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Kurzfassung

Optische Materialien mit negativem Brechungsindex haben sich in den letzten Jah-
ren zu einem der bedeutendsten Forschungsthemen auf dem Gebiet der Photonik
entwickelt. Ausgelost wurde diese Entwicklung durch theoretische und experimen-
telle Arbeiten zu spektakuliren potentiellen Anwendungen dieser Materialien wie
der “Superlinse”, die eine optische Abbildung jenseits des Beugungslimits erlau-
ben sollte, sowie optischer “Tarnkappen”, die es ermdglichen sollten, Objekte in
bestimmten Frequenzbereichen fiir elektromagnetische Strahlung wie Vakuum er-
scheinen zu lassen. Eines der gréfften Hindernisse fiir die praktische Realisierung
dieser Anwendungen ist die starke Absorption, die die negative Brechung in allen
bisher zu diesem Zweck untersuchten bzw. konstruierten Materialien begleitet. Die
vorliegende Arbeit “Quantum interference and absorption suppression in negati-
ve index materials” untersucht, inwieweit Quanteninterferenzphinomene, wie sie
aus der Quantenoptik atomarer Systeme bekannt sind, ausgenutzt werden kénnen,
um einerseits die Absorption drastisch zu reduzieren und andererseits bereits bei
kleinen Dichten einen negativen Brechungsindex zu erzielen.

Insbesondere werden resonante kohérente Effekte analog zur elektromagnetisch
induzierten Transparenz untersucht. Hierbei werden durch Anlegen eines dufleren
Kopplungsfeldes die Hauptbeitrige der Absorption unterdriickt und gleichzeitig
eine resonant iiberhéhte Kreuzkopplung zwischen den elektrischen und magne-
tischen Komponenten des Probe-Feldes induziert. Diese Kreuzkopplung hat den
Vorteil, dass man die Bedingung negativer Permeabilitdt zur gleichzeitigen Erzeu-
gung eines negativen Brechungsindex nicht erfiillen muss, wie es bei Medien ohne
Kreuzkopplung der Fall wire.

In einem einfithrenden Kapitel werden die Grundlagen der Theorie negativer
Brechung erldutert und die experimentellen Techniken zur Herstellung von ent-
sprechenden Materialien dargestellt. Es stellt sich dabei heraus, dass, obwohl die
experimentelle Umsetzung negativer Brechung in den letzten Jahren einen rasan-
ten Fortschritt verzeichnen konnte, alle derzeit verfiigbaren Medien unter enormer
Absorption leiden. Im Hinblick auf die Anwendung elektromagnetisch induzierter
Transparenz zur Losung dieses Problems werden im Anschluss deren grundlegende
Resultate einfithrend zusammengefasst.

In Kapitel 2 werden allgemeine Materialien mit einer Kopplung zwischen elek-
trischen und magnetischen Freiheitsgraden im Hinblick auf die Realisierung nega-
tiver Brechung diskutiert. Solche Kreuzkopplungen manifestieren sich z.B. in einer
chiralen Antwort oder im Auftreten eines magnetoelektrischen Effekts. Es wird
gezeigt, dass man einen negativen Brechungsindex erzeugen kann ohne gleichzeitig

negative Permeabilitidt vorauszusetzen. Somit kann die grofite Schwierigkeit in der



FErzeugung negativer Brechung im optischen Spektralbereich umgangen werden.
Das hat zur Folge, dass die Dichte an Streuern im Vergleich zu nichtkreuzge-
koppelten Realisierungen mehrere Groflenordnungen kleiner und damit realistisch
gewihlt werden kann.

Kapitel 3 hat eine konkrete Umsetzung der in Kapitel 2 entwickelten Ideen
zum Inhalt. Dazu wird ein atomares System untersucht mit einem Niveauschema,
in dem ein elektrischer und ein magnetischer Dipoliibergang durch Anlegen eines
duferen Feldes gekoppelt werden. In diesem System wird nicht nur die zuvor disku-
tierte Kreuzkopplung induziert sondern auch elektromagnetisch induzierte Trans-
parenz. Letztere bewirkt eine starke Unterdriickung des Imaginérteils der elektri-
schen Suszeptibilitdt. Unter Einbeziehung von Lokalfeldkorrekturen kann damit
gezeigt werden, dass negative Brechung induziert werden kann, deren Verhéltnis
von Brechung zu Absorption einige Groflenordnungen grofier ist als bei aktuellen
experimentellen Umsetzungen. Weiterhin wird gezeigt, dass mit Hilfe des dufleren
Feldes auch die Stérke des negativen Index kontrolliert werden kann und sich somit
das vorgestellte Schema zur Entwicklung schaltbarer Komponenten eignet.

Wihrend in Teil I der Arbeit die Materialantwort eines Ensembles kohérent ge-
triebener atomarer Dipolstrahler durch makroskopische Suzeptibilitéiten beschrie-
ben wurde, wird in Teil II eine mikroskopische Theorie der Materialantwort abge-
leitet. Wann immer der Brechungsindex eines Mediums wesentlich von 1 abweicht,
ist eine Kontinuumsbeschreibung der optischen Eigenschaften des Materials nicht
mehr addquat. Die wichtigste und von der mikroskopischen Struktur des Materi-
als weitgehend unabhéngige Korrektur ist die im dielektrischen Fall als Clausius-
Mossotti-Relation bekannte Lokalfeldkorrektur. Teil IT der Arbeit beschiftigt sich
mit einer mikroskopischen Theorie dieser Korrekturen fiir Materialien mit magne-
tischen Freiheitsgraden. Dabei zeigt sich, dass eine Kombination von Lokalfeldkor-
rekturen fiir die elektrischen und magnetischen Freiheitsgrade dazu fithren kann,
dass mit zunehmender Teilchendichte die Absorption des Materials sinkt und der
Brechungsindex gleichzeitig dem Wert n = —2 zustrebt. Dabei wurde das Medi-
um durch ein Gitter von Punktteilchen modelliert und durch Vielfachstreuung die
selbstkonsistente Losung der elektromagnetischen Antwort ermittelt.

Im letzten Teil wird eine Variante des quantenmechanischen Purcell-Effektes
betrachtet. Dabei wird die natiirliche Linienbreite eines Atoms vor einem Spiegel
betrachtet auf dessen Oberfliche eine Schicht eines Materials mit negativer Bre-
chung aufgebracht wurde. Aufgrund der perfekten fokussierenden Eigenschaften
dieser Schicht zeigt ein Atom mit makroskopischem Abstand zum Spiegel je nach

Polarisierung totale Unterdriickung oder Uberhshung der spontanen Zerfallsrate.
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Abstract

Optical materials with a negative index of refraction have evolved in the last
couple of years into one of the most important areas in photonics research. This
progress has been stimulated by spectacular proposed applications like the “super-
lens” which allows for resolution beyond the diffraction limit and “optical cloaks”
which enable objects to appear as vacuum to electromagnetic waves of a certain
wavelength. One the major obstacles to the practical implementation of such ap-
plications is the strong absorption present in all hitherto constructed media with
a negative refractive index. The Thesis “Quantum interference and absorption
suppression in negative index materials” deals with the exploitation of quantum
interference phenomena known from the quantum optics of atomic systems to yield
significant reduction of absorption and simultaneously allow for a negative index
of refraction at comparably small densities.

In particular resonant coherent effects similar to electromagnetically induced
transparency are studied. An external coupling field is used to suppress the main
contributions to the absorption while simultaneously inducing a resonantly en-
hanced coupling between the electric and magnetic components of the probe field.
As an advantage of this coupling compared to media without cross-coupling the
constraint of negative permeability does not need to be fulfilled in order to induce
negative refraction.

In an introductory chapter the basic theory of negative refraction is sketched
and the experimental techniques used to construct materials with a negative index
of refraction are explained. Although the experimental realization of negative index
materials made breathtaking progress in recent years, it turns out that all actual
media suffer from a tremendous absorption. In the following the basic results of
the theory of electromagnetically induced transparency are introduced as they will
be used in the solution of these problems.

Chapter 2 deals with general materials which display a coupling between elec-
tric and magnetic degrees of freedom regarding the realization of negative refrac-
tion. Such a cross-coupling is found for example in a chiral response or in materials
which show the magneto-electric effect. As a result such media allow for negative
refraction without requiring a negative permeability. Thus the major obstacle in
the generation of negative index materials in the optical spectrum can be overcome.
This allows negative refraction at much lower and therefore realistic densities of

scatterers compared to materials without such cross-couplings.



Chapter 3 deals with a particular implementation of the preceding ideas. In
particular a level scheme is proposed in which an electric and a magnetic dipole
transition are getting coupled by applying a strong external field. By doing so not
only the cross-coupling according to chapter 2 is implemented but simultaneously
electromagnetically induced transparency is obtained. This leads to a significant
reduction of the imaginary part of the electric susceptibility which presents the
major contribution to the overall absorption properties. Including local field cor-
rections this results in an induced negative refractive index with a ratio of refrac-
tion to absorption which is orders of magnitude larger than in current experiments.
Moreover it is shown that the value of the (negative) refractive index can be tuned
by means of the external coupling field as well. Hence switchable components for
applications seem possible by utilization of the described level scheme.

In part I of this thesis the electromagnetic response of an ensemble of coherently
driven atomic dipole emitters has been modeled by macroscopic susceptibilities. In
contrast part IT utilizes a microscopic theory for the same purpose as a macroscopic
description ceases to be adequate as soon as the index of refraction of a medium
differs significantly from the vacuum value n = 1. The most important correction
for dielectric media which does not depend on the particular microscopic structure
of the material is the Clausius-Mossotti local field correction factor. Part II of
the thesis concerns with a microscopic model of such corrections for media with
magnetic degrees of freedom. It turns out that combining appropriate local field
corrections for the electric and magnetic degrees of freedom, respectively, yields a
decrease of absorption with increasing number density of scatterers. Simultane-
ously, the refractive index reaches the value n = —2 asymptotically. The material
is modeled by a lattice of point scatterers and solved for the self-consistent elec-
tromagnetic response function using multiple scattering techniques.

The last part deals with a variant of the quantum mechanical Purcell effect.
The natural linewidth of an atom placed in front of a mirror with a coating of
a negative index material is obtained using a Green function technique. As a
result of the perfect focusing properties of the negative refractive coating an atom
with a macroscopic distance to the mirror displays either a total suppression or an

enhancement of the spontaneous decay rate depending on its polarization state.
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CHAPTER 1

Introduction and outline

1.1 Motivation

Photonics research in general and artificial materials with a negative index
of refraction in particular experienced an increasing amount of interest in
the last couple of years. This progress has been driven by spectacular pro-
posed applications like the “superlens”, which allows for resolution beyond
the diffraction limit [1], or even “optical cloaks”, which make objects appear
transparent to electromagnetic waves of a certain wavelength [2, 3, 4]. Tt
has led to a tremendous number of metamaterial designs to achieve negative
refraction [5, 6, 7, 8,9, 10, 11]. Simultaneously, the concept of photonic crys-
tals [12, 13] has been applied to concepts of effective negative indices as well
[14]. Unlike metamaterials, photonic crystals are characterized by a spatial
variation of optical properties due to structured dielectric or metallic bod-
ies on the order of a wavelength rather than subwavelength structures. For
certain photonic crystal designs this leads to circular equi-frequency surfaces
near the band edge with a negative curvature. As a result beam propa-
gation properties are effectively described by a negative index of refraction
[15, 16, 17, 18].

One of the major obstacles to the practical implementation of such appli-

cations is the strong absorption present in all media with negative refractive
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index investigated so far. This thesis aims at exploiting quantum interference
phenomena from quantum optics of atomic systems to yield significant reduc-
tion of absorption and simultaneously allow for a negative index of refraction.
In particular, resonant coherent effects similar to electromagnetically induced
transparency are used to suppress the main contributions to the absorption.
In addition an external coupling field is applied to simultaneously induce a
resonantly enhanced coupling between the electric and magnetic components
of the probe field. As an advantage of this coupling compared to media with-
out cross-coupling the constraint of negative permeability does not need to

be fulfilled in order to induce negative refraction.

1.2 Metamaterials: State of the art

The history of negative refraction research separates roughly into two un-
equal eras. Before the year 2000 there were only few mentionings of the
notion of negative refraction [19, 20, 21]. From these the article of V. Vese-
lago [21] is best known as it analyzes negative refraction using the concepts
of the material permittivity ¢ and permeability p. It also discusses some
fundamental phenomena associated with a negative refractive index like the
inverse Doppler shift, inverse Cerenkov radiation and most importantly the
flat lens [cf. Fig. 1.1(a)]. Although Veselago realized that negative refraction
in naturally occurring media does not exist he provided a route to negative
refraction: simultaneous negative permittivity and permeability (e, < 0)
yield negative refraction, i.e., n < 0. This seems to be peculiar as the def-
inition of the index of refraction n = /zu at first glance leads to identical
results for the two cases e, > 0 and &, < 0, respectively. As Veselago
noticed € and p are fundamentally complex functions with the physical con-
straint Im[e], Im[u] > 0 for passive media. As a result the square root of the
complex function n = /g has to be taken such that Im[n] > 0 holds, from
which the limit Re[n] < 0 for the case Rele], Re[u] < 0 follows. It is worth
noting, that negative index materials always display unavoidable dispersion.
The electromagnetic field energy must never attain negative values which
can only be fulfilled as long as the conditions <L (wRelg(w)]) > 0 as well as
L (wRe[p(w)]) > 0 are met.
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n=-1
object
plane
image
plane
(a) Propagating modes are focused. (b) Evanescent waves inside the slab are

amplified.

Figure 1.1: The perfect flat lens.

The second era of negative index research started in 2000 in which major
experimental and theoretical breakthroughs triggered an exponential grow of
interest in this field. In the theoretical article of Sir John Pendry [1] it is
shown that Veselago’s flat lens is also a perfect lens under the assumptions
that the permittivity and the permeability are identically negative and non-
absorptive, e.g. ¢ = u = —1, and the impedance of the flat lens is matched
to the surroundings. This perfect lens allows for image resolution unlimited
by the wavelength A due to the “amplification” of evanescent waves with
transverse wave vectors k, larger than k = 27 /X inside the slab of the flat
lens. As these evanescent modes transport information about object details
smaller than A the resolution of the lens can in principle be infinite. The
physical reason of the “amplification” is the off-resonant coupling of the
signal field to a surface plasmon mode [22, 23] which results in the amplitude

distribution of the evanescent modes depicted in Fig. 1.1(b).

In the year 2000 there was also the first report about the realization of a
medium which fulfilled Veselago’s requirement of negative permittivity and
permeability [5]. This led shortly thereafter to the first experimental verifica-
tion of negative refraction [6] in the microwave regime using metamaterials.
These materials are assembled from artificial functional units whose size is
much smaller than the resonance wavelength at which they are supposed to

work. Hence with the wavelength of interest these constituents can not be
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(a) A split ring resonator (b) Photography of the material used by Shelby
[25]. et al. [6].

Figure 1.2: The first realization of a negative refracting material [6]. The
metallic wires provide Re[e] < 0 below the plasma frequency; the split ring
resonators yield a strong magnetic resonance with Re[u] < 0. The dimension

of the unit cell is bmm whereas the resonant wavelength is 3cm.

resolved. The material is effectively homogeneous and a permittivity and a
permeability can be assigned. Again it was Sir John Pendry who made crucial
contributions which made overlapping negative electric permittivity [24] and
negative magnetic permeability [25], and hence the aforementioned experi-
mental success possible. Here, negative permittivity Rele] < 0 is provided
by an array of thin wires which yield a plasma frequency in the GHz-regime
[24]. The magnetic response is provided by split ring resonators [25] with
a strong magnetic resonance over spectral regions, where Re[u] < 0 holds.
Fig. 1.2 shows the first experimentally implemented negative index material

which made use of ordinary circuit board material.

In the subsequent development the concept of thin wires and split ring
resonators was further established [26, 27, 28, 29, 30], and by miniaturization
the resonance frequency was increased from THz [7, 31, 32] to the infrared
[8, 9] and even to the visible spectrum [9, 33] while simultaneously morph-
ing the complicated split ring resonators into simpler versions (cf. Fig. 1.4).
However, this concept did not yield negative refraction but only Relu] < 0

for increasing resonance frequencies.

The metamaterial branch of negative index material research experienced
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FI2977 .

(a) Short wire pairs [38]: Symmetric and an- (b) Inverted structure ac-
tisymmetric current distributions contribute cording to Babinet’s prin-
to the electric and magnetic response, respec- ciple: Double fishnet [43].
tively.

Figure 1.3: Modern designs of metamaterials.

a major impulse by the invention of rather simple but functional structures.
A pair of metallic nanopillars [34] or short wires [10] support an electric as
well as a magnetic resonance via symmetric and antisymmetric (Fig. 1.3)
current distributions. As miniaturization of wire pairs is fairly easy com-
pared to split ring resonators, Re[u] < 0 [34, 35, 36] and Re[n| < 0 materials
[10, 37, 38] up to the visible spectrum have been demonstrated. In contrast
to the split ring resonator design, these media have the advantage of showing
a negative index while being irradiated perpendicularly [see Fig. 1.3(a)] com-
pared to the experimentally problematic parallel propagation axis for split
ring metamaterials. Using Babinet’s principle of optics [39, 40] the short wire
pairs translate to a double fishnet structure with rectangular [11, 41, 42, 43|
or circular holes [44] which can support higher currents and hence yield better
results in terms of response strength.

Fig. 1.4 shows the time evolution of metamaterial research regarding in-
creasing resonance frequencies. The full and the open symbols denote nega-
tive refractive Re[n| < 0 and negative permeability Re[u] < 0 media, respec-
tively, while the colors encode the used structure from original (orange) and
simplified (green) split ring resonators to short wire pairs (blue) and fishnet
(red) designs.

Though there is obviously a tremendous progress in pushing the spectral
regions of negative refraction to higher and higher frequencies, there are some
fundamental issues that need to be addressed before applications like the

super lens [1] or electromagnetic cloaking [2, 3, 4] in the visible spectrum can
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Wavelength

500 mm

Magnetic resonance frequency (THz)

I I I I I I I I
2000 2001 2002 2003 2004 2005 2006 2007

Year

Figure 1.4: The evolution of metamaterial research. The full symbols denote
a negative refractive index Re[n| < 0 while the open symbols denote a neg-
ative permeability Re[u] < 0. The structures evolved from the original split
ring resonator design (orange) to a simplified split ring (green) and finally to
short wire pairs (blue) and the Babinet inverted fishnet (red). The numbers

denote the corresponding references. (graph taken from [45])

be realized. One of these issues is given by the fact that the negative index
materials especially for high frequencies are only low-dimensional, i.e., show
Re[n] < 0 only for a certain propagation direction. Moreover, the refractive
index for this particular propagation direction is polarization dependent. The
most severe constraint, though, is given by the large absorption present in

the metamaterial approach, commonly measured by the figure of merit

Re[n]

FoM = —
¢ Im|[n]

(1.1)

which is supposed to reach high positive values.

However, the experimental figures of merit for negative index media in the
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Reference year FoM
[10] 2005 1

38] 2006 < 1
[43] 2007 0.5
[44] 2005 <1
[42] 2006 3

Table 1.1: Exemplary values of FoM.

near-infrared or visual spectrum are usually! less than 1 (FoM < 1 [10, 38],
FoM = 0.5 [43], FoM < 1 [44]) and reach FoM = 3 at best [42] (cf. table
1.1). Note that these FoM'’s are obtained for silver structures, which provide
the least metallic losses. As theoretical studies [47, 48] have shown, this is
an intrinsic problem as a numerical optimization of design elements of the

fishnet materials suggests that FoM = 3 is already the theoretical maximum.

1.3 Electromagnetically induced transparency

An effective means of suppressing absorption in ensembles of near resonant
quantum oscillators, such as atoms or molecules, is given by electromagneti-
cally induced transparency (EIT), which can alter the absorption spectrum
such that a perfect reduction of the losses appears on resonance. It has
mostly been observed in atomic vapors [49, 50] as well as in doped crystals
[51], but is explicitly not limited to quantum systems? [52]. The most generic
system displaying EIT is given by a 3-level atom with a level scheme depicted
in Fig. 1.5(a) which due to its similarity to the greek letter A is frequently
called A-scheme. It consists of two (meta-)stable ground states |1) and |2)
and a common upper state |3). This upper state is connected by a “coupling”
field with Rabi frequency €. to the meta-stable state |2) and similarly by the
“probe” field with Rabi frequency (2, to the ground state |1). To discuss the

key features of EIT we assume the coupling field to be resonant but allow a

!See also the review [46].
2See also chapter 5.
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[3)

Figure 1.5: (a) The generic A-scheme of EIT. (b) Real (solid) and imaginary
(dashed) parts of the linear response susceptibility in arbitrary units as a

function of the detuning A.

detuning A = w, — ws; for the probe field.

