the coupling to an electromagnetic
�eld is collectively enhanced. Furthermore, as pointed out in Ref. [41, 59] dissipation can lead to an
increase of the steady state excitation probability exceeding the one for a single atom. Thus, arrays
of Rydberg superatoms allow to study many-body spin dynamics with enhanced coupling to laser
�elds and the potential of preparing fully polarized states.

For a long time much interest lay in the study of the Rydberg blockade phenomena realizing Ising
type spin models. Driving these systems resonantly to the Rydberg state with an additional laser
�eld led to the observation of strong but short-range spatial correlations of Rydberg excitations [10,
21, 22, 32, 33, 124–127]. Ref. [59] investigated 2D arrays of Rydberg superatoms which may allow to
reach a regime exhibiting long-range correlations. As discussed already in Sec. 2.1, the enhanced
driving strength of superatoms can also lead to a phase transition to a bistable steady state.

Here, we discuss superatoms in the facilitation regime [25, 26, 89], i.e. using an o�-resonant laser
excitation scheme. In the previous chapter we discussed facilitation of a lattice gas with individual
atoms. We found that in the experimentally accessible regime of the many-body dynamics metastable
states occur consisting of small Rydberg excitation clusters. In the present chapter, we discuss a
chain of superatoms realizing an e�ective spin lattice model. Due to the strong superatom driving
mechanism, large Rydberg excitation clusters are expected to form. We show that the steady state
has a high and almost universal Rydberg excitation density of ρR = 2/3. Exploring the dynamics in
the system we �nd that the steady state can be described using a new quasi particle – an excitation
hole. These holes behave similar to hard rods with a liquid-type correlation function.

This chapter is based on the publication [FL5], partially with text overlap.
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3.1 1D Chain of Superatoms

3.1.1 Microscopic Model

We consider an ensemble of atoms arranged as depicted in Fig. 3.1 realizing a chain of superatoms. All
atoms are driven by a laser �eld from their ground state |g〉 to a Rydberg state |e〉with Rabi frequency
Ω and carrier frequency ω. The coherent excitation dynamics is described by a Hamiltonian (~ = 1)

Ĥ =
∑
k

[
Ω
(
σ̂keg + σ̂kge

)
−∆σ̂kee

]
+
∑
k<k′

V (rk, rk′) σ̂
k
ee ⊗ σ̂k

′
ee, (3.1)

where we introduced the detuning ∆ = ω − ωge from the atomic transition frequency ωge. Here,
σ̂kµν = |µ〉k 〈ν| denote the transition (µ 6= ν) or projection (µ = ν) operator for the kth atom. Atoms
at positions rk, rk′ in a Rydberg state |e〉 interact with a potential V (rk, rk′) =

Cp
|rk−rk′ |p

where Cp
is the interaction coe�cient and p the corresponding power law. To be speci�c, we consider p = 6

for van der Waals interaction and p = 3 for static dipole-dipole interaction (in the presence of an
electric �eld) [13].

Besides the coherent excitation dynamics, we include incoherent processes described by Lindblad
jump operators as discussed in Sec. 1.1. First, we consider the �nite lifetime of the Rydberg states
with decay rate Γs,

L̂ks =
√

Γsσ̂
k
ge. (3.2)

Furthermore we include dephasing of the Rydberg state with rate Γd,

L̂kd =
√

Γdσ̂
k
ee. (3.3)

Now, the dynamics of the system is described by a master equation for the density matrix ρ̂,

∂tρ̂ = −i[Ĥ, ρ̂] +
∑
k

∑
α=s,d

(
L̂kαρ̂L̂

k†
α −

1

2
{L̂k†α L̂kα, ρ̂}

)
. (3.4)

This is the starting point for our derivation of an e�ective rate equation model for Rydberg superatoms.

3.1.2 Superatom Rate Equation Model

We assume that each superatom in the one-dimensional lattice with lattice constant a contains N
atoms. These atoms are con�ned within a region of linear dimension δr � a, as can be seen in
Fig. 3.1. In the case where the interaction energy Cp/δrp within a single superatom exceeds all
relevant energy scales, we can restrict the excitation dynamics to the subspace of having at most one
excited Rydberg atom per superatom (Rydberg blockade). In particular, we require w,∆� Cp/δr

p,
where w =

√
4Ω2γ/Γs + γ2 is the excitation linewidth of a single atom and γ = 1

2(Γs + Γd)
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3.1 1D Chain of Superatoms

Figure 3.1: Schematics of a superatom chain. Each superatom (indicated by the dashed line) contains
on average N atoms and is labeled with an index j. Open white circles indicate ground
state atoms and the dark red dots atoms excited to a Rydberg state. The width of the
con�nement is δr. We choose a con�guration where the blockade radius aB exceeds the
distance to a nearest neighbor superatom (gray shaded region) and the lattice constant
a matches the facilitation distance rfac. The facilitation region is indicated by the blue
shaded region.

the decoherence rate [24, 33]. Note that the interaction energy Cp/ap between the neighboring
superatom can still be large and comparable to the detuning ∆.

Suppose one superatom on lattice site j is in the collective ground state |Gj〉 ≡ |g1g2 . . . gN 〉. If
the excitation laser is uniform on a scale of the superatom width δr, the collective ground state is
coupled to the symmetric single-excitation state |Es〉 ≡ 1√

N

∑
k |g1g2 . . . ek . . . gN 〉 with enhanced

Rabi frequency
√
NΩ. In addition, there areN −1 non-symmetric states |Ens〉m, labeled by an index

m = 1, 2, . . . , N − 1, which are decoupled from the laser �eld. The single superatom excitation
scheme is shown in Fig. 3.2a. Thus the Hamiltonian in Eq. (3.1) can be approximated by

Ĥ '
∑
j

[√
NΩ

(
|Gj〉 〈Ejs |+ |Ejs〉 〈Gj |

)]
−∆P̂ jEE +

∑
j>i

Cp
|rj − ri|p

P̂ jEE ⊗ P̂
i
EE , (3.5)

where P̂ jEE ≡ |E
j
s〉 〈Ejs |+

∑
m |E

j
ns〉m〈E

j
ns| is the projector onto the manifold of N single Rydberg

excitation states of a superatom at site j. The position of a superatom at lattice site j is approximated
by the center of mass coordinate rj = 1

N

∑
kj
rkj . All states with more than one Rydberg excitation

are highly suppressed by the strong interactions between atoms in the Rydberg state. First, let us
discuss the dynamics of a single superatom. Later, we include the interactions between them using
an e�ective detuning [31–33].

Single superatom

Each superatom is driven coherently from the collective ground state |G〉 to the symmetric Rydberg
state |Es〉. In addition to the coherent dynamics, all single excitation states {|Es〉 , |Ens〉m} decay
back to the ground state with rate Γs. We distinguish two cases: First, when the dephasing rate
is much smaller than the coherent drive and the decay rate, Γd � Ω,Γs, the superatom dynamics

63



Chapter 3 Hole Dynamics in a Chain of Rydberg Superatoms

(a) (b)

Figure 3.2: (a) Level scheme of a single superatom. The collective ground state |G〉 is coupled to the
symmetric single excitation state |Es〉 with enhanced Rabi frequency

√
NΩ, where N is

the number of atoms within the superatom. Dephasing with rate Γd tries to equilibrate
the states in the single excitation manifold including (N − 1) nonsymmetric states |Ens〉.
Spontaneous decay with rate Γs couples the excited states to the collective ground state.
(b) Simpli�ed superatom rate equation model. The superatom is excited with rate Γex to
the collective state ρEE and deexcited with rate Γde to the state ρGG.

resembles a two-level atom with enhanced coupling strength
√
NΩ to the radiation �eld. Second, we

consider the case when Γs � Ω,Γd. For simplicity we replace the manifold of nonsymmetric states
{|Ens〉m} with a single state |Ens〉. Then, dephasing tries to equilibrate all single excitation states,
i.e. the symmetric state |Es〉 is coupled incoherently with rate (N − 1)/N Γd to the nonsymmetric
state |Ens〉. In turn the transition rate from the nonsymmetric state to the symmetric states is Γd/N .
In this regime, a superatom resembles a three level system with relevant states {|G〉 , |Es〉 , |Ens〉}
as illustrated in Fig. 3.2a.

Using a master equation for the evolution of the density matrix, we obtain for the full equations of
motion,

∂tρ = L̂ρ, (3.6)

with Lindbladian

L̂ =


0 Γs i

√
NΩ −i

√
NΩ Γs

0 −Γs − N−1
N Γd −i

√
NΩ i

√
NΩ 1

NΓd

i
√
NΩ −i

√
NΩ −i∆− γ 0 0

−i
√
NΩ i

√
NΩ 0 i∆− γ 0

0 N−1
N Γd 0 0 −Γs − 1

NΓd

 (3.7)

and ρ = (ρGG, ρEsEs , ρGEs , ρEsG, ρEnsEns)
T is a vector of density matrix elements. Since the

coupling to the nonsymmetric state |Ens〉 is incoherent, the corresponding coherences ρEnsG, ρEnsEs
remain decoupled, i.e. ρEnsG = ρEnsEs = 0.

For the case N = 1 we retrieve the two-level atom result discussed in Sec. 1.1.2, where the
excitation population in the steady state is bounded by ρee ≤ 0.5. The excited state population and
linewidth are given in Eq. (1.17) and (1.18), respectively. For a superatom with N > 1, dephasing
leads to a population of nonsymmetric states [34, 41]. Solving Eq. (3.6) for the steady state, ∂tρ = 0,
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3.1 1D Chain of Superatoms

we obtain the excited state population of a superatom

ρEE ≡ ρEsEs + ρEnsEns =
2NΩ2γ

Ω2(N + 1)
(

Γd + 2N
N+1Γs

)
+ Γs(γ2 + ∆2)

(3.8)

and the corresponding superatom linewidth reads

wSA '
√

2NΩ2γ/Γs + γ2. (3.9)

In the following, we consider the case Γs � Γd,Ω
2/Γd where dephasing dominates the superatom

dynamics. For a resonant excitation and in the limit of large atom number N , the excited state
population is approximately

ρEE '
N

N + 1
. (3.10)

Clearly, for large N � 1 the steady state population approaches ρEE ' 1. This is in contrast to
a coherent superatom Ω � Γs � Γd, where the steady state population is limited by ρEE ≤ 0.5.
Comparing the superatom linewidth in Eq. (3.9) with the single atom linewidth in Eq. (1.18), we
notice the analogy upon replacement Ω2 → 1

2NΩ2. Naively we would expect to replace the Rabi
frequency Ω by the collective Rabi frequency

√
NΩ. The factor 1

2 originates from the increased
excitation probability of a saturated superatom approaching unity, rather than ρEE ' 0.5.

Superatom rate equation model To obtain a superatom rate equation model in the limit Γd & Ω

we �rst eliminate the coherences ρEnsG, ρGEns . Setting ρ̇EnsG = ρ̇EnsEs = 0, we obtain for the
populations ρ3 = (ρGG, ρEsEs , ρEnsEns)

T

∂tρ3 = L̂3ρ3, with L̂3 =

−Nχ Nχ+ Γs Γs

Nχ −Nχ− Γs − N−1
N Γd

1
NΓd

0 N−1
N Γd −Γs − 1

NΓd

 . (3.11)

Here we de�ned
χ ≡ 2Ω2γ

γ2 + ∆2
, (3.12)

which is equal to the excitation rate for the two-level rate equation model in Sec. 1.1.2. On one hand
for small decay rate Γs � χ,Γd the laser tends to equalize the populations ρGG and ρEsEs . On the
other hand dephasing transfers population from the symmetric state ρEsEs to the nonsymmetric states
ρEnsEns . The reverse process is suppressed by a factor 1/N . This leads to an imbalance in excited
state populations, where for large N the population of the symmetric state ρEsEs ∼ ρEnsEns/N is
small. Thus, the symmetric state plays the role of an intermediate state. By adiabatic elimination
of ρEsEs we obtain a simple rate equation model between two states, the collective ground state
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Figure 3.3: (a)-(c) Excitation dynamics of a single superatom containing N = 50 atoms. The solid
lines correspond to a solution of the full superatom density matrix equations of motion
(SA EOM) in Eq. (3.6) projected to the single excitation Hilbert space. The dashed lines
correspond to the superatom rate equation model (SA REM) in Eq. (3.13) and the dotted
line to the two-level rate equation model (TL REM) in Eq. (3.14). The laser is resonant
(∆ = 0) with Rabi frequency Ω/Γs = 25 and dephasing rates Γd/Γs = 50, Γd/Γs = 250
and Γd/Γs = 1000, respectively. (d) Real part of the eigenvalues λk of L̂ in Eq. (3.7)
versus the decoherence rate γ/Ω. The blue dashed line shows the total relaxation rate
Γtot of the superatom rate equation model (SA REM) and the red dotted line shows the
total relaxation rate Γ̃tot of the two-level rate equation model (TL REM). The blue, red
and green circle correspond to (a), (b) and (c), respectively.

ρGG and collective single excited state ρEE with approximately ρGG + ρEE ' 1, as can be seen in
Fig. 3.2b. The corresponding rate for excitation Γex and deexcitation Γde are given by

Γex =
(N − 1)χ

Nχ+ 2γ
Γd, Γde =

χ

Nχ+ 2γ
Γd + Γs. (3.13)

The superatom rate equation approximation is valid in the limitN � 1. In this limit and for Γs � Γd

the total relaxation rate Γtot = Γex + Γde is approximately given by the dephasing rate Γtot ' Γd.

Two-level rate equation model This result is in contrast to the commonly used two-level rate
equation approach, which is discussed in Sec. 1.1.2 and will be presented here shortly: Again in the
limit of strong Rydberg blockade we reduce the superatom subspace to the collective ground state
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3.1 1D Chain of Superatoms

and N single excitation states. Now, using the rate equation approximation, we �nd the following
excitation and deexcitation rates

Γ̃ex = Nχ, Γ̃de = χ+ Γs, (3.14)

which di�er from the superatom rate equation model Eq. (3.13). The excitation rate Γ̃ex is enhanced
by the number of atoms per superatom N . The deexcitation rate is given by the deexcitation rate for
a single excited atom. While the total two-level relaxation rate Γ̃tot = Γ̃ex + Γ̃de ∼ Nχ scales with
the number of atoms N for small decay rates Γs and N � 1, the total superatom relaxation rate
approaches a constant given by the dephasing rate Γtot ' Γd. Thus, we expect a large discrepancy
in this parameter regime.

In Fig. 3.3a-c we compare the full coherent relaxation dynamics of a resonantly driven superatom to
the approximate rate equation models. Both rate equation models approximate well the steady state
population ρEE . Comparing the dynamics for di�erent ratios Γd/Γs the superatom rate equation
model compares more favorably. While the superatom rate equation model Eq. (3.13) agrees well
with the exact relaxation dynamics over a broad parameter regime γ &

√
NΩ, the two-level rate

equation approach is only valid when γ �
√
NΩ.

This can be further investigated by considering the real parts of the eigenvalues λk of the matrix L̂
in Eq. (3.7). As discussed in Sec. 1.1 the real part of λk denotes the relaxation rate of the system. The
eigenvalue λ0 = 0 corresponds to the steady state solution. All other eigenvalues λk (k = 1, 2, 3, 4)
have a nonvanishing negative real part. The smallest value of |Re[λk]| describes the slowest timescale
for relaxation of a single superatom. This can be compared to the total relaxation rate Γtot and Γ̃tot

of both rate equation models. In Fig. 3.3d we can see that the exact relaxation rate is approximated
well by the superatom rate equation model even for

√
NΩ ' γ. As discussed before, in this regime

the two-level rate equation model predicts a much faster relaxation rate. However, for γ �
√
NΩ

both agree nicely with the exact relaxation rate. Importantly, the superatom rate equation model
approximates well the characteristic relaxation timescale and steady state population ρEE and is
therefore used throughout this chapter for describing the superatom excitation dynamics.

Many superatoms

To include interactions between individual superatoms, we reintroduce the e�ective detuning seen
by a superatom due to the energy shift of all neighboring superatoms. The population dynamics is
then described by many-body rate equations

∂tρ
j
EE = Γex(∆j)ρ

j
GG − Γde(∆j)ρ

j
EE , (3.15)

ρjGG + ρjEE ' 1. (3.16)

67



Chapter 3 Hole Dynamics in a Chain of Rydberg Superatoms

Excitation and deexcitation rates are given by

Γex(∆j) =
(N − 1)χ(∆j)

N χ(∆j) + 2γ
Γd, (3.17a)

Γde(∆j) =
χ(∆j)

N χ(∆j) + 2γ
Γd + Γs, (3.17b)

respectively with χ(∆j) ≡ 2Ω2γ
γ2+(∆j)2

. Here the e�ective detuning of the jth superatom,

∆j = ∆−
∑
i 6=j

Cp
|ri − rj |p

ρiEE , (3.18)

includes the Rydberg level shift due to the interaction with all other superatoms in the excited state.
The superatom rate equation model is the basis of all further numerical simulations of a 1D chain of
Rydberg superatoms.

3.1.3 Facilitation, Timescales and Holes

In the so called facilitation regime the 1D array of superatoms is driven o�-resonantly to a Rydberg
state. Hereby, the laser detuning ∆ is chosen such that it compensates the interaction level shift on
the neighboring lattice site, i.e. ∆ = Cp/a

p ≡ VN. For simplicity we neglect the level shift on the
next nearest neighbor Cp/(2a)p. The validity of this assumption will be discussed in the Sec. 3.1.4.

If the detuning exceeds the superatom linewidth ∆ � wSA, a �rst seed excitation is highly
suppressed. The timescale for this excitation is determined by the seed rate

Γseed = Γex(∆). (3.19)

Starting with a chain of L superatoms in their ground state a �rst excitation is created within
a timescale 1/(LΓseed). Now, a seed excitation triggers an excitation cascade similar to the case
discussed in Chapter 2. Since the detuning compensates the interaction level shift, the e�ective
detuning for a neighboring atom is ∆eff = ∆ − VN = 0. Thus, the superatom excitation and
deexcitation rate are given by

Γ↑ = Γex(∆eff = 0), Γ↓ = Γde(∆eff = 0). (3.20)

In contrast to a chain of individual atom, a regime where Γ↑ � Γ↓ can be easily realized for
superatoms and we expect a rapid growth of large excitation clusters comparable to the system
size [FL4]. However, spontaneous decay of a superatom with rate Γs or collisions of two excitation
clusters will produce excitation holes in the steady state of the system. We call each ground state
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3.1 1D Chain of Superatoms

superatom an excitation hole if and only if it is surrounded by two excited superatoms. While two
ground state superatoms can be on neighboring lattice sites, a hole, in the sense of this de�nition,
is always in between two excited superatoms. A hole is stable since the interaction energy of the
middle ground state atom is shifted by the two neighboring excited superatoms. Thus the e�ective
detuning is ∆eff = ∆− 2VN = −∆ and the hole will be re�lled with the strongly suppressed seed
rate Γseed. Typically, we have the following hierarchy of the relevant rates

Γseed � Γs,Γ↓ � Γ↑. (3.21)

Note that in the regime of large number of atoms N per superatom and strong dephasing rate Γd,
the resonant deexcitation rate Γ↓ & Γs is of similar magnitude as the decay rate Γs.