Without coupling field, the linear probe field absorption spectrum has an
ordinary Lorentzian structure and a corresponding dispersion of the real part
of the susceptibility y(w). In contrast, the application of the coupling laser
can alter the spectrum fundamentally. Fig. 1.5(b) shows a typical spectrum
for EIT: The absorption line develops a dip of low absorption while the real
part of x(w) displays strong linear dispersion around resonance. Note that
for 75 = 0, i.e., a perfectly stable ground state |2), the susceptibility vanishes
exactly on resonance, A = 0. The width of the transparency window will
then be governed by the coupling strength €).. For large coupling €2, > 3
the splitting of the absorption is linear in (). while for small coupling the
transparency window becomes significantly smaller than the natural width
3 of the resonance line. Note that in all cases (72 = 0), the susceptibility
vanishes for A = 0, which can not be explained by simple line splitting.

Under the condition

Y2 K 73 (1.2)

all features of EIT can be obtained if the Rabi frequency satisfies Q2 > y5vs.
The absorption on resonance in that case is governed by Im[x(0)] ~ v372/Q2.
Thus for meta-stable states |2) significant suppression of absorption can be

obtained. Note that 5 does not have to be the population decay rate out of
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ay)

S la_)

2y

—— 1)
(a)

Figure 1.6: Explanations for EIT: (a) dressed state picture (b) quantum

interference of different excitation paths.

state |2), but any rate which leads to a dephasing of the coherence between
the ground states |1) and |2) must be taken into account®.

Experimentally, EIT can be used to transfer a light beam through oth-
erwise opaque atomic vapors by application of a coupling laser field [54, 55],
thus the name electromagnetically induced transparency as proposed by Har-
ris et al. [56]. Apart from the spectroscopic properties, EIT has strong influ-
ence on the propagation properties of light pulses. Due to the steep linear
dispersion within the transparency window the group velocity of light pulses
can be reduced by orders of magnitude thus leading to ultraslow light and
even stopping of light pulses in coherently driven media [57, 58, 59].

The physical origin of EIT is explained by the effect of coherent pop-
ulation trapping (CPT) [60] which can be described in several ways. The
influence of a strong coupling field (). cannot be treated perturbatively in
the limit v9 — 0. Thus for small €, the subsystem of states |2), |3) including

Q). forms a new set of eigenstates
as) =
ay) = —
+ NG
dressed by the presence of the strong coupling €2.. The eigenenergies of these

dressed states form a doublet as depicted in Fig. 1.6(a). A probe field tuned

to the center between |a;) and |a_), which corresponds to A = 0, couples

(12) +13)) (1.3)

3For quantum dots see, e.g., [53].
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to a superposition of |ay) with equal weights. As a result the transition
probability for leaving the ground state |1) vanishes identically yielding a
vanishing susceptibility on resonance. This peculiar result is due to the
dressed state decay channels being correlated, i.e., ending up in the same final
state. The total transition probability amplitude hence is a superposition of
1) — |ay) — “decay” and |1) — |a_) — “decay” which turn out to interfere
destructively.

The aspect of quantum interference can also be discussed in the bare
state representation. The transition probability to excite the atom out of the
ground state |1) to the upper state |3) and successive decay from that state is
a superposition of the probability amplitude of the direct path |1) — [3) —
“decay” and all amplitudes of higher order paths which reach the final state

|3) only after a number of transitions to the state |2) and back to |3), e.g.,
1) = [3) = [2) = [3) — “decay” (1.4)

[cf. Fig. 1.6(b)]. In EIT these amplitudes of higher order paths interfere de-
structively with the direct excitation amplitude such that the total transition
amplitude vanishes (see also [57, 61]).

For arbitrary strengths of the probe field Rabi frequency (2, the complete
3-state system has to be diagonalized including 2. and €2,. One finds that
one of the new dressed states does not incorporate the strongly decaying
upper state |3) but is only comprised of the ground states |1) and |2). As
this state does not lead to fluorescence, it is called “dark” state. When fields
2. and €2, are applied, the system will ultimately be optically pumped into
this dark state, in which it does not interact with the electromagnetic fields
any more. The population is thus trapped in the dark state thus the name
“coherent population trapping”. Besides optical pumping, a major means
of reaching the dark state is the use of adiabatic evolution techniques like
STIRAP [62].

One essential aspect of EIT, besides the destructive interference of the
linear response susceptibility, is the simultaneous constructive interference
for the nonlinear response [56, 63]. In particular we assume to drive the
transition |1) —|2), which is electric-dipole forbidden, by either a 2-photon or

a magnetic transition [cf. Fig. 1.7(a)]. The nonlinear susceptibility x™ for the
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Figure 1.7: (a) Closed loop A-scheme with higher order nonlinear suscepti-
bilities. (b) Imy (solid) and Imy™ (dashed) in arbitrary units as a function
of the detuning A.

parametric generation of radiation from the |3) —|1) transition in the presence
of strong coupling ). then has a maximum on resonance [57, 64]. As discussed
above, the linear susceptibility for the aforementioned radiation from the
|I3) — |1) transition simultaneously has a minimum [cf. Fig. 1.7(b)]. Thus
EIT allows for efficient nonlinear processes without absorbing the generated

radiation.

1.4 Outline of the thesis

One main aspect of this thesis is to connect the ideas of negative refraction
using quantum oscillators (atoms, molecules, excitons, ...) with suppression
of absorption by means of EIT. In particular, I will show in part I that neg-
ative refraction in atomic media is feasible when a magnetoelectric coupling
between the electric and magnetic degrees of freedom is introduced. Such a
cross-coupling can be induced in atomic systems by strongly coupling elec-
tric and magnetic transitions. In chapter 3 it is explicitly analyzed how EIT
suppresses the absorption efficiently, while enhancing the nonlinear response,
which in this case is given by the cross-coupling. As a result, negative refrac-
tion in atomic media takes place at densities which are orders of magnitude

smaller than in corresponding proposals that do not employ such induced
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cross-couplings. Simultaneously, the absorption coefficient drops due to EIT
to values that are orders of magnitude smaller than in current metamaterials
[Kastel2007b, Késtel2008]. In chapter 4, I discuss important questions re-
garding the applicability of those ideas. In particular, I show that a medium
that displays such a coupling can be impedance matched to the surround-
ings, which is a crucial issue for any optical component. I also show that the
value of the refractive index can be fine-tuned by external fields which may
be important for switchable devices. I conclude this part with an explicit

analysis of the tensorial properties of such media.

A crucial input used in part I are Clausius-Mossotti local field correction
factors. As the simultaneous application for electric and magnetic degrees
of freedom leads to a counterintuitive behavior in the limit of high densities
part II is devoted to a microscopic analysis of the local field factors. From
a phenomenological derivation based on macroscopic considerations I find in
chapter 6 that the simultaneous application of the local field corrections to
electric and magnetic oscillators, which employ only purely radiative broad-
ening, results in a vanishing absorption for high densities, while in the same
limit the index of refraction approaches the value n = —2. In the following
section I discuss formal considerations of a microscopic model of the mate-
rial response, which includes Clausius-Mossotti factors, at the example of
dielectric media. By generalizing to pure magnetic and magneto-dielectric
materials in chapters 8 and 9, respectively, I confirm the findings of the
phenomenological discussion in the framework of this microscopic treatment
[Késtel2007c].

Part III is devoted to a quantum optical application of negative refrac-
tion. In particular the Purcell effect which an atom experiences in front of
a mirror is discussed: The spontaneous population decay rate for dipoles
oriented along the surface of the mirror is completely suppressed as the dis-
tance of the atom to the mirror vanishes. Likewise, atomic dipoles oriented
perpendicularly display an enhanced linewidth. As the distance of the atom
to the mirror for this effect must be on the order of the transition wavelength
an experimental study represents a hard task. After a review of the quantiza-
tion procedure of the electromagnetic field including macroscopic dispersive

and inhomogeneous bodies in chapter 10 [Kéastel2003] I show that this prob-
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lem can be alleviated by covering the mirror by a layer of a medium with a
negative index of refraction. As a result the effect takes place at potentially
macroscopic distances to any surface [Késtel2005a, Késtel2005b]. In chapter
12, T analyze limitations of this effect due to imperfect, i.e., absorbing media,
finite apertures and the unavoidable dispersion associated with any negative

index material.






Part 1

Electromagnetically induced
magneto-electric cross coupling

and negative refraction

17






CHAPTER 2

Negative refraction by magneto-electric cross

couplings

Linear media are characterized by a linear functional relations between the
polarization P(r,w) and the electric field amplitude E(r,w) and similar rela-

tions for the magnetization M(r,w) and the magnetic field amplitude H(r, w)
P(r,w) = Xe(w)E(r,w), M(r,w) = Xm(w)H(r,w). (2.1)

Here x.(w) and y,,(w) are the electric and magnetic susceptibility tensors,
respectively. It turns out that (2.1) is not capable to describe all effects
of linear optical systems such as, e.g., optical activity, which describes the
rotation of linear polarization in optically active, chiral media independent

of the propagation direction of light. In general the constitutive relations

P =v.E + Sen

_ A (2.2)
M-SR g H

4

have to be considered. Here E rpy and E nE denote tensorial coupling coeffi-
cients between the electric and magnetic degrees of freedom. These media
with magneto-electric cross coupling will become of particular interest in the
following. Note that here and in the following the coefficients y.(w), Xm(w),
£pp, and Exp are unitless as we employ Gaussian units throughout this the-

sis.
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2.1 Magneto-dielectric media without cross
coupling

Before introducing concepts related to electromagnetically induced cross cou-
pling we study the possibilities of negative refraction in media with consti-
tutive relations given in (2.1). As negative refraction demands magnetic
degrees of freedom we consider a medium composed of two species A, B. Let
system A be composed of electric dipole oscillators with a number density o4
and a dipole moment d4. Likewise species B may consist of magnetic dipole
oscillators with corresponding number density og and a magnetic dipole mo-
ment pp. In order to have a sufficiently large medium response we operate
near resonance. As the electric and magnetic resonances must overlap spec-
trally in order to obtain a negative refractive index we choose the respective
resonance frequencies to be identical wy = wp = wy. We assume a single-
resonance response for the linear polarizabilities a4 (w) and ap(w) of system
A and B, respectively. The permittivity e = 1 4+ 4mps4(w) and the perme-
ability p = 1+ 4mppap(w) then read

4 0ady

=14 — 2.3

c + 2R A —iya (2:3)
and A )
T O0BHB

=14 =" 2.4

F=2T 50 A Zivg (24)

v4 and g denote the corresponding linewidths and A = wy — w is the detun-
ing of the probe field frequency w from the (common) resonance frequency
wo-

For given oscillators the only experimentally free parameters in (2.3) and
(2.4) are the detuning A and the densities o4 and gp. In order to get a
negative refractive index Re[n| < 0 we need to have Re[e] < 0 and Re[u] < 0
simultaneously. Therefore we have to tune close to resonance A = 0 which
will inevitably cause significant absorption of the probe beam. Furthermore
we need comparably high densities 04, op to compensate the vacuum con-
tribution in the permittivity and the permeability.

From the Wigner-Weisskopf theory [65] we find that for purely radiatively

broadened electric oscillators the natural linewidth v, in Gaussian units is



CHAPTER 2. NEGATIVE REFRACTION BY CROSS COUPLINGS 21

given by
- dwdd?
3hcd
i.e., quadratic in the electric transition moment d4. The same result can

(2.5)

be obtained from the vacuum limit of a general quantization scheme! which
incorporates arbitrary dispersive electric and magnetic media represented by
the classical Green function G(r,r’,w) [66, Kéastel2003], from which we find
the general expression

Srw2d?
YA = #Im[g(rmrmwo)]. (26)
An application of this theory to magnetic oscillators yields the corresponding
expression?
ST — —
vp = BT  Tm[G(ra, 14, w0)] X V (2.7)

which simplifies for the vacuum case G = G to v5 = dwiu%/(3hc*). Thus
the Wigner-Weisskopf result for electric dipoles in free space applies iden-
tically to magnetic ones with the electric dipole moment replaced by the
corresponding magnetic one.

In particular the radiative linewidth for each species is proportional to the
square of the corresponding transition moment, e.g., y4 ~ d4. Provided that
the transitions under consideration are radiatively broadened it follows that,
sufficiently close to resonance A < v4,vp, electric and magnetic responses
have approximately the same strength, entirely determined by the transition
frequency wy and the respective density p;. In other words, as soon as the
electric polarizability is strong enough to compensate the vacuum response
and therefore result in a negative permittivity Re[e] < 0, the permeability
reaches negative values as well Re[u] < 0.

As an example we assume electric and magnetic atomic transitions in
the optical spectral range. We assume a typical value yg = 1kHz for the
magnetic transition [67] and correspondingly v4 = 137%yp (for the factor
137% see the discussion below). The density needed to obtain Re[n| < 0

LCf. part III.
’In cartesian coordinates the expression (? x Im[G(ra,ra,wp)] X %)m is given by

limy, oy, limy, .y, gijkﬁ;lafrflm[gkl (r1,r2, w)]Emn.
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Figure 2.1: Real (solid) and imaginary (dashed) parts of the refractive index
n = /epu of the 2-species model [eqns. (2.3), (2.4)]. Note that FoM < 1 holds.
The parameters are: v4 = 137°kHz, v5 = 1kHz, 7, = 4, 04 = 2 - 10'° /em?,
op = 2-10"/cm?. The dipole moments are related to the natural linewidth

by Wigner-Weisskopf theory for a wavelength A = 600nm.

then is about p4 = op = 10 /cm®. In vapors for such densities additional
collisional dephasing rates -, are in general larger than the radiative width of
the magnetic transition yg. Due to that additional broadening the strength
of the magnetizability ap(w) and hence the magnetic susceptibility is reduced
by a factor of up to o = 13772 (a: Fine structure constant) as compared to
the electric one. This ratio is due to a general estimate for typical electric

and magnetic dipole transition moments in atomic systems [67]
Up ~ O[dA. (28)

As a result the density of magnetic scatterers must be larger than o4 in order
to compensate for the reduced magnetizability ap(w). For an additional
broadening on the order of the electric radiative linewidth ~, ~ v4 this leads
to requiring op &~ 10" /cm? to obtain Re[u] < 0 instead of op ~ 10 /cm? in
the radiative broadening limit. The corresponding refractive index n = /zu
is shown in Fig. 2.1. As the negative refraction is achieved by a resonant
scheme we obtain substantial losses and thus the figure of merit at most
reaches values on the order of one: FoM < 1.

Note that high densities with simultaneously small homogeneous broaden-
ings can only be achieved in solid state systems like an ensemble of quantum

dots, electron-hole pairs (excitons), doped (laser) crystals or color centers
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each of which has its specific advantages, like large transition moments in
color centers, but also its drawbacks as the usually tremendous inhomoge-
neous broadenings in quantum dot ensembles due to the delicate manufactur-
ing process, which can decrease the effective density by many orders of mag-
nitude. The most common materials in the optical regime, which merge the
advantages of high density in solid state media with the coherence properties
of free space atoms, are doped crystals, in particular at cryogenic tempera-
tures, which allow one to eliminate detrimental effects of crystal properties
(phonons) onto the dephasing rates. Compared to laser crystals with doping
rates of 1 — 10 mass% [68] in experimental reports about coherence effects
in doped crystals [51, 61, 69] the doping rate usually is about 0.05 mass%
which corresponds to about 10 /cm? active particles. As the crystal field
contributes a significant inhomogeneous width, the effective density is further
reduced. Thus, apart from the absorption problem, a direct implementation
of negative refraction in doped crystals seems questionable as the required
densities in combination with small homogeneous broadenings can not be

provided.

2.2 Magneto-electric cross-coupling and neg-

ative refraction: Fundamental concepts

The figure of merit of negative refraction in atomic media can be enhanced
significantly while simultaneously relaxing the requirements concerning the
necessary density of active scatterers by consideration of more general me-
dia as we will show below. In the magneto-dielectric media of section 2.1
the electric and magnetic properties of the material were separated which is
reflected in the applied material equations (2.1). We now turn to more gen-

eral media with a magneto-electric cross-coupling displayed in the material

equations
P=vE+
- A (2.9)
M =SHEg mH

47
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which can equivalently be expressed as
D =¢E + égyH, B = ¢yE + oH. (2.10)

The permittivity is given by the electric susceptibility € = 1 + 47y, and
similarly the permeability is given by the magnetic susceptibility g = 1 +
A7 Xm. Note that all coupling coefficients are in general complex-valued 3 x 3-
matrices. In such materials the electric Polarization P is not only induced
by the electric field E as in dielectric or magneto-dielectric materials but
also gets a contribution proportional to the magnetic field H. Likewise the
magnetization M is coupled to the electric field E. Note that the form of
the material equations (2.9) is not unique but presents just one possibility to
express the aforementioned cross-coupling of electric and magnetic material
properties.

The first usage of material equations which employ cross-coupling coeffi-

cients are known from Born [70, 71| and later by Fedorov [72] who used

D =¢[E + 5V x E],

(2.11)
B =u[H + 5V x H]

in order to describe optical active media in which the plane of the linear
polarization is rotated in the presence of chiral molecules. The strength of
the optical activity is given by the factor 3 which is called chirality parameter.
The cross-coupling inherent to equations (2.11) is seen by recasting them with

the help of Maxwell’s equations for time-harmonic waves into the form

D =:E + (H,

(2.12)
B =iH — (E

used by Tellegen [73] to describe an electrical device called gyrator. Note that
compared to (2.11) the interpretation of the permittivity has changed. While
for time-harmonic fields € in (2.11) is the permittivity taken at a vanishing
magnetic induction B = 0, the corresponding ¢ is the permittivity taken at
H = 0 with € = /(1 — w?epuB?/c*). Similar considerations apply for the
permeabilities p and fi, respectively. Equations (2.9), (2.10) which will be
employed in the following represent a generalization of these early approaches

to tensor valued coefficients.
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Yet another form of material equations is used in the work of Cheng and
Kong [74] who used

cD=P-E+cL-B,

(2.13)
H=M-E+cQ-B

which is best suitable for a covariant description of cross-coupled media.
Here the coupling coefficients P, Q, £, and M are again complex-valued
3 x 3-matrices. Media of the type (2.13) are called bianisotropic media [75] a
term which, in contrast to isotropic, anisotropic or biisotropic, highlights the
tensor structure of the parameters. As a realization of cross-coupling they
did not consider chirality®, but the magneto-electric effect found in moving
dielectrics [76, 77] that get polarized in a magnetic field and magnetized in an
electric field, as well as in certain crystals, e.g., antiferromagnets [78]. Note
that (2.13) is equivalent to (2.10) withe = (P — L- Q7' - M)/c, i = Q7 1/,
Epp =L Q!/c, and €yp = —Q71 -M/c. We thus conclude that, for optical
activity, the magneto-electric effect is merely a special case of (2.10) under
the assumption of {py = &4, as used, e.g., in [79] or in covariant form in
[80].