3.1.4 Experimental Considerations

We discuss the experimental prerequisites to realize a 1D chain of superatoms in the facilitation
regime. We assume a repulsive interaction potential V (r) = Cp/r

p with Cp > 0 and single particle
linewidth w. Then the blockade radius [24, 33] is de�ned as

aB =
p

√
Cp
w
. (3.22)

We assume each superatom can be characterized by its center of mass coordinate rj and linear extent
δr determined by the trapping potential of the atoms. In Fig. 3.1 a sketch can be found for the relevant
length scales. A superatom should accommodate at most one Rydberg excitation and thus we require
the blockade condition

δr � aB. (3.23)

In the facilitation regime we have a strong separation of timescales Γ↑ � Γseed. Clearly the excitation
of a superatom is suppressed whenever the laser detuning exceeds the excitation linewidth of a
superatom ∆ > wSA '

√
N/2w. Now, to enhance the excitation rate Γ↑ in the presence of an

already excited superatom, the distance between two superatoms rfac = |rj+1 − rj | is chosen such
that ∆ = V (rfac). Thus, the interaction induced level shift compensates the detuning and we set the
lattice constant

a = rfac =
p

√
Cp
∆
. (3.24)

Since ∆ > w, the facilitation distance rfac is smaller than the blockade radius aB. To facilitate all
atoms within a superatom, the resulting induced level shift |∆ − V (rfac ± δr)| . wSA should be
within the superatom linewidth. Linearizing the interaction potential for δr/rfac � 1 we obtain a
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Chapter 3 Hole Dynamics in a Chain of Rydberg Superatoms

condition for the extent of a superatom

δr .
1

p

rp+1
fac

Cp/wSA
=

1

p

wSA

∆
a. (3.25)

To neglect the induced interaction shift on the next neighbor, we require V (2a) . wSA. This can be
expressed as a condition on the power law scaling of the interaction potential

p log(2) ≥ log(∆/wSA). (3.26)

Let us discuss a speci�c example: We assume atoms are con�ned in an array of microtraps or a
long wavelength optical lattice [36, 45, 128–130] each containing N ' 50 atoms. Choosing Rubidium
atoms, the atomic ground state |g〉 ≡ |5S1/2〉 is coupled via a two-photon transition to an excited
Rydberg state |e〉 ≡ |nS1/2〉 with principal quantum number n ' 90 [21, 125]. The decay rate is
Γs = 5 kHz and a Rabi frequency Ω = 25Γs = 2π × 20 kHz can be easily achieved. Atoms in their
Rydberg state can be strongly dephased due to atomic collisions and motion in an inhomogeneous
trapping potential or intermediate state decay for a two-photon transition [21, 35, 131, 132]. With
a realistic dephasing rate Γd ' 250Γs, we have a single atom linewidth of w = 2π × 450 kHz and
a superatom linewidth wSA = 5w. Choosing a detuning ∆ = 2π × 10 MHz and with a van der
Waals coe�cient C6 = 2π× 16.8 THz µm6 [133] we obtain a lattice constant a ' 11 µm as well as a
superatom extent δr . 0.4 µm. However, this implies a high atomic density 1015 cm−3, which may
lead to strong dephasing and collisional losses of the ground state atoms.

Another possibility is to apply a strong static electric �eld in a direction perpendicular to the
superatom array. The corresponding Stark eigenstates possess large dipole moments ∼ 3

2n
2a0e,

where a0 is the Bohr radius and e the electric charge, and lead to strong dipole-dipole interactions.
Using n = 60 we obtain a dipole-dipole coe�cient C3 ' 2π × 28.5 GHz µm3. In this case the lattice
constant is a ' 14 µm and the superatom extent δr ' 1 µm. Thus we have experimentally feasible
atomic densities 5× 1013 cm−3. In both scenarios we can neglect the level shift on the next nearest
neighbor superatom as per Eq. (3.26).

Finally, let us comment on the aspect of atom losses due to the strong Rydberg-Rydberg interactions.
While in a lattice with unity �lling a loss of a single atom has a strong impact on the excitation
dynamics, a lattice of superatoms with N � 1 is much more robust against a single atom loss.
Preparing experimentally a lattice with exactly N atoms per microtrap may be challenging. However,
in the case of superatoms and for N � 1 a single atom loss only slightly changes the relevant
excitation and deexcitation rates.
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Figure 3.4: (a) Numerical simulation of the Rydberg excitation density ρR using the superatom rate
equation model (solid lines) and the macroscopic model (dashed lines) in a 1D chain of
superatoms. Initially, the system is in a state where all except of one (seed) atom are in the
ground state. The parameters are N = 50, Ω = 25Γs and Γd = 250Γs. We use periodic
boundary conditions in a chain of L = 5000 superatoms. The simulations are averaged
over 500 individual realizations. The color code represents di�erent interaction strength
with respect to the single atom linewidth w ' 570Γs. The gray dotted line indicates a
Rydberg excitation density ρR = 2/3. A peak in the excitation density is indicated by
time t0. (b) Scaling of the peak time t0 with interaction strength VN/w. The dashed line
corresponds to the analytic estimate t0 ' 2/

√
ΓseedΓ↑. The �lled circles denote the peak

time in (a) using the same color code.

3.2 Transient Relaxation Dynamics

Now, we discuss the transient excitation dynamics of the system under facilitation conditions on
a timescale t . Γ−1

s . Initially, all atoms are prepared in the ground state. To start the excitation
cascade at a well de�ned time, we put one seed excitation in the system. A numerical simulation is
shown in Fig. 3.4a. After turning on the excitation laser, the system reaches a peak Rydberg excitation
density within a timescale t . Γ−1

s . Then, the density relaxes to a lower steady state value. With
increasing interaction strength VN/w the Rydberg excitation density approaches ρR ' 2/3. Similarly,
we observe the time evolution of the hole density ρh in Fig. 3.5a relaxing to a steady state value
ρh ' 1/3.

3.2.1 Macroscopic Model

To gain insight into the characteristics of the transient relaxation dynamics, we construct a simple
model based on three essential states: We start with all atoms in the ground state having zero Rydberg
excitation density ρR = 0. The probability of this state is denoted by pg with pg(t = 0) = 1. Now, a
�rst seed excitation triggers an excitation cascade to a state where almost all superatoms are excited
with a corresponding probability pe. While this state has unity Rydberg excitation density, we have
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already seen in Fig. 3.4a that the steady state, denoted by probability ps, has a density ρR = 2/3.
Initially, we have pe(t = 0) = ps(t = 0) = 0. We construct a simple model for the transient
relaxation dynamics. The equations of motion for the state probabilities are

∂tpg = −pseed(t) 2Γ↑ pg, (3.27a)

∂tpe = +pseed(t) 2Γ↑ pg − 3Γs pe + Γseed ps, (3.27b)

∂tps = +3Γs pe − Γseed ps. (3.27c)

The initial probability pg is depleted to the excited state pe by the growth of large excitation clusters.
Each cluster originates from a seed and grows with rate 2Γ↑ to both sides of the 1D chain. For short
times, we assume a linear growth rate of seed excitations. Thus we approximate a seed probability
pseed(t) ' pseed(0) + Γseedt, which is only a valid assumption for short times. However, since
the initial state probability pg is depleted on a fast timescale, the role of seed excitations becomes
irrelevant. Now the excited state probability pe relaxes to the steady state probability ps with a rate
3Γs, where on average every third superatom is an excitation hole. We veri�ed the relaxation rate by
numerical simulations starting with all superatoms excited. In turn, holes are re�lled with the seed
rate Γseed from the steady state with 2/3 Rydberg excitation density to the excited state with unity
density. We compare the resulting excitation density

ρR(t) = pe(t) +
2

3
ps(t) (3.28)

to the full numerical simulation in Fig. 3.4a. Although the macroscopic model does not include
microscopic details it approximates well the mean Rydberg excitation density evolution. In particular
cluster collisions producing additional holes are not included in the model. This may explain the
slight overestimation of the excitation density in the macroscopic model.

Now, we estimate the time t0 where the excitation density ρR reaches its maximum. To this end,
we integrate the initial state probability pg . We assume that the maximum in the excitation density is
reached when the initial state is depleted. Solving Eq. (3.27a) with pseed(0) ' 0, we obtain

pg(t) = exp
(
−ΓseedΓ↑t

2
)
. (3.29)

Thus, using the seed rate from Eq. (3.19) we expect a scaling of the peak time t0 ∝ 1/
√

ΓseedΓ↑ ∝ VN,
which is veri�ed by our numerical simulation in Fig. 3.4b.
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Figure 3.5: Numerical simulation of the hole density ρh using the superatom rate equation model
(solid lines) in a 1D chain of superatoms. The parameters are the same as in Fig. 3.4
with di�erent interaction strength VN/w. The gray dotted line indicates a hole density
ρh = 1/3. (b) Schematics of the e�ective model for the hole dynamics including hole
creation with rate Γc, annihilation with rate Γa and transport from site to site with rate
Γt.

3.3 Steady State Hole Dynamics

Next, we study the nonequilibrium dynamics of the system for times t� Γ−1
s . Instead of considering

Rydberg excited superatoms, we study the dynamics of excitation holes, i.e. a ground state superatom
which is surrounded by two excited ones. Holes originate from collisions of Rydberg excitation
clusters or from spontaneous decay of a Rydberg state within a cluster. The dynamics of the hole
density ρh is shown in Fig. 3.5a. In the limit of strong interactions VN/w � 1 holes cannot be re�lled
and we obtain an almost universal hole density of ρh ' 1/3 in the steady state. To understand this
and the nonequilibrium dynamics of holes we construct an e�ective model.

3.3.1 E�ective Hole Model

Holes appear as stable quasi-particles for two reasons: First, an excitation hole can only be re�lled
by an o�-resonant excitation of a Rydberg state with a strongly suppressed seed rate Γseed. In the
limit ∆/w = VN/w � 1 and for our discussion of an e�ective hole model we neglect this process.
Second, whenever two or more unexcited superatoms are next to each other they will be immediately
reexcited with rate Γ↑. These con�gurations are short lived since Γ↑ determines the shortest timescale
in our system. By adiabatic elimination of these states we can construct an e�ective model for holes.
Hence, the relevant subspace of the hole model includes only states where ground state superatoms
are separated by one or more lattice sites. This behavior is reminiscent of a hard rod lattice gas with
rod length 2a and was already used for describing Rydberg systems in the blockade regime [33, 134].

Before we derive the model, let us summarize the results: The many-body dynamics of holes can

73



Chapter 3 Hole Dynamics in a Chain of Rydberg Superatoms

be described by three relevant processes, which are illustrated in Fig. 3.5b. It is convenient to express
these processes in terms of Lindblad jump operators acting on the corresponding subspace for holes.

1. Creation: Holes are created by spontaneous decay of a Rydberg superatom in the center of a
sequence of at least three consecutive excited superatoms with a rate Γc = Γs. This can be
described by a non-local jump operator

L̂(j)
c =

√
Γc σ̂

(j)
+ [1− n̂(j+1)

h ][1− n̂(j−1)
h ], (3.30)

which creates a hole on lattice site j if there is no hole on the neighboring sites (hard rod
constraint). Here, the σ̂(j)

± is the hole creation/annihilation operator for site j of the lattice and
n̂

(j)
h ≡ σ̂

(j)
+ σ̂

(j)
− is the number operator for a hole.

2. Annihilation: When two holes are separated by one excited superatom, one of the holes can be
annihilated. This process is initiated by spontaneous decay of the middle superatom which
triggers fast excitation of two superatoms from one or both sides of the three-site region. The
hole annihilation is described by

L̂(j)
a =

√
Γa/2 σ̂

(j)
+ σ̂

(j+1)
− σ̂

(j−1)
− , (3.31a)

L̂(j)
a± =

√
Γa/4 σ̂

(j±1)
− n̂

(j)
h , (3.31b)

with the total annihilation rate given by Γa = Γs. The remaining hole can then occupy either
the middle site with half of the total probability, or one of the side sites, each with quarter of
the total probability.

3. Transport: Holes can hop from site to site. This process is mediated by deexcitation of the
superatom next to a hole with rate Γ↓ followed by facilitated excitation of one of the ground
state superatoms. The hole transport is described by

L̂
(j)
t± =

√
Γt σ̂

(j±1)
+ σ̂

(j)
− [1− n̂(j±2)

h ], (3.32)

where Γt = Γ↓/2 is the transport rate and the last term ensures that the hole cannot hop to a
site next to an existing hole.

Derivation

We derive the resulting e�ective model in a small chain of superatoms shown in Fig. 3.6. In particular,
we consider three superatoms in a row where each superatom can be in the ground state (g) or excited
Rydberg state (e). We assume that the chain of three superatoms is surrounded by excited superatoms
on both sides. The probability of having a state in a con�guration {abc} with a, b, c ∈ {g, e} is pabc.
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(a) (b)

Figure 3.6: (a)-(b) Sketch of the transition rates of the full rate equation model (a) and e�ective hole
model (b). Filled (red) circles denote excited superatoms, and open (white) circles the
non-excited ones. (a) Using a three-site chain of superatoms, and �xed excited superatoms
on the left and right of the chain, we identify the transition rates Γs,Γ↓,Γ↑ between
the various excitation con�gurations. All con�gurations with two or more neighboring
non-excited superatoms are adiabatically eliminated (gray shaded con�gurations). (b) The
resulting e�ective model for hole dynamics involves three processes: creation of holes
with rate Γc, annihilation of holes with rate Γa, and transport of holes with rate Γt.

In Fig. 3.6a we show all relevant transition rates. We obtain the following set of equations based on
the superatom rate equation model

∂tpeee =− 3Γspeee, (3.33a)

∂tpgee =− (Γs + Γ↓)pgee + Γspeee + Γ↑pgge, (3.33b)

∂tpege =− 2Γ↓pege + Γspeee + Γ↑pgge + Γ↑pegg, (3.33c)

∂tpeeg =− (Γs + Γ↓)peeg + Γspeee + Γ↑pegg, (3.33d)

∂tpgeg =− Γs(pgeg − pgee − peeg), (3.33e)

∂tpgge =− (2Γ↑ + Γ↓)pgge + Γ↑pggg + Γ↓(pgee + pege), (3.33f)

∂tpegg =− (2Γ↑ + Γ↓)pegg + Γ↑pggg + Γ↓(peeg + pege), (3.33g)

∂tpggg =− 2Γ↑pggg + Γ↓(pgge + pegg) + Γspgeg. (3.33h)

To give an example, a state with all superatoms excited {eee} may decay to any of the states
({gee}, {ege}, {eeg}) with overall rate 3Γs and one hole. Starting e.g. with {gee} an excited
superatom next to the hole may be deexcited with rate Γ↓ and results in a state {gge}. Now, any of
the two ground state superatoms may be facilitated with rate Γ↑.

The probability of having three excited superatoms can only decay with rate 3Γs and is then
no longer relevant for the dynamics of the three atom chain. All states containing more than one
neighboring ground state superatom decay with a fast rate ∼ Γ↑. We adiabatically eliminate these
states setting ∂tpgge = ∂tpegg = ∂tpggg = 0. Finally, we assume a strong facilitation rate 2Γ↑ � Γ↓
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Figure 3.7: Second order spatial correlation function g(2)(d) for non-exited superatoms (solid blue
line) obtained from the full rate equation simulation with Γt/Γs ' 2.15. Additionally, we
show the correlation function for the e�ective hole model (black dashed line) and for a
hard rod lattice gas (red line) with rod length 2a and constant density 1/3 (Γa = Γc = 0).
Using an exponential �t (gray dashed line) at even values of d/a we extract a correlation
length ξ = 0.86± 0.14.

and that states with two neighboring ground state atoms are strongly suppressed, Γ↓
Γs
pgge,

Γ↓
Γs
pegg �

pgeg . Then, we obtain transition rates for the hole dynamics

∂tpgee =− (Γs + 1
2Γ↓)pgee + 1

2Γ↓pege + 1
4Γspgeg, (3.34a)

∂tpege =− Γ↓pege + 1
2Γspgeg + 1

2Γ↓(pgee + peeg), (3.34b)

∂tpeeg =− (Γs + 1
2Γ↓)peeg + 1

2Γ↓pege + 1
4Γspgeg, (3.34c)

∂tpgeg =− Γspgeg + Γs(pgee + peeg). (3.34d)

The corresponding transitions are illustrated in Fig. 3.6b and correspond to creation, annihilation
and transport processes explained in detail for a large lattice system at the beginning of this chapter.

3.3.2 Hole Correlation Function

In the steady state of the system we expect a strong suppression of the probability of �nding two
neighboring ground state superatoms. This can be veri�ed by calculating the second order spatial
correlation function g(2)(d). Explicitly, the correlation function is de�ned in terms of excitation holes
as

g(2)(dk) ≡
〈n̂(j)
h n̂

(j+k)
h 〉

〈n̂(j)
h 〉2

, (3.35)

where dk = ka with k ∈ N is the distance between holes. We assume a spatially uniform average
hole density 〈n̂(j)

h 〉 = ρh.
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In Fig. 3.7, we compare the g(2)(d) correlation function for ground state superatoms, the e�ective
hole model and a hard rod liquid with rod length 2a and density 1/3. In the case of the hard rod
liquid and e�ective hole model g(2)(1a) = 0 by de�nition. The full rate equations simulations also
predict a strong suppression of g(2)(1a) ' 0 and the e�ective model and the full model agree very
well. The correlation function resembles a liquid of holes where we extract a small correlation length
ξ . 1a. Although the hard rod lattice gas (Γc = Γa = 0) qualitatively shows the same behavior,
it cannot reproduce the correlation function quantitatively. We believe the good agreement of full
superatom rate equation simulations and the e�ective hole model fully justi�es the interpretation of
the steady state in terms of excitation holes.

3.3.3 Liquid-Crystal Crossover

In the current setup the transport rate is limited to Γt ≥ Γs/2. Below, we discuss a hypothetical case
where the transport rate of hole excitations can be reduced to arbitrarily small values. The more
general case displays however interesting new phases in the steady state of the many-body system
and may be realized with a more complicated laser excitation scheme.

Let us start with the case where all transport processes are suppressed, i.e. Γt = 0. Neglecting the
small rate for re�lling excitation holes Γseed we then have three stable steady state con�gurations.
These correspond to a structure where each hole is separated by two excitations from the next hole
(see initial con�guration in Fig. 3.5b). Translational invariance upon a shift in the lattice of three sites
results in a triply degenerate steady state. These con�gurations may be termed dark states, since
the action of operators for creation L̂(j)

c in Eq. (3.30) and annihilation L̂(j)
a in Eq. (3.31) onto these

con�gurations is zero. Thus, for a vanishing transport rate we have a crystalline ordered steady
state where the peaks in the density-density correlation function g(2)(d) appear with period d = 3a.
The hole density is ρh = 1/3 with no hole number �uctuations. We characterize �uctuations of the
number of holes using the Mandel Q parameter

Q ≡
〈n̂2
h〉 − 〈n̂h〉2

〈n̂h〉
− 1, (3.36)

where n̂h =
∑

j n̂
(j)
h is the total number of holes. The Mandel Q parameter is de�ned such that a

value Q < 0 corresponds to sub-Poissonian number distribution. A value Q = −1 means no number
�uctuations at all.

By increasing the transport rate Γt for holes we introduce �uctuations of the hole number. Since
holes are now mobile again, creation and annihilation processes are possible. In Fig. 3.8a-b we
plot the hole density ρh and the Q parameter versus the transport rate Γt. While the hole density
ρh ' 1/3 remains constant, number �uctuations and thus the Q parameter increase. Nevertheless,
even for large transport rates we obtain a sub-Poissonian hole number statistics. Using an algebraic
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Figure 3.8: (a) Average hole density ρh and (b) Mandel Q parameters for the total number of holes
versus the hopping rate Γt. The shaded area in (a) and (b) indicate the hypothetical case
Γt < Γs/2, which is not accessible experimentally in the current model. (c) Amplitudes of
the correlation function g(2)(d) for d = 2a (blue circles) and d = 3a (red circles) versus
the hopping rate Γt. Dashed lines are algebraic �t functions. Exemplary, we show as an
inset the second order spatial correlation function de�ned in Eq. (3.35) for small and large
transport rate Γt.

�t function we �nd

Q

(
Γt
Γc

)
' −0.8071 + 0.0546

(
Γt
Γc

)−0.17

, (3.37)

leading to a value Q ' −0.81 in the limit Γt → ∞. Since both the annihilation rate and creation
rate are equal to the decay rate in our setup, Γc = Γa = Γs, the number of holes is constant. We
checked numerically that changing these rates independently the hole density changes as well.

Fluctuations of the hole number and associated transport processes lead to a melting of the
crystalline structure with period d = 3a. Interestingly, the crystal does not simply melt into a liquid
with short-range density correlations peaked at d = 3a, but at d = 2a. This crystal-liquid crossover
upon increasing the transport rate Γt is indicated in Fig. 3.8c. While for small transport rates Γt it is
more likely to �nd two holes with distance d = 3a (g(2)(d = 3a) > 1) than having distance d = 2a

(g(2)(d = 2a) < 1), in the limit of large transport rates the situation is reversed. Since holes cannot
move closer than two lattice sites, the liquid of holes has a correlation function similar to that of a
hard rod liquid with rod length 2a and density 1/3.
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3.3 Steady State Hole Dynamics

Conclusion

In this chapter we showed that interesting steady states can be realized in a 1D chain of Rydberg
superatoms in the facilitation regime. Each superatom consists of a mesoscopic ensemble of atoms
sharing at most one Rydberg excitation. We showed that in the steady state a new quasi-particle
– a hole – emerges with an almost universal hole density of ρh = 1/3. A hole is a ground state
superatom whenever it is surrounded by two excited superatoms.

We developed an e�cient superatom rate equation model to simulate the many-body excitation
dynamics. This description is valid in the regime of moderate and strong dephasing and is the basis of
the discussion of the excitation dynamics. We showed that the relaxation towards the steady state can
be easily described using a coarse grained macroscopic model. Furthermore, numerical simulations
show that the steady state has an almost universal Rydberg excitation density of ρR = 2/3. We
found that this can be understood in terms of holes, which can move through the lattice. Although,
new holes can be created and annihilated, the hole number �uctuations are strongly suppressed with
a Mandel Q parameter Q ' −0.81. In the experimentally accessible regime holes essentially behave
as hard rods of length d = 2a with short-range spatial correlations.

We envision that using a more complicated laser excitation scheme holes may become less mobile
and allow to study a crossover to a crystalline regime with period d = 3a. This may be realized by
coupling the ground state atoms to metastable long-lived states. Moreover, we believe it is interesting
to investigate di�erent lattice geometries of superatoms in the facilitation regime.
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Chapter 4

Anomalous Excitation Facilitation in Dense
Inhomogeneously Broadened Rydberg Gases

In the previous two chapters, we have seen that the facilitation regime in large ensembles of driven
Rydberg atoms allows to observe interesting relaxation dynamics and steady state properties [90,
92, 93]. In particular, we investigated a large 3D system composed of single atoms (Chapter 2) and
a 1D chain consisting of Rydberg superatoms (Chapter 3). In both cases, the facilitation dynamics
manifests itself in a strong separation of timescales. While the rate for an o�-resonant excitation to a
Rydberg state is strongly suppressed, a subsequent excitation rate of a neighboring atom is enhanced,
since the interaction energy shift can compensate the detuning. The interplay between these di�erent
timescales and the lifetime of a Rydberg state can lead to kinetically constrained excitation dynamics
[59, 83–85, 135]

While strong decoherence is typically a limiting factor for quantum simulations, its in�uence on
the system may lead to novel e�ects. In this chapter we discuss an anomalous facilitation mechanism
arising in a dense inhomogeneously broadened Rydberg gas. This mechanism may appear on the
"wrong" side of the laser detuning. Since in this case the interaction shift cannot compensate the
detuning, it appears rather unexpected. Speci�cally, we discuss an attractively interacting Rydberg
gas where facilitated excitations can appear on the red detuned side (usual case) as well as on the
blue detuned side (anomalous case).

This chapter is based on the publication [FL3]. Several paragraphs have been taken from [FL3]
and are partially modi�ed.

4.1 Two Particle Dynamics: Usual Case

Let us brie�y review the usual facilitation mechanism. Speci�cally, we discuss two repulsively
interacting atoms on the blue detuned (∆ > 0) side of the resonance. We consider the incoherent
excitation rate of a ground state atom at distance r from an excited Rydberg state atom,

Γ↑(r) =
2Ω2γ0

γ2
0 + (∆− V (r))2

. (4.1)

A detailed derivation of the rate equation model and its validity can be found in Sec. 1.1.2. Due
to the long-range interactions, a single Rydberg excitation alters dramatically the excitation rate
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Chapter 4 Anomalous Excitation Facilitation

Figure 4.1: (a) Schematic overview of the two-step excitation mechanism in the incoherent antiblock-
ade regime. An inhomogeneous broadening is indicated by the red shaded region. At the fa-
cilitation radius rfac the interaction shift compensates the detuning shift, i.e. ∆ = V (rfac).
The blockade radius aB = (Cα/γ0)(1/α) is always larger than the facilitation radius rfac.
(b) Incoherent excitation rate normalized to the spontaneous decay rate Γs of the Rydberg
state in the presence of one Rydberg excitation with distance r for di�erent detunings ∆.
We set the Rabi frequency Ω = 1 as the natural energy scale and a = 1 the characteristic
length scale. In these units, the parameters are Γs = 0.05, γ0 = 2 and C6 = 10ω with
linewidth ω = γ0

√
4Ω2/Γsγ0 + 1.

Γ↑(r) of surrounding atoms. We consider repulsive interactions between Rydberg atoms of the
form V (r) = Cα/r

α (~ = 1) with α = 6, corresponding to van der Waals type interaction. For
repulsive interactions V (r) > 0 the interaction term in the denominator of Eq. (4.1) can compensate
the detuning ∆ > 0. Here, Ω denotes the Rabi frequency and γ0 is the decoherence rate including
spontaneous decay and dephasing.

Figure 4.1a illustrates the antiblockade regime starting from both atoms in the ground state. While
the �rst excitation is strongly o�-resonant, the interaction shift V (r) can compensate the detuning
∆ exciting the second atom to the Rydberg state. For a �xed detuning ∆, the subsequent excitation
rate Γ↑(r) reaches its maximum at the so called facilitation radius

rfac = α
√
Cα/∆, (4.2)

at which the transition is moved exactly into resonance.

Assuming a linear slope and that the excitation linewidth is determined by the decoherence rate
γ0, the spatial extent of the facilitation region can be expressed as

δr ' γ0

α∆
rfac. (4.3)

The spatial extent δr becomes smaller and smaller if the detuning ∆ is increased. However, the peak
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value 2Ω2/γ0 is unaltered. This can be seen in Fig. 4.1b, where we show the excitation rate (4.1) for
di�erent detunings ∆ illustrating the transition between blockade regime (∆ . w) and antiblockade
regime (∆ & w).

4.2 Inhomogeneous Broadening

In many experiments with Rydberg atoms strong broadening in the atomic spectrum has been
observed [136–139]. Although this may limit the observation of fully coherent quantum dynamics, it
may also lead to interesting new e�ects.

There are several possibilities for inhomogeneous broadening which strongly depend on the
microscopic details of the system. Therefore, a full theory of possible broadening mechanisms in
Rydberg gas experiments is not available. Yet, we want to mention a few possible scenarios: Firstly,
the strong and long-range interaction may induce additional dephasing mechanisms [136, 137].
Secondly, black-body induced or spontaneous transitions to neighboring Rydberg levels may lead
to a dipole-dipole interaction induced broadening [138–141]. Another e�ect is motion in Rydberg
gases, which goes beyond the frozen gas approximation [39, 142]. In particular, the o�-resonant
excitation of two atoms to Rydberg states in optical lattices can induce an inhomogeneous broadening
as discussed in Ref [116, 117] and in Sec. 2.2. In the latter case an asymmetric line shape is expected
as can be seen in Fig. 2.6. Crucially, they all originate from a strong and quasi long-range interaction
potential V (r) = Cα/r

α and therefore depend on the mutual distance r between the two atoms.

We assume a special type of interaction induced broadening,

γ(r) = γ0 +
Dβ

rβ
. (4.4)

Besides the bare decoherence rate γ0 we added a dephasing rate seen by a ground state atom with
distance r to an excited atom. The coe�cient β determines the range and Dβ the strength of the
broadening. Speci�cally, we discuss here the case β = 6. However, similar results can be obtained for
di�erent exponents β, such as β = 12 expected for van der Waals interaction induced broadening.
Importantly, with decreasing distance between two atoms, the interaction induced broadening γ(r)

increases strongly. In this case, the full excitation rate is

Γ↑(r) =
2Ω2γ(r)

γ(r)2 + (∆− V (r))2
. (4.5)

Note that we assume a symmetric inhomogeneous broadening mechanism centered at the resonance
position ∆ = V (rfac). In the limit r →∞, we retrieve the excitation rate for uncorrelated atoms.
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4.3 Two & Many Particle Dynamics: Anomalous Case

Below, we will show that contrary to the intuition from the previous discussion also attractive
interactions with strong inhomogeneous broadening can result in an anomalous facilitation on the
blue detuned side of the resonance. Speci�cally, we discuss an attractive interaction potential V (r) =

C6/r
6 < 0. Responsible for the anomalous facilitation mechanism is the additional inhomogeneous

decoherence rate γ(r) as in Eq. (4.4). The line broadening γ(r) strongly increases with decreasing
mutual distance r between two atoms in the ground and Rydberg state. The resulting excitation rate
(4.5) is shown in Fig. 4.2 as a false-color contour plot.

On the red detuned side ∆ < 0, i.e. the detuning has the same sign as the interaction potential
V (r), we recognize the usual facilitation mechanism, see Fig. 4.2b. Here, the broadening mainly
reduces the excitation rate compared to (4.1) without additional broadening. At the facilitation radius
rfac, the excitation rate Γ↑(r) reaches approximately its maximum. We obtain a broader spatial width
approximately given by δr ' rfacγ(rfac)/6∆ upon replacing γ0 by γ(rfac) in Eq. (4.3).

Interestingly, we can identify an anomalous facilitation radius r̃fac also on the blue detuned side
∆ > 0, as shown in the inset of Fig. 4.2a. Similar to the usual case, the anomalous facilitation rate
at r̃fac decreases with increasing detuning ∆ and approximately follows the same scaling as rfac.
While in the usual case facilitation results from an interaction term compensating the detuning, in
the anomalous case, the peak in the excitation rate at the anomalous radius r̃fac originates from the
inhomogeneity of the broadening mechanism. Overall, the excitation rate for an atom at distance
r̃fac with blue detuning is of course much smaller than in the red detuned case. However, the spatial
width of the facilitation pro�le Γ↑(r) is broadened, too.

Naively, we do not expect any cascaded excitations since the magnitude of the rates is strongly
reduced on the blue detuned side of the resonance for attractive interaction. However, we will show
that facilitation can be possible for certain detunings ∆ in su�ciently dense atomic gases. So far, we
discussed the excitation rate of a single ground state atom in the presence of one other already excited
Rydberg atom at distance r. However, a single Rydberg excitation in�uences the excitation rate of
all surrounding atoms within a blockade radius aB. Therefore, we have to consider the integrated
facilitation rate

Γ̄↑ =

N∑
j

Γ↑(rj) (4.6)

over all atoms j with distance rj to the excited Rydberg atom. Here N is the number of atoms within
the blockade radius aB. Atoms with distance larger than the blockade radius, i.e. r > aB, are only
weakly a�ected by the interaction shift and therefore neglected. To observe facilitated excitations,
we require two ingredients: Firstly, for an excitation cascade, we have to compare the integrated
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4.3 Two & Many Particle Dynamics: Anomalous Case

Figure 4.2: Incoherent excitation rate Γ↑(∆, r)/Γs in the presence of one Rydberg atom at distance
r with detuning ∆ for an attractive interaction C6 = −10ω for the same parameters as
in Fig. 4.1 and D6 = 0.3C6. (a) Anomalous facilitation on the blue detuned side and (b)
usual facilitation on the red detuned side with attractive interaction. The insets show the
excitation pro�le Γ↑(r) for (a) blue (∆/ω = −4) and (b) red (∆/ω = 4) detuning. The
white solid line follows |C6/∆|(1/6).
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Figure 4.3: For a cubic lattice with lattice spacing a we calculate the total facilitation rate Γ̄↑ for all
atoms within a blockade radius aB/a ' 2. We determine the region (gray shaded) where
both conditions for facilitation (i) Γ̄↑ > Γ̄0 and (ii) Γ̄↑ > Γs are ful�lled. The blue dashed
lines show the facilitation rate for di�erent distances rj to the excited Rydberg atom. Due
to the lattice structure, we encounter a discrete set of resonances. The blue solid line is
the total facilitation rate. We used the same parameters as in Fig. 4.2.

facilitation rate Γ̄↑ to the uncorrelated total excitation rate

Γ̄0 = NΓ↑(r →∞). (4.7)

Secondly, we have to ensure, that one Rydberg excitation triggers a subsequent excitation before it
decays with rate Γs back to the ground state. This leads to the following two conditions for facilitation

Γ̄↑ > Γ̄0, (4.8)

Γ̄↑ > Γs. (4.9)

The conditions (4.8) and (4.9) may be ful�lled easily in the usual facilitation case even in the case
of a single neighboring atom (see Fig. 4.2), whereas in the anomalous case, the individual excitation
rates are much weaker. Nevertheless, since the spatial excitation width of the anomalous case is
much larger, many more atoms can contribute and conditions (4.8) and (4.9) can be ful�lled for a
su�ciently dense atomic gas.

4.3.1 Example and Experimental Considerations

To give an example, we calculate the integrated excitation rates Γ̄↑ and Γ̄0 using realistic experimental
parameters for a cubic lattice with lattice spacing aB/a ' 2 and we choose a weight D6/C6 = 0.3.
Within a blockade radius aB, we count N = 32 atoms. The results are shown for both, blue and red
detuning, in Fig. 4.3. While we can identify individual resonance peaks (dashed blue lines) on the red
detuned side corresponding to speci�c lattice distances, on the blue detuned side only the residual
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line broadening of the resonances remain. Due to the inhomogeneous broadening, the resonance lines
on the red detuned side are strongly broadened. Here, conditions Eq. (4.8) and Eq. (4.9) are ful�lled
for a broad range of detunings (gray shaded region) and we observe usual facilitation. Surprisingly,
on the blue detuned side both facilitation conditions in Eq. (4.8) and (4.9) are ful�lled for several
detunings, too. Although, the extent of allowed detunings ∆ is much larger on the red detuned side,
an anomalous facilitation is possible on the blue side of the detuning ∆. Note that the anomalous
facilitation range strongly depends on the density, the microscopic geometry, the interaction and the
line broadening.

Finally, let us comment on a possible observation of the anomalous facilitation mechanism in
a pump-probe experiment. A �rst excitation pulse, which is resonant with the atomic transition,
creates a small number of Rydberg excitations in a cold atomic sample. Choosing, for instance,
Rubidium p-states with principal quantum number n < 38 will provide the required attractive van
der Waals interaction. Subsequently, a probe beam with tunable frequency is applied and the number
of Rydberg excitations is recorded. This is then compared to the bare excitation rate without the
pump pulse. To enhance the visibility of the e�ect, it might be favorable to increase the number of
atoms within a blockade sphere, which suggests the use of a three-dimensional setup. We checked
that a continuous system without an underlying lattice structure ful�lls the anomalous facilitation
condition, too. The parameters chosen here are compatible with current experiments. Nevertheless,
we want to point out that other parameters can lead to similar results.

Conclusion

We discovered an anomalous facilitation mechanism allowing to observe cascaded excitations in an
experimentally accessible and unexpected parameter regime. In contrast to the usual facilitation,
where the interaction compensates the detuning, the anomalous facilitation appears on the opposite
side of the detuning. Our discussion was motivated by the observation of an interaction induced
inhomogeneous broadening mechanism in recent experiments [138, 139]. While we here assumed an
additional decoherence proportional to the van der Waals interaction, we would like to point out
that other spatially dependent broadening mechanisms may lead to similar results. We discussed the
general conditions for facilitation in the many particle dynamics.

We believe that the anomalous facilitation is an interesting extension to the usual facilitation,
which may be observable in current experiments. In particular, it may lead to unexpected correlations
on the "wrong" side of the resonance. For instance, attractive interactions may lead to the formation
of molecular bound states suppressing an excitation cascade on the red detuned side. However, the
observation of strongly correlated excitation growth may be seen on the blue detuned side of the
resonance. Finally, we hope that our discussion further motivates to study the origin of excitation
line broadening in ultracold Rydberg gases and may trigger applications thereof.
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Chapter 5

Mobile Bound States of Rydberg Excitations in
a La�ice

Spin lattice models play a fundamental role in the theoretical description of solid state phenomena,
such as magnetism and superconductivity. They are relevant for both, the study of quantum and
thermal phase transitions [57, 58]. While these models arise naturally in condensed matter systems,
it is still experimentally challenging to create interesting spin models in a controlled environment
with tunable interactions. Of particular interest are systems, where the interplay between transport
of spin excitations and the interaction between spins may lead to interesting dynamics [143–146].

Although, the realization of tunable and coherent spin models is challenging, there exist several
experimental platforms exploring these models. Among them are trapped ions [11, 147], super-
conducting circuits [148, 149] and quantum dots [150]. One promising route for large scale spin
models and good coherent control are cold atoms in optical lattices [12, 151]. However, the relevant
interaction energies in these systems are on the order of a few Hz, which makes them susceptible to
thermal e�ects and decoherence.

Rydberg system o�er another possibility to exploit strong spin interactions [37, 38]. So far, many
experiments concentrate on either strong van der Waals interactions [10, 21, 22, 125–127], realizing
Ising type models, or resonant dipole-dipole interactions [46, 152–155]. The latter allows to realize
spin models with spin-exchange interaction. Here, we propose a scheme realizing an extended
XXZ model with tunable and long-range interactions. To this end, we combine both dipole-dipole
interactions and van der Waals interactions in a setup of dressed Rydberg atoms [117, 156, 157]. This
allows to tune the spin-exchange strength by changing the amplitude of the dressing laser �eld. Due
to the rather long lifetimes of Rydberg states, this setup is suitable to study coherent and incoherent
spin dynamics alike.

In particular, we investigate the dynamics of a few spin excitations. We show that in our setup
mobile bound states of excitations exist. Similar to the binding mechanism of e.g. repulsively bound
pairs in the Bose Hubbard model [145, 158–161], Rydberg excitations can form a tightly bound pair
due to the strong van der Waals interaction. The long-range spin-exchange process leads to an
increased mobility in comparison with the Bose Hubbard model.

This chapter is based on the publication [FL6], partially with text overlap.
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5.1 Extended XXZ Model

In this section we consider a spin lattice model with long-range interactions, which is described by
the Hamiltonian (~ = 1)

Ĥ =
∑
i<j

Jij

(
σ̂i+σ̂

j
− + σ̂i−σ̂

j
+

)
+
∑
i<j

Uijn̂in̂j . (5.1)

We de�ne the spin lowering σ̂i− = |↓〉i 〈↑| and raising operators σ̂i+ = |↑〉i 〈↓| for the ith spin in
the lattice. The operator n̂i ≡ σ̂i+σ̂

i
− = |↑〉i 〈↑| projects onto the spin-up state. The �rst term in

Eq. (5.1) corresponds to a long-range spin-�ip process with exchange interaction Jij . We assume a
lattice with L� 1 sites. The second term describes interactions between spins in the state |↑〉 with
an interaction strength Uij . We assume that both interaction strengths depend only on the mutual
distance |i− j| between two spins at positions i and j. This model preserves the total number of
spin excitations N̂ =

∑
i n̂i.