As mentioned above in the following we will use the form (2.10) of the
material equations for cross-coupled media to show how negative refraction
in such materials emerges. By equating (2.10) with the Maxwell equations

in time Fourier space
“D= _kxH, “B=kxE (2.14)
c c

we find after elimination of the magnetic field strength H the Helmholtz
equation
£+ (Epn + gkx)w(gk x —gHE)] E=0 (2.15)
which governs the propagation k(w) in a medium given by the response
tensors &, fi, {pp, and Egp.
For the sake of simplicity we want to restrict the general form (2.15) to
a scalar version in order to discuss the prospects of negative refraction. We
hence first arbitrarily choose the wave to propagate into z-direction. Addi-

tionally we assume the permittivity £ and the permeability i1 to be isotropic

3which of course is contained in (2.13) as special case
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€ =¢el, n = pl as we are interested in the aspects of wave refraction and
propagation due to the cross-coupling coefficients. This still leaves the choice
of the polarization vector of the transverse beams. As a result, only the up-
per left 2 x 2-submatrizes of the tensors E gy and E gr are relevant which can
be expanded in the four matrices e; ® €%, ey ® eX with the circular polar-
ization basis vectors ey = (e, & ie,)/v/2. Here ® denotes a dyadic product
(a®Db);; = a;b; and * means a complex conjugation which for circular polar-
ization basis vectors has to be applied to ensure the orthogonality relations
e} -er =1, e} -ex = 0. At this point we restrict ourselves to media that
allow for conservation of the photonic angular momentum at their interfaces.
In particular we assume the response matrices £y and Egp to be diagonal

in the basis {e,,e_,e.}. This results, e.g., for {gp, in

Con =&fper ®el +éppe_ e’ + & e, e,

o +&em)/2 iy —&pn)/2 0 (2.16)
= | & —&en)/2  (EEu+E&pn)/2 O
0 0 $en

By noting that e, x e = Fiey, the Helmholtz equation (2.15) simplifies for

the right* circular polarization vector e_ to the scalar equation
c c
o= (Egn +ihD ) (€ap—ishi) =0 2.17
H <§EH+ZW 2 ) \Cue b (2.17)

which can be solved for k7. As k7 is related to the corresponding refractive

index via n~ = k, ¢/w we find

_ _ 2 X
n" = i\/eu - M + % (€2 — Eue) - (2.18)

The sign of the root has to be chosen such that the resultant imaginary part
stays positive for the case of a passive medium. Similarly the refractive index

of the right circular polarization is found to read

+ + 32
nt =i\/w—wg(%—%)- (2.19)

4The basis vector e_ describes a field amplitude which rotates clockwise when viewed
against the direction of propagation. Alternatively such a polarization is said to have

negative helicity, i.e., transports a spin —# per photon.
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From a similar consideration, Pendry [81] noted that for a system un-
der the above mentioned assumptions the refractive index (2.18) can become
negative without requiring a negative permeability Re[u] < 0 thus circum-
venting the most prominent obstacle on the road to Re[n] < 0 in atomic
media. This important finding can be seen better under the assumption that
g = —&pp In which case the cross-coupling term under the square root
vanishes. If we additionally restrict the phase of the complex number &, to
Epp = 1€, € > 0, equation (2.18) simplifies to

n= = \en—£ (2.20)

Thus if we find a system in which the value of { gets comparable to \/zu
we expect a negative refractive index. Note that here not only the absolute
value of £ matters but that we have to fix the phase of £, and £, in order
to find a negative index of refraction Re[n~] < 0.

In chapter 3 we will show that in atomic media these requirements can be
met by artificially inducing a coupling of a magnetic and an electric dipole
transition. Considering the amplitude criterion, this is because the cross-
coupling coefficients are in general proportional to the combination dapa
of electric and magnetic transition moments, respectively. From the discus-
sion in section 2.1 it therefore follows (for media with additional broadening
mechanisms) that the chiralities scale as 5, {yp ~ axe. This is about a
factor of 137 better than the scaling of the magnetic susceptibility, for which
we found y,, ~ a?x.. We will furthermore show that the introduction of a
strong external coupling field leads to quantum interference effects similar to

electromagnetically induced transparency (EIT) and thus to low absorption
with FoM > 1.

2.3 Tensorial effects

A comprehensive treatment of the propagation properties of a plane wave
in a general linear medium described by (2.10) has to include the tensor
properties of &, fi, égg, and Exp, respectively. To find the wave vector k of

a non-trivial field solution one has to solve (2.15) or alternatively exploit the
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condition

det [§+ (Epm + gkx)ﬂ_l(gk x —&up)| = 0. (2.21)
A similar determinantal condition is given by O’Dell [80] who noted that a
solution where the tensors &, fi, €pm, and £y do not fulfill any restrictions
is very tedious. For specialized situations such as biisotropic [81, 82] as well
as some particular tensor-valued media [83, 84, 85, 86] explicit solutions are
known, however.

In order to specialize the general description, the constraints

g=¢, = pl, Enp =&y (2.22)
are known [75, 85] to be sufficient but not necessary for lossless media. Here T
denotes complex conjugation and matrix transposition. For general dissipa-
tive media, though, no necessary constraints can be found but the one given
by Lakhtakia and Weiglhofer [87]. Without relying on physical concepts like
nondissipativity or reciprocity they exploit the mathematical structure of
Maxwell’s equations. Using the covariant form of electrodynamics they find

the scalar condition
tr [gEHﬂ_l + ﬂ_lgHE] =0 (223)

where “tr” denotes the trace of a matrix.

Hence the general response tensors &, ji, {pp, and g are only con-
strained by the single scalar condition (2.23). We will therefore not try to
give a general solution but discuss the prospect of negative refraction in cross-
coupled materials for two fundamental examples. In particular, we will focus
on the possibility of finding an isotropic negative index of refraction, which

does not depend on the polarization state of the beam.

2.3.1 Biisotropic media

A special case of (2.16) is represented by biisotropic media which are de-
scribed by scalar coefficients € = 1, g = ul, EEH =¢pyl, and EHE =¢pel,
respectively, as already discussed by Pendry [81]. In view of the constraint
(2.23) we note that (g = —&gp =: € must hold. For a beam propagating in
the (now arbitrary) z-direction k ~ e, the Helmholtz equation (2.15) decou-

ples into two scalar relations if the polarization vectors are taken to be e,
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and e_, respectively. The corresponding refractive indices ny = k¥c/w are

then found to be given by

nt = +/eu — i, n~ = £yep+i&. (2.24)

Note the sign change of the £ term. Due to the isotropy of the response
tensors the direction of propagation is arbitrary and thus the refractive index
is angle independent. But from the aforementioned sign change we conclude
that in general

nt#n, (2.25)

thus the index of refraction depends on the polarization state of the probe
beam, i.e., the medium displays isotropic chirality. This isotropy also holds
for the energy propagation properties described by the Poynting vector S =
Re [E x H*] /2, for which we find S ~ k.

Considering an application of such a material in a flat lens we note that
point sources of light do not radiate in a single circular polarization, but
beam components for different angles will in general be composed of both
e, and e_ polarizations. As a result, biisotropic materials are useless for a
perfect lens as the different polarization components will experience different
refraction angles. Furthermore, in view of chapter 3 it is unclear as to how

such a material should be implemented in atomic media.

2.3.2 Polarization independent media

As a second example we consider a medium which displays a polarization
independent index of refraction for at least one direction of propagation. In
particular we assume isotropic permittivity € = £1 and permeability g = p1
but tensors é EH, E e which do not couple left and right circular polarizations
for at least one propagation direction as discussed in section 2.2. In view of
(2.18) and (2.19) we define 5 = —&fy and & = —&Jp s, respectively. This

results in tensors of the form

0 W€pr 0
$pn = —Epney®el +lppe_®e’ = | —igy 0 0 (2.26)
0 0 0
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where we skipped the * indices and similar for £;5. Note that we assumed
&Ly = &4 p = 0 for the sake of simplicity. In contrast to the biisotropic case

we find identical refraction

2 .
ny =n_ = i\/&‘u — M + % (e — &ur) (2.27)

for the two polarizations for the z-direction.
For directions other than that we solve (2.21) for |k| = k of the angle
dependent wave vector k = k (sin 6 cos ¢, sin @ sin ¢, cos ). We find an angle

dependent index of refraction n = kec/w

(fEH — fIiE)Q cos2 n %(fEH _ fHE) cos 6 (2.28)

n = i\/e,u —&euéur —

which does not depend on the polarization state. Thus the medium shows
a non-chiral but anisotropic response. For § = 0, i.e., propagation in z-
direction, we recover (2.27).

Media, which obey (2.26), allow, in contrast to biisotropic materials, for
refractive indices that are polarization independent but display a strong an-
gular dependence. As these angular dependent terms affect only the cross-
couplings, a change of direction from z to —z reverses their effect. Thus fol-
lowing the discussion in section 2.2 on negative refraction in materials with
cross-couplings we note that reversing the direction of propagation might
make a negative index positive®.

From equation (2.21) we observe that the cross coupling coefficients are
always paired with the operator of the vector product with the k-vector.

This operator reads in {z,y, z}-basis

0 —k. k,
kx=| k. 0 —k |. (2.29)
—ky ke 0O

For propagation in z-direction, equation (2.29) reduces to a similar structure
than (2.26). But in contrast to (2.26) the matrix (2.29) changes for different
angles which finally yields the angular dependence of (2.28).

5Cf. also section 4.3.
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Figure 2.2: (a) The angle o (2.32) between the Poynting vector S and the
wave vector k as a function of the polar angles #, ¢ which determine the
direction of k. The z-axis is directed upwards. (b) shows the same inverted

along the z-axis.

No weakening of the angular dependence is obtained when additional

couplings are introduced to {py and &g, e.g.,

0 i€er —€En
Cpn=— | —ifpn 0 €pH ; (2.30)
v3 €pr  —€En 0

in order to mimic (2.29). The tensor (2.30) just corresponds to a rotation of
the preferred axis to the volume diagonal.
The angular dependence of the index of refraction (2.28) vanishes in the

case g = Epp = § resulting in
n==+\eu— & (2.31)

Thus we find an isotropic index of refraction which does not depend on the
polarization state. We emphasize that (2.31) can attain negative values. For
example using the values® ¢ = 0.1 + 0.0014, o = 1.5 + 0.0014, £ = 0.01 + i
for the permittivity, the permeability and the cross-coupling &, respectively,
leads to n = —1.07 + 0.008:. The propagation properties of light beams are
nevertheless highly non-trivial as the Poynting vector’” S = Re [E x H*] /2

6Similar numbers are found in chapter 3.
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Figure 2.3: Misalignment between the Poynting vector and the wave vector

in the x-z-plane.

and the k-vector in general point in different directions. Figure 2.2 shows

the angle
Qv = arccos (R : S/|S|) (2.32)

between the Poynting vector S and the normalized wave vector k as a function
of the polar angles 6, ¢ which describe the direction of k. Again the values
e =0.140.0017, p = 1.540.001%, £ = 0.01 + 7 have been used to determine
the Poynting vector S. We note that only for § = {0, 7}, i.e., for forward and
backward z-directions, S and k are aligned but point in opposite directions.
Figure 2.3 shows some more explicit examples for the x-z-plane, in which the
Poynting vector and the wave vector always fall into the plane. In general
the Poynting vector will also attain components out of the plane. Although
the imaging properties of a medium described by (2.26) are not studied in
detail it seems questionable that it will allow for applications like a perfect
lens. In order to give a final answer to this question the imaging properties
of a flat lens need to be analyzed which requires to determine the tensorial
Green function for such a medium which is a very involved and difficult task.

In order to find negative refraction in cross-coupled media independent of
polarization states and directions of propagation with no beam walk-off, one
would need to implement couplings depending on the probe beam direction

which contradicts the assumptions of linear response theory.

Twhich is found using (2.10), (2.14) and (2.31)
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An explicit example of a medium which is closely related to the case

discussed here is given in section 4.3.






CHAPTER 3

Implementation: 5-level scheme

3.1 Concepts of induced cross-coupling in

atomic media: 3-level scheme

As mentioned in chapter 2 an implementation of the ideas employing mag-
neto-electric cross-coupling and negative refraction in atomic media involves
electric and magnetic dipole transitions linked by an external control field. In
the following we will clarify these concepts by application to an appropriate
level scheme.

After restriction to a particular propagation direction and a definite po-
larization state we only have to deal with a scalar theory, for which we rewrite
(2.9) effectively as

D :€E+§EHH7

(3.1)

Here E, H, B, and D are the (scalar) field amplitudes corresponding to the
polarization mode e_. Note that (3.1) in general holds only for the particular
tensor structures used in (2.16). The scalar coefficients ¢ and p are the per-
mittivity and permeability, and égg and £ g the scalar cross-coupling tensor
elements of the e_-mode, respectively. Hence from (3.1) we find (2.18) as

the index of refraction. In (3.1) and in the following we will drop the index

35
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L

Figure 3.1: 3-level system allowing for the implementation of electro-
magnetically-induced cross-coupling. F, B are the electric and magnetic
components of the probe field, 7o and ~y3 are decay rates out of levels |2) and

|3), respectively. €. is an applied field that couples levels |2) and |3).

~ for notational simplicity. Note further that for a scalar theory the distinc-
tion between chiral and non-chiral magneto-electric effects is irrelevant and
we henceforth use the terms “cross-couplings”, “chiralities”, and “chirality
parameters” interchangably to denote gy and éxg.

Let us consider the 3-level scheme shown in Fig. 3.1. It consists of a
common ground state |1) and two upper states |2) and |3). The transition
|1) — |3) is supposed to be an electric dipole transition (E1) while |1) —|2)
is a magnetic dipole transition (M1). For reasons of parity the transition
between levels |2) and |3) is magnetic dipole forbidden and, neglecting higher
multipole terms, can thus only support an electric dipole transition. £ and B
denote the electric and magnetic components of the probe electromagnetic
wave which also show up in (3.1). We assume that levels |2) and |3) are
energetically degenerate so that the probe field can couple efficiently to both
the electric and magnetic dipole transition. So far this scheme is in linear
response identical to the one discussed in section 2.1 with p4 = g3, i.e., there

is no cross-coupling.
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To induce a cross-coupling we add a strong resonant coherent field with a
Rabi frequency €. which induces a transition between states |2) and |3).
Then the electric dipole transition |1) — |3) and the magnetic transition
|1) —|2) are coupled in a way described by (3.1): When an electric field
amplitude F is applied, it induces electric dipole transitions and thus a po-
larization P but due to the coupling €2. the magnetic dipole transition will
be driven as well which results in a magnetization M proportional to F, i.e.,
a nonzero chirality {gp. Likewise, the coupling leads to a nonzero {gy by
the application of a magnetic field B. In summary the coupling of an E1 and
a M1 transition as in Fig. 3.1 implements the material equations (3.1) and
thus potentially leads to Re[n| < 0 without requiring Re[u] < 0.

The scheme of Fig. 3.1 has been discussed by Oktel and Miistecaplioglu
[88]. However they did not take into account cross-couplings, but relied on
the conditions Re[e], Re[u] < 0 to induce negative refraction which led to a
rather stringent density requirement comparable to that found in section 2.1.

As noted above, the radiative population decay rates v; are proportional
to the square of the respective transition moment. Thus from pus ~ ada
we find that v, < 73, i.e., the magnetic decay rate is much smaller than
the one of the electric transition (see also [67]). In other words, state |2),
which can be considered meta-stable, is coupled strongly by 2. to the E1
probe field transition |1) — |3). On two-photon resonance this fulfills the
condition for electromagnetically induced transparency [57]. Therefore we
expect the absorption of the direct E-field response, i.e., the permittivity e,
which represents the largest response and thus the main source of absorption,
to be suppressed by a factor of about 372/

Figure 3.1 represents a closed loop scheme similar to the one from Fig. 1.7.
From studies of resonant nonlinear optics [56, 57, 63, 64] it is known that
the parametric coupling, which is here given by the chirality, experiences
constructive interference as long as the direct coupling interferes destruc-
tively, i.e., under conditions of EIT. Hence we expect quantum interference
effects to suppress the absorption Im[e] while simultaneously enhancing the
cross-coupling coefficients. This should allow low-loss negative refraction for
densities significantly lower than in non-chiral proposals.

The simplistic scheme of Fig. 3.1 allows us to discuss qualitatively the
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fundamental advantages as compared to non-chiral proposals, and gives a
physical understanding of the underlying processes in a comparatively easy
way. However, it is not adequate for an experimental implementation, for

the following reasons:

(i) As we noted in section 2.2 the complex phase of the chirality coefficients
Een, Egp must be adjustable in order to get Re[n] < 0. In the scheme
of Fig. 3.1, ). is a dc-field which has no phase itself. As a consequence
the phases of gy, Egp are solely given by the intrinsic phase of the

transition moments and therefore can not be controlled.

(ii)) Onme of the main advantages of the strong coupling (2. is high-contrast
EIT. As it depends on the coherence between states |2) and |1) given
by the density matrix element py; the corresponding dephasing rate
Y91 must stay small. Similar to ordinary EIT-A-schemes the transi-
tion between the two EIT “ground”-states |1) and |2) is electric dipole
forbidden. In vast contrast to ordinary EIT though, the energy split-
ting of |1) and |2) here is on the order of the probe field frequency,
i.e., up to optical frequencies rather than in the microwave regime.
As a consequence the coherence po; is highly susceptible to additional
homogeneous or inhomogeneous broadenings which ultimately destroy

electromagnetically induced transparency.

(iii) Although the level scheme of Fig. 3.1 is not forbidden on fundamental
grounds it is a strong restriction to require that electric and magnetic
transitions be energetically degenerate while having a common ground

state.

Though the items (i)-(iii) indeed display severe limitations, a simple mod-
ification of the 3-level scheme of Fig. 3.1 suffices to alleviate these con-
straints. We replace the ground state |1) of the 3-level scheme by the
dark state |D) = (Q]1) — Q]4))//Q2 + Q3 of the 3-level A-type subsys-
tem {|1),]4),]5)} of the 5-level-scheme shown in Fig. 3.2. The transitions
|5) — |1) and |5) — |4) are supposed to be E1 transitions such that the mod-

ified 5-level scheme still fulfills parity selection rules. A related scheme has
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Figure 3.2: Modification of the level scheme of Fig. 3.1. The ground state
|1) is substituted by the dark state |D) = (Qa]1) — Q1]4))//Q2 + Q2 of the
3-level A-type subsystem formed by levels {|1),[4), |5)}, respectively.

been discussed by Thommen and Mandel [89], however without the possibil-
ity of EIT and ignoring the chiral nature of the constituent relations'. Note
that level |4) can decay to the ground state only via a 2-photon transition.
Hence we assume [4) to be meta-stable 74 < 73. By application of two
strong laser fields with Rabi frequencies €2; and €25, respectively, the subsys-
tem evolves to the dark state | D) by means of optical pumping. Once in the
dark state the system will stay there as long as the probe field amplitudes F
and B are treated in linear response. One recognizes that problems (i)-(iii)

are addressed:

(i) Asthe upper states |2) and |3) are not degenerate any more the coupling
Rabi frequency ). is now given by an ac-field which thus has a phase
relative to the beat-note of {2; and €25. By adjustment of it the phase of
the cross-coupling coefficients £y and £y can be controlled and hence

the conditions needed to induce negative refraction can be fulfilled.

(ii) The permittivity of the 5-level system at the probe field frequency is
now given by the direct response of the |3) — |4) transition. Thus the
critical parameter for EIT is the dephasing rate 7,4 of the new EIT

IFor a discussion of the Thommen-Mandel scheme and a correction of the results of
[89] see [Késtel2007a].
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“ground” state coherence poy. As levels |2) and |4) can be constrained
to be close to degenerate, po, is mostly immune against additional

broadening mechanisms.

(iii) Although the electric and magnetic transitions are still degenerate, as in
the 3-level system of Fig. 3.1, they do not share a common state. Thus
the 5-level scheme leaves much more freedom regarding a realization in

atomic systems.

After having discussed the qualitative features of the 3-level scheme we rea-
soned why we need to consider the slightly more complicated 5-level system
for a serious implementation. In the following we will give an analytical
solution to the modified scheme and show under which conditions negative
refraction with low absorption can be achieved by means of electromagneti-

cally induced chirality.

3.2 Analytical solution: Single particle treat-

ment

For the following quantitative discussion, the 5-level scheme is shown in
greater detail in Fig. 3.3. Due to selection rules or non-resonance conditions,
only the sketched transitions are relevant. To find an analytical solution of
the response of a single system described by the 5-level scheme, we start with

the Hamilton operator including electric and magnetic dipole interactions
H=Hy—d -E(t)—p-B(t) (3.2)

with the free atomic part

2 5
_ b _ A
Hy, = o T Vi(r)= nél hw! |n) (n (3.3)
which is assumed to include the relevant states |i), 7 € {1,...,5} only. Here

the w are the atomic eigenfrequencies of states |n), respectively. The electric

and magnetic field components can be decomposed into E(t) = E cos(wpt)
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Figure 3.3: 5-level scheme for the implementation of negative refraction via
electromagnetically induced chirality. The magnetic dipole transition |2) —
|1) and the electric dipole transition |3) — |4) are coupled by €. to induce
chirality. The “ground”-state of the system is formed by the dark state

|D) = (]1) — Q|4))/1/QF + Q3 of the subsystem {|1), |4),|5)}.

and B(t) = B cos(w,t), respectively, where w, denotes the probe field fre-
quency. The electric and magnetic dipole moment operators are given by
d =er and p = pup(J+8S), respectively [67]. Following the discussion above,
we restrict ourselves to a particular mode of the electromagnetic field and
will thus use only the scalar amplitudes £ and B rather than the full vec-
tor fields. Similarly, we will only take into account the corresponding scalar
projections of the electric and magnetic dipole moments.