Single excitation For a single spin excitation (N = 1) – a magnon – the interaction part becomes
irrelevant. We can label each state with the position x of the spin excitation |x〉 ≡ σ̂x+ |↓1↓2 . . . ↓L〉.
The Hamiltonian (5.1) can be written as

Ĥ(1) =
L∑
x 6=y

Jxy |x〉 〈y| =
L∑
x=1

∑
d≥1

Jd(|x〉 〈x+ d|+ |x〉 〈x− d|). (5.2)

The magnon can hop from one site to an other site at distance dwith a hopping strength Jd depending
on the hopping distance d. We can easily diagonalize the Hamiltonian (5.2) using a discrete Fourier
transform |x〉 = 1√

L

∑
q e

iqx |q〉. Here, q is the lattice quasi momentum which has values q = 2πn
L

with n ∈ {−L−1
2 , . . . , L−1

2 }. The transformed Hamiltonian,

Ĥ(1)
J =

∑
q

E(1)(q) |q〉 〈q| , (5.3)

is diagonal in the lattice quasi momentum q with energy

E(1)(q) =
∑
d≥1

2Jd cos(qd). (5.4)

Two excitations Next, let us consider the case of two magnons (N = 2). We label states with
excitations at positions x and y with |x, y〉 ≡ σ̂x+σ̂

y
+ |↓1↓2 . . . ↓L〉. Since |x, y〉 = |y, x〉 we use the

convention x < y for a state |x, y〉 to avoid double counting. Within the N = 2 excitation subspace
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we can cast the Hamiltonian (5.1) as

Ĥ(2) =
∑
x<y

[∑
d

Jd(|x, y〉 〈x− d, y|+ |x, y〉 〈x, y + d|)

+
∑
d<y−x

Jd(|x, y〉 〈x+ d, y|+ |x, y〉 〈x, y − d|)

+
∑
d>y−x

Jd(|x, y〉 〈y, x+ d|+ |x, y〉 〈y − d, x|)

+Uxy |x, y〉 〈x, y|
]
. (5.5)

The hopping part of Eq. (5.5) includes processes where two excitations approach or separate each
other or hop over one another. Besides the individual hopping elements of each spin excitation we
include an interaction Uxy between magnons at lattice sites x and y. We assume the interaction
depends only on the relative distance between the spin excitations r ≡ y − x. Thus we use center of
mass coordinate R ≡ x+y

2 and relative coordinate r to further simplify the Hamiltonian and obtain

Ĥ(2) =
∑
R,r

[∑
d

Jd(|R〉 〈R− d/2| ⊗ |r〉 〈r + d|+ |R〉 〈R+ d/2| ⊗ |r〉 〈r + d|)

+
∑
d<r

Jd(|R〉 〈R+ d/2| ⊗ |r〉 〈r − d|+ |R〉 〈R− d/2| ⊗ |r〉 〈r − d|)

+
∑
d>r

Jd(|R〉 〈R+ d/2| ⊗ |r〉 〈d− r|+ |R〉 〈R− d/2| ⊗ |r〉 〈d− r|)

+ Ur |R〉 〈R| ⊗ |r〉 〈r|
]
. (5.6)

Here, R = 1 + 1
2 , 2, 2 + 1

2 , . . . , L −
1
2 takes L̃ = 2L − 3 discrete values, and r = 1, 2, . . . , L − 1

takes L− 1 values. We perform a Fourier transformation |R〉 = 1√
L̃

∑
K e

iKR |K〉 and introduce

the center of mass lattice quasi momentum K = 2πn
L̃

with n ∈ {− L̃−1
2 , . . . , L̃−1

2 }. Finally, using
Jd,K ≡ 2Jd cos(Kd/2) we can recast Hamiltonian (5.1) for two excitations as

Ĥ(2) =
∑
K

ĤK |K〉 〈K| ,

ĤK =
∑
r

[∑
d

Jd,K |r〉 〈r + d|+
∑
d<r

Jd,K |r〉 〈r − d|+
∑
d>r

Jd,K |r〉 〈d− r|+ Ur |r〉 〈r|
]
.

(5.7)

5.2 E�ective Rydberg-dressed Spin La�ice Model

The spin model discussed in Sec. 5.1 can be realized using two di�erent Rydberg states and exploiting
dipole-dipole and van der Waals interactions. We assume that single atoms are trapped in a 1D
array and can be excited to Rydberg states |s〉 and |e〉 as indicated in Fig. 5.1. Initially, N atoms are
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Figure 5.1: Simpli�ed level scheme for Rydberg-dressed spin model. A ground state |g〉 is dressed
to a Rydberg state |s〉 with Rabi frequency Ω and detuned by ∆. The spin-down state is
approximately |↓〉 ' |g〉+ Ω

∆ |s〉 and the spin-up state is another Rydberg state, |↑〉 = |e〉.
While the interaction between spin-up states maintains the full Rydberg interaction
strength V ee, the spin �ip processes induced by the dipole-exchange interaction D is
reduced approximately by a factor |Ω|

2

∆2 .

prepared in the Rydberg state |e〉, while the remaining atoms are prepared in the other Rydberg state
|s〉. Let us assume that the transition between states |s〉 and |e〉 are dipole allowed. Then two atoms
in states |e〉 and |s〉 with distance d will undergo resonant dipole-dipole interaction with strength
Dd = C3/d

3 [47, 154], which realizes the �rst part of Eq. (5.1), i.e. the hopping of magnons. In
addition, we have interactions between two atoms in Rydberg states |s〉 and |e〉 [40]. For simplicity,
let us assume that only the interaction between two Rydberg |e〉 states is relevant. Then, we have a
van der Waals interaction V ee

d = C6/d
6, which corresponds to the second part of the Hamiltonian

Eq. (5.1).
The interaction coe�cients C3 and C6 are determined by the microscopic details of the atomic

states. Typically, the resonant dipole-dipole interaction Dd is much stronger than the van der Waals
interaction Vd. As already discussed in Sec. 1.2, the van der Waals interaction originates from second
order perturbation theory in Dd/δω � 1, where δω is a large Förster defect [38]. Thus, the van der
Waals interaction Vd ∼ D2

d/δω is smaller than the resonant dipole-dipole interaction and therefore
precludes the study of the strong interaction regime Vd & Dd. However, this is the regime where we
expect interesting spin excitation dynamics to happen and therefore want to study.

To this end, we propose a scheme which allows to approximately realize the spin lattice model
Hamiltonian Eq. (5.1) with tunable parameter Jij/Uij . Instead of directly exciting atoms to the
Rydberg |s〉 state, this Hamiltonian might be realized by dressing ground state atoms with the
Rydberg |s〉 state. The small admixture of the Rydberg state mediates the spin exchange process
with tunable interaction strength, while the van der Waals interaction strength of the |e〉 excitation
remains unaltered. The idea to employ Rydberg-dressing to realize tunable interactions has been
proposed already in Ref. [117, 156, 157] and Rydberg dressing has been realized in recent experiments
[126, 127, 162]. This may pave the way to study exotic phases of condensed matter systems [92, 143,
144, 146, 163–165].
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5.2.1 Microscopic Model

We consider a translational invariant array of atoms trapped in a 1D optical lattice with lattice
constant a. The level scheme including the external drive and interactions is depicted in Fig. 5.1. Each
lattice site contains a single atom, which is assumed to be in its motional ground state. We assume
that initially a �xed number N of atoms in the Rydberg states |e〉 are created. A spatially uniform
laser drives the transition from the ground state |g〉 to a Rydberg state |s〉 with Rabi frequency
Ω. The mismatch between the laser carrier frequency ω and the atomic transition frequency ωgs
determines the detuning ∆ = ωge − ω. In a rotating frame and neglecting a constant energy o�set
the Hamiltonian is (~ = 1)

Ĥat =
∑
j

[
∆σ̂ssj − Ωσ̂gsj − Ω∗σ̂sgj

]
+
∑
i<j

Dij

(
σ̂esi σ̂

se
j + σ̂sei σ̂

es
j

)
+
∑
i<j

(
V ee
ij σ̂

ee
i σ̂

ee
j + V ss

ij σ̂
ss
i σ̂

ss
j + V es

ij σ̂
ee
i σ̂

ss
j

)
. (5.8)

Here σ̂µνj = |µ〉j 〈ν| is a transition (µ 6= ν) or a projection (µ = ν) operator for the jth atom.
We include interactions between Rydberg states and assume them to be of van der Waals type
V µν
jk = Vrjk = Cµν6 /r6

jk . Cµν6 denotes the van der Waals coe�cient and rjk = |j−k|a is the distance
between two atoms at lattice sites j and k. Furthermore, we include dipole-dipole coupling between
two atoms in the Rydberg states |se〉 ↔ |es〉 via Dkj = Drjk = C3/r

3
jk. We neglect all decoherence

mechanisms e.g. decay from the Rydberg states. This is justi�ed when the experimental timescales
are su�ciently shorter than the lifetime of the Rydberg states. In this case, the number N of atoms
in the |e〉 state is a conserved quantity. In the following discussion we set the lattice constant a to
unity. Thus the distance rjk between two atoms at lattice sites j and k is a positive integer.

5.2.2 Rydberg Dressing

For dressing the ground state with a Rydberg state, we consider a regime where the detuning is the
largest energy scale in the system,

∆� |Ω|, Dd > V ee
d , V es

d , V ss
d , (5.9)

where d is the distance between Rydberg atoms. While the Rabi frequency Ω can be comparable to
the dipole-dipole interactions, the relevant van der Waals interaction V µν

d can be much smaller.
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Zero excitations (N = 0)

Let us �rst recall dressing of an isolated atom [165]. In this case we neglect all interactions and the
system is described by the Hamiltonian (in a rotating frame)

Ĥ0 = ∆ |s〉 〈s| − Ω |g〉 〈s| − Ω∗ |s〉 〈g| . (5.10)

For convenience we set the ground state energy to zero. For |Ω|/∆ = 0 the low-energy state |g〉 is
decoupled from the high energy state |s〉 with energy ∆. In the case |Ω|/∆ 6= 0, we diagonalize the
system and obtain eigenstates and corresponding eigenenergies

|±〉 =
ε∓ |g〉+ Ω |s〉√

ε2
∓ + |Ω|2

, ε± =
∆±

√
∆2 + 4|Ω|2

2
. (5.11)

In the dressing regime (∆� |Ω|), the low-energy state |g〉 is modi�ed. The new eigenstate |−〉 '
|g〉+ Ω

∆ |s〉 has a small admixture of the Rydberg state |s〉. Its eigenenergy ε− ' − |Ω|
2

∆ is shifted by
δ = − |Ω|

2

∆ (ac Stark shift). We will use the dressed ground state as the spin-down state |↓〉 ≡ |−〉.

Now we consider a chain of L ground state atoms dressed with the Rydberg |s〉 state. Since atoms
are excited with probability |Ω|

2

∆2 to the Rydberg |s〉 state, the interaction is reduced to |Ω|
4

∆4 V
ss
r . In

the case discussed here we assume that this is small and we neglect interactions between spin-down
states. The total energy shift

E0 =
L∑
x

δx = −L |Ω|
2

∆
(5.12)

is constant and can be disregarded by rede�ning the zero-point energy.

Single excitation (N = 1)

We identify the spin-up state |↑〉 ≡ |e〉 with a Rydberg state |e〉. Now we consider a single atom in
the Rydberg state |e〉 immersed in a gas of dressed ground state atoms. In this case we have to take
into account the residual dipole-dipole interactionDd and van der Waals interaction V es

r between the
single |e〉 state and the dressed ground states. This will lead to an e�ective hopping and a modi�ed
Stark shift depending on the distance to the |e〉 Rydberg state.

We consider interatomic interactions up to second order in |Ω|∆ . Then, it is su�cient to consider
atomic states involving no more than one |s〉 excitation. Consequently, we consider here two atoms,
with one atom being in state |e〉 and the other atom either in state |g〉 or |s〉. The positions of the
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two atoms are x and y. In this subspace the corresponding Hamiltonian is

Ĥ1 =(∆ + V es
xy )
[
|s〉 〈s| ⊗ |e〉 〈e|+ |e〉 〈e| ⊗ |s〉 〈s|

]
−
[
Ω
(
|g〉 〈s| ⊗ |e〉 〈e|+ |e〉 〈e| ⊗ |g〉 〈s|

)
+ h.c.

]
+Dxy

(
|s〉 〈e| ⊗ |e〉 〈s|+ h.c.

)
, (5.13)

where x and y are the positions of the two atoms. The two-atom wavefunction can be written as

|φ〉 = cge |ge〉+ ceg |eg〉+ cse |se〉+ ces |es〉 . (5.14)

For the amplitudes cνµ we obtain the following equations of motion

iċge = −Ωcse, (5.15a)

iċeg = −Ωces, (5.15b)

iċse = (∆ + V es
xy )cse − Ω∗cge +Dxyces, (5.15c)

iċes = (∆ + V es
xy )ces − Ω∗ceg +Dxycse. (5.15d)

Since ∆ is the largest energy scale in the system and we are interested in the low-energy dynamics
we adiabatically eliminate states containing Rydberg states |s〉. In particular, we set ċse = 0 and
ċes = 0 and solve for cse and ces. Inserting into the �rst two equations, we obtain

iċge = −
|Ω|2(∆ + V es

xy )

(∆ + V es
xy )2 −D2

xy

cge +
|Ω|2Dxy

(∆ + V es
xy )2 −D2

xy

ceg, (5.16a)

iċeg = −
|Ω|2(∆ + V es

xy )

(∆ + V es
xy )2 −D2

xy

ceg +
|Ω|2Dxy

(∆ + V es
xy )2 −D2

xy

cge. (5.16b)

We can interpret these equations as follows: The dressed ground state atom at position x acquires an
energy shift depending on the position y of the |e〉 excitation. The energy shift is given by

δ(y)
x = −

|Ω|2(∆ + V es
xy )

(∆ + V es
xy )2 −D2

xy

. (5.17)

Additionally we obtain an exchange coupling between the |e〉 excitation and the dressed ground state
with strength

Jxy =
|Ω|2Dxy

(∆ + V es
xy )2 −D2

xy

. (5.18)

Both, the energy shift δ(y)
x and the e�ective hopping Jxy = Jd depend only on the relative distance

d = |x − y| between the two atoms. Note that setting Dxy = V es
xy = 0 we obtain the previous

zero-excitation result with Stark shift δ = − |Ω|
2

∆ .
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The total energy shift in a system with L− 1 atoms in the dressed ground state and one atom at
position y in the |e〉 state is

E1 =
∑
x 6=y

δ(y)
x . (5.19)

Note that E1 is a constant and does not depend on the position y of the |e〉 excitation (assuming
the thermodynamic limit L→∞). We can disregard this energy shift by rede�ning the zero-point
energy. Thus, we obtain an e�ective Hamiltonian for the single excitation dynamics

Ĥeff
1 =

∑
x 6=y

Jxy |x〉 〈y| =
L∑
x=1

∑
d≥1

Jd
(
|x〉 〈x+ d|+ |x〉 〈x− d|

)
. (5.20)

This realizes the single spin-up Hamiltonian in Eq. (5.2). The hopping strength can be approximated
by

Jd '
|Ω|2

∆2
Dd ∝

1

d3
(5.21)

for ∆� Dd, V
es
d .

Two excitations (N = 2)

For the case of two |e〉 excitations we follow the same procedure as before. We restrict our discussion
to interatomic interactions up to second order in |Ω|∆ and discuss the case of at most one |s〉 excitation.
Therefore it is su�cient to consider the subspace having three atoms where two are in the |e〉 state and
one atom is either in the ground state |g〉 or Rydberg |s〉 state. Later, we will extend our discussion to
the case of large lattice systems with L atoms. We assume a weak interaction V ee

d � |Ω|, Dd between
the |e〉 excitations, which we will neglect in the following derivation. Later when we introduce the
e�ective Hamiltonian we will account for the full interaction potential including V ee

d . The three-atom
Hamiltonian with two |e〉 excitations is

Ĥ2 =
(

∆(y,z)
x |s〉 〈s| − [Ω |g〉 〈s|+ h.c.]

)
⊗ |e〉 〈e| ⊗ |e〉 〈e|

+ |e〉 〈e| ⊗
(

∆(x,z)
y |s〉 〈s| − [Ω |g〉 〈s|+ h.c.]

)
⊗ |e〉 〈e|

+ |e〉 〈e| ⊗ |e〉 〈e| ⊗
(

∆(x,y)
z |s〉 〈s| − [Ω |g〉 〈s|+ h.c.]

)
+Dxy(|s〉 〈e| ⊗ |e〉 〈s| ⊗ |e〉 〈e|+ h.c.)

+Dxz(|s〉 〈e| ⊗ |e〉 〈e| ⊗ |e〉 〈s|+ h.c.)