By multiplying from the left and from the right with the identity operator
for the 5-level system 1 = 327_ |n) (n| we can rewrite the Hamiltonian in

the more convenient form [90]

5
1 - 1 A
H = 3 hut ) (o] + { =GB 3) 4] = G B 2) 1

n=1

h ; h , B .
—5 e B) (1] = S Qpe 2 |5) (4] — Qe |3) (2] + H.C.} . (34)



42 3.2. SINGLE PARTICLE TREATMENT

Here d3, = (3ler - egl4) and po = (2|p - ég|l) are the electric and mag-
netic dipole moments for the probe field transitions |3) — |[4) and |2) — |1),
respectively. The strong fields are denoted by their Rabi frequencies ; =
(5|d|1) - Eq/h, Qo = (5|d|4) - Ey/h, and Q. = (3|d|2) - E./h with correspond-
ing field frequencies wq, wy, and w,., respectively. Note that the Hamiltonian
(3.4) is given under rotating wave approximation.

In general the dipole transition moments are complex numbers, hence
the Rabi frequencies are complex as well, but by adjusting the phases of the
atomic states |n) the phases of those complex numbers can be eliminated.
In the closed-loop 5-level system we can choose all but one of the transition
moments to be real. In particular we choose €2, and €2y as well as dz4 and
191 real but let €. remain complex.

So far we have only considered unitary time evolution. In order to include
losses we use the Liouville equation of the density matrix p

l

p=—%H,p] = L(p) (3.5)

where the non-unitary part is given in Lindblad form [90] by

L(p) = Z % (0" p+ potlo® — 207 po’?) . (3.6)
ije{21,32,34,54,51,41}

Here we restricted the number of decay channels as indicated in the summa-
tion where «;_,; denotes the corresponding decay rate from some upper state
|i) to state |j). The projectors are given by ¢/ = |i) (j| and o = |j) (i,
respectively. Although this treatment is exact for decay processes within the
level scheme of Fig. 3.3 we will substitute the density matrix equation for the
ground state pj; by the explicit conservation of probability Zizl Pnn = L.
Because in linear response coherence decay rather than population decay pro-
cesses are of interest, this procedure guarantees the existence of a non-trivial
stationary state solution under all circumstances.

Before we solve (3.5), we note that in linear response the excitation of the
quantum system is assumed to stay entirely in the ground level. Therefore
one usually discards any diagonal density matrix elements p,,, n # 1 which
give the probability to find the system in the excited state |n),n # 1. Then

the set of relevant density matrix components simplifies significantly. In
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general, this procedure only applies for levels which are connected to the
ground state by weak fields. However, for the 5-level scheme the ground state
|1) is coupled by strong fields ©; and Qs to the excited states |[4) and |5),
therefore the subsystem {|1), |4),|5)} has to be solved exactly. The solution
of the full 5-level scheme will be treated in the above mentioned perturbative
approach afterwards.

The appropriate differential equations for the density matrix elements of
the subsystem {|1), |4),]5)} are found by projecting the Liouville equation
(3.5) for the case £ = B = 0 onto diagonal components p,, = (n|p|n)

. L. w
Pas = —7aPas + Vs—apP55 + 2 (2926 * psa + C-C-) )

. L. —iw : —iw
P35 = —spss + 5 (iQue™™ " pi5 + iQe™ " ps5 + c.c.)

as well as off-diagonal components (n|p|k),n > k

. . 4 w —iw
par = —(iwgr +Ya1)par + D) (2™ p51 — e™™pys)

. . Z — 1w ,L —iw
ps1 = —(iws1 + ¥51)p51 + 5926 ?pa — 5916 " (pss — pu1)

—iw1t —iwat (

Ps4 = —(’M54 + 754)P54 + 5916 P14 — 5926 Ps5 — P44) .

Note that we left out the equation for py; as it will be replaced by the
conservation of probability constraint later. Here w;; = wi! — w]A denote the
atomic level spacings and the 7; are the total decay rates out of level [i).
In particular, we have y2 = 721, 73 = V32 + V13-4, 74 = Va1, and 75 =
V51 + Y5—4. Furthermore v;; = (7; + ;)/2 denote the natural decoherence
rates?.

To get rid of the fast oscillatory terms we transform to a rotating frame
by setting pa = pare’@ 92t 5o = psre
diagonal density matrix elements. As we aim at steady state solutions we

wit and psy = psee™?t for the off-

subsequently ignore the time derivatives ﬁm = 0 of the slowly varying p;;.

We thus end up with a set of algebraic equations

..
0 = —Y4paa + Y5-4p55 + B (1Q0p54 + c.C.) |

2Additional dephasing will be discussed later.
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1, o~
0= —5p55 + B (11 p15 + QP45 + C.C.)

0= _(1(51 - 52) + 741)541 + % (92,551 — leN45) s (37)

) N T 7
0= —(i01 + v51) P51 + 592/)41 — 591 (pss — p11) ,

) N T 7
0= —(id2 + V54) P5a + 591/)14 — 592 (P55 — paa) -

Here the definitions 0; = ws; — wy and 0y = wsy — wy for the detunings of
the |5) —|1) and |5) — |4) transition apply, respectively. As mentioned above
the equation for p;; has been ignored. It is replaced by the conservation of
probability

p11 = 1 — pas — pss (3.8)

which ensures non-zero solutions for the density matrix elements.
Solving (3.7) and (3.8) under the condition of 2-photon resonance 6; —dy =
0 we find for the 3-level A-subsystem

Q2 ok
S0 [ +O(E)’ pg‘?:L+O(E),

Q2+ Qa2 Vs |€21[2 + 2] Vs
~(0) 24 (74) © _ ~0) _ ~(0) _ (74)
S Y A — 0 =9 —0r0(2).
Pa1 |Ql|2 + |QQ|2 s Pss Ps1 P54 Vs
(3.9)

Here O(74/75) indicates corrections linear in the small ratio v4/v;. We added
the superscript (©) because these solutions are, though correct to all orders
of Q; and €25, of zeroth order in the probe field amplitudes £ and B. Note
also that (3.9) for a meta-stable state |4), i.e. 74 < 75 indeed corresponds to
the pure dark state |D) = (Qu|1) — Q]4))//Q2 + Q3 via p*> = |D) (D)|
as discussed in section 3.1.

Compared to the strong fields €2; and €2, the probe field amplitudes E and
B are assumed to be weak. Hence the population distribution given by (3.9)
will not change notably and we are allowed to treat the effect of the probe
field perturbatively. In the density matrix equations of the 5-level system
we therefore set pyy = p33 = 0 and neglect the coupling Rabi frequencies
Q2 = Qy = 0 as they are already taken into account of in the solution (3.9).

We specialize to stationary solutions by transforming to a rotating frame
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i(wp+twe)t i(we—wp)t
’

~ . iwet _
s P32 = P32€"°t, pao = pyoe

and pay = paert and subsequently neglect time derivatives of the slowly

defined by 521 = pgleiwpt, p~31 = p31€
rotating matrix elements. The system of algebraic equations then reads

. ~ i B .-
0=—(iAp +7y21)p21 + 2 <%qu) + ch)zﬂ) ;

) 5 i (ds,E N B _
0= —(Z(AB + 50) + ’731)/)31 + = (Lpg) + Qepo1 — Ha P32) )

2 h h
. N 1 [(dsuE B
0= —(i0c + ¥32) P32 + B < 3;% P42 — M%p:ﬂ) , (3.10)

. . 1 (dsE B ~
0= —(i(6c — Ag) + V42)paz + B < 3;% P32 — #2711 /)4(101) — Qc/)43> )

. - i (d3FE .~
0= —(i(=Ag) + 7314)paz — B ( pﬁ) + Qc,o42) .
Note that these equations are valid, i.e., stationary solutions exist, only if
the condition

We = Wy — W (3.11)

holds. Otherwise some time dependent exponentials do not vanish. This
implies that A = Ap + 0. must hold to guarantee that the total frequency
of a closed loop sums up to zero. Experimentally the constraint (3.11) can
be realized by parametric difference frequency generation of the strong fields
Qy, Oy, and Q. [91].

Before we proceed we note that the induced polarization P is proportional
to the coherence ps4 of the electric dipole transition |3) —|4) multiplied by the
corresponding transition moment dss. Likewise the induced magnetization
M is proportional to the density matrix element po; and the magnetic dipole
moment o1 Hence the coefficients of p3y and po; linear in either £ or B
define the sought polarizabilities

P =pds3spss = 0a""E + 0a"" B,

i . . (3.12)
M =ppa1p21 = 0a”" E + pa” " B.

Here ¢ denotes the number density of atoms (not to be confused with the

density operator p). We thus solve for the density matrix elements psq = pis
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and po; linear in £ and B and finally obtain the polarizabilities

oFE — K2 d%z;ﬂii) (ya2 +i(Ap — dc)) (3.13)
2h (ya2 + (A — 6.)) (134 +iAp) + [Q2/47
. 2 (0) (A S5
oBB = & 31011 (131 +i(Ap +9.)) (3.14)
2h ('731 + i(AB + 5C))(721 + iAB) + |QC|2/4
as well as
O{BE — _i d34lu21p4(,8)92 (315)
4h (31 + (A +0c)) (va1 +iAp) + [Q[?/47
1 d 0
oFB — 3421 P41 5% (3.16)

Ah (a2 +i(Ap = 6.)) (y3a + 1A E) + [Qe[2/4
In order to discuss the results (3.13) — (3.16) we plug in some numbers. For
the magnetic dipole decay rate we set 79 = 1kHz, for the electric dipole decay
rates 3 = 75 = (137)*y, and 4, = 4, = 0 for the population decay rates
of the (meta-)stable states |1) and |4), respectively. From the discussion
in section 2.1 we use the Wigner-Weisskopf result to determine the electric

and magnetic dipole matrix elements d3; and p9; from the respective decay

rates daq(p21) = v/373(72)hc? /(4w?). To comply with the chosen decay rates
we use a typical optical frequency corresponding to A = 600nm. We also
specialize to d. = 0, which corresponds to Ag = Apg. In the following all
spectra are plotted as functions of A = —Ar = —Ap to ensure increasing
photon energies from left to right.

As noted above the Rabi frequencies of the A-type subsystem can be
chosen to be real. We let Q; = Qy = 10%v,. In contrast, the coupling Rabi
frequency Q. = [Q.]e’® is a complex number whose phase (relative to that
of Q1/€Qs) can be adjusted by the experimentalist. From (3.15) and (3.16)

EB and oP¥ is

it is apparent that the phase of the cross-coupling terms «
determined by the phase ¢ of the coupling Rabi frequency (2.

Figure 3.4 shows the resultant polarizabilities (3.13) — (3.16) for the non-
coupling case . = 0. Not surprisingly the chirality coefficients a”? and o?¥
vanish exactly whereas the electric as well as the magnetic polarizability
show a Lorentzian resonance, respectively. Note that o”F and o®? have

the same strength. Note further that the frequency axis in the spectrum of



CHAPTER 3. IMPLEMENTATION: 5-LEVEL SCHEME 47

1 Elid 1 ~~
&EE ,7 N CKBB 7 N
Ve \ Vd N
0.5 Z AN 0.5 Z AN
0 0
-05 -05
-1 -05 0 0.5 1 -1 -05 0 05 1
A/ A/
1 1
o EB aBE
0.5 05
0 0
-05 -05
-1 -1
-1 -05 O 05 1 1 -05 O 05 1
A/’Y?) A/’Y:a

Figure 3.4: Real (solid) and imaginary (dashed) parts of the electric (aF)

and magnetic (o) polarizabilities as well as the chirality parameters (a5,
aBE) in arbitrary but the same units for the case . = 0.
BB

a”P is scaled to the appropriate population decay rate v, of the magnetic
transition and is thus approximately a factor (137)? narrower than the electric
resonance.

In Figure 3.5 the resultant spectra for the polarizabilities (3.13) — (3.16)
are shown for the case of a strong coupling 2. # 0. As discussed in sec-

EB

tion 2.2 a reasonable choice of the phase is such that a”” on resonance is

purely positive imaginary while a”¥ is purely imaginary as well but with a
minus sign. This choice can be realized in the 5-level scheme for ¢ = 7/2.
We therefore set? Q. = 10%y,e"™/2. From Fig. 3.5 we find for this case signif-
icantly changed response functions. The electric polarizability o® displays
electromagnetically induced transparency (EIT): As long as the coupling field
Q., (92 > v273) is present we observe from (3.13) that o on resonance

is linear in the decoherence rate 742, which in our case is small. Thus the

3 An explanation for the value of |Q2.| can be given only after the inclusion of additional

broadenings (see section 3.4).
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Figure 3.5: Real (solid) and imaginary (dashed) parts of the electric (afF)

B

)

and magnetic (a?) polarizabilities as well as the chirality parameters (a®

aBF) in arbitrary but the same units for the case Q. = 10%*y,e"™/2.

most prominent feature of EIT emerges: Suppression of absorption on reso-
nance. At first glance the magnetic polarizability (or magnetizability) o?
are not changed significantly. Note, however, that the spectrum of a®? is
now scaled to the width ~3 of the electric dipole transition. Therefore the
magnetic resonance experiences a considerable spectral broadening and re-
duction in strength. This is due to the presence of the strong coupling 2.
which opens an additional decay channel of the meta-stable state |2) via the
excited state of the electric dipole transition |3). The two cross-couplings
afB and ofF display spectra similar to a Lorentz line. On resonance we
indeed find o? ~ i and aP¥ ~ —i as intended.

We verified numerically that all polarizabilities and cross-coupling terms
(3.13) — (3.16) fulfill the Kramers-Kronig relations [40]

1 o] &IJ(A/)
1J _ /
a7 (A) = ,P/OO A A (3.17)

™

and thus represent causal response functions.



CHAPTER 3. IMPLEMENTATION: 5-LEVEL SCHEME 49

3.3 Limits of linear response theory

When dealing with magnetic dipole transitions one has to be careful not to
cross the limits of linear response theory. This is because magnetic transitions
start to saturate at much lower probe field amplitudes than electric ones.
This can be seen from the upper state population of a 2-level electric dipole
atom on resonance which in leading order in the transition Rabi frequency
Qp = dE/h reads
0F

299172
This result can be found from the Liouville equation (3.5) for a 2-level sys-

P22 = + 0 (Q%) . (3.18)

tem with upper state |2) and dipole transition moment d. From the Wigner-

Weisskopf result for the population decay rate vo we can rewrite (3.18) ex-
plicitly for an electric dipole transition

&) 3¢ E?

P = 8hw? yo1,1

which hence is governed by the applied electric field strength E and the

(3.19)

(intrinsic) decoherence rate y91 . The corresponding upper state population

of a magnetic transition can be found to be

(B) 303 32
Pa2” =

. 2
8hw? Yo1, (3.20)

The assumption that the population stays in the ground state which is em-
ployed in linear response theory is violated quadratically with the applied
field strength. This corresponds to an additional term in py; which adds a
x® nonlinearity and hence marks the limits of linear response.

We compare (3.19) and (3.20) by noting that in Gaussian units the electric
and magnetic field amplitudes £ and B of a free wave not only have identical
units but also the same magnitude, £ = B. Hence the ratio of upper state
populations for an electric and a magnetic 2-level atom can be estimated by

P25 _ 2B (3.21)
P22,E  721,B
Using 721, & oz2721, £ which holds in radiatively broadened systems we there-
fore conclude that magnetic transitions start to saturate at much lower probe

field intensities.
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In order to find the limits of linear response theory for the 5-level scheme
employed here we solve the Liouville equation (3.5) numerically to all orders
in the electric and magnetic field amplitudes £ and B. Since the estimate
(3.21) is worst if additional broadening mechanisms are discarded we here
restrict to naturally broadened resonances.

As we focus on steady state solutions, we employ a similar rotating frame
as in section 3.2. We cast the resulting set of 25 algebraic equations in
a matrix form by arranging the 5 diagonal pi;...pss and 20 off-diagonal
density matrix elements po; ... in a 25-dimensional vector p. Note again

that the equation for p;; is explicitly given by conservation of probability

P11+ pa2 + P33+ paa + pss = 1. (3.22)

The set of algebraic equations therefore is given by the inhomogeneous matrix
equation
Mp=a (3.23)

with the inhomogeneity vector @ = (1,0,0,0...).

From the numerical inversion of the matrix M, which contains all cou-
plings, detunings, and decay rates, we find the sought density matrix elements
p3a and por. As in (3.12) the matrix elements pss and po; are functions of

the electric and magnetic field amplitudes £ and B
ﬁ34:f(E,B), P~21 :g(EaB) (324)

Since we need to compare with the result of linear response theory the func-
tions f(FE, B) and g(F, B) have to be separated as in (3.12):

dsupss = o”F(E, B)E + oP(E, B)B, (3.25)

o1 = aP¥(E, B)E + oP(E, B)B. (3.26)

Note that each of the general polarizabilities o’/(E, B) is a function of both
probe field amplitudes £ and B. Therefore at first glance the separation in
(3.25) and (3.26) does not seem to be unique. This is not the case, though.

From the formal expansion of f and ¢ in a power series in ¥ and B

f(E.B)=> fumE"B",  g(E,B)=>_ gumE"B" (3.27)
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we can discard all terms with an even total number of field amplitudes: As
each field amplitude in the rotating frame comes with a factor e ™»!, or the
complex conjugated e™»!, only with an odd number of probe field amplitudes
E and B all but one exponentials cancel such that the (rotating) polarizabil-
ities oscillate with the probe field frequency w,. Thus the expansion (3.27)

can be separated uniquely into

J(E.B) =Y [ulEPBP"E+ ) [l EP|BI*"B,

n,m

9(E,B) = ghl EF"[BI"E + ) g E"| B B.

n,m n,m

By comparison to (3.25) and (3.26) we find for the sought o’/(FE, B) as
functions of the numerically accessible f(FE, B) and g(FE, B):

o"F(E, B) = S4[/(E, B) + (B, ~B)], (3.28)
o"P(E, B) = S4[/(E,B) + [(~E. B)], (3.29)
oPE(E, B) = %[g(E, B) + g(E,—B)], (3.30)
oPB(E, B) = %[g(E,B) +g(—E, B)]. (3.31)

The comparison of the exact o!/(FE, B) to the linear response results o/’
from (3.13) — (3.16) is shown in Fig. 3.6. Here we use

oV — ol (E, B)
o7

log (3.32)
to express the deviation of the approximate linear expressions o from the
numerically extracted values o!/(FE, B).

We show the real and imaginary parts of (3.32) for two different probe
field Rabi frequencies. The solid lines correspond to {2 = 75 and the dashed
lines to Qp = 10 X 79, respectively. Here Qp = d3yF/h and Qp = us B/h
apply, thus Qg = 137Q 5 holds, where E and B are the electric and magnetic
probe field amplitudes, respectively.

One recognizes that the relative difference of the exact to the approximate

result is always less than 1072 for Qg = 107, and less than 10~ for Qp =
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Figure 3.6: Deviation (3.32) of real and imaginary parts of the exact
o' (E, B) compared to the linear response results for 2 different probe field
Rabi frequencies: Qp = v (solid) and Qg = 10 X 7, (dashed).

and therefore negligible for these probe field Rabi frequencies. Comparing
to (3.18) we find that the probe field Rabi frequency Qp = 73\/@ can
be estimated for a naturally broadened electric dipole 2-level atom to be
Qp = 13.77, if we allow for a 1% upper state population pg) = 1072. As this
is the same order of magnitude as the probe field Rabi frequency Qg = 107,
which led to a 1% error of the linear response result !/ compared to the
exact o’/ (E, B) we conclude that the 5-level scheme is not significantly more
sensitive to nonlinearities due to saturation effects than any ordinary electric

dipole transition.

This behavior is a consequence of the strong coupling 2. by which the
magnetic transition is effectively broadened due to additional decay channels

as discussed in section 3.2 and hence less susceptible to saturation.
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3.4 Non-radiative broadenings

From the discussion in section 2.1 it is apparent that magnetic dipole tran-
sitions need to include additional non-radiative broadening mechanisms to
yield realistic results. In principle, there are two distinct types of broadening:
Homogeneous and inhomogeneous. They will be analyzed separately in the
following.

The most common additional homogeneous broadening is due to (elastic)
collisions. These collision can occur, for instance, between the same or dif-
ferent kinds of atoms in gaseous media, or between atoms in a doped crystal,
and phonons of the crystal lattice. As these collisions happen randomly, the
energy levels of the atom are altered randomly during a collision due to the
interaction energy. This can be modeled by a random phase with a width -,
in frequency space. From an averaging treatment in time [90] the distribution

is found to be a Lorentzian

L) = -2

= — . 3.33
nyz?, + 22 ( )

Its influence on the polarizabilities (3.13) — (3.16) can be determined by
adding such random phase terms x g, g, . to every static detuning Ag, Ap,

J., respectively, (e.g. Ap — Ag + xp) and convolute with the Lorentzian
L(z), e.g.,

aft = /dededxcaEE(:cE,xB,xc)L(ﬂfE)L@B)L(wc)- (3.34)

For the 5-level scheme we assume that levels |2) and |4) are approximately
degenerate in such a way that they experience correlated phase fluctuations.
As aresult we apply the same width «, for Ag and . but leave 749 unaltered.
For reasons of simplicity we also pick 7, for Ag. The convolution (3.34)
then has an analytical solution from which we find that the inclusion of a
homogeneous broadening into the 5-level scheme Fig. 3.3 is obtained by the
substitution rules

Va2 — Va2, Y21 — Y21 T+ Vps

(3.35)
Y34 — Y34 T Vps Y31 — V31 + 2V,
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Figure 3.7: Real (solid) and imaginary (dashed) parts of the electric (afF)

and magnetic (o) polarizabilities as well as the chirality parameters (a5,
aBF) for arbitrary but the same units for €, = 0. In contrast to Fig. 3.4

additional homogeneous broadenings according to eq. (3.35) with v, = 103y,

apply.

for the polarizabilities (3.13) — (3.16) which affect only the off-diagonal decay
rates. Thus 749, which is relevant for EIT, remains unbroadened. In contrast
the coherences between any other pair of states suffer from broadenings ,
or 27,, respectively.

The additional width of the homogeneous broadening is set to v, = 10%y,
which is typical [69] for the most realistic implementation in rare-earth doped
crystals at cryogenic temperatures, in which the optically active electrons are
protected from the crystal field by outer electrons.

Having chosen the value of 7, we can now justify the choice of |Q.| in
our previous numerical calculations. From (3.15) and (3.16) we note that
there exists an optimal value of || at which a”® and o®P on resonance,
and hence the chiral character of the medium, reaches a maximum. These

optimal values differ for a?” and o due to a non-symmetric influence of
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Figure 3.8: Real (solid) and imaginary (dashed) parts of the electric (aF)

and magnetic (o) polarizabilities as well as the chirality parameters (a5,
aBF) for arbitrary but the same units for Q. = 10%*y,e"™/2. In contrast to

Fig. 3.5 additional homogeneous broadenings according to eq. (3.35) with
Yp = 10%y2 apply.

the additional homogeneous broadening 7, on the decoherence rates a1, va,
to be 137+, and

1370207, for o and oPF, respectively. As a compromise we use the

Y34, and 7y, respectively. For v, = 103y, we find Q|

opt

aforementioned value || = 10%y,.

The polarizabilities (3.13) — (3.16) including an additional homogeneous
broadening are shown in Fig. 3.7 for the case 2. = 0 and in Fig. 3.8 for 2, =
10%v,€7™/2. All other parameters are the same as in section 3.2. The width Vp
is still an order of magnitude smaller than the electric dipole transition. As
a result, without coupling (Fig. 3.7) a”F stays almost unchanged compared
to the case without homogeneous broadening (Fig. 3.4). For a? there is a
significant change compared to Fig. 3.4, though. The response is now roughly
a factor a? = 13772 weaker (afF ~ 1372aPP) and almost as broad as the

electric resonance. Note that in contrast to Fig. 3.4 all spectra are scaled
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to the width ~3 of the electric dipole transition. For non-vanishing coupling
Q. = 10%y,¢"/? (Fig. 3.8) all polarizabilities o/’ are nearly preserved as the
coupling itself provides an effective broadening larger than 7,: || > ,.
Most importantly we note that EIT is preserved.

In contrast to homogeneous broadening, the inclusion of inhomogeneous
mechanisms like Doppler broadening cannot be done analytically as it de-

mands the convolution with a Gaussian

1
B vV 27T’)/G

2 /92
e~ /27

G(x)

rather than the Lorentzian L(z). In doped crystals a substantial inhomoge-
neous width is caused by inhomogeneities of the crystal field. Hence a suffi-
ciently narrow-band probe field will only “see” an effectively reduced density
of scatterers which is approximately given by the ratio of the homogeneous
to the inhomogeneous width g ~ 07,/7¢. It can be shown that the com-
paratively long homogeneous coherence times can nevertheless be exploited
by the application of certain techniques used recently for the implementation
of coherent population transfer methods like RAP [69] or STIRAP [92]: In a
first step a spectral hole is burned into the inhomogeneous profile, into which

a homogeneously broadened anti-hole is prepared.

3.5 Local field effects: From microscopic to

macroscopic responses

So far we have dealt with the local response of an individual atom. These
local fields differ, especially for dense media, from the applied external fields.
The correspondence between the microscopic polarizabilities a!” (3.13) —
(3.16) and the macroscopic response functions e, p, g, and {yp from (3.1)
is obtained from local field corrections of the Clausius-Mossotti type (see also

part IT for a microscopic derivation).

For the implementation of local field corrections we interpret £ and B in
(3.4) as local fields. As the local fields act in vacuum B¢ = H' holds [93]
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Figure 3.9: Real (solid) and imaginary (dashed) parts of the permittivity e for
the densities (a) g, = 5-10%cm ™3, (b) g, = 5-10Mem ™3, (¢) g. = 5-10%cm 3,
and (d) gg =5 -10%cm=3.

and we hence write

EEEIOC EB Hloc
)

P =p«a + o«

M :Q&BEEloc + QOéBBHloc. (3'36)

The connection to the macroscopic averaged field amplitudes and to the

corresponding macroscopic response functions is given by

Em:E+gR m“:H+gM, (3.37)
which relates E to its microscopic counterpart £'°¢, and H to H'°°, respec-
tively. These relations can be determined by phenomenological considera-
tions [40, 93] but prove to be consistent with a microscopic theory of local
field effects (see part II).

We eliminate the microscopic amplitudes E'°¢ and H'¢ with the help of

(3.37) from (3.36) in favor of the Maxwell fields £ and H. By comparison to
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Figure 3.10: Real (solid) and imaginary (dashed) parts of the permittivity ¢,
the permeability p, and the cross-coupling coefficients £gy and £y g including

local field corrections for the density o = 5 - 10%cm=3.

(3.1) we find

4
e=1+ 47T£190c {O‘EE + —WQ(OéEBozBE — aEEaBB>} ’

3.38
0 g, 4 EB_BE EE_ BB ( )
=144 @ +—Q(a a’” —a T« ) ,
Eloc 3
for the permittivity and the permeability and
_ 9 EB _ Q BE
fEH = 47T£10c0‘ s fHE = 47T£loca s (339)

for the cross-coupling coefficients. The common denominator reads
[loc | _ 4_7TQ oFE 4 BB | 4_7TQ(aEBaBE _ aEEaBB)
3 3 '

Note that (3.38) reduces to the well known Clausius-Mossotti result [40] for
the dielectric case o'/ =0, I.J € {EB, BE, BB}.
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Figure 3.11: Real (solid) and imaginary (dashed) parts of the refractive index,

including local field effects for two different densities.

The influence of local field effects on the spectra is shown in Fig. 3.9 for the
permittivity . Figs. 3.9(a) — 3.9(d) show ¢ for the densities g, = 5-10¥cm ™3,
op = 5-10"em ™3, o, = 5-10%cm =3, and g; = 5-10'%cm 3, respectively. For g,
we find a similar spectrum as for the uncorrected a”” of Fig. 3.8. Increasing
the density by an order of magnitude mainly increases the strength of the
response by a factor of 10 as well [Fig. 3.9(b)]. As a result of the local
field corrections an asymmetry emerges. The left part of the spectrum is
broadened while the part above resonance moves towards resonance and gets
narrower. This behavior is far more pronounced for the increasingly higher
densities p. and pg. The low frequency part is already out of sight while the
blue-detuned part of the spectrum evolves into a sharp resonance. Note that
the spectra 3.9(c) and 3.9(d) are scaled to the homogeneous broadening +,.
This is a common behavior of all four local field corrected response functions
(3.38) and (3.39) as shown in Fig. 3.10 for the density ¢ = 5 - 10*6cm =3,

This common effect is mainly governed by the leading term of the de-
nominator £°¢. The position and the width of the resonance of Fig. 3.10 are
hence given by the real and imaginary part of the root of the denominator

of 1/(1 — 4 paF), respectively.
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Figure 3.12: Real (solid) and imaginary (dashed) parts of the non-chiral
refractive index, including local field effects for a density of o = 5 - 10%cm=3

as a function of A. Compared to Fig. 3.11(b) here pflol) = 0 applies.

3.6 Refractive index

With the permittivity e, the permeability p as given by eq. (3.38), and the
chirality parameters {gy and {up (3.39) we have collected all ingredients
needed to determine the index of refraction from eq. (2.18). As an example,
Fig. 3.11(a) shows the real and imaginary parts of the refractive index as
a function of the probe field detuning A for a density of o = 5 - 10"cm 3.
As before we use v, = 103y, and leave all other parameters as defined in
section 3.2. A comparison with Fig. 3.8 reveals that the spectrum of the
refractive index is dominated by the permittivity € including the prominent
features of EIT: Suppression of absorption and steep slope of the dispersion
on resonance. Obviously there is no negative refraction yet.

In Fig. 3.11(b) the spectrum of n is shown for a higher density of o0 =
5-10"cm 3. Note that in contrast to Fig. 3.11(a) the frequency axis is scaled
in units of the homogeneous broadening +, rather than ~s;. The observed ab-
sorption spectrum displays a broad window with Im[n] &~ 0. Simultaneously
the refraction becomes negative and shows a strong dispersion around res-
onance as expected for negative n (see chapter 1). Most importantly we

find simultaneously substantial negative refraction and minimal absorption



CHAPTER 3. IMPLEMENTATION: 5-LEVEL SCHEME 61

T n 3 271
2 - ¢
Figure 3.13: Real (solid) and imaginary (dashed) parts of the refractive index
as a function of the phase ¢ of the coupling Rabi frequency (2.

[Kistel2007h, Kistel2008] for this density?.

Although the Clausius-Mossotti corrections at this density contribute a
resonance to the response functions ¢, p, gy, and {yp (see Fig. 3.10) this
resonance does not show up in the refractive index. Combined Clausius-
Mossotti local field corrections for more general media than pure dielectrics
tend to yield a negative refractive index for high densities (see part II). To
rule out that the negative refraction observed in Fig. 3.11(b) is solely a result
of such a behavior, we compare Fig. 3.11(b) to a non-chiral version. Since
setting (2. = 0 would affect the spectra of € and p significantly we artificially
set pfﬁ) = 0 so that the cross-coupling vanishes without influencing the direct
responses € and p. The non-chiral version of the index of refraction for a
density o = 5-10%m™3 is shown in Fig. 3.12. Clearly there is no negative
refraction for the non-chiral index of refraction at this density. Hence we
conclude that the cross-coupling is crucial for Re[n] < 0.

This result can also be seen from Fig. 3.10. In the spectral region where
the index of refraction in Fig. 3.11(b) reaches its minimum of about Re[n] ~
—1---—1,5 the magnetic permeability Re[u] is strictly positive. In contrast

¢pn and Egp are almost purely imaginary as intended with Im[{gy] ~ 1...2

4Note that the required density is about a factor 10? smaller than the density needed

in a similar scheme in which cross-couplings were not taken into account [88].
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Figure 3.14: The refractive index, including local field effects for a density of

0 =5-10"cm ™3 as well as the figure of merit FoM for two different densities.

and Im[{yp] ~ —1--- — 2 negative. Therefore we come to the same conclu-
sion: The negative refraction at this density is clearly a consequence of the

chiral cross-coupling.

Up to now, the phase ¢ of the coupling Rabi frequency €2, has been
set to ¢ = m/2 after the qualitative discussion of section 3.2. In Fig. 3.13
we plot the phase dependence of the refractive index taken at the spectral
position A ~ —0.0457, at which n reaches its minimum [cf. Fig. 3.11(b)].
As expected, the value of the refractive index depends strongly on the phase
¢. For example changing the phase by d¢ = 7 reverses the influence of the
chirality compared to the non-chiral result which in this case is approximately
zero (cf. Fig. 3.12) and thus gives a positive index of refraction Re[n| > 0.
Note that the symmetry Re[n(¢)] = —Re[n(27 — ¢)] is coincidental since for
the chosen parameters € & 0.

By further increasing the density of scatterers p the optical response of the
medium increases. As an example Fig. 3.14(a) shows the spectrum of n for
0 =5-10"cm™3. Compared to the case of ¢ = 5-10%cm =3 of Fig. 3.11(b) the

strength of the response increases while the absorption Im[n| stays small. As
increases

)
with density and reaches rather large values as shown in Fig. 3.14(b). These
values which reach FoM =~ 35 for ¢ = 5 - 10%cm™3 and FoM > 350 for

a consequence the figure of merit for negative refraction FoM (1.1
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Figure 3.15: The response functions as well as the refractive index n as
a function of the logarithm of the density log 0. The spectral position is
taken to be about the minimum of the refractive index shown in Fig. 3.11(b)
(A = —0.0437,).

0 = 5-107cm™3 should be contrasted to previous theoretical proposals as
well as experimental results on negative refraction in the optical or near
infrared regime for which the figure of merit FolM is typically less than unity
(see chapter 1).

The density dependence of the response functions €, u, gy, and g as
well as the index of refraction n taken at the spectral position A = —0.043~,
at which Re[n| reaches its minimum for ¢ = 5-10'%cm™=3 is shown in Fig. 3.15.
We observe that Re[n| reaches increasingly negative values with increasing
density while Im[n] forms a maximum but stays comparatively small (note
that Im[n] in Fig. 3.15(a) is amplified by a factor of 50).

tivity Re[u| increases with increasing densities while Im[¢py] and Im[{yg]

The permit-

[Fig. 3.15(b)| show similar but inverse characteristics. As expected Re[e]
evolves to negative values for higher densities but as a consequence of the
resonance induced by the local field corrections starts to climb again. We
once more conclude that the negative refraction Re[n] < 0 observed at this
spectral position is a consequence of the cross-coupling.

The maximum of Im[n] from Fig. 3.15(a) is surprising as an increasing

density of scatterers should lead to an increasing absorption. Hence the de-
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crease is at first sight a peculiar behavior which demands an explicit expla-
nation. Such an explanation can easily be found: At the densities® employed
in Fig. 3.15(a) the spectral band with minimal absorption broadens with in-
creasing density due to local field effects [cf. Figs. 3.11(b) and 3.14(a)]. Hence
the chosen spectral position wanders relatively from the tail of the band edge

to the middle of the minimal absorption band.

°For very high densities local field corrections lead to a decreasing Im[n] for different

reasons. See part II.



CHAPTER 4

Applicability of the 5-level scheme

4.1 Impedance matching

Any optical application has a significant element other than the functional
unit: The boundary to its surroundings. For linear optical elements like
lenses, prisms, etc., the shape of the boundary even accounts for most of the
functionality. Hence as a basis of any application we study the impedance
of a flat surface interconnecting a chiral and a non-chiral material. The goal
here is to find conditions under which the boundary between non-chiral and
chiral, negative refracting media is non or little reflecting.

We suppose a boundary with normal vector n = e, at z = 0 between
a non-chiral medium 1 (z < 0) with &y, gy and medium 2 (z > 0) which
employs a chirality (e, po, {gn, Egr). Note that the response tensors are
assumed to be of the form used in section 2.2 such that we can restrict to an
effectively scalar theory for one polarization state of a wave propagating in
z-direction. This is valid as the polarizations e, e_ denote eigensolutions
for both media.

We decompose the e_ wave solution for medium 1 into an incoming E*

and a reflected part E”
Ei(r) = (Ee™* + B.e *%)e_ (4.1)

(k1 = |k;| = |k|). In medium 2 (z > 0) only a transmitted wave F; shall

65
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exist due to the boundary condition at infinity
E,(r) = Ee'*?%e_. (4.2)

A similar decomposition is applied for the magnetic field H(r). The solutions
are connected at the boundary corresponding to the conditions n x (E; —
E;) =0 and n x (Hy, —H;) = 0 for the electric and magnetic field strengths,

respectively, from which we find at 2 =0
E;+ E,. = E,, H,+ H, = H,. (4.3)

A second set which connects the electric and magnetic fields within materials
1 and 2 respectively is obtained from Maxwell’s equations in Fourier space

(2.14) together with the material equations (2.10). For medium 1 we get
k; X e_F;e’™* + k. x e_FE,e” "% = f,ul (Hie™* + Hye ™) e_.  (4.4)
c

We note that e, x e = Fiex holds. Hence (4.4) simplifies for z = 0 to the

scalar equation

ik(E, — E,) = %M(Hi +H,). (4.5)
Here k; = —k, = kje, has been applied. Similarly we obtain for medium 2
, w
Zk?QEt = ;(SHEEt -+ [LQHt). (46)

From (4.3), (4.5), and (4.6) we eliminate the magnetic field amplitudes and
solve the resulting equations for the ratio of reflected and incoming electric

field wave amplitudes which reads

1_ [ 2+ i€nE
€
- 1n+“§£ . (4.7)
i 1+ Ha M2 HE
\/ €1 1 25)

The wave numbers k; and ko in (4.5) and (4.6) have been replaced by

SIS

ki = nw/c = /et w/c and ky = now/c, respectively. Equation (4.7) is
a generalization of the well-known Fresnel formulas for normal incidence to

a chiral medium. Impedance matching is defined as the vanishing of the
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Figure 4.1: Real (solid) and imaginary (dashed) parts of the refractive index
as well as the real (dash-dotted) and imaginary ( ) parts of the inverse
impedance Z; ' from (4.9) as a function of the detuning A for o = 1.56 - 1017

cm 3.

reflected wave F, = 0, i.e., a complete transfer of the incoming field into

[pane t e _ (4.8)
€1 1 25)

Using the explicit form of ny for the particular polarization mode (2.18) we

medium 2:

find the more convenient expression

\/EZ\/g i\/ <§EH+§HE> +Z§EH+§HE (4.9)
H1 2 2\/E2p12 2 Eapn

which obviously simplifies for the non-chiral case (g = Egr = 0 to the well

81 82
V 11 \/ fo

The right hand side of (4.9) hence is the inverse impedance Z; ' of the chiral

known [40] result

medium 2. Note that as a result of causality the sign of the square root
in Z, has to be taken for passive media such that Re[Z5] > 0 is obtained
[30]. We plot the real and imaginary parts of Z, ' as well as the spectrum of

the index of refraction in Fig. 4.1. Under the assumption of medium 1 being
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vacuum £ = g1 = 1 impedance matching exists if the right hand side of (4.9)
equates to 1+40. The density o = 1.56-10'" cm~3 has been optimized roughly
such that we find at the spectral position A = 1.17 - 1072, for the index of
refraction n = —1,0003 + 0,009 while the impedance simultaneously reads
1.003 +40.0006. The corresponding figure of merit then is about FoM ~ 110.

4.2 Tunability

The most astounding application of a negative refractive index is the so called
perfect lens!' [1] which allows sub-diffraction limit resolution [94] due to an
amplification of evanescent waves inside a slab of a material with Re[n] < 0
[23]. One major requirement for the material of the flat superlens is an all-
angle negative refractive index. Hence most current metamaterials are not
suited for sub-diffraction limit imaging applications as they in general show
Re[n] < 0 behavior only for a particular direction of propagation. Conse-
quently there are only few reports of experimental sub wavelength resolution
based on negative refraction. It has been demonstrated using 2D photonic
crystals [95, 96], a 3D photonic crystal [17] in the microwave regime as well
as for a left-handed 2D transmission line material[97, 98] which operated in
the microwave spectrum as well.