+Dyz(|e〉 〈e| ⊗ |s〉 〈e| ⊗ |e〉 〈s|+ h.c.), (5.22)

where x, y and z denote the positions of the three atoms. We introduce an e�ective detuning
∆

(x,y)
z ≡ ∆ +V es

xz +V es
yz seen by the |s〉 excitation at position z in the presence of two |e〉 excitations
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at positions x and y. Analogously, we de�ne ∆
(x,z)
y and ∆

(y,z)
x . Using a three-atom wavefunction

|φ〉 = cgee |gee〉+ cege |ege〉+ ceeg |eeg〉+ csee |see〉+ cese |ese〉+ cees |ees〉 , (5.23)

we derive the equations of motion for the coe�cients cλνµ and obtain

iċgee = −Ωcsee, (5.24a)

iċege = −Ωcese, (5.24b)

iċeeg = −Ωcees, (5.24c)

iċsee = −Ω∗cgee + ∆(y,z)
x csee +Dxycese +Dxzcees, (5.24d)

iċese = −Ω∗cege + ∆(x,z)
y cese,+Dxycsee +Dyzcees, (5.24e)

iċees = −Ω∗ceeg + ∆(x,y)
z cees +Dxzcsee +Dyzcese. (5.24f)

Adiabatic elimination of the amplitudes containing the detuned |s〉 state, i.e. ċsee = ċese = ċees = 0,
allows us to solve for the coe�cients csee, cese and cees. Inserting these into the �rst three equations,
we obtain e�ective equations of motion for the low-energy dynamics

ċeeg =
|Ω|2(∆

(x,z)
y ∆

(y,z)
x −D2

xy)

Γ(x, y, z)
ceeg

+
|Ω|2(DxyDxz −Dyz∆

(y,z)
x )

Γ(x, y, z)
cege +

|Ω|2(DxyDyz −Dxz∆
(x,z)
y )

Γ(x, y, z)
cgee, (5.25a)

ċege =
|Ω|2(∆

(x,y)
z ∆

(y,z)
x −D2

xz)

Γ(x, y, z)
cege

+
|Ω|2(DxyDxz −Dyz∆

(y,z)
x )

Γ(x, y, z)
ceeg +

|Ω|2(DxzDyz −Dxy∆
(x,y)
z )

Γ(x, y, z)
cgee, (5.25b)

ċgee =
|Ω|2(∆

(x,z)
y ∆

(x,y)
z −D2

yz)

Γ(x, y, z)
cgee

+
|Ω|2(DxyDyz −Dxz∆

(x,z)
y )

Γ(x, y, z)
ceeg +

|Ω|2(DxzDyz −Dxy∆
(x,y)
z )

Γ(x, y, z)
cege, (5.25c)

with

Γ(x, y, z) ≡ −∆(x,y)
z ∆(x,z)

y ∆(y,z)
x − 2DxyDxzDyz + ∆(x,y)

z D2
xy + ∆(x,z)

y D2
xz + ∆(y,z)

x D2
yz. (5.26)

The e�ective equations of motion in Eq. (5.25) include an energy shift as well as an exchange process
between a dressed ground state |g〉 and the Rydberg state |e〉. Using a series expansion in |Ω|∆ we
can further simplify the energy shift and the excitation hopping strength and gain insight into the
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relevant processes. In Fig. 5.2a-c we visualize the individual contributions to the energy shift and
hopping strength. In particular, Fig. 5.2a allows to determine the hopping strength and energy shift
diagrammatically. For a ground state atom at position z and two |e〉 excitations at positions x and y
we obtain an energy shift

δ(x,y)
z = − |Ω|

2

∆
(x,y)
z

− |Ω|2D2
xz(

∆
(x,y)
z

)2
∆

(z,y)
x

−
|Ω|2D2

yz(
∆

(x,y)
z

)2
∆

(x,z)
y

+O
(
|Ω|4

∆4

)
. (5.27)

The �rst term corresponds to a virtual excitation of the |g〉 state to the |s〉 state via a nonresonant
laser �eld. The latter two terms are higher order processes involving an additional exchange process
back and forth, see Fig. 5.2b. Likewise, we can identify an excitation hopping process, see Fig. 5.2c.
To give an example, the hopping of an excitation from position x to z, |eeg〉 ↔ |gee〉, is given by

J (y)
xz =

|Ω|2Dxz

∆
(x,y)
z ∆

(z,y)
x

− |Ω|2DyzDxy

∆
(x,y)
z ∆

(y,z)
x ∆

(z,x)
y

+O
(
|Ω|4

∆4

)
. (5.28)

Here, the �rst term describes the direct excitation hopping of the dressed ground state atom between
positions x and z. The second term is a higher order term involving two dipole-dipole-exchange
processes. First, an exchange process between position y and z followed by exchange process between
x and y (|eeg〉 → |ege〉 → |gee〉). Note that the second term has a di�erent sign and therefore may
cancels the �rst term.

Using Eq. (5.28) and (5.27), we can construct a low-energy Hamiltonian for three atoms with two
excitations and one dressed ground state. Including the interaction potential V ee

d between the two
excitations |e〉 we have

Ĥeff
2 =(δ(y,z)

x + V ee
yz ) |gee〉 〈gee|+ (δ(x,z)

y + V ee
xz ) |ege〉 〈ege|+ (δ(x,y)

z + V ee
xy ) |eeg〉 〈eeg|

+ J (z)
xy (|gee〉 〈ege|+ h.c.) + J (y)

xz (|eeg〉 〈gee|+ h.c.) + J (x)
yz (|ege〉 〈eeg|+ h.c.). (5.29)

In Fig. 5.2d we compare the spectrum of this e�ective Hamiltonian (dashed lines) to the full Hamilto-
nian in Eq. (5.22) (solid lines) including the interaction potential V ee

d . Thereby we vary the position z
of the third atom while keeping the positions of the �rst two atoms, x = 0 and y = a. The e�ective
Hamiltonian reproduces the low-energy part of the full Hamiltonian very well. In the limit Ω

∆ → 0,
the deviation vanishes and we obtain the exact low-energy result of the full model.

Now, we extend the three-atom model to the case of a chain of L atoms. We start with the transport
term Eq. (5.28). Let us denote the positions of the two |e〉 excitations with x and y. The hopping
rate J (y)

xz ≡ Jd(r) of the |e〉 excitation from site x to z depends on the position of the spectator |e〉
excitation at site y. Due to the translational invariance of the system, the hopping rate depends on
the mutual distance r ≡ |y−x| between the two |e〉 excitations and the hopping distance d ≡ |z−x|.

98



5.2 E�ective Rydberg-dressed Spin Lattice Model
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Figure 5.2: (a) Diagram of transitions for retrieving the perturbative energy shifts and excitation
hopping rates for two excited |e〉 and one ground |g〉 state atoms. The atomic positions
are x, y, z. Red-shaded region denotes the high energy subspace, ∆ � Ω, D, which is
eliminated adiabatically. (b) Illustration of three virtual processes contributing to the
energy shift of |eeg〉, as per Eq. (5.27). (c) Two possible paths for the hopping process
|eeg〉 ↔ |gee〉 given by Eq. (5.28). (d) Comparison of the low-energy spectra of the
exact Hamiltonian (5.22) including the interactions V ee

r (solid lines), and the e�ective
Hamiltonian (5.29) (dashed lines). The positions of the �rst and second atoms are �xed,
x = 0 and y = a, while the position of the third atom vary, z ≥ 2a. Black lines at E ≥ 0
show the exact spectrum for Ω = 0, corresponding to the bare states |ege〉, |gee〉 and
|eeg〉. Blue lines show the spectra for the dressed states with the parameters ∆/Ω = 10,
D1/Ω = 1, V es

1 /Ω = −1/8 and V ee
1 /Ω = 0.03 (Dr ∝ 1/r3, Vr ∝ 1/r6).

Thus, the transport Hamiltonian can be written as

Ĥ(2)
J =

∑
x<y

[∑
d

Jd(r)(|x, y〉 〈x− d, y|+ |x, y〉 〈x, y + d|)

+
∑
d<y−x

Jd(r)(|x, y〉 〈x+ d, y|+ |x, y〉 〈x, y − d|)

+
∑
d>y−x

Jd(r)(|x, y〉 〈y, x+ d|+ |x, y〉 〈y − d, x|)
]
. (5.30)

The Hamiltonian has a similar structure to the hopping part in the two-excitation spin model Eq. (5.5).
However, here the hopping elements depend on the relative distance between the spin-up excitations.
To the leading order Jd(r) ∝ Dd ∼ 1/d3 scales with the dipole-dipole interaction. We truncate the
range of the hopping distance to d ≤ dJ = 2. This will be justi�ed later in this chapter. Analogously
to Sec. 5.1 we introduce center of mass R and relative r coordinates and transform the center of mass
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Figure 5.3: (a) One- and two-site hopping rates J1(r) and J2(r) versus distance r between the two
excitations as in Table 5.1. (b) Interaction potential Ur as in Table 5.2 for V ee

1 = 0. The
parameters are ∆/Ω = 10, D1/Ω = 1 and V es

1 /Ω = 1.

d Jd(r = 1) Jd(r ≥ 2) J ′d(r = 1)

1
|Ω|2D1

(∆ + V es
1 )(∆ + 2V es

1 )

(
1− D2

∆ + V es
1

)
|Ω|2D1

(∆ + V es
1 )2

–

2
|Ω|2D2

∆(∆ + V es
1 )

|Ω|2D2

∆2

|Ω|2D2

(∆ + V es
1 )2

(
1− D2

1/D2

∆ + 2V es
1

)
Table 5.1: Approximate hopping rates for the two-excitation spin model depending on the hopping

distance d and the distance r between two Rydberg |e〉 excitations.

coordinate R to the center of mass quasi momentum K , using |R〉 = 1√
L̃

∑
K e

iKR |K〉 and obtain

Ĥ(2)
J =

∑
K

|K〉 〈K| ⊗
{∑
r≥1

[
2J1(r) cos(K/2)(|r〉 〈r + 1|+ |r + 1〉 〈r|)

+ 2J2(r) cos(K)(|r〉 〈r + 2|+ |r + 2〉 〈r|)
]

+ 2J ′2(r = 1) cos(K) |1〉 〈1|
}
. (5.31)

Note that the hopping J ′2(r = 1) indicates the case where an |e〉 excitation hops over another |e〉
excitation with a di�erent hopping strength than J2(r = 1). From Eq. (5.28) we can directly deduce
the hopping rates. We further assume an interaction range dU ≤ 1 and therefore set V es

d≥2 = 0 and
Dd≥3 = 0. In Table 5.1 we summarize all relevant hopping rates within the approximations discussed
above. The dependence of the hopping rate J1(r) and J2(r) on the relative distance between the
spin-up excitations for a speci�c parameter set is shown in Fig. 5.3a. While the next nearest neighbor
hopping rate J2(r) stays almost constant, the nearest neighbor hopping rate J1(r) shows a small dip
at r = 1 for large V es

1 ∼ Ω. We can deduce from Table 5.1 that J1(r) becomes r-independent for
V es

1 = −D2. In the case where the interaction coe�cients C3 and Ces6 have opposite sign, we can
determine a lattice constant a = 2 3

√
−Ces6 /C3, such that this condition is ful�lled.

Next, we consider the e�ective interaction strength. The total energy shift in a lattice of L sites
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r Ur

1
V ee

1 − 2

(
|Ω|2

∆
− |Ω|2

∆ + V es
1

)
+ 2

|Ω|2D2
1

(∆ + V es
1 )2(

2

∆ + V es
1

− 1

∆ + 2V es
1

)
+ 2|Ω|2D2

2

(
2

∆3
− 1

∆2(∆ + V es
1 )
− 1

(∆ + V es
1 )3

)

2 V ee
2 −

(
|Ω|2

∆
− |Ω|2

∆ + V es
1

)
+ 2
|Ω|2D2

1

∆ + V es
1

(
1

(∆ + V es
1 )2

− 1

(∆ + 2V es
1 )2

)
+ 2
|Ω|2D2

2

∆3

3 V ee
3 + 2

|Ω|2D2
2

∆

(
1

∆2
− 1

(∆ + V es
1 )2

)

Table 5.2: Approximate interaction elements for the two-excitation spin model depending on the
relative distance r between both |e〉 excitations.

having two |e〉 excitations at positions x and y is given by

E2(x, y) =
∑
z 6=x,y

δ(x,y)
z . (5.32)

The total energy shift is no longer constant and depends on the relative distance r = |y − x|. For
large r, when the two |e〉 excitations are well separated, the sum approaches a constant value. We set
E2(r →∞) the zero-point energy of the system. The energy di�erence E2(r)−E2(r →∞) adds
to the interaction potential V ee

r . We de�ne an interaction potential between two spin-up excitations

Ur = V ee
r + E2(r)− E2(r →∞). (5.33)

The interaction strengths for the spin model are listed in Table 5.2 for the relative distances of the
particles r = 1, 2, 3. Note that we truncated the interaction V es

d at dU = 1, while we included the
full interaction strength V ee

d up to d = 3. In Fig. 5.3b we show the interaction potential Ur for a
speci�c parameter set, where we have chosen V ee

r = 0. Clearly, the nearest neighbor interaction is
much stronger than the next nearest neighbor interaction. Using the center of mass R and relative r
coordinates and Fourier transform with respect to R we end up with an interaction Hamiltonian

Ĥ(2)
U =

∑
K

|K〉 〈K| ⊗
3∑
r=1

Ur |r〉 〈r| . (5.34)
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Chapter 5 Mobile Bound States of Rydberg Excitations in a Lattice

To summarize, the total Hamiltonian Ĥ(2) = Ĥ(2)
J + Ĥ(2)

U based on Eq. (5.31) and Eq. (5.34) for the
two Rydberg excitations |e〉 in a lattice of dressed ground states approximates well the spin model
Hamiltonian Eq. (5.5). This model allows to investigate the impact of longer-range spin-exchange
processes and interactions. There are small di�erences to the exact model Eq. (5.5) in the dependence
of the hopping elements on the distance r between two excitations and a reduced transport rate for
one excitation hopping over the other. We will derive now the two magnon bound state solution of
the spin lattice model and compare it to the full Rydberg-dressed Hamiltonian Ĥ(2). The discussion
of the full many-body physics, i.e. N > 2 Rydberg excitations, is beyond the scope of this thesis.

5.3 Magnon Dynamics and Bound States

Now, let us return to the spin model Eq. (5.1). Using center of mass R and relative r coordinate we
simpli�ed the extended XXZ Hamiltonian for the caseN = 2. In this case the two-body wavefunction
can be written as

|Ψ(x, y)〉 =
∑
x<y

Ψ(x, y) |x, y〉 =
1√
L̃

∑
K

eiKR |K〉 ⊗
∑
r≥1

ψK(r) |r〉 . (5.35)

As usual, we obtain a one-body problem for the relative coordinate r with a wavefunction ψK(r)

depending on the center of mass momentum K . Our aim is to solve the eigenvalue problem

ĤK |ψK〉 = EK |ψK〉 (5.36)

for the relative coordinate wavefunction |ψK〉 =
∑

r≥1 ψK(r) |r〉. This problem has scattering and
bound state solutions.

5.3.1 Free Magnon Dynamics and Sca�ering States

Let us brie�y comment on the scattering solutions of the problem Eq. (5.36). Assume two magnons
are far separated and the interactions have a �nite range dU . Then for the total energy we can simply
add the energies of two free magnons [159, 160] with quasi momenta q1, q2 in Eq. (5.4)

E
(s)
K,k = E(1)

q1 + E(1)
q2 =

∑
d

4Jd cos(Kd/2) cos(kd). (5.37)

Here, K = q1 + q2 and k = q1−q2
2 are the center of mass and relative quasi momenta, respectively.

The corresponding wavefunction ψK(r) for r > dU is given by plane waves,

ψK(r) = eikr + e−2iδK,ke−ikr. (5.38)
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-1

0

4

-4
1

Figure 5.4: Spectrum of two spin (Rydberg) excitations in a lattice versus the center of mass quasi
momentum K . The scattering states form a continuum spectrum (black), Eq. (5.37). The
bound states for strong (red lines) and weak (blue lines) repulsive interactions are obtained
from the spin-lattice Hamiltonian (dashed lines), Eq. (5.45), and from exact diagonalization
of the dressed Rydberg Hamiltonian (solid lines). The system parameters are ∆/Ω = 10,
D1/Ω = 1, V es

1 /Ω = −0.125, and V ee
1 /Ω = 0.03, 0.015 for the red and blue solid lines,

respectively. In the simulations, we used a lattice of size L = 100. The corresponding
spin model parameters are J2/J1 = 1/8, U1/J1 = 3.4, 1.9 for the red and blue dashed
lines, respectively.

The scattering phase shift δK,k depends on the interaction Ur and is not relevant for our further
discussion. The scattering spectrum is shown in Fig. 5.4 (black lines) for a hopping range dJ ≤ 2.
At K = ±π the energy spectrum has a �nite width E(s)

K=±π,k ∈ [−4J2, 4J, 2] determined by the
long-range hopping [159]. This is in contrast to the case of nearest neighbor hopping discussed in
Ref. [151, 158, 160, 161] reducing the energy width to a single point E(s)

K=±π,k = 0. Thus, even at a
center of mass momentum K = ±π, the two free magnons are mobile.

5.3.2 Bound Magnons

We discuss here magnon bound states in a lattice with a strong (repulsive or attractive) nearest
neighbor interaction U1. Our discussion assumes an interaction range dU = 1 and hopping range
dJ ≤ 2. Although, we truncate here the hopping range to next nearest neighbor, it allows multiple
pathways for the spin excitations to move, which makes a calculation of the eigenfunctions more
di�cult. Later we will see that the truncation is a good approximation for Rydberg systems, where
the interaction scales as ∼ 1/d6 and the hopping as ∼ 1/d3 with distance d. Thus, the relevant
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Chapter 5 Mobile Bound States of Rydberg Excitations in a Lattice

Figure 5.5: (a) Schematic sketch of the recurrence relation Eq. (5.41) for excitation hopping from
r = 1 to r = 4. (b) Illustration of the motion of the bound pair via resonant two-site
hopping J2 and second order hopping J2

1/U1 as per Eq. (5.45).

Hamiltonian for a given center of mass momentum K is (see Eq. (5.7))

ĤK =
∑
r≥1

[
J1,K(|r〉 〈r + 1|+ |r + 1〉 〈r|) + J2,K(|r〉 〈r + 2|+ |r + 2〉 〈r|)

]
+(U1 + J2,K) |1〉 〈1| .

(5.39)

Using the wavefunction |ψK〉 the eigenvalue problem reads

E
(b)
K ψK(r) =J1,K

[
ψK(r + 1) + ψK(r − 1)

]
+ J2,K

[
ψK(r + 2) + ψK(r − 2)

]
+ (U1 + J2,K)δr,1ψK(r). (5.40)

For a bound magnon solution we expect an exponentially in r localized wavefunction ψK(r), which
is normalizable and ful�lls ψK(r →∞) = 0. To determine the wavefunction we make an ansatz

ψK(r) = αKψK(r − 1) + βKψK(r − 2), r ≥ 2, (5.41)

where we set the (initial) values ψK(0) = 0 and ψK(1) = N . The constant N is determined
by the normalization. The physical intuition behind this recurrence relation is as follows: Each
wavefunction amplitudeψK(r) is determined by the previous two wavefunction amplitudesψK(r−1)

and ψK(r − 2). The coe�cients αK ∼ J1 and βK ∼ J2 correspond to nearest neighbor and next
nearest neighbor hopping, respectively and have to be determined. Starting from the minimal relative
distance r = 1, we can construct a wavefunction at any r

ψK(r) = N
b(r−1)/2c∑
n=0

(
r − 1− 2n

n

)
αr−1−2n
K βnK , (5.42)

which is a solution of the recurrence relation. Here, b·c denotes the �oor function. The binomial
coe�cients count the corresponding weight of each path starting from site r = 1. To give an example:
We can reach r = 4 from r = 1 by three successive one-site hoppings α3

K or by a combination of a
one-site and two-site hopping αKβK or βKαK , as indicated in Fig. 5.5a. In total, the wavefunction
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5.3 Magnon Dynamics and Bound States

Figure 5.6: Scattering (black) and bound state (red solid line) spectra obtained by exact numerical
diagonalization of the Hamiltonian Eq. (5.7) with long-range interactions Jd = J1/d

3 and
Ur = U1/r

6 (U1/J1 = 4). The bound state energy E(b)
K of Eq. (5.45) (dashed blue line),

obtained with truncated interactions (dJ = 2 and dU = 1), is nearly indistinguishable
from the exact result.

is ψK(4) = (α3
K + 2αKβK)ψK(1).

Using the wavefunction Eq. (5.42) for the eigenvalue equation (5.40) with r = 1, 2, 3, we obtain
three equations for the unknowns αK , βK and EK ,

E
(b)
K = (U1 + J2,K) + J1,KαK + J2,K(α2

K + βK), (5.43a)

E
(b)
K αK = J1,K(α2

K + βK + 1) + J2,K(α3
K + 2αKβK), (5.43b)

E
(b)
K (α2

K + βK) = J1,K(αK + α3
K + 2αKβK) + J2,K(1 + α4

K + 3α2
KβK + β2

K). (5.43c)

This is a nonlinear system in αK , βK and E(b)
K with a unique solution. We obtain for the coe�cients

αK =
J1,K

U1
, βK =

J2,K

U1 + J2,K
. (5.44)

Note that this is consistent with our ansatz αK ∼ J1 and βK ∼ J2. Furthermore, we obtain for the
bound pair energy

E
(b)
K = 2J2,K +

J2
1,K

U1
+
J2

1,KJ2,K

U2
1

+
U2

1

U1 + J2,K
. (5.45)

The bound pair energy admits a simple interpretation: The �rst term does not depend on U1 and
describes resonant two-site tunneling. An excitation can hop over the other excitation, |x− 1, x〉 ↔
|x, x+ 1〉, with coupling strength ∼ J2. This process is resonant since both states have the same
interaction energy. The second term is a second order hopping process (∝ J2

1/U1) already known
from Ref. [151, 158, 160, 161]. Both processes are indicated in Fig. 5.5b. The third term is a third order
tunneling (∝ J2

1J2/U
2
1 ). The last term describes the energy o�set due to the strong nearest neighbor

interaction U1. Note that even in the limit of large interaction strength U1 � J1, bound magnon
pairs stay mobile with transport rate ∼ J2.
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Figure 5.7: (a),(b) Wavefunction ψK(r) versus the relative distance r for several values of the center of
mass quasi momentumK . The parameters are the same as in Fig. 5.4 and (a) U1/J1 = 3.4,
(b) U1/J1 = 1.9. (c) Diagram of values of αK , βK for the existence of bound states
(light-blue shaded region). The red line corresponds to the parameters in (a) and the blue
line to the parameters in (b). Note that no bound states exist in the vicinity of K = 0 for
(b).