From an analysis of the dispersion relation of surface plasmons [99] which
influence the transmission properties of a negatively refracting slab signif-
icantly Smith et al. [100] and Merlin [101] independently realized that an
isotropic index Re[n] < 0 is not sufficient for sub-diffraction limit imaging,

though. In fact for a slab of thickness d surrounded by vacuum and an in-

tended resolution Az the refractive index must match n = —1 with an error
An not exceeding
2md
An = — 5. 4.10
n—ew{-371 (4.10)

For high frequencies sub-diffraction limit resolution has been reported only
within the near field domain [102, 103]. There an ultraviolet (365nm) image
has been shown to display a significant improvement of the resolution when

a thin metallic slab is placed between the source and the image. This is a

LCf. chapter 1.
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Figure 4.2: Real (solid) and imaginary (dashed) parts of the refractive index
as a function of the coupling field Rabi-frequency |{2.| relative to the radiative

decay rate 73, for o = 1.56 - 1017 cm ™3,

direct consequence of the operation in the near or static field regime in which
electric and magnetic field amplitudes can be regarded as being independent.
Hence a metal (usually silver to minimize losses) slightly below the plasma
frequency fulfills Re[e] < 0 and thus suffices to focus the electric field and

produce an image.

For a metamaterial with Re[n] < 0 eq. (4.10) presents a considerable
obstacle for the operation of a superlens approaching far field distances as it
demands an extreme fine-tuning of the refractive index in order to achieve a
resolution beyond the diffraction limit. Such a fine-tuning can be provided
by the tunability of the strength of the coupling field. In Fig. 4.2 we show
the real and imaginary parts of n as a function of log[|€2.| /73] for the density
0= 1.56-10'" cm~2 employed in section 4.1. We find that for values of the
coupling Rabi frequency 2. around the electric dipole decay rate v3 negative
88175[:‘4 < 1. Hence by a stabilization
of the coupling laser power the quantum interference scheme allows for small

refraction around n = —1 with a slope 73

An and therefore for accordingly small values of Az, i.e., potentially sub-

diffraction limit imaging even in the far field regime.

Apart from potential imaging applications the 5-level quantum interfer-
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ence scheme allows for switchable devices operating in a wide range of positive

and negative refractive indices with simultaneously small losses.

4.3 Beyond 1D: Tensorial analysis

In section 2.2 we specialized our discussion to an effectively scalar 1D theory
by restricting to a particular direction of propagation and left circular po-
larization (e;). Fig. 4.3 shows a level structure and geometry in which the
requirements of section 2.2 are fulfilled and hence the scalar theory is valid.
We assume propagation along the e,-direction and similarly the field vec-
tor of the coupling field E, should point in e,-direction as well [Fig. 4.3(a)].
Compared to Fig. 3.2 the states |2) and |3) are replaced by the magnetic
Zeeman-levels corresponding to an angular momentum with J = 1. The
Clebsch-Gordon coefficients for the J =1 to J = 1 transition |2) — |3) allow
for the e,-polarized coupling field E. only the couplings |2, +) — |3, +) and
2, —) — |3, —). Hence the cross-coupling tensors gy, g indeed have the
form (2.16) with £, = 0 = £, 5. As a result for the tensor elements &5,
&y, as well as e and p~ for right circularly polarized waves the scalar the-
ory of chapter 3, i.e., the solutions (3.38) and (3.39), applies (see Figs. 3.8
and 3.11).

In order to find the corresponding response for the e -polarization we
have to replace the transition moments for the “-”-branch (Fig. 4.3) by the
corresponding “+4”-branch moments. In general transition moments between
states |y, J, M) and |y, J', M") where J and M denote angular and magnetic
quantum numbers while all other quantum numbers are summarized in vy are

given by the Wigner-Eckart theorem [67]

J 1 J

LS MO, T MYy = (=1)77M
(7, J. M|Og |y )=(=1) Mg M

) (v IO, ).

(4.11)
Here O, denotes the gth component (¢ € {+1,0,—1}) of the irreducible
vector operator @ which for electric dipole transitions is given by (cf. section

3.2) O = er while for magnetic transitions we have to use O = pg(J + S).
As the reduced matrix element (v, J||O||+/, J') is independent of M and M’
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Figure 4.3: (a) Geometry of the 1D implementation: The probe light trav-
els in z-direction with corresponding transversal field vectors while the field
vector of the coupling field points along e,. (b) Level scheme for 1D im-
plementation. No cross coupling between right and left circular polarization

components occurs.

any differences of the matrix elements due to magnetic quantum numbers M,
M’ are solely given by the product of (—1)’~™ and the Wigner 3-j symbol.
Hence once a particular matrix element for specific values of M and M’ is
known, all matrix elements of the same J, J’ configuration can be found from
(4.11) by comparison.

We note that we assigned in section 2.2 an index ~ to material tensor com-
ponents corresponding to right circular waves with e_-polarization. Similarly

we decompose the electromagnetic field vectors as

E=F,e,+Ee,+FEe, =—-LE,e; +FE e +FE.e, (4.12)
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with By = F(E, F zEy)/\/§ In particular £, and F_ denote the ampli-
tudes of the left and right circular polarizations, respectively. The magnetic
induction B is decomposed similarly. With the orthogonality properties of
e. taken into account the interaction Hamiltonian —p - B for magnetic dipole

transitions translates to
—p-B = —pp(Js + 54) By — pp(J- + S-)B- — pp(Jo + So)B.. (4.13)

Here J. = F(J, £iJ,)/v2 and Jy = J. [104] as well as corresponding
relations for S denote the components ¢ € {+1,0,—1} of the irreducible
vector operator g = pug(J 4+ S). As a result of the properties of the 3-j
symbol in (4.11) the transition moment between states |2, —) and |1) has a
contribution solely from the ¢ = —1 vector component as already depicted
in Fig. 4.3(b), i.e., a transition with e_-polarization. Similar to the field

amplitude we thus indicate with a ~:

1
0 = (2,— J_+5)|1) = —=2||p||1). 4.14
pior = (2, = ( ) \/§< [l |1) (4.14)
To find y3; we now can exploit the Wigner-Eckart theorem from which we

easily obtain

i = (2 s+ SI1) = = (2l (4.15)

Thus the matrix elements of the magnetic dipole transitions are independent

of the polarization state
fiz1 = a1 (4.16)

Similarly we find for the electric dipole probe field transition |3) — |[4), which
isa J=1toJ=0 transition as well, that d3, = d4, holds. For the matrix

elements which appear in the coupling Rabi frequencies QF we find however

R
d3y = (3, +lez[2, +) \/6<3||d||2> (4.17)

and .
dzy = (3, —[ez]2, =) = —\76<3||d||2>, (4.18)
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respectively. Hence the coupling Rabi frequencies of the left and right circular

branches QF = dthqu /h display a relative sign

OF =-0. (4.19)
Inspecting equations (3.13) — (3.16) we note that this results in a2% = —a P
and similarly o = —a%¥ for the cross coupling coefficients while the

electric and magnetic polarizabilities are identical for both polarizations

E and ofP = ofP. From the treatment of the local field cor-

EE _ _E
al? = aZ
rections in section 3.5 we find similar relations for the coefficients relevant
for the refractive index:

+

e —e, ut =

e (4.20)
ng =~ gl—SE = —Sup-
In the following we will hence suppress the index * for the permittivity and
the permeability.
One recognizes that these sign relations correspond identically to the
example discussed in section 2.3.2. Most importantly we conclude that the

refractive index is independent of the polarization state of the incoming wave
ny =mn_. (4.21)

Therefore the electromagnetically induced cross coupling in the scheme of
Fig. 4.3 does not correspond to a chirality for which the circular components

should have different refractive indices.

4.3.1 Angular dependence

To extent the discussion to waves for which propagation is not restricted
to the e,-direction we allow for angles 6, ¢ for the direction of incidence k
with respect to the coupling field E.. We assume a local basis where e, ~ k
serves as quantization axis of the atoms. Therefore a wave propagating in @,
¢ direction will encounter an unchanged atomic level structure but an angle

dependent coupling field with components

E.,=|E.sinfcos ¢, E., = |E.|sinfsin ¢, E. .= |E.|cosb.
(4.22)
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Figure 4.4: For a direction of incidence other than the direction of the cou-

pling field vector E numerous additional angle dependent couplings occur.

Thus a change of the propagation direction in the local basis affects only the
coupling €2.. The |1) — |4) transition is assumed to be a J = 0, M = 0 to
J =0, M = 0 transition and thus the dark state is spherically symmetric and
does not depend on polar angles ¢ and 6. For # = 0 the description therefore
reduces to the scheme of Fig. 4.3 as discussed before. Figure 4.4 shows
the corresponding level scheme with all angle dependent strong couplings.
We note that the angle dependent coupling field amplitudes for the circular
components are given by E, 4 = |E.|sin et //2. Hence the amplitudes of

the various Rabi frequencies between states {|3)} and {|2)} are given by

(3, +do[2, +) E

QFt = ; = = +Q.gcos,

O, = 3 _|d0|§’ =) e = —Q.ocosb,
qro = B2, 00 Eer | Qe §in 0, ¢—

c n /2
QY = <3’0‘d+‘2’ “Fer —i—S\Z/C’Q_O sinf, e (4.23)
P (3, —ld-12, 0 Ee - = +% sin 0, e

Cc h \/§
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3,0[d_|2, +)E. +QQO
h V2
Here Q.o = (3/|d]|2) - |E.|/(v/6h) applies. As a result of the angle dependent

coupling Rabi frequencies the polarizabilities become angle dependent as

QO+:<

sin .

well. The cross coupling coefficients for electrically induced magnetization

are found from a similar treatment as in section 3.2. They read

0 0 L
COS S111
V2
_BE BE N
=« 0 —cosf  sind 4.24
. V2 (4.24)
n6" - oo 0
S111 S111
V2 V2
with
1 d O
oBF — 3421041 2 %c 0 (4.25)

4h (31 + i(Ap + 6.)) (y21 +iAB) + |2 /4

= d3, = dg; as well as pf, = p3; = py according to
the Wigner-Eckart theorem. Note that the matrix (4.24) is given in the

{+, —, z}-basis?, the coefficient aff for example which describes the e,-

Here we used dj,

polarized electric field induced by a e,-polarized magnetic field is given by

the upper right entry. A similar result for a”? applies with a¥ replaced by

oFB — _i dnglpfﬁ) Qc,o

4h (ya2 + (A — 0c)) (34 + 1AE) + |Qc[?/4

(4.26)

Similarly the electric polarizability reads

GFE —oFE]
sin’ @ sin? fe2i¢ sin 6 cos fe'?
5 5 el
aPE Q.2 sin? fe~2¢ sin” sin 20e =%
D42 D34 8 , 8 8v/2
sin 6 cos fe ¢ sin 20e'® cos? 0
44/2 8v/2 4

2This applies to the matrix (4.27) as well.

(4.27)
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with
EE _ L dipﬁ (Va2 +i(Ap — 0c))
2h (va2 + i(Ap — 0c)) (734 + iAp) + [€2|? /4
and Dy = (Va2 +i(Ap—0.)), D3y = (734 +iAg). The magnetic polarizability
aBPB is given by (4.27) with of¥ replaced by

(4.28)

BB _ K2 N%lpﬁ)(%ﬂ +1(Ap +4.))
2h (y31 +i(Ap +0c)) (a1 +1AB) + |([?/4
and Dyo D3y substituted by D31 Doy = (31 + i(Ap + 0c)) (721 + iAR).
Note that all scalar coefficients a7 are identical to the ones (3.13) — (3.16)

obtained from the scalar treatment. For incidence in z-direction the tensors

(4.29)

simplify significantly. The cross-couplings reduce to the diagonal elements
of the upper left 2 x 2-submatrix denoting the magneto-electric couplings of
the left and right circular components, respectively. The polarizabilities a”%,
aBP simplify in the limit § = 0 to diagonal tensors with entries (3.13) and
(3.14), respectively, for the left and right circular components, i.e., includ-
ing EIT for the electric polarizability, and a simple resonance structure for
the o, components. Note furthermore that the constraint (2.23) is fulfilled
identically by the scheme from Fig. 4.4 for any angles 6, ¢.

The angular dependence results in a refractive index which is angle depen-
dent as well. Under the assumption of isotropic permittivity and permeability

we find angle dependent terms identical to (2.28):

(fEH - gZEP cos® ¢ + %(SEH —_ gHE) cosf. (4.30)

n = i\/EM —&enéue —

The true index of refraction which takes the full form of (4.27) into account,
i.e., the angle dependent correction to € and p gets however much more
complicated. We therefore just note that even for the idealized case of (4.30)
with isotropic ¢ and p the value of Re[n] will in general vary over a broad
spectrum of positive and negative values for different angles. This can be seen
from (4.30) by consideration of the two limiting cases for which the beam
propagates either in“+e,”- or “—e,”-direction, i.e., for § = {0, 7}. Compared
to +e.-incidence for # = 7 only the cross-coupling coefficients change sign
due to the term cos §. Fig. 4.5 shows the resulting idealized index of refraction

(4.30) as a function of the polar angle # for a density o = 5 - 10'®cm™3 and
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Figure 4.5: Real (solid) and imaginary (dashed) parts of the refractive index
as a function of 6.

spectral position slightly below resonance®, A/v, = —0.035. A similar effect
can be induced alternatively by changing the phase of the Rabi frequency ().
by a factor of © which as well leads to drastic changes of the value of the
refractive index as can be seen from Fig. 3.13. Thus the application of a e,-
polarized coupling field induces a preferred axis with a unique direction and

hence beam propagation properties which are strongly angular dependent.

3Cf. Fig. 3.11(b).






CHAPTER 5

Outlook: EIT in metamaterials

As noted in chapter 1 the concept of EIT is not limited to quantum systems

like atoms but is applicable to classical oscillators as well [52]. Whenever

0,84
x
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Y

- 0,4-
0,2+

a
O|O T T T T T

75 80 85 90 95 100 105
- w[THz]
(a) (b)

Figure 5.1: (a) Simple SRR structure used in current metamaterial experi-
ments. (b) Measured reflection and transmission spectra due to an electric

field polarized along the z-direction. (figures taken from [105])

an oscillator with a broad resonance, i.e. with large damping is coupled to
an oscillator with a narrow resonance, i.e. small damping an “EIT dip” in
the loss power spectrum appears. This statement holds in particular also

for split ring resonators (SRR) used in metamaterial research as shown in

79



80

0,64

0,44

0,24

0,0 T T T T T
75 80 85 90 95 100 105
w[THz|

(a) (b)

Figure 5.2: (a) SRR molecule used for the implementation of EIT in meta-
material structures. One SRR is rotated by 90° with respect to the other.

(b) Measured reflection and transmission spectra. (figures taken from [105])

Fig. 5.1(a).

A single SRR with the open side pointing in y-direction as the one in
Fig. 5.1(a) displays several electric and magnetic resonances dependent on
propagation direction and polarization state. For an electric field polarization
in z-direction an oscillating current density connecting the two open ends of
the SRR can be excited leading to an electric resonance at some frequency
wp. This frequency is governed by the effective length 3a of the antenna
like structure where a denotes the arm length of the SRR. If for example
a = 400nm holds, the resonance frequency is around 90THz at which a
single Lorentzian line appears as shown in Fig. 5.1(b). The linewidth 7 in
Fig. 5.1(b) taken from [105] is mostly due to radiative broadening. Similarly
an electric field polarized in y-direction “sees” roughly an effective length of
only la corresponding to a resonance frequency of about 3wy. In addition to
the electric resonances the SRR displays a magnetic resonance at about wy
for magnetic fields pointing in z-direction.

Consider for example the structure shown in Fig. 5.2(a) as proposed by
H. Giessen et al. [105]. It consists of two simplified split ring resonators
one of which is rotated by 90° with respect to the other. The incident light
shall have the polarization indicated in Fig. 5.2(a), i.e. it is assumed to

travel in z-direction. As a single SRR is frequently termed “artificial atom”
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Figure 5.3: Effective A-type 3-level scheme for EIT in metamaterials.

the combination of two SRRs shall be called “artificial molecule”. From
the discussion above we note that the incident light couples only to the
electric resonance with frequency wy of the left SRR as the electric resonance
of the right SRR for this polarization is far off resonance. The right SRR
nevertheless gets excited due to inductive or different coupling as the distance

between the two SRRs becomes smaller.

The right SRR does of course possess also an electric resonance at fre-
quency wg, however with polarization in y-direction. Thus at the frequency
wp there are in principal two possibilities to excite the right split ring res-
onator: either via the electric or the magnetic resonance. The experimental
data indicate that the electric resonance of the right SRR associated with
the magnetic resonance of the right SRR as indicated in Fig. 5.3 must be
weak. As the linewidth 7, of the magnetic resonance is much smaller than
the electric one v we find EIT conditions fulfilled. We hence sketch the re-
sults of the discussion in an effective 3-level A-scheme as shown in Fig. 5.3.
The relevant “bare” states of the artificial molecule are given by the ground
state in which no electric current is excited at all and an “upper” state cor-
responding to the current distribution of the electric resonance in the left
SRR. These two states are coupled by the applied xz-polarized electric field
E,. The third state of the A-scheme is represented by the magnetic resonance

current distribution in the right SRR which is connected to the upper state
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via the inductive coupling. In addition the coupling of electric and magnetic
resonances at wy of the right SRR is indicated.

Fig. 5.2(b) shows a measured spectrum of the absorption profile. Com-
pared to the uncoupled case [Fig. 5.1(b)] we find a prominent dip in the
absorption line which is typical for EIT. The separation of the two newly
established absorption lines in combination with the depth of the absorption
dip is too small to warrant an explanation on the lines of simple line splitting.

This results represent the first demonstration of EIT in metamaterials, a
field which experiences a rapidly growing amount of interest. Of course these
measurements display only a first step to low loss negative refraction meta-
materials incorporating EIT. Future directions must contain a better under-
standing of the loss mechanisms of the various states depicted in Fig. 5.3. In
particular it is not clear as to how strong the coupling between the magnetic
and the still existing electric resonance in the right SRR is as well as how such
a coupling influences the EIT performance. A good deal of work should be
devoted to the development of new designs which incorporate ideas related
to EIT [106] in order to connect with a negative index of refraction. In par-
ticular the fact that combined split ring resonators allow for magneto-electric

cross-coupling tensors as, e.g.

) 0 0 &y
Eer=1| 0 0 &y (5.1)
00 0

should be considered in detail regarding the possibility of inducing Re[n] < 0
without having the constraint Re[u] < 0 to be fulfilled.
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Microscopic approach to local

field corrections
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CHAPTER 0

Macroscopic approach to local field

corrections

Negative refraction requires a magnetic response of some sort. Either a mag-
netization has to be induced by magnetic fields, corresponding to a per-
meability p as, e.g., in classic metamaterial experiments [5, 6] or due to a
magneto-electric coupling effect [81, 82] (see part I). Another key point to
media with a negative reactive index lies in the general need for the response
to be rather large in order to overcome the vacuum contribution to the re-
fractive index and obtain Re[n] < 0. It is known that a description in terms
of macroscopic material response functions ceases to be adequate under such
conditions. The most important correction due to microscopic theories for
dielectric media which does not depend on the particular microscopic model
of the material is the Clausius-Mossotti local field correction factor. In this
chapter a quasi-macroscopic theory of virtual cavity local field correction
factors is generalized to magneto-dielectric media which display a non-trivial
magnetic permeability and the resultant effects of the combined local field
corrections are discussed. It will be shown that local field contributions on
a combined system of electric and magnetic resonances with an overlapping
spectrum have, under certain conditions, a rather peculiar effect.

85
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6.1 Introduction

The linear response of a medium composed of particles with a vacuum (elec-
tric) polarizability « is governed by the “local”, i.e., microscopic, field Ejyea
which acts on the constituents rather than the averaged Maxwell field E);.

Derivations of the local field acting on a particle in a solid located at r; usu-

Figure 6.1: Virtual sphere separating the near zone from the far zone.

ally separate the surrounding material in a part far from r; which is treated
macroscopically and the near vicinity treated in a microscopic fashion. This
separation into near and far zones is most often done by introduction of a
virtual sphere (cf. Fig. 6.1) with radius R which is supposed to be small
compared to the characteristic length scale over which the averaged field E,
changes. This length scale will in general be at least on the order of a wave-
length but can also be given by, e.g., the absorption length. Thus Eoca is
composed of the averaged Maxwell field and a contribution due to scattering

from surrounding particles

Elocat(ri) = Eyr(r;) + > EY. (6.1)
J#i
Here E¥ denotes the field at r; scattered from particle “5” located inside
the virtual cavity. This shows that the determination of the self-consistent
scattering solution and therefore the local field presents a genuine many-body
problem.
For dilute materials the contribution E¥ is negligible due to large averaged

separations between the constituents in the sphere with radius R. Thus
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the induced atomic dipole moment in linear response is solely given by the
averaged field p = aEj;. Therefore for spectral regions far off resonance
where the polarizability is small enough or a sufficiently small density of

polarizable particles the permittivity e is simply given by
e(w) =14 4moa(w). (6.2)

The polarizability a(w) is in general frequency dependent and g denotes the
number density of particles. Note further that the factor 47 stems from the
usage of Gaussian units. For a vanishing a(w) (6.2) simplifies to e(w) = 1
and thus to the case of propagation in vacuum.

In contrast the scattered field amplitude in dense media can differ signifi-
cantly from the Maxwell field E,; and is usually strongly space dependent on
length scales of the average nearest neighbor distance. As (6.2) establishes
a relation between the microscopic atomic or molecular polarizability o(w)
and the macroscopic response function e(w) this issue naturally is not cap-
tured by the theory of macroscopic electrodynamics which deals with fields
averaged over volumes which can contain a huge number of particles.

Surprisingly enough there are phenomenological treatments from a time
at which not even the particle nature of matter has been established. Mossotti
[107] and Clausius [108] independently calculated the dielectric constant of
metallic particles embedded in dielectrics and Lorenz [109] and Lorentz [110]
studied the corresponding refractive index!. The result is hence named
Clausius-Mossotti or Lorentz-Lorenz relation depending whether it is writ-
ten in terms of the permittivity ¢ or the refractive index n of the medium in
question.

Following a classical derivation of the local field effects for dielectric media
[40, 111] we turn to a quantitative treatment. As noted above the local field

(at any point) is decomposed as
Elocal =E) + Ez (63)

where the scattering contribution is summarized as an additional microscopic

internal field E;. The surrounding medium is assumed to be divided by a

1See [40, 111, 112].
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virtual sphere into an inner and an outer part as discussed above. This cavity
is assumed to be macroscopically small but still large enough to contain very
many identically polarized atoms. Following the discussion above the term
“macroscopically small” means that the macroscopic (averaged) polarization
P can be taken to be constant over the volume of the virtual cavity. To
obtain the local field quantitatively we evaluate the field strength due to the
polarized atoms inside the cavity for both a microscopic and a macroscopic

model:

(a) The atoms inside the cavity are considered to be arranged in a simple
cubic lattice. As the cavity is microscopically large we can approxi-
mately assume an infinite lattice with a discrete translational invari-
ance. Due to the macroscopically small radius of the cavity we further-
more assume the particles to be polarized equally both in magnitude

and orientation.

(b) The medium in the virtual cavity is treated macroscopically. Only the

total dipole moment of the medium inside the cavity is known.

The internal field E; thus is given by the difference of the microscopic and

the averaged macroscopic results:
E;, = E, — Eg,). (6.4)

The microscopic contribution E,) is determined by a summation of the field
amplitudes due to the dipole radiation patterns of all individual dipoles of
the infinite lattice which yields [40]

E(a) =0 (65)

due to the symmetry of the lattice. Note that the dipoles of the lattice are
not supposed to interact with each other directly. In contrast E,) is given by
the field strength inside a homogeneously polarized sphere with polarization

P [40] \
Eg,) = —%P. (6.6)

The local field Ejyca is therefore given by

4
Elocal = EM + %P (67)



CHAPTER 6. MACROSCOPIC APPROACH 89

From that one can find the connection between the microscopic polarizability
« and the susceptibility y using the corresponding definitions of the polar-
ization P. Microscopically it is defined as the average induced atomic dipole

moment which is proportional to the microscopic field strength Eijoca
4
P= op = Qa(w)Elocal - QO[((U) EM + ?P (68)

while the macroscopic susceptibility is defined as the ratio of P and the
average field E,

P = x(w)Ey. (6.9)
Here ¢ is the number density of atoms and p is the induced atomic dipole

moment. From (6.8) and (6.9) we readily find the sought local field correction
to the susceptibility [40, 93]

x(w) = — (6.10)

Equivalently the ratio Ejca/Eps of local and average field amplitudes can be
expressed using ¢ = 1 + 47y as the Clausius-Mossotti local field factor
e+2
B
which is also named Lorentz-Lorenz or virtual cavity local field factor for the

Lom (6.11)

case € = n’.
It is instructive to discuss the emergence of local field effects in gaseous
media. From chapter 7 it will become aparent that the Clausius-Mossotti

relations are implicitly contained in the Green function given by
G(r.,v') =G0, x") + ) / &riGO (r, 1) Vi(r1)G(ry, ') (6.12)

where V; denotes the optical potential of the ith particle and G© and G
denote the vacuum and full Green functions, respectively. As the positions
of the scatterers in a gas are not fixed one usually transforms (6.12) into a

non-discrete version using an averaged particle position distribution p(r).

Gr,v') = GO(r,r') + V / Erip(r)GO (r,11)GO (x1, 1)
(6.13)
+V? / d31"1d31"2p(1"1, 1'2)9(0) (I'a 1'1)9(0) (I'1, 1'2)9(0) (r2, rl) Tt
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The higher order terms are given by joint particle position propabilities, e.g.,
p(ry,r2) to find particle 2 at position ry under the condition that particle
1 is located at ry. These joint propabilities separate into single particle
propabilities

p(r1,r2) = p(ri)p(r) (6.14)

in good approximation which allows to simplify (6.13) for homogeneous single
particle distributions to

G(r,r') =G, 1) + QV/ d*r1GO(r,r))G(ry, ') (6.15)

which can be solved for G in Fourier space. This then yields expression (6.2)
for the permittivity. The mistake made assuming (6.14) in a continuum
description of the medium is for the case r; = ry, i.e., for the spatial nullset
for which 2 particles are physically on the same position. As this is not
allowed the joint probability has to vanish on this nullset. One might naively
argue that this should have no consequence as it affects only a nullset in
coordinate space. The importance of this nullset stems from the J-function
in the vacuum Green function G0 (cf. Appendix A) which leads to a finite
contribution. Removing the §-contribution in G(*) which effectively accounts
for p(r,r) = 0 results in the local field factor (6.10) [113]. Thus local field
effects are due to 2 particles being forbidden to take a single position which
is automatically fulfilled for the lattice model used above.

Experimental tests of the validity of the local field factor (6.11) make use
of the Purcell effect [114] named after E. M. Purcell who first claimed that the
natural linewidth of atomic resonances depends on the radiative density of
states. Most prominently this happens for emitters inside a resonant cavity
[115] for which the Purcell effect has been first confirmed experimentally
(116, 117, 118, 119, 120]. Similar to a resonator the mode spectrum of the
electrodynamic vacuum is shaped as well by the presence of only one metallic
or dielectric surface [121, 122, 123, 124, 125)%.

In order to alter the radiative density of states fundamentally a simple di-
electric medium suffices, however. For the case of decaying atoms embedded

in a dielectric material with a permittivity € and a refractive index n = /e

2Cf. also part III.
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the Purcell effect amounts to the correction of the spontaneous emission rate

according to [126]
T = nl. (6.16)

Here I' denotes the radiative decay rate which is compared to the corre-
sponding linewidth in vacuum I'y. Additionally local field factors apply to
(6.16) which have to be taken quadratically as the spontaneous decay rate is

proportional the square of the electric field
[ = nLiylo. (6.17)

In addition to the virtual cavity local field correction factor Loy there is a
second well known model which assumes a macroscopic dielectric medium
with a real cavity of radius R in the center of which the particular atom is
placed. One finds [127, Késtel2003]

B 3e
241

Lrc (6.18)

Interestingly enough both local field factors are applicable depending on the
system under examination. There are experimental reports which favor the
virtual cavity model [128, 129, 130] but also experiments which use the real
cavity correction factor [131, 132, 133]. As a bottomline, for pure media
the virtual cavity model seems to be valid [134, 135] while the spontaneous
decay of an atom of a different species embedded in a dielectric host material
can be governed by either Loy or Lre depending on whether the impurity
substitutes a host atom or is placed on an interstitial position [136, 137],
respectively. Hence for pure media with a negative refractive index we have
to consider Clausius-Mossotti virtual cavity local field correction factors as
well (cf. section 3.5).

6.2 Magneto-dielectric materials

As opposed to pure dielectrics, there is only little literature [93] about pure
magnetic media. As electric and magnetic effects in linear response are con-

nected by means of a duality transformation, pure magnetic materials with
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a permeability p are governed by a similar Clausius-Mossotti relation with
the electric polarizability «, replaced by the magnetizability c,,.

Even more general materials which involve electric and magnetic subsys-
tems simultaneously and thus are crucial to the understanding of negative
refraction have, to our knowledge, not been treated. Since in classical macro-
scopic electrodynamics the problems for the electric and the magnetic degrees
of freedom separate, Clausius-Mossotti relations have to be applied indepen-
dently. In order to understand the differences to pure media arising from this

treatment let us first consider a purely dielectric medium with a polarizability
e(w) = al(w) +ial(w) (6.19)

which does not depend on the density. In particular let us assume that

the linewidth of c.(w) is density independent and the medium is radiatively

broadened. Using (6.19) the high density limit of the permittivity ¢ = 1 +

47x(w) including Clausius-Mossotti local field corrections (6.10) is found to

be B

B, S 9o (w) 4
Ao (w)[?

We note that for sufficiently high densities the response saturates at a value

e(w) (6.20)

of —2 while the imaginary part vanishes as 1/0. Thus the corresponding
refractive index will attain a purely imaginary value n = iv/2, i.e., the local
field corrections ensure that high densities lead to increasing absorption and
ultimately to the emergence of a stop band for which the medium becomes
totally opaque.

In order to analyze this general result in more detail we assume a single

resonance polarizability
1

:ﬁA—w

as in (2.3). The effect of virtual cavity local field factors to the macroscopic

e (w) (6.21)

response then amounts to

d?o

£(w) = 1+ 4m (6.22)

with the density dependent Lorentz frequency shift A, = %’T%g [138]. The

detuning is given by A = wy — w where wy denotes the atomic resonance
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Figure 6.2: Real (solid) and imaginary (dashed) parts of the permittivity
e(w) as well as the imaginary (dotted) part of n(w) = \/e(w). Figures (a),
(b), and (c) show spectra as a function of the detuning ¢ for (a) N = 0.01,
(b) N =0.1, and (c) N = 1 while (d) shows the dependence of £(0) and n(0)
on the rescaled density parameter N.

frequency. Figure 6.2(a) shows a spectrum of (6.22) as well as Im[n(w)] =
Im[y/e(w)] as a function of the dimensionless detuning 6 = —A/v for the
rescaled (dimensionless) density parameter N = d?o/(2hy) = 0.01, i.e., in the
linear limit for which local field corrections do not contribute significantly. In
Figures 6.2(b) and 6.2(c) similar spectra are shown for N = d?o/(2hy) = 0.1
and N = d?o/(2hy) = 1, respectively. We observe that, as soon as the
response differs significantly from 1, the resonance shifts to lower energies
due to the Lorentz shift while the strength of the response increases due to
the fundamental dependence of e(w) on the density o. As a result the values
of the permittivity and the index of refraction attain the values £(0) = —2
and n(0) = i1/2 with increasing density as shown in 6.2(d). We note that

the absorption Im[n(w)] increases monotonically with increasing density. We
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Figure 6.3: Real (solid) and imaginary (dashed) parts of the permittivity
e(w) and the permeability p(w) as well as the imaginary (dotted) part of
n(w) = v/e(w)p(w). Figures (a), (b), and (c) show spectra® as a function of
the detuning § for (a) N =0.01, (b) N = 0.1, and (c) N = 1 while (d) shows
the dependence of the response functions (0) and x(0) as well as n(0) on

the rescaled density parameter N.

stress again that this analysis does not depend on the nature of the resonance

and thus is valid for magnetic resonances as well.

If the Clausius-Mossotti relations are assumed to apply independently to
the electric and magnetic subsystems a dramatic change occurs for media
with overlapping electric and magnetic resonances. Denoting the magneti-
zability by o, (w) = o, (w) + i/ (w) yields an identical limiting behavior
of the permeability for high densities compared to (6.20). Hence both the
permittivity and the permeability asymptotically attain values of ¢ = —2
and ;¢ = —2 independently. In contrast to pure media this does not lead

to strong absorption, though, but rather to a negative refractive index with



CHAPTER 6. MACROSCOPIC APPROACH 95

vanishing absorption for increasing densities

n(w):—2+i< fag(w)  9an(w) )Ql. (6.23)

8rlac(w)*  8rlam(w)?

This quite peculiar behavior is illustrated in Figs. 6.3(a)—(c) which show the
spectra of a permittivity and permeability with a spectral overlap®. The
Lorentz shift applies independently to both degrees of freedom. Hence when
both material functions develop negative real values the index of refraction
becomes negative as well. Figure 6.3(d) shows the density dependence of
the material functions taken at zero detuning. It is apparent that due to
the Lorentz shift with simultaneous increase of the response strength the
refractive index attains n = —2 + 40 in the limit of high densities.

In conclusion, an increase of the number density of scatterers leads to a
decrease of absorption. This most unexpected behavior seems unphysical and
demands a more profound investigation on the basis of a purely microscopic

model.

3 Tt is not relevant which resonance line is assumed to be the magnetic one.






CHAPTER 7

Microscopic model of local field corrections in

dielectric media

As mentioned above the derivation of local field corrections is a genuine
many-body problem, which is an aspect not considered in the macroscopic
treatment of chapter 6, and hence is not capable of a satisfactory support of
the result of section 6.2. In addition it does not give any information about
the kind of polarizability «(w) that has to enter the macroscopic permittivity
(6.10) for the case of dense media. One might expect to find a polarizability
dressed by the surrounding medium.

In order to address these questions we will present in the following two dif-
ferent microscopic derivations of local field effects in dielectrics which include
many-body physics: The solution of the electromagnetic multiple scattering
problem of a lattice model and the solution of the Heisenberg equations
of motion for the electric and magnetic field operators in reciprocal space.
Both models will be needed for a subsequent generalization to magnetic and

magneto-dielectric media.

7.1 Formal considerations

In order to describe dielectric materials microscopically and thus include

many-body effects we consider a simple cubic lattice of atoms with an electric

97
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Figure 7.1: Microscopic model of a pure dielectric material. Polarizable
particles with a polarizability a(w) form a simple cubic lattice with lattice

constant a.

dipole moment a(w) (Fig. 7.1). Note that we assume any effects of permanent
dipole moments to vanish exactly. The connection between the electric field
E(r,w) and the Polarization P(r,w) in linear response approximation can be

written

P(r,w) = a(r,w)E(r,w) (7.1)

with a dimensionless function a(r,w). Note that a(r,w) fulfills the relation
a(r,w) = a(r + R,w) for any lattice vector R = a(ne, + me, + le,) of
the simple cubic lattice. Here a is the lattice constant of the simple cubic
lattice and {n, m, [} are integer numbers. Note further that the r-dependent
function a(r,w) is not the polarizability of the atoms but generalizes the
factor pa(w) in (6.8).

In order to find the dispersion relation k(w) and thus the refractive index
including local field effects we continue by formulating the basic equation
governing the electromagnetic many-body problem in terms of a Helmholtz
equation. To do so we start with the Heisenberg equations for the electric

and magnetic field operators in dielectric media which are given by Maxwell’s
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equations
V.-B(r,t) =0,
. (7.2)
V- D(r,t) = 4no(r,t)
as well as
~ 1 ~
V x E(r,t) + —QB(r,t) =0,
f%t 4 (7.3)
V x H(r,t) — EaD(r,t) = ?_](r,t).

Here ¢(r,t) and j(r, t) are the charge density and current density operators
of the free sources, respectively. We Fourier transform (7.2) and (7.3) with
respect to time which, along with H(r,w) = B(r,w) for dielectric media,

which yields

V- B(r,w) =0,
. (7.4)
V D(r,w) = 47o(r,w),
A WA
V x E(r,w) —i—B(r,w) = 0,
c
X o Art (7.5)
V x B(r,w) +i—D(r,w) = —j(r,w).
c c
Utilizing the continuity equation in Fourier space iwg(r,w) = V -j(r,w),

equations (7.4) follow immediately from (7.5). Eliminating the magnetic
field B(r,w) from (7.5) and letting D(r,w) = E(r,w) + 47P(r,w) thus leads
to the vectorial Helmholtz equation

2

A

2
V X V x B(r,w) — —B(r,w) = dri=j(r,w) + dr—=P(r,w)  (7.6)
C C

w
2
which in the following serves as a starting point for the determination of
the dispersion relation k(w) and thus the local field corrections to the linear
response. As a(r,w) is assumed to model the microscopic spatial positions
of electrically polarizable particles as well as corresponding atomic charge
densities, E(r,w) represents the microscopic electric field including many-

body scattering contributions.
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7.2 Multiple scattering in real space

As we will see, one way to solve (7.6) in general is the use of Green function
techniques within a multiple scattering formalism. We thus introduce the
complex valued classical Green tensor G(r,r’,w) which relates the electric

field operator E(r, w) at r with the source current density at position r’

- LW 3
E(r,w) = —4mg dcr'G(r, v, w)j(r',w). (7.7)
We emphasize that unless we restrict to some particular polarization G = G;;
is in general a tensorial function. As discussed earlier for linear media the

polarization operator f’(r, w) is related to the electric field operator via

P(r,w) = a(r,w)E(r,w). (7.8)
Here only the electromagnetic field is treated quantum mechanically. The
dynamics of each atom of the lattice is assumed to be already solved inde-
pendently and its effect is summarized in the c-number polarizability a(w).
As this restricts the approach to the perturbative linear response limit and
assumes fixed positions of the scatterers, cooperative effects such as super-
and subradiance [139, 140] as well as effects due to center of mass proper-
ties of the atoms like atomic scattering and phonons which represent effective
broadening mechanisms in solid state physics are not contained in the theory.
The many-body aspects are reduced to electromagnetic back-action due to
scattering of photons which suffices to describe local field corrections. Note
that a(r,w) is in general a tensorial, complex-valued function of space and
frequency.

We insert (7.7) together with (7.8) into (7.6) which results in the classical

Helmholtz equation for the tensor Green function G(r,r’,w)

2 2
C‘C}—Qll — V' x V' | G(r,r,w)=0(r—r')1 — 47rucj—2a(r,w)g(r, r,w). (7.9)

Note that the coefficient in (7.7) has been chosen such that only a §(r — ')
contribution remains from the source current density j(r, w) and that the sign
on the left hand side complies with the convention of [134]. Note again that

(7.9) contains no quantum mechanical operators. Thus the Green function
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formalism combined with the approximations mentioned above allows one to

map the quantum mechanical to a purely classical problem.