Figure 5.8: Diagram of values of J2/J1, for �xed U1 = 3J1 (a), and U1/J1, for �xed J2 = J1/8 (b),
versusK , for the existence (white regions) and absence (black regions) of the bound states.

In order to demonstrate the quality of the above made truncation of the interaction to range
dU = 1 and hopping to range dJ ≤ 2, let us compare these results to the full long-range potential.
Since we are mostly interested in a Rydberg system as discussed in Sec. 5.2 we have a scaling of the
hopping element Jd ∝ 1/d3 and interaction potential Ud ∝ 1/d6 with distance d. They originate
from the dipole-dipole and van der Waals interaction, respectively. In Fig. 5.6 we show the spectrum
of the scattering and bound states obtained from diagonalization of the long-range potentials without
truncation and the bound pair energy solution Eq. (5.45). The good agreement demonstrates that our
approximations are valid in the relevant regime of Rydberg systems. Now, we compare the result of
the truncated spin model solution to full diagonalization of the Rydberg-dressed Hamiltonian with
two excitations. In Fig. 5.4 we see that the spin lattice model approximates well the properties of
the dressed Rydberg system. The corresponding bound pair wavefunctions are shown in Fig. 5.6a-b.
Interestingly, a bound pair solution does not exist for all K , which will be discussed below.

Existence of bound states

The above recurrence relation in Eq. (5.41) can be easily extended to longer range hopping processes
dJ > 2. In general, we assume an exponential ansatz ψK(r) ∝ λr. Inserting into the recurrence
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relation, Eq. (5.41), we obtain a quadratic equation λ2 = αKλ + βK . Solving for λ, we �nd two
solutions

λ1,2 =
αK ±

√
α2
K + 4β2

K

2
. (5.46)

Thus, the wavefunction can be written as

ψK(r) = c1λ
r
1 + c2λ

r
2, (5.47)

where the coe�cients c1, c2 are determined by the initial values ψK(0) = 0 and ψK(1) = N . This
yields

c2 = −c1 =
N√

α2
K + 4β2

K

(5.48)

This is the same wavefunction as in Eq. (5.42). However, the ansatz also allows to determine conditions
when the bound pair solution ψK(r) is normalizable, i.e.

∑
r≥1 |ψK(r)|2 = 1. This is the case when

the bound state solution decays exponentially in r. For this we require

|λ1,2| = 1
2 |αK ±

√
α2
K + 4β2

K | < 1. (5.49)

Therefore, we can deduce a parameter regime (αK , βK) where a bound state solution can exist.
In Fig. 5.7c the regime of an exponentially localized wavefunction (blue shaded region) forms a
triangular region. For the case of J2 = 0, i.e. having only nearest neighbor hopping, we retrieve
the result of Ref. [160, 161]. For a given set of parameters J1, J2 and U1 the bound state does not
exist for all values of center of mass quasi momentum K . This can be seen in Fig. 5.4, where for
small interaction strength the bound state dissolves into the scattering states. In Fig. 5.7a-b the
corresponding bound pair wavefunctions are shown. A wavefunction closer to the boundary of the
blue shaded region becomes less localized. In Fig. 5.8 we show diagrams for the existence of bound
states for parameters (a) J2/J1 and �xed U1/J1 = 3 and (b) U1/J1 and �xed J2/J1 = 1/8. This
shows that there are parameter regimes where bound states do not exist at all or only within a certain
interval of K values.

5.4 Experimental Considerations

Let us brie�y discuss the preparation and observation of magnon bound states in a Rydberg-dressed
spin lattice model as indicated in Fig. 5.1. We envision a defect free chain of atoms trapped in a
1D optical lattice or an array of microtraps [4, 5]. With a focused laser beam selected atoms are
transferred from ground state |g〉 to the Rydberg state |e〉. During this preparation, the global dressing
laser is turned o�, i.e. Ω = 0. Upon turning on the dressing laser between the ground state |g〉
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and the Rydberg state |s〉, the |e〉 excitation hopping starts. The transport is induced by the dipole-
dipole interaction between the Rydberg state |e〉 and the dressed ground state, which is a mixture
of the ground state |g〉 and the Rydberg state |s〉. This will allow to observe interesting Rydberg
excitation dynamics on a timescale limited by the Rydberg state lifetime. Free magnon dynamics can
be distinguished from the magnon bound state dynamics spectroscopically or by discriminating the
fast and slow dynamics, respectively [151, 158]. Turning o� the dressing laser freezes the magnon
dynamics and individual Rydberg excitations can be detected with high e�ciency and single-site
resolution [10, 22, 166].

To give an example of the characteristic timescales and length scales, we discuss parameters of the
experimental setup in Refs. [37, 40, 154]: In an array of microtraps, atoms can be con�ned with typical
lattice spacing a ' 5 µm − 20 µm and a spatial width ∆a ' 1 µm. The ground state of Rubidium
|g〉 = |5S1/2〉 can be dressed with a high lying Rydberg state |s〉 = |63P1/2〉 using an o�-resonant
UV laser with a Rabi frequency Ω/(2π) ' 5 MHz and detuning ∆/(2π) ' 33 MHz (Ω/∆ = 0.15).
The spin-up state can be the Rydberg state |e〉 = |62D2/3〉. Shining focused laser beams onto the
desired atoms, the Rydberg states can be populated via a two-photon transition. Using the above
Rydberg states we have a dipole-dipole interaction coe�cient C3 = 7950 MHz µm3 and a van der
Waals coe�cient C6 = 730 GHz µm6. The lifetime of the state |e〉 is τe ' 100 µs and of the state
|s〉 is τs ' 135 µs. The decay of the state |s〉 is further suppressed by a factor |Ω|2/∆2 due to the
dressing. Now, assuming a lattice constant a = 10 µm, we have U1 ' 730 kHz, J1 ' 180 kHz and
J2 ' 22 kHz. Importantly, the hopping rates are larger than the spontaneous decay rate of the
Rydberg states. This allows the observation of coherent excitation dynamics. Since U1/J1 = 4, we
are in a regime where we expect strongly bound states of Rydberg excitations. Similar spin model
parameters can be obtained for atoms in optical lattices with a smaller lattice constant a ' 1 µm.
Here, one has to choose lower lying Rydberg states with less interaction strength [21, 125–127].
However, these states have shorter Rydberg state lifetimes and thus higher hopping rates are required.

A further requirement for the observation of coherent spin dynamics is that the system relaxes on a
much longer timescale than the coherent processes given by J−1

d . As discussed in Ref. [138, 139, 141]
Rydberg dressing in large systems may su�er from black-body induced transitions to other Rydberg
states. The populations of di�erent Rydberg states and the strong dipole-dipole interaction can cause
additional dephasing mechanisms. To mitigate this issue cryogenic setups or pulsed dressing schemes
may be employed.

Another aspect are �uctuations of the dressing laser. While small variations in the laser carrier
frequency can be typically neglected when ∆� |Ω|, phase �uctuations and Doppler shifts of thermal
atoms contribute to additional decoherence. In particular, the hopping elements Jd ' ΩDdΩ

∗/∆2

involve an absorption (Ω) of a photon by one atom and a subsequent emission (Ω∗) by a di�erent
atom. Thus the hopping elements are susceptible to dephasing of ground to Rydberg transitions. To
reduce these e�ects laser with a narrow linewidth of less than 10 kHz and cooling of atoms to the
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regime of 10 nK are required.
While dressed ground state atoms are tightly con�ned in microtraps or optical lattices, atoms in

Rydberg states are typically free. The strong interactions between Rydberg states will lead to a strong
repulsive (C6 > 0) or attractive (C6 < 0) force F (r) = −∂rV ee

r = 6C6/r
7 and thus induce atomic

motion. We estimate the displacement ∆r from the equilibrium position assuming a constant force
F (a) between two neighboring excited Rydberg atoms. The resulting displacement is ∆r ' F (a)

2m t2,
where m is the atomic mass. For the case discussed above and the relevant interaction timescales
t ' J−1

1,2 we obtain a displacement ∆r ' 3− 200 nm. Since ∆r � ∆a we expect that the atomic
motion on a timescale of excitation hopping will not have a detrimental e�ect. Another option to
mitigate this problem is the use of a magic wavelength optical lattice which traps ground state and
Rydberg state atoms simultaneously [120].

Conclusion

The realization of tunable and coherent spin models is experimentally challenging. Here, we showed
that tunable and even long-range XXZ spin lattice models can be realized in a setup of Rydberg
atoms. Interestingly, this model allows to study the few and many-body spin dynamics of a system
with competing interaction strength. As an example we discussed the case of two spin excitations
and the existence of mobile bound states of Rydberg excitations.

In particular, we studied the realization of this spin model using a Rydberg dressing scheme.
Here, the spin-down state is a ground state atom dressed to a Rydberg state and the spin-up state is
another Rydberg state. The spin-exchange is mediated by the strong dipole-dipole interaction and
the spin-spin interactions by van der Waals interaction between Rydberg states.

Furthermore, we discussed magnon bound states appearing in an extended XXZ spin lattice model.
We found an increased mobility of the magnon bound states which is determined by a combination of
nonresonant one-site hoppings and a resonant two-site hopping even in the limit of large interactions.
We shortly discussed the experimental preparation and detection of the bound states and showed
that observation of bound states is possible in existing setups.

So far we discussed the case of a few spin excitations. However, we believe it will be interesting to
go beyond the few excitation case and study interactions emerging between many spin excitations or
clusters in this system. Furthermore, it might be interesting to study the long-time dynamics where
dissipative processes such as dephasing become important. While in the coherent case, ballistic
transport is expected, one may �nd a transition to a regime dominated by di�usive processes for the
incoherent case.
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Chapter 6

Laughlin State Preparation for Cavity Rydberg
Polaritons

Over the last years the interest in creating topological states of matter in photonic or atomic systems
has increased tremendously. One goal is to realize and study fractional quantum Hall physics in a
well controlled environment, where the large length scales o�er direct manipulation of the states. To
this end, strong magnetic �elds, strong inter-particle interactions and low temperatures are required.
In solid-state systems, this has been demonstrated many years ago [51]. However, the realization of
ground states in the fractional quantum Hall e�ect (Laughlin states) remains challenging in photonic
systems and ultracold gases.

While strong magnetic �elds have been realized in atomic [167–170] and photonic [171–175] [FL8]
systems, the cooling below the many-body gap in interacting systems has not yet been achieved.
On the one hand, most experimental setups rely on lattice structures where the many-body gap is
typically small [176, 177] and thus even lower temperatures are required to prepare the many-body
ground state. Therefore lattice-free systems, as in Ref. [174], are preferable. On the other hand,
photonic systems lack the ability to realize nonlinearities on the single photon level. Here, as was
demonstrated in Ref. [178, 179] coupling photons to high lying Rydberg states could allow to generate
strong and even long-range photon-photon interactions. Systems with a �at-top interaction potential
are particularly interesting and allow to study phases beyond what is known in the fractional quantum
Hall e�ect [180].

Since cooling of photons is still not possible due to the lack of thermalization mechanisms, we
follow here a di�erent approach. We will make use of the good coherent control and large length
scales in these systems to prepare the ground state. Instead of an e�cient cooling mechanism, here
laser with a narrow linewidth and low-loss cavities are required. One approach is to use these good
coherence properties and directly excite the Laughlin state in a coherent process [181]. However,
since the transition amplitudes between the ground state and a Laughlin state with high photon
number is rather small, it is quite challenging to prepare a true many-body state. Another approach
suggests to rapidly re�ll holes in a lossy system and thereby stabilize a steady state that is close to
the ground state dynamically [60].

Here, we study an alternative approach for the preparation of Laughlin states in the setup of
Ref. [174] based on the growing scheme suggested in [FL1],[FL2]. The scheme consists of two steps:
First, �ux is inserted into the cavity by transferring orbital angular momentum of a classical laser
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beam via an atomic medium to the cavity photons. This creates a hole excitation in the center
which will be replenished in the second step of the growing scheme inserting exactly one photon.
Subsequent iteration of the scheme allows to grow large Laughlin liquids. In Ref. [182] a similar
growing scheme is presented, which relies on di�erent orbital angular momentum beams for each
step of the protocol. This is in contrast to our method which relies solely on two beams carrying
orbital angular momentum. Furthermore, since we continuously pump photons into the center of
the Laughlin liquid, our protocol allows to investigate almost defect free Hall physics in the central
region of the cavity.

This chapter is based on the manuscript [FL7] and the publications [FL1],[FL2], partially with text
overlap.

6.1 Photonic Cavity Setup and Rydberg Polaritons

The two essential ingredients needed to study fractional quantum Hall physics are strong magnetic
�elds and strong particle interactions. In a photonic cavity setup the �rst requirement can be realized
by twisting the cavity mirrors to induce an image rotation and the second by coupling the photons
to a high lying Rydberg state.

6.1.1 Experiment and Microscopic Model

Similar to neutral atoms, photons do not carry a net electric charge and therefore do not couple to
an applied magnetic �eld. However, as already shown for ultracold atoms by inducing a rotation
of atoms con�ned in a harmonic trap an arti�cial magnetic �eld can be produced [55, 56, 183, 184].
This is a direct consequence of the formal similarity between the Lorentz force in a magnetic �eld
and a Coriolis force. The same ideas can be applied to massless photons using a rotating dispersive
medium [185, 186] or a non-planar ring resonator [174, 187]. The latter setup is sketched in Fig. 6.1a
and consists of four cavity mirrors, which con�ne the photons in a 2D harmonic potential. The cavity
mirrors are aligned in such a way that they induce an image rotation after each round-trip. This
creates a Coriolis force and an anti-binding potential seen by the photons. The anti-binding potential
may reduce or even cancel the harmonic potential by �ne-tuning of the system parameters. In the
experiment in Ref. [174] the resonator length is changed within a range of a few microns to create a
�at Landau level structure. The total resonator length lies in the regime of a few centimeters and the
magnetic length `B = w0/2 is given by the mode waist w0 = 43 µm of the resonator.

The usual Landau level structure is however unstable due to astigmatism. As discussed in Ref. [174],
astigmatism drives transitions between states with an angular momentum di�erence ∆` = 2. When
the Landau level states become degenerate, the angular momentum of the photons is steadily increased
and eventually leads to photon loss. To avoid this instability the system parameters are tuned to

112



6.1 Photonic Cavity Setup and Rydberg Polaritons

Figure 6.1: (a) Sketch of the photonic cavity setup to study fractional quantum Hall phases. A twisted
ring resonator is used to induce an image rotation creating an arti�cial magnetic �eld for
photons. We envision two clouds of atoms within the resonator. One of them is used to
introduce a strong photon-photon nonlinearity by coupling the photons to high lying
Rydberg states. The second atomic cloud is used as a mediator to transfer orbital angular
momentum from an external light beam to the cavity photons. (b) Schematic photonic
Landau level structure ∆n,q versus angular momentum `. Here, n denotes the Landau
level quantum number and q = 0, 1, 2 one out of three sub-manifolds. The lowest Landau
level (LLL) corresponds to states with energy ∆0,0.

another set of states with high degeneracy containing photon modes with angular momentum
in multiples of 3~ – the photonic Landau levels. The schematic energy structure is illustrated in
Fig. 6.1b. The former Landau levels n are split in three degenerate sub-manifolds, which we label
with q = 0, 1, 2. Within a sub-manifold, the angular momentum ` = 3m+ q, where m is an integer,
increases in multiples of 3~ and thus suppresses loss due to astigmatism.

The corresponding Hamiltonian can be written as

Ĥ0 =
2∑
q=0

∑
n,m

∆n,qâ
†
n,3m+qân,3m+q, (6.1)

where the ∆n,q determine the photonic Landau level energy spectrum. We introduced the creation
â†n,` and annihilation ân,` operator of a cavity photon in a mode de�ned by the two integers (n, `).
The corresponding mode function

fn,`(r, ϕ) =

√
2|`|+1n!

π(|`|+ n)!w2
0

(
r

w0

)|`|
ei`ϕe−r

2/w2
0L|`|n

(
2
r2

w2
0

)
(6.2)

are Laguerre-Gaussian modes and form an orthogonal basis in the 2D plane. The function L|`|n denote
the generalized Laguerre polynomials. For our discussion we refer to the states of the lowest Landau
level (LLL) having n = q = 0 and ` = 0, 3, 6, . . ..

One way to reach a regime of strongly interacting photons is to couple the photonic cavity �eld Ê
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to a high lying Rydberg state. As we have seen in the previous chapters, Rydberg atoms provide a
strong and quasi long-range interaction. Consider an additional dense atomic ensemble in the ring
resonator, as sketched in Fig. 6.1a. We discuss how to achieve strong interactions within the LLL
photonic modes. To this end, it is convenient to decompose the photonic cavity �eld Ê =

∑
q

∑
n Ên,q

into Laguerre-Gaussian modes

Ên,q =
∑
m

fn,3m+q(r, ϕ)ân,3m+q. (6.3)

The cavity �eld Ê0,0 with energy ∆0,0 is coupled to a Rydberg state |p〉 under conditions of electro-
magnetically induced transparency (EIT) [188, 189]. Consider the case without interactions between
Rydberg states, where the system can be easily diagonalized. Then, the relevant zero-energy eigen-
state is a mixture of the photonic cavity �eld Ê0,0 and the Rydberg state |p〉, a Rydberg cavity polariton,
Ψ̂p = cos θÊ0,0 − sin θσ̂gp. The mixing angle θ can be controlled by an external laser �eld. The case
of interacting Rydberg polaritons has been discussed in Ref. [42, 190, 191]. This leads to an e�ective
interaction potential between photons in the LLL and has already been demonstrated in a photonic
cavity setup [178, 179]. A similar scheme can be used to induce interactions between photons in
higher or di�erent Landau level at the expense of a more complicated laser excitation scheme.

We assume an e�ective interaction potential V (r) = C6/(r
6 + ξ6) between photons with distance

r and interaction coe�cient C6. The length scale ξ provides a cut-o� for small distances r � ξ

and stems from the dipole blockade [192, 193]. We can cast the interaction Hamiltonian between
photonic modes in the LLL (n = q = 0) as (~ = 1)

Ĥint =
∑
`1,`2

∑
`3,`4

V `1`2
`3`4

â†0,`1 â
†
0,`2

â0,`3 â0,`4 , (6.4)

where `i = 3m denotes the angular momentum. In the basis of angular momentum states |`i〉, the
interaction coe�cients are V `1`2

`3`4
= 〈`1, `2|V (r) |`3, `4〉.

In the following, we assume that the magnetic length `B � ξ is much larger than the blockade
distance ξ, which can be realized by choosing an appropriate Rydberg state. This allows us to
approximate the interaction potential V (r) with a contact type interaction [182]. Then, all interaction
coe�cients are determined by Haldane’s zeroth pseudopotential V0 [53], which can be approximated
in the case of the �at-top interaction potential in Rydberg states [180] by

V0 '
3C6

8`2Bξ
4
. (6.5)

The strength V0 can be tuned by changing the mixing angle θ and thus the proportion of photonic
to matter component or by coupling to di�erent Rydberg states. Within this approximation the
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interaction coe�cients are

V `1`2
`3`4

=
V0

2
(`1 + `2)!

√
2−2(`1+`2)

`1!`2!`3!`4!
δ`1+`2,`3+`4 . (6.6)

Clearly, the interaction Hamiltonian (6.4) preserves the total angular momentum Lz . We assume that
the cyclotron frequency equivalent of the photonic Landau levels ∆ ≡ ∆0,1 −∆0,0 is much larger
than the interaction coe�cients V `1`2

`3`4
∼ V0 within the LLL. In this case, mixing of states in the LLL

with those in higher Landau levels is suppressed.

6.1.2 Laughlin States and �asi-hole Excitations

The combination of photonic Landau levels (6.1) and Rydberg interactions (6.4) may lead to ground
states similar to the one observed in the fractional quantum Hall e�ect and discussed in Sec. 1.3.
Indeed, for a �xed number of photons N the state with lowest total angular momentum Lz ,

ΨLN = 〈z1, . . . , zN |LN, N〉 = NLN

∏
i<j

(
z3
i − z3

j

)2
exp

−∑
j

|zj |2

4`2B

 , (6.7)

which we term photonic Laughlin state, is a unique ground state [174, 193, 194]. Here, NLN is a
normalization constant and zj = xj − iyj is the complex coordinate of the jth photon. This state has
a similar form as the �lling ν = 1/2 Laughlin state introduced in Sec. 1.3. The additional exponents
∼ z3

j ensure that the state lies within the photonic LLL and Eq. (6.7) represents the �lling ν = 1/2

photonic Laughlin state. For the case of contact interaction, the Jastrow factors
∏
i<j

(
z3
i − z3

j

)2

fully screen Haldane’s zeroth pseudopotential and thus Eq. (6.7) is an exact zero-energy eigenstate.
The total angular momentum of the photonic Laughlin state is

Lz(|LN, N〉) = 3N(N − 1). (6.8)

Zero-energy excitations of the photonic Laughlin state are photonic quasi-hole excitations. A state
with m quasi-holes located at the center of the system is

Ψmqh = 〈z1, . . . , zN |mqh, N〉 = Nmqh

∏
j

z3m
j

ΨLN, (6.9)

where Nmqh is a normalization constant. The additional factor
∏
j z

3
j adds �ux to the system and
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Figure 6.2: (a) Growing scheme of the �lling ν = 1/2 photonic Laughlin state: First, two �ux quanta
φ0 are inserted into the center of the system. Second, the resulting hole excitation is
re�lled with exactly one photon using a coherent pump Ωp and the strong photon blockade
mechanism. (b) The �rst steps of the growing scheme for the preparation of the Laughlin
state |LN, 2〉 are illustrated and explained in the main text. By inserting �ux quanta φ0,
the total angular momentum Lz is increased by 6~. The lowest line shows the schematics
of the state preparation process in terms of Landau orbitals. Note that this is a simpli�ed
picture and the structure of the photonic Laughlin state at Lz = 6 is more complicated.

therefore the state Ψmqh with N photons has a higher total angular momentum

Lz(|mqh, N〉) =
3

2
mN(N + 1). (6.10)

Note that a state with two quasi-holes and N photons has the same angular momentum as the
Laughlin state with N + 1 photons, Lz(|2qh, N〉) = Lz(|LN, N + 1〉).

6.2 Growing Scheme

To grow a �lling ν = 1/2 photonic Laughlin state, we use a two-step protocol similar to that presented
in Ref. [FL1] and [FL2] and illustrated in Fig. 6.2a: Assume we start initially with a Laughlin state
|LN, N〉 with N photons. The goal is to prepare the Laughlin state |LN, N + 1〉 with N + 1 photons.
In the �rst step we adiabatically insert two �ux quanta φ0 = 3~ in the center of the system. Thereby,
we increase the total angular momentum by ∆Lz = 6N~ and produce a hole excitation. Now, we are
already in the correct total angular momentum sector for the Laughlin state with N + 1 photons. In
the second step, we replenish the hole with a single photon by exploiting the strong photon-photon
interactions caused by coupling to Rydberg atoms. In this step, we increase the number of photons
by one without changing the total angular momentum. This leads to the controlled preparation of
the N + 1 Laughlin state. Below, we discuss the two steps in more details.
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6.2.1 Flux Insertion

The idea of adiabatic �ux insertion was �rst introduced by Laughlin [195] providing an explanation
of the quantized Hall conductivity. Inserting locally in the center of the system �ux φ produces an
outwards Hall current jr ∼ σH∂tφ in radial direction, where σH is the Hall conductivity. This results
in a hole excitation in the center as indicated in Fig. 6.2a. In the case of photonic Landau levels,
we add two photonic �ux quanta φ0 = 3~ to grow a Laughlin state with 1

2 -�lling in time Tφ. The
adiabatic increase of �ux ensures that we maintain a zero-energy state and create a two quasi-hole
excitation |2qh, N〉. In this step the total angular momentum is increased by ∆Lz = 6N~. A detailed
protocol of �ux insertion in a photonic cavity setup will be discussed in Sec. 6.3.

6.2.2 Single Photon Pump

In the next step the hole is replenished with a single photon. To this end, a coherent pump is coupled
to the center of the system. If the applied laser �eld pro�le matches with the ` = 0 photonic mode in
the LLL, no additional angular momentum will be transferred. The corresponding Hamiltonian can
be written as

ĤΩp = Ωp

(
â†0,0e

−iωt + h.c.
)
, (6.11)

where Ωp is the pump Rabi frequency. We choose the oscillation frequency ω = ∆0,0 resonant with
the energy of the LLL. Without interactions, the laser excites a state with superpositions of many
photons. Including a strong photon blockade, we can insert at most one photon into the center of
the system. In the given total angular momentum sector, the only energetically relevant state is the
Laughlin state |LN, N + 1〉 with N + 1 photons. The energy o�set to any other state in the N + 1

particle sector is given by the many-body gap ∆LN ∼ 0.2V0 (Laughlin gap). Note that the Laughlin
gap weakly depends on the photon number N , see e.g. [182]. For the photon blockade mechanism
we require Ωp � ∆LN, V0.

To insert rapidly one photon, we suggest to use a π-pulse. The duration of the pulse is given by
Tp = π/(2Ω

(N)
p ), where

Ω(N)
p /Ωp = 〈LN, N + 1| â†0,0 |2qh, N〉 , (6.12)

accounts for the �nite overlap between the initial two quasi-hole excitation and the �nal Laughlin
state. The overlaps weakly depend on the photon number N and converge for N →∞ [FL2].

In Fig. 6.2b we illustrate the initial steps of the growing scheme. The protocol starts with zero
photons in the cavity with vacuum state |0〉. First, we apply the coherent laser excitation to insert a
single photon. Making use of the photon blockade, we pump one photon into the state â†0,0 |0〉. The
two-photon state â†20,0 |0〉 is gapped by an energy mismatch V0. In the next step, we add two �ux
quanta φ0 to the system and thereby increase the total angular momentum. The state is transferred
to â†0,0 |0〉

φ0−−→ â†0,3 |0〉
φ0−−→ â†0,6 |0〉, which corresponds to the trivial two quasi-hole state. Next, we
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couple again the coherent laser �eld to the cavity and thus excite the zero-energy Laughlin state
|LN, 2〉 ∼

(√
20â†0,0â

†
0,6 − â

†2
0,3

)
|0〉. The photon-photon interactions and the overlap Ω

(1)
p /Ωp =√

10/11 ensure that we add exactly one photon into the cavity. Repeating the protocol allows to
grow the desired N photon Laughlin liquid.

6.3 Flux Insertion in a Photonic Cavity

Now, we present a protocol for the controlled insertion of �ux quanta φ0 = 3~ into a twisted photonic
cavity setup. This will lead to a transfer of photons between modes

â0,3m
(i)−−→ â0,3m+1

(ii)−−→ â0,3m+3 (6.13)

in two steps. In the �rst step (i) we populate a higher Landau level n = 0, q = 1 and add 1~ angular
momentum to each photon. In the second step (ii), we add another 2~ angular momentum and
transfer all photons back to the LLL. In this way we prevent errors from direct coupling between the
modes â0,3m and â0,3m+3 and break time reversal symmetry. We show that these two steps can be
performed by coupling an external laser �eld to a dense atomic medium in one of the resonator arms
as is indicated in Fig. 6.1a. The medium acts as a mediator between the photonic cavity �eld Ê and an
external orbital angular momentum (OAM) beam. The angular momentum will be �rst transferred
to the atomic cloud and later to the cavity �eld. To this end, we employ a STIRAP technique [196],
which is robust and insensitive to small variations of the coupling strength. First, we discuss the
noninteracting case of �ux insertion, which can be realized without coupling photons to Rydberg
states. Later, we comment on the interacting case.

6.3.1 Microscopic Model

Consider a dense atomic ensemble with four relevant atomic states as shown in Fig. 6.3. Besides
the ground state |g〉, we consider a metastable state |s〉 and two excited states |e〉 and |r〉. Both
excited states have a �nite lifetime with decay rate γe and γr . The cavity �elds Ê0,0 and Ê0,1 drive the
transitions |g〉 ↔ |e〉 and |g〉 ↔ |r〉 with coupling strength g0 and g1, respectively. We assume real
coupling strength g0,1, which are proportional to the relevant transition dipole moment and include
the corresponding mode volume. In addition, we assume a large single photon detuning δ � g0,1 to
avoid any direct transition to the excited states and thus decay via the excited states. Furthermore,
we assume that all other cavity modes with n 6= 0 and n = 0, q = 3 are highly o�-resonant and can
be disregarded.

Additionally, we consider external laser �elds with Rabi frequency Ω̄` which couple the atomic
transitions |s〉 ↔ |e〉 (` = 1,−2) and |s〉 ↔ |r〉 (` = 0) and carry OAM ~`. The �elds Ω0 (Ω`=1,−2)
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Figure 6.3: The relevant atomic states consist of a ground state |g〉, a metastable state |s〉 and two
excited states |e〉 , |r〉. The transitions |g〉 ↔ |e〉 and |g〉 ↔ |r〉 are driven by the cavity
�elds Ê0,0 and Ê0,1 with coupling constants g0 and g1, respectively. The external laser
�elds Ω̄0 and Ω̄` drive the transitions |s〉 ↔ |e〉 and |s〉 ↔ |r〉, respectively. The Rabi
frequency Ω̄` carries `~ orbital angular momentum. The laser frequencies are chosen
such that the two-photon transition is resonant, while the single-photon detuning δ is
large compared to the coupling strength g0, g1.

and Ê0,1 (Ê0,0) are in two-photon resonance with the transition |g〉 ↔ |s〉, as indicated in Fig. 6.3.
The external laser �eld can be written as

Ω̄` = Ω`(t)κ`(r)e
i`ϕ, (6.14)

where κ`(r) denotes the spatial pro�le and Ω`(t) the time-dependent coupling strength. Laser beams
carrying OAM have already been used in experiments to transfer OAM of light to an atomic medium
[197]. We assume a spatially uniform excitation laser Ω̄0 = Ω0 having ` = 0 angular momentum.

In a rotating frame and projected to the lowest two Landau levels n = 0 with q = 0, 1, the
light-matter coupling Hamiltonian can be written as (~ = 1)

Ĥφ =

∫
d2r ρ(r)δ [σ̂ee + σ̂rr]

−
∫

d2r ρ(r)
[
g0Ê0,0σ̂eg + g1Ê0,1σ̂rg + Ω̄`σ̂se + Ω0σ̂sr + h.c.

]
. (6.15)

We assume a high atomic density ρ(r), which varies only slightly over the relevant experimental
length scales. In particular, we assume a weak trapping potential of the dense atomic medium, which
can be neglected in the description of the collective atomic modes. Thus, we discuss in the following
the case of a homogeneous constant density ρ. Furthermore, we introduced in Eq. (6.15) spatially
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coarse-grained atomic �ip operators

σ̂µν(r, t) =
1

∆N

∑
j∈∆V

|µ〉j 〈ν| , (6.16)

with µ, ν ∈ {g, s, e, r}. Here, the sum is taken over ∆N � 1 atoms in a small volume ∆V centered
around the position r. This can be used as an approximation in the high density limit ρ = ∆N

∆V and
when the density is smooth on a length scale on which the light �eld varies. Then, the operators
σ̂µν(r) approximately ful�ll the commutation relation

[
σ̂αβ(r), σ̂γδ(r

′)
]

=
δ(r− r′)

ρ
[δβγ σ̂αδ(r)− δαδσ̂γβ(r)] . (6.17)

Initially, all atoms are in the ground state |g〉. We assume weak cavity �elds g0〈Ê0,0〉, g1〈Ê0,1〉 � Ω

and discuss the linear response regime. Within this approximation, we set σ̂gg ' 1 while all other
states have a vanishing population. It is convenient to introduce scaled atomic �eld operators for
the coherences, namely we set P̂ =

√
ρσ̂ge, Ŝ =

√
ρσ̂gs and R̂ =

√
ρσ̂gr . We decompose the atomic

cavity �eld operators into the Laguerre-Gaussian basis, i.e.

P̂ =
∑
n,m

fn,m(r, ϕ)P̂n,m, (6.18)

Ŝ =
∑
n,m

fn,m(r, ϕ)Ŝn,m, (6.19)

R̂ =
∑
n,m

fn,m(r, ϕ)R̂n,m, (6.20)

and use Eq. (6.3) for the decomposition of the cavity �elds Ê0,0 and Ê0,1. Then, we can express the
Hamiltonian (6.15) as

Ĥφ =δ
∑
n,m

(
P̂ †n,mP̂n,m + R̂†n,mR̂n,m

)
−
∑
m

[
g0
√
ρP̂ †0,3mâ0,3m + g1

√
ρR̂†0,3m+1â0,3m+1 + h.c.

]
−
∑
n,m

[
Ω0Ŝ

†
n,mR̂n,m + h.c.

]
−
∑
n,n′

∑
m,m′

[
Ω`χ

n,n′

m,m′Ŝ
†
n,mP̂n′,m′ + h.c.

]
, (6.21)

where the coe�cient

χn,n
′

m,m′ =

∫
d2r f∗n,m(r, ϕ)κ`(r)e

i`ϕfn′,m′(r, ϕ) (6.22)

determines the overlap between the di�erent atomic modes and the spatial pro�le of the OAM beam.
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6.3.2 Dark States and Orbital Angular Momentum Transfer

The main feature of our �ux insertion scheme is a versatile OAM beam Ω̄`. We will see below that
our scheme only relies on two di�erent OAM beams. In the �rst step (i) of the �ux insertion process
we add ∆l = 1 angular momentum and in the second step (ii) we add ∆` = 2 angular momentum to
all photons. This is in contrast to the scheme presented in Ref. [182], which requires for each step a
di�erent OAM beam.

Step (i): In the �rst step we use an OAM beam Ω̄1 = Ω1κ1(r)eiϕ. Using the Heisenberg-Langevin
equation [198], we obtain for the relevant cavity and atomic modes,

∂tâ0,3m = ig0
√
ρP̂0,3m, (6.23a)

∂tâ0,3m+1 = ig1
√
ρR̂0,3m+1, (6.23b)

∂tP̂n,3m = − (iδ + γe) P̂n,3m + ig0
√
ρâ0,3mδn,0 + iΩ∗1

∑
n′

(
χn
′,n
m

)∗
Ŝn′,3m+1, (6.23c)

∂tŜn,3m+1 = iΩ1

∑
n′

χn,n
′

m P̂n′,3m + iΩ0R̂n,3m+1, (6.23d)

∂tR̂n,3m+1 = − (iδ + γr) R̂n,3m+1 + ig1
√
ρâ0,3m+1δn,0 + iΩ∗0Ŝn,3m+1, (6.23e)

with coe�cients
χn,n

′
m =

∫
d2r f∗n,3m+1(r, ϕ)κ1(r)eiϕfn′,3m(r, ϕ). (6.24)

We assume a high-�nesse cavity with small photon losses on the experimentally relevant timescale
and therefore neglect these in the equations of motion. However, since atomic decay might be relevant
on the experimental timescale, we include decay of excited states with rate γe, γr . To maintain the
commutation relations Langevin noise operators can be introduced, which are δ-correlated in space
and time with zero mean value. Since we discuss a regime where the excited state population is
negligible we however omit the noise operators here and in what follows.

Choosing a spatial pro�le κ1(r) = 1
r/w0

, we have χ0,n′
m ∝ δn′,0 in Eq. (6.24) and thus the coupling

from the atomic mode Ŝ0,3m+1 to higher atomic modes with n′ > 0 vanishes. Then, we can directly
construct a dark state for an OAM transfer of ∆` = 1,

Ψ̂
(1)
0,3m+1 =

√
ρg1Ω1

√
2

3m+ 1
â0,3m +

√
ρg0Ω0â0,3m+1 − ρg0g1Ŝ0,3m+1, (6.25)

which ful�lls ∂tΨ̂(1)
0,3m+1 = 0. For simplicity we omit here a proper normalization factor. Since the

dark state Ψ̂
(1)
0,3m+1 contains only the cavity �elds â0,3m, â0,3m+1 and the coherence Ŝ0,3m+1 with

the metastable state, it is immune to excited state decay. The transfer of photons from the LLL with
q = 0 and angular momentum ` = 3m to the �rst Landau level with q = 1 and angular momentum
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` = 3m+ 1 can be achieved by increasing the ratio Ω0/Ω1.

The choice of the above spatial pro�le ensures to remain within the manifold of states with
n = 0. However, since the spatial pro�le diverges in the center at r = 0, this cannot be realized
experimentally as the intensity of a light beam with a vortex has to vanish in the center. Instead, we
approximate the spatial pro�le with

κ1(r)/w0 =
r2

r3
0 + r3

, (6.26)

with a cut-o� length r0. While the intensity vanishes now for r → 0, the spatial pro�le maintains
the scaling ∼ 1/r for large r � r0. Choosing r0 � w0, we approximately obtain χ0,n′

m ' δn′,0 as
per Eq. (6.24). We will discuss below that a residual coupling to states with n > 0 leads to a small
loss rate to states outside the dark state manifold.

Let us assume, that initially only photonic cavity modes with n = 0 and ` = 3m are populated.
Starting with a strong external �eld Ω1 �

√
3m+1

2
g0
g1

Ω0,
√

3m+1
2

√
ρg0 carrying ` = 1 OAM, the

system is approximately in its dark state Ψ̂
(1)
0,3m+1 ' â0,3m. Upon adiabatically increasing the ratio

Ω0/Ω1, we follow the zero-energy state Ψ̂
(1)
0,3m+1. For values Ω0 �

√
2

3m+1
g0
g1

Ω1,
√
ρg1, we obtain

approximately a dark state with all photons in higher Landau level q = 1, Ψ̂
(1)
0,3m+1 ' â0,3m+1. This

concludes the �rst step of the �ux insertion protocol.

Step (ii): In the second step, the goal is to transfer photons in mode â0,3m+1 back to the LLL and
add 2~ of angular momentum. Analogously, to obtain a dark state only between the modes â0,3m+3

and â0,3m+1, we choose an OAM beam Ω̄−2 = Ω−2κ−2(r)e−2iϕ. This results in a similar set of
Heisenberg-Langevin equations for the photonic cavity and atomic modes,

∂tâ0,3m+3 = ig0
√
ρP̂0,3m+3, (6.27a)

∂tâ0,3m+1 = ig1
√
ρR̂0,3m+1, (6.27b)

∂tP̂n,3m+3 = − (iδ + γe) P̂n,3m+3 + ig0
√
ρâ0,3m+3δn,0 + iΩ∗−2

∑
n′

(
χ̃n
′,n
m

)∗
Ŝn′,3m+1, (6.27c)

∂tŜn,3m+1 = iΩ1

∑
n′

χ̃n,n
′

m P̂n′,3m+3 + iΩ0R̂n,3m+1, (6.27d)

∂tR̂n,3m+1 = − (iδ + γr) R̂n,3m+1 + ig1
√
ρâ0,3m+1δn,0 + iΩ∗0Ŝn,3m+1, (6.27e)

with coe�cients

χ̃n,n
′

m =

∫
d2r f∗n,3m+1(r, ϕ)κ−2(r)e−2iϕfn′,3m+3(r, ϕ). (6.28)
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Choosing a spatial pro�le κ−2(r) = r2

w2
0
, we have χ̃0,n′

m ∝ δn′,0. Thus, the atomic modes Ŝ0,3m+1

do not couple to atomic modes with higher n′ > 0. We obtain a dark state for an OAM transfer of
∆` = 2 as

Ψ̂
(2)
0,3m+1 =

√
ρg1Ω−2

1

2

√
(3m+ 3)!

(3m+ 1)!
â0,3m+3 +

√
ρg0Ω0â0,3m+1 − ρg0g1Ŝ0,3m+1, (6.29)

which ful�lls ∂tΨ̂(2)
0,3m+1 = 0. Note that the spatial pro�le κ−2(r) can be realized experimentally and

thus Eq. (6.29) is an exact dark state.
The �rst step is completed with a strong Rabi frequency Ω0 and all photons in the modes n = 0

and ` = 3m + 1. We further require Ω0 � 1
2

√
(3m+ 3)(3m+ 2)g1g0 Ω−2 and therefore start the

second step in the dark state Ψ̂
(2)
0,3m+1 ' â0,3m+1. Upon adiabatically increasing the ratio Ω−2/Ω0,

we transfer all photons back to the LLL. For Ω−2 � g0
g1

2Ω0√
(3m+3)(3m+2)

,
√
ρg0 we approximately

obtain the dark state Ψ̂
(2)
0,3m+1 ' â0,3m+3. Thus, in total we increased the angular momentum of

all photons by ∆` = 3. The total time Tφ for the �ux insertion process has to be chosen to ful�ll
adiabaticity, which will be discussed below.

In Fig. 6.4 the results of a numerical simulation of the �ux insertion process is shown using the
full equations of motion (6.23) and (6.27) including the small residual couplings out of the dark state
in the �rst step of the protocol. We change the strength of the orbital angular momentum beams Ω0,
Ω1 and Ω−2 in time t as shown in Fig. 6.4a. In the �rst step, i.e. for 0 ≤ t < Tφ/2, we choose

Ω1(t) =
Ω√

1 + e+(t−Tφ/4)/τ
, Ω0(t) =

Ω√
1 + e−(t−Tφ/4)/τ

, (6.30a)

where τ denotes the characteristic pulse duration. For the second step, i.e. Tφ/2 ≤ t < Tφ, we choose

Ω0(t) =
Ω√

1 + e+(t−3Tφ/4)/τ
, Ω−2(t) =

Ω√
1 + e−(t−3Tφ/4)/τ

. (6.30b)

As can be seen in Fig. 6.4b, our protocol robustly transfers photons from a state with angular
momentum ` = 0 to a state with ` = 3 with a small cut-o� length r0 � w0.

Adiabatic flux insertion: interacting case

The generalization of the adiabatic �ux insertion protocol to the case of interacting photons is not
straightforward. However, we will argue below that the quantized insertion of �ux quanta is still
possible.

Consider the �rst step of our growing protocol, which consists of inserting one photon and
adiabatically inserting two �ux quanta φ0 = 3~ as is shown in Fig. 6.2b. The photon blockade ensures
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Chapter 6 Laughlin State Preparation for Cavity Rydberg Polaritons

Figure 6.4: The adiabatic �ux insertion protocol consisting of two steps, (i) and (ii) in time Tφ. (a)
The laser intensity |Ω`|2 is changed adiabatically in time t according to Eq. (6.30). In the
insets, the intensity pro�le of the three di�erent laser beams with ` = 1, 0,−2 are shown.
(b) Numerical simulation of the �ux insertion protocol using the full equations of motion
(6.23) and (6.27). Initially, we assume a coherent amplitude 〈â0,0〉(t = 0) = 1. In the �rst
step, at t = Tφ/2 the amplitude is transferred to the ` = 1 mode in a higher Landau level
and at t = Tφ back to the LLL with ` = 3. The parameters are Ω = 2π × 12.4 MHz,√
ρg0 =

√
ρg1 = 2π × 0.45 MHz and δ = 2π × 1.27 MHz and γe = γr = 0. The cut-o�

length in the ` = 1 orbital angular momentum beam is r0 = w0/100. The duration of
the �ux insertion process is Tφ = 40τ , where τ = 1 µs is a characteristic timescale. The
simulations were performed by Peter Ivanov.

coherent pumping of a single photon into the state â†0,0 |0〉. Using the �ux insertion protocol we
increase the angular momentum and reach a single photon state â†0,6 |0〉. In the second step the
coherent pump couples to the unique zero-energy Laughlin state with N = 2 photons, namely
|LN, 2〉 ∼

(√
20â†0,0â

†
0,6 − â

†2
0,3

)
|0〉. Without interactions, we expect that after inserting two more

�ux quanta φ0 we create a state∼
(√

20â†0,6â
†
0,12 − â

†2
0,9

)
|0〉. This is however not the two quasi-hole

state |2qh, 2〉 ∼
(√

55/21â†0,6â
†
0,12 − â

†2
0,9

)
|0〉 and thus has a higher energy in the interacting case.

Now, consider the case of interacting photons. During �ux insertion the dark state remains a
zero-energy state and we do not transfer energy into the system in the adiabatic limit, which requires
that the change of system parameters is slow compared to the many-body gap, i.e. ∆LNTφ � 1.
We presume that we stay within the manifold of zero-energy states consisting of the Laughlin state
|LN, N〉 and the quasi-hole states |1qh, N〉, |2qh, N〉. Importantly, this means that in the state
transfer the prefactor in the photonic Laughlin state is modi�ed (

√
20→

√
55/21). Thus, after two

times of �ux insertion, we create the two quasi-hole state |2qh, N〉. Later, we will verify this by
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6.3 Flux Insertion in a Photonic Cavity

numerical simulations.

To maintain a �nite Laughlin gap ∆LN during the whole protocol we need interactions between
the photons also in the �rst Landau level (n = 0, q = 1). To this end, we envision that the photonic
mode Ê0,1 is also coupled to another Rydberg state in an EIT con�guration. Then, the same discussion
as in Sec. 6.1 applies. While the interaction potential between two photons in the same or in di�erent
Landau levels might di�er, we assume in the following a single interaction potential for all cases.

6.3.3 Performance

Using the single photon pump and the �ux insertion process, we add one particle after another in
time T = 2Tφ + Tp. After N steps of the growing scheme, we prepare a state |ΨN 〉. To quantify
the accuracy of the growing scheme, we summarize in the following the main contributions to the
�delity,

FN = | 〈ΨN |LN, N〉|2. (6.31)

In essence, we identify two main errors in the growing scheme: Firstly, we assume an e�ective
photon loss rate γeff including cavity losses, Rydberg state decay as well as residual couplings to
higher Landau level in the �ux insertion protocol. For small loss rate γeff � 1/T , we can estimate
the probability of a single decay process after N steps by

Pγ = 1− exp

(
−γeffT

N∑
k=1

k

)
' 1

2
γeffTN(N + 1). (6.32)

Secondly, we account for nonadiabatic errors in the �ux insertion and single photon pump. These
result from coupling to high energy states or states with a photon number di�erent from N with
many-body gap ∼ ∆LN. We estimate that the probabilities for exciting these states scale as

Pφ ∼
1

(∆LNTφ)2
, Pp ∼

1

(∆LNTp)2
, (6.33)

for �ux insertion and coherent pump, respectively. In total, we obtain an estimate for the �delity,

FN = e−(Pγ+Pφ+Pp) ' exp

[
−N

(
1

2
γeffT (N + 1) +

Λ2

∆2
LNT

2

)]
, (6.34)

where we combined both nonadiabatic contributionsPφ, Pp and introduced a parameter Λ. Numerical
simulations in Ref. [FL2] showed that Λ ' 10 for lattice systems, where angular momentum is not a
conserved quantity. We expect similar values for Λ in the case discussed here.
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Figure 6.5: Residual coupling to higher Landau level n > 0 in the �rst step of the �ux insertion
procotol for spatial pro�le κ1(r)/w0 = r2/(r3 + r3

0) with cut-o� length r0. (a) Overlap
|χ0,n

0 | versus the cut-o� length r0 for n = 1, 2, 3. The gray dashed line indicates an
approximate scaling with r0 as |χ0,n

0 | = 8π
3

√
2
3
r20
w2

0
. (b) Overlap |χn,00 | versus the Landau

level quantum number n for three di�erent cut-o� lengths r0.

Residual coupling to higher Landau levels with n > 0

In the adiabatic �ux insertion protocol discussed here, we encounter another error due to the cut-o� in
the spatial pro�le of the OAM beam in Eq. (6.26). This leads to a reduced angular momentum transfer
probability and is a source of additional excited state decay. To see this, we consider again the �rst
step of the �ux insertion protocol in Eq.(6.23). As discussed before, the case κ1(r)/w0 = 1/r results
in χ0,n′

m ∝ δn′,0. Then, the state Eq. (6.25) remains a dark state, as can be seen directly by evaluating
∂tΨ̂

(1)
0,3m+1. However, the experimentally realizable spatial pro�le κ1(r)/w0 = r2/(r3

0 + r3) as in
Eq. (6.26) yields small coupling elements ∼ χ0,n′

m to higher Landau level n′ > 0 for r0 � w0. This is
illustrated for di�erent cut-o� lengths r0/w0 in Fig. 6.5a. Clearly, the overlaps |χ0,n′

0 | � |χ0,0
0 | '

√
2

decrease with increasing Landau level quantum number n′ and approximately scale as χ0,n′

0 ∝ r2
0 for

r0/w0 � 1. The coupling elements between higher angular momentum states with m > 0 are even
smaller and can be neglected. Note that the coe�cients χn,0m do not necessarily have to be small to
maintain a dark state. Indeed, this is the case as shown in Fig. 6.5b for several cut-o� length r0/w0.

Let us assume we are initially in the dark state manifold, where we can neglect the contributions
from the excited states and the coherences Ŝn,3m+1 with n > 0. The residual coupling between
Ŝ0,3m+1 and the excited state coherences P̂n,3m with n > 0 introduces a loss mechanism. We
adiabatically eliminate the atomic state coherences Ên,3m, which decay on a fast timescale with rate
γe and reinsert into Eq. (6.23d). This yields

∂tŜ0,3m+1 ' iΩ1χ
0,0
m P̂0,3m + iΩ0R̂n,3m+1 −

∑
n>0

|Ω1χ
0,n
m |2

δ2 + γ2
e

(−iδ + γe) Ŝ0,3m+1, (6.35)
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which includes an e�ective decay channel for the coherences Ŝ0,3m+1 and thus the dark state Ψ̂
(1)
0,3m+1.

For su�ciently small cut-o� length r0 or small population of the metastable state, the additional
decay can be neglected.

6.4 Exact Diagonalization of Small Systems

A full simulation of all photonic modes including the interactions between all photons and atomic
modes is challenging due to the large Hilbert space. However, the simulation of small systems
involving only the photonic modes with n = 0 with a certain maximal total angular momentum
Lmax
z is feasible. To this end, we shortly present a simpli�ed adiabatic �ux insertion protocol used

for simulating the dynamics of up to three photons. While this model might not be realized in an
experiment, it serves as a toy model for a similar adiabatic �ux insertion process and suggests that
the adiabatic �ux insertion protocol should work.

Similar to the STIRAP technique, we use an adiabatic transfer protocol to increase the angular
momentum of the system. The coupling scheme relies on photonic cavity modes within the Landau
levels n = 0 with q = 0, 1. As before, we use a two-step protocol,

â0,3m
(i)−−→ â0,3m+1

(ii)−−→ â0,3m+3, (6.36)

to increase the angular momentum of each photon by ∆` = 3. Each step, (i) and (ii), is a combination
of a coupling between two photonic modes and a dynamically controlled energy mismatch ∆(t) ≡
∆0,1 −∆0,0 between the lowest and �rst photonic Landau level. This process is reminiscent of a
Landau-Zener sweep or a rapid adiabatic passage technique.

The corresponding coupling Hamiltonian can be written as

Ĥφ =
∑
m

[
χ1(t)â†0,3mâ0,3m+1 + χ2(t)â†0,3m+1â0,3m+3 + h.c.

]
, (6.37)

where the coupling constants χ1, χ2 � ∆LN � ∆(0) = ∆(Tφ) are much weaker than the Laugh-
lin gap and the original Landau level energy gap. This avoids mixing between di�erent angular
momentum states before and after the �ux insertion protocol and thus weakly a�ects the relevant
many-body states, namely the Laughlin state and the quasi-hole states.

The system parameters χ1, χ2 and ∆ are changed in time as shown in Fig. 6.6a. For simplicity, we
sweep the energy mismatch linearly in time,

∆(t) = −∆(0) +
4∆(0)

Tφ

∣∣∣∣t− Tφ
2
.

∣∣∣∣ (6.38)

Clearly, this is not an optimal parameter sweep and will be therefore slow compared to more
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Figure 6.6: (a) Schematic sketch of the system parameter changes during the simpli�ed �ux insertion
protocol. The coupling elements χ1 (χ2) between the photonic modes as per Eq. (6.37) are
turned on during the �rst (second) half of the protocol. The energy mismatch between
the lowest photonic Landau levels ∆ = ∆0,1 −∆0,0 is changed in time as per Eq. (6.38).
After a full step of �ux insertion in time Tφ we have ∆(0) = ∆(Tφ). (b) Results of an
exact diagonalization of the growing scheme for up to N = 3 photons in the n = 0
Landau level subspace with maximal total angular momentum Lmax

z = 19. Shown are the
probabilities for the relevant states in the LLL with respect of the simulated state |Ψ(t)〉.
The single-photon probabilities are denoted by p` = | 〈Ψ| â†0,` |0〉 |

2. The probability of
being in the Laughlin state with N photons is pLN,N and the probability of being in the
m quasi-hole state with N photons is pmqh,N . A step in the growing scheme consists
of a coherent pump Eq. (6.11) during time Tp and insertion of two �ux quanta φ0 as
shown in (a) during time Tφ. The parameters are ∆(0)/V0 = 10, Ωp/V0 = 1/20 and
χ1/V0 = χ2/V0 = 1/5.

sophisticated protocols. We estimate the timescale Tφ needed to ful�ll adiabaticity and obtain

Tφ �
4∆(0)

∆2
LN

. (6.39)

Let us start to discuss the noninteracting case, where all photons are in the LLL. Within the �rst
half of the protocol, 0 ≤ t < Tφ/2, photons are transferred from the LLL to the �rst Landau level.
During this time, the coupling strength χ1 is turned on and the energy mismatch slowly decreases to
a value −∆(0). In the adiabatic limit the prepared state remains in the ground state and the angular
momentum per photon is increased by ∆` = 1. In the second part of the �ux insertion protocol,
Tφ/2 ≤ t < Tφ, the coupling χ2 is turned on and the energy mismatch increases to its original value.
All photons are now transferred back to LLL and the angular momentum per photon is increased by
∆` = 2. In total, we added one �ux quantum φ0 to the system.

Finally, let us discuss the full protocol presented in Sec. 6.2 consisting of a coherent pump Eq. (6.11)
and the �ux insertion process described above. We assume a contact-type interaction Hamiltonian

128



6.4 Exact Diagonalization of Small Systems

of the form (6.4) between photons in the LLL and �rst Landau level. In Fig. 6.6b the simulation of
the growing scheme up to N = 3 particles is shown. We show the probabilities of the relevant
many-body states in the LLL. The protocol ends after three steps in a state |Ψ3〉, which has a high
overlap with the 3-photon Laughlin state, F3 = | 〈Ψ3|LN, 3〉|2 = 0.97.

Conclusion

The creation of interesting fractional quantum Hall states of light is experimentally challenging
due to the lack of e�cient cooling mechanism. Here, we demonstrated that using a simple growing
scheme photonic Laughlin states can be prepared in a cavity setup with high �delity. The studies are
motivated by recent experiments realizing strong magnetic �elds in a photonic twisted cavity setup
[174] and strong photon-photon interactions by coupling the cavity �elds to Rydberg states [178].

The growing scheme consists of two steps: In the �rst step, �ux is inserted into the cavity creating
a quasi-hole excitation. We discussed a �ux insertion protocol using an external laser beam with
orbital angular momentum to transfer additional �ux to the system. We showed that upon adiabatic
parameter changes in two steps, the angular momentum of each photon increases by 3~. In the second
step, a coherent pump replenishes the hole with exactly one photon due to the strong photon-photon
interactions. We discussed the performance of the protocol including photon loss and non-adiabatic
transitions to high energy states. Using an exact diagonalization we simulated a similar protocol and
showed that it is possible to grow a Laughlin state with high �delity.

While we studied here the case of short-range interactions realizing a photonic Laughlin state, it
may also be interesting to investigate di�erent states in the case of a long-range �at-top interaction
potential [180]. In addition, the good coherent control of photonic systems may allow to study bilayer
quantum Hall phases by exploring di�erent photonic Landau levels.
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Appendix A

A single atom in an optical la�ice

We estimate the relevant wavefunction and spatial width σ of the experimental setup in Chapter 2.
For simplicity, we discuss a 1D lattice where the standing wave forms a periodic trapping potential

V (x) = V0 sin2(kx). (A.1)

Here, k = 2π
λ0

is the wavevector of the trapping laser with wavelength λ0 = 748 nm and V0 is
the lattice depth. The trap potential depths is V0 = 20Er, where Er = ~2k2

2m is the recoil energy
of Rubidium with mass m. In the case of a deep optical lattice and low temperatures, atoms are
localized near the center of the periodic potential. Consider an atom trapped in a potential minimum
at position x = x0, where x0 is a multiple of the lattice constant ax = λ0/2. We can estimate
the corresponding Wannier wavefunction by approximating the lattice potential with a harmonic
potential (tight-binding approximation),

Ĥlat =
p2
x

2m
+ V0 sin2(kx)

' p2
x

2m
+

1

2
mω2(x− x0)2. (A.2)

This is a valid approximation at low temperatures kBT � ~ω, when the atom is well localized in the
lowest eigenstate of the Hamiltonian. Then, the corresponding wavefunction is

ψ(x) =

(
1

πσ2

)1/4

e−
(x−x0)

2

2σ2 , (A.3)

with the harmonic oscillator length σ =
√

~
mω and trapping frequency ω =

√
2V0k2

m . We obtain for
the experimental parameters ω = 2π × 37 kHz and σ = 60 nm.

We use p(x) = |ψ(x)|2 as a semi-classical approximation of the probability distribution of an atom
within a lattice.
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