7.2.1 General solution

In the following we show that the general solution of (7.9) naturally leads
to an interpretation in terms of multiple scattering, even for the simple case
of a single scatterer in vacuum. We first note that the full Green function

G(r,r’,w) fulfills a Dyson equation

G(r,r',w) =G -1 w) - 47rucj—22 /dgrlg(o)(r —r,w)a(r,w)G(r), ', w)

(7.10)
which can be seen immediately from the Helmholtz equation (7.9). Unfor-
tunately G(r,r’,w) is determined by (7.10) only through an integral relation
in terms of a(r,w) and the vacuum Green function! G (r — v/, w). Hence,
(7.10) in general demands a self-consistent treatment. For the sake of gener-
ality we define the optical potential V (r,r’,w) = —47r“c’—§a(r, w)d(r —r’) such
that (7.10) reads

G(r, v w) = Q(O)(r—r',w)+// Brid’ryG0 (r—11,w)V (1, Ty, w)G(re, 1, w).
(7.11)
To interpret the aspects of multiple scattering equation (7.11) is frequently

represented graphically in terms of diagrams

r r r r r ry_ I r

/ /
where r=.‘=r and I+r denote the full and vacuum Green

tensors G(r,r’,w) and G (r,/r’ ,w), respectively, while the optical potential
V(r,r’,w) is denoted by Yol

In order to investigate (7.11) systematically we introduce a notation sim-
ilar to Dirac’s brackets of quantum mechanics. This allows us to formulate
the theory in a coordinate independent manner which simplifies the amount

of algebra significantly. To this end we interpret all constituents of (7.11) as

LCf. Appendix A.
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operators of an abstract Hilbert space, e.g., G(w), V(w) etc. The correspond-
ing representations in real space are then given by a scalar product with real

space state vectors |r). In particular
Ve, v w) = (r|V(w)r') (7.13)

leads to the aforementioned definition of the optical potential since V(w) =

2 A . . .
—4m*ra(w) is diagonal in real space

2

. w
V(w)lr) = —47?0—2a(r,w)|r> (7.14)

and the state vectors |r) fulfill
(r|r"y =o(r — 1'). (7.15)

The operator G(w) of the Green function?® relates the state of the current
density to the state of the electric field

)E(w)> -~ —47Ti£§’;(w)’j(w)> (7.16)

2

which evaluates to (7.7) under a projection onto real space. This follows from

E(r,w) = <r E(w)> (7.17)

and the completeness relation

/d3r Ir)(r| = 1. (7.18)

Following these guidelines the coordinate free version of the integral equa-
tion (7.11) reads

G(w) =GV w) + GV (W)V(w)G(w) (7.19)
which is sketched in a similar way as above.

2We observe that all such representation independent operators are elements of just one

abstract Hilbert space. This concept thus serves only as a means to simplify the algebra.
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Note that in contrast to (7.12) no coordinates appear. On the same lines
(7.19) can be used to find the Fourier representation by evaluating the cor-
responding matrix elements.

Unlike the real space version (7.11), the abstract form (7.19) gives a closed
formula for the full Green function G(w). Instead of straightforwardly solving

(7.19) for G(w) it is instructive to obtain the result by iteration which yields

~ ~ ~ ~

G(w) = GVw) + GV )V (W)G (@) + GOV ()G WV ()G (w) +...

(7.21)
This can be cast in the form
G(w) =GV (w) + GO (W) T(W)GV(w) (7.22)
which serves as the definition of the scattering T-matrix
T(w) = V(W) + V(WG wWV(w) +... (7.23)

of the system which is entirely given by the known optical potential V(w) and
the vacuum Green function G© (w). In the diagram representation equation
(7.22) reads

where the rectangular box represents the T-matrix. This equation is straight-
forwardly interpreted. The propagation of an electromagnetic wave in a
polarizable medium [G(w)] is given by a vacuum contribution [G© (w)] and
a scattering part which consists of a vacuum propagation scattered at the
lattice followed by yet another propagation in vacuum. The direction and
amplitude of the scattering are contained in the T-matrix which we denote
as an empty square and which is given entirely by the optical potential V(w)

and the vacuum propagator
I:I:o+o—<—o+o—<—o—<—o+... (7.24)

Thus from (7.24) we see that the effective scattering T-matrix can be in-
terpreted as an infinite superposition of fundamental scattering events to all
orders in the optical potential V(w), hence the term multiple scattering. This

is a characteristic feature which is already found in classical problems, e.g.,
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the transmission properties of a Fabry-Perot interferometer can be explained
by an infinite superposition of multiple reflections (scattering events) at the
mirrors [141].

We conclude the general treatment by noting that the geometric sum
appearing in (7.23) can be summed formally to a closed formula for the

scattering T-matrix

T(w) = V(w) f: [g}<0>(w)f/(w)]" =V (w) [1 - Q(O)(w)V(w)] T (799)

n=0

Similarly the full Green function G(w) is given by?

G(w) = [1- GO W)V (w)] eI (7.26)

Hence the solution of the full scattering problem and therefore the Helmholtz

equation (7.6) can be expressed in terms of G(w) or T'(w), respectively. Un-

K R —1
fortunately a particular representation of the operator [Il - g (w)V(w)]

can be obtained analytically only for systems with a high intrinsic symmetry.

7.2.2 Single scatterer

The most fundamental example of a system for which the inverse operator
[]l -G (w)f/(w)} B can be obtained analytically is a single point-like scat-
terer located at r, in free space (vacuum). To find the full Green function as
well as the scattering T-matrix we separate a(r,w) in the frequency depen-
dent polarizability a(w) and a space dependent term which for a point-like

particle is given by a single Dirac delta-function
a(r,w) = a(w)d(r —ra). (7.27)

With (7.14) and (7.18) we find for the single particle scattering T-matrix?
t(r,r',w) = (r|T(w)|r') from equation (7.25)

Hr W) = /d3r1<r|\7(w)|r1><r1| 3 [Q<°> (w)V(w)}" /). (7.28)

3Cf. equation (7.19).
4which we denote by a small ¢
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The recursive application of
(1] GO W)V (W)lrs) = GO (r1 = 14, 0)V(@)d(rs —14) (7.29)

then yields for the T-matrix
Hr, v w) = V(W) [1 = V(@)G@0,w)] " 6(r —ra)d( —ra).  (7.30)

Here V(w) = —47?“2—2204@) [note the difference to the operator V(w)] is the
frequency dependent optical potential of the point scatterer. Like a(r,w)
the T-matrix can thus be separated into a space dependent and a dispersive
part:

tr,r,w) =tw)d(r —r)d(r' —ry) (7.31)
with

1

V(w)=11 - GO (0,w)
The corresponding full Green function G(r,r’,w) is found immediately from
(7.22) and reads

t(w) =

(7.32)

G(r,r',w) = Q(O)(r —rw)+ t(w)g(o)(r — T, w)g@)(u —rw). (7.33)

Thus a field generated at point r’ and observed at r consists of the unper-
turbed (vacuum) propagation interfering with a term which stems from a free
propagation to the point-like atom located at r4 from where it is scattered
with an amplitude #(w) to the detector which is placed at r.

Note that only the use of a point-like scatterer allows to sum the T-
matrix exactly. As a drawback the T-matrix incorporates the vacuum Green
function taken at the origin G(®(0,w) which is divergent [134] and thus leads
to an unphysically vanishing 7T-matrix. One way to obtain finite physical
quantities is to regularize G(°)(r, w) by introducing cut-off parameters Ap and
Ay in reciprocal space for the transverse and longitudinal parts of the Green
function, respectively. In order to find the physical T-matrix the additionally
emerging terms due to the cut-off parameters need to be interpreted along
the lines of some atomic model with a finite support [134] instead of pointlike
particles. Unfortunately the regularization procedure is not unique and as a
result the T-matrix is not unique as well. This leaves unwanted ambiguities

which do not allow for a comparison to experimental data.
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This discrepancy is solved by the assumption that the potential V(w)
and likewise the polarizability a(w) of a mathematical point particle do not
belong to physical reality but are just unphysical notions which are commonly
denoted by the term “bare” potential and “bare” polarizability, respectively.
Only the sum of the unphysical inverse potential and the unphysical divergent

Green function G (0,w) gives the real, observable potential
Viw) ™ =V(w) 1 -690,w) (7.34)

which we denote by a tilde. Correspondingly the physical polarizability &(w)

reads
2

dw) ™ = —dr =V (w) (7.35)
c
The T-matrix hence is now identical to the physical potential
t(w) =V(w). (7.36)

Thus the interpretation of the T-matrix in terms of multiple scattering events
is only valid for the bare potential. The renormalized scattering amplitude
of a single physical scattering event emerges as multiple scattering series of

bare events.

7.2.3 Simple cubic lattice of point dipoles

Having solved the scattering problem for a single particle we will next con-
sider a whole lattice of point-like scatterers following [134]. The dispersion
relation, which contains information about local field corrections for dense
media, will then be given by the T-matrix.

We assume a simple cubic lattice of point dipoles like the ones from section
7.2.2. Again a(r,w) separates in the polarizability a(w) which is assumed to

be identical for all lattice sites and a lattice function
a(r,w) = a(w) Y d(r—R). (7.37)
R

The lattice vectors R of the simple cubic lattice are given by R = R,y =
a(ne, + me, + le,) for integer {n,m,l}. In contrast to the case of just one

scatterer here the system has a discrete translational symmetry

alr+ R,w) = a(r,w) (7.38)
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for any lattice vector R. We therefore introduce a reciprocal wave vector
k = k— K which separates into a contribution k from the first Brillouin zone
(1.BZ) and a reciprocal lattice vector K. The reciprocal lattice vectors are
defined by R - K = 27m with an integer number m and form a simple cubic
lattice themselves with lattice constant 27/a. Note that the sign of K has
been chosen such that our definition corresponds to [134]. The completeness

relation in reciprocal space can hence be written

1= /Rgd?»f{\f{xf{\ _ ;/V Pk [i) (K]

:Z/Vd3k|k—K><k—K|.

Here Vi denotes the volume of the first Brillouin zone and Vi_k the same

(7.39)

volume but centered around —K. We thus express the electric field by its

Fourier components
E(r,w) = Z/ &k (r]k — K><k - K‘E(w)>
K 7V

(7.40)
=(2m)~3/2 Z /v Pk TRk - K w)
K k

where we used
(r|k) = (2m) 32T, (7.41)

Due to the quasi-homogeneity of the material composed of the lattice of
point particles the eigensolutions are plain waves with a dispersion relation
k(w). This dispersion relation implicitly contains the sought connection be-
tween the microscopic polarizability a(w) and the (macroscopic) susceptibil-
ity x(w), i.e., the Clausius-Mossotti local field corrections. It can be shown

[142] that the dispersion relation k(w) is determined by
det [T'(k,w)~"] =0, (7.42)

the determinant of the inverse scattering 7T-matrix. In order to find k(w) we
thus, as for a single scatterer, explicitly sum the diagram series (7.25) to find

the T-matrix of the simple cubic lattice represented by (7.37). In contrast
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to the case of a single dipole we now seek the T-matrix in k-space

T(k, X, w) =(k|T(w)|k)

://d3r1d3r2<k|r1)<r1|V(w) Z [G(O) (w)f/(w)r |ra) (ro|K).

n

(7.43)

For the first summand (n = 0) of (7.43) we employ the representation of
V(w) in k-space

V(w) o—ik—K)R
@) %: . (7.44)

For higher terms we need to evaluate summands like

- V(w) 3.. —ikR _ik'rs 5(0 > "
S, = (2@3% / drae KRk r2 (R [g< >(w)V(w)} Is) (7.45)

for any positive integer n > 0. For n = 1 we find

Si= fpt e I () Y e HRGOR ) (140

R

where the summation index R’ from the real space representation of the
second optical potential term V(w) has been replaced by the lattice vector
R = R — R/ which for any R corresponds to a finite shift of the infinite sum.
Note that this procedure is only valid for an infinitely extended medium.
With the same technique we find for Sy

- 42

Sy =15 > e MRV ()Y e RGO(R W) | (7.47)

R R

By iteration one easily finds that in general for S,, we get

5, = L) D e IRV () Y e M RGO(R W) | (7.48)

(2m)* R R

Similar to the formal solution of the diagram series here the summands of
(7.43) form a geometric series. Hence the scattering T-matrix of an infinitely

extended simple cubic lattice of point dipoles reads [136]

T(k K, w) = (2m) %) e IR {V(w)l =) e RGO(R, w)}
B " (7.49)
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where, as above, the “bare” optical potential V(w) is given by the polariz-
ability via V(w) = —47T°;’—22a(w).

As for a single scatterer we encounter a term proportional to the divergent
G (0,w) which we combine as in (7.34) with the “bare” potential V(w) to
the physical potential of a single scatterer in free space, V(w) The such

renormalized physical T-matrix for a lattice of point particles reads

T(k, K, w) = (2m) ) e KR {f/(w)—l =) e RGO(R, w)}

R R#0
(7.50)

which now only involves the physical polarizability of a single particle f/(w)
and the contribution due to the multiple scattering to all orders at the lattice.
It is this scattering part which leads to the Clausius-Mossotti local field
corrections.

In order to prove this statement we need to sum the scattering contri-
bution, which unfortunately cannot be done exactly. We therefore establish
an approximate result for the limit of high densities of scatterers ¢ in which
ka < 1 for the wave vector k = |k| and the lattice constant a holds. We

start by artificially including the R = 0 term in the summation
> e RGOR, w) =Y EZ(R))e *FGO(R,w). (7.51)
R0 R
In order to exclude the singular point R = 0 the smooth function Z(|R]) is
introduced which vanishes at the origin exactly, Z(0) = 0, and approaches

unity on a length scale which is small compared to the lattice constant a. By

application of Poisson’s summation formula [143]

IRIOERY / h dx f (z)e2mike (7.52)

n=-—00 k=—o00
the sum over lattice vectors is transformed into a real space integral plus a

sum over reciprocal lattice vectors

S GO Rw) =3 [0 g, ey

R0 K

The appearance of the reciprocal lattice vectors K in (7.53) reflects the dis-

crete nature of the medium. In the continuous medium limit ka < 1, i.e.,
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when the wavelength of the radiation in question is large compared to the
lattice spacing, the medium is essentially homogeneous and we are allowed
to keep only the K = 0 term in the sum. Thus for high densities the sum
in (7.51) is being replaced by an integral which, importantly, excludes the
origin by means of the function =. Note that the restriction to low wave
numbers K = 0 corresponds to a spatial averaging over volumes with a di-
ameter of at least the lattice constant a [40] by which we formally transform
the microscopically treated medium to an averaged material as it appears in
macroscopic electrodynamics.

In the following we evaluate (7.53) by explicitly setting

[1]

(r)=1—e""/% (7.54)

which fulfills the condition Z(0) = 0. As we only deal with high densities
we only want to solve the integration in the limit A — 0. We introduce the

Fourier transform of the retarded vacuum Green function (see Appendix A)

—— 1
(0) =
G0 (p,w) (W2/c? +ie)l — p?A,
1 1
_ A, + ——p
w?/c? — p? +ie p+w2/02p

(7.55)

®Pp
into (7.53). For the special case of (7.54) we hence find

) 1 —
Z e~ KRG(0) (R,w) %_3g(0)(k7 w)
R#0 “
1 1

a3 (2m)3

/d‘gpé(\o/)(p,u))/d?’re”2/A26i(pk)"r
(7.56)

As the r-integration represents just a Fourier transform of the Gaussian, this

can be simplified to

, 1 —=
Z kR (0) (R,w) %_3g(o)(k7 w)
a
R70 (7.57)

LaAY2A% [ e
@ (2n) / d*pG©) (p, w)e ¥ P
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The remaining p-integration is performed in spherical coordinates. To do so
we expand the angle dependent terms of the Gaussian for small A

7.58
A?/2(k.pcos + kypcos ¢sin @ + k,psin 0sin ¢)] (7.58)

but keep the exponential for the p = |p| dependent contribution that provides
a cut-off in reciprocal space. Having performed the integration over the angles

0 and ¢ we are left with just one integration over p

: 1 —— 1 w3/2A3
kR ~(0) ~_— (0 -
Z ¢TGT(R, W) Na3g( (k) a’ (2m)?
RA0
2
s 4%(3w—2 — p* +ie) (7.59)
- / dppe ¥ 0TI 1

which can be carried out analytically. As mentioned above, for the continuous

media limit we restrict to the zeroth order in A for which we finally obtain

kR (0) ~Llco IR S
E "GV (R, w) agg (k,w) EEW R
R#£0

(7.60)

Thus the approximative renormalized T-matrix (7.50) for high densities for

the case of a simple cubic lattice of point electric dipoles reads

R | - 1 1 1 !
T(l K, w) = (2m) 74 Y etk ’R{V<w>—1——3g<°><k,w>+— ﬂ} |
a
R

a3 3w?/c?
(7.61)
The only unknown parameter left, the dispersion relation k(w), is fixed by
the condition (7.42). We hence have to determine the root of the determinant

of the inverse T-matrix which explicitly reads

1 1 11
det | — w2a<w) —EQ(O)(kM)ﬂLE?)T/CQﬂ = 0. (7.62)

4 —
2

To comply with the notation of chapter 6, we replace 1/a® by the number

density of scatterers p. For an isotropic polarizability a(w) = a(w)l we
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expect the permittivity to be isotropic as well and the dispersion relation to

be quasi-scalar k(w) = k(w)k. We solve (7.62) for the permittivity e(w) given

by k(w)? = e(w)w?/c* from which we find the Clausius-Mossotti relation

(7.63)

which is identical to the expression found from macroscopic considerations.

In contrast to (6.10), here the free space single-particle polarizability a(w)
appears explicitly, which was not clear from the macroscopic treatment. This
results from the fact that only radiative interactions between atoms are cov-
ered by this treatment. Scattering processes between atoms and phonons
will contribute significantly to the effective polarizability.

We note that the derivation of (7.62) is not restricted to scalar polariz-
abilities. The procedure developed above is therefore also applicable to more
complicated situations, such as birefringent crystals. As a general example

we consider the anisotropic but diagonal polarizability

a;(w) 0 0
alw) = 0 ayw) 0 : (7.64)
0 0 a,(w)

Note that we can always find a coordinate system in which the tensor a(w)
has the structure of (7.64) due the general symmetry properties of pure di-
electric response tensors [75, 85]. We then find for a wave propagating in

a-direction k = k(w)e, two distinct solutions

o (W) = 14 dr— ) (7.65)

and

g(w)=144r (7.66)

47
1 — —opc,
5 04 (w)

for linear y- and z-polarization, respectively. For waves traveling in other
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directions similar results apply. Hence the permittivity reads

00 () 0 0
4
1— EQO@;(W)
e(w) = 1+4n A7 . (7.67)
11— ?Qay(w)
Q&z(w)
0 0 T

7.3 Solution in reciprocal space

In the following we will pursue a different approach to find solutions of
the Helmholtz equation (7.6) that will become important for non-pure, i.e.,
magneto-dielectric materials. Conceptually we have dealt up to now with
scattering effects of a wave traveling from a spatial point r’, at which it has
been excited, to a point r. In contrast, we will now look for electromagnetic
field eigensolutions in the lattice system following [134], i.e., we consider the

Helmholtz equation (7.6) without free sources:
2 2

A~

V x V x B(r,w) — %E(r,w) - 4W%P(r,w). (7.68)

As before, the polarization is connected to the electric field strength via

P(r,w) = a(r,w)E(r,w), and a(r,w) separates into the polarizability a(w)
and the spatial distribution function for the simple cubic lattice of point
electric dipoles

_ aw)

a(r,w) =a(w) Y dr—-R)= D ek (7.69)

a3
K

Note that we also give the representation in terms of reciprocal lattice vectors
K, which can be obtained by means of Poisson’s summation formula (7.52).
With the representation of the electric field vector in reciprocal space (7.40)

the Helmholtz equation thus reads

/V dk > {i—j + (k- K) x (k- K)x} Bk — K,w)e'¥r =

w® Oé((x)) iK'r i(k—K)r
k

K K’

(7.70)
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Note that with p x px = — |p|2Ap the term in the brackets on the left
hand side represents the inverse vacuum Green function in reciprocal space
(7.55). On the right hand side we replace the summation over K’ by K” =
K — K’ and afterwards interchange the notations for K and K”. Since
Jy, dk >k - e'&=K)r s an ordinary Fourier transformation we obtain the

Fourier transformation of the Helmholtz equation by restriction to the kernel

[(ﬁ(k—K,w)] B(k - K, w) 24 SESBK - K W) (T71)

K"
Note that the effect of the lattice now manifests itself in a coupling of el-
ementary waves with different reciprocal lattice vectors K. We proceed by
multiplying with é(\o/) (k — K,w) from the left and summing everything over
K. This results for a plane wave solution Ex(r = 0,w) = S E(k — K, w)
to a given wave vector k in the fundamental algebraic (in polarization space)

set of equations

Y GOk —K,w)+ — | B0w=o. (7.72)
K

w” a(w)

c? ad

Nontrivial solutions to the Helmholtz equation therefore exist if and only if

the determinant of the system matrix

det Zéﬁ(k—K,wH% =0 (7.73)
K

w? a(w)

2 a?

vanishes. Again the only free parameter left in (7.73) is the wave vector
k(w). Note that this condition corresponds exactly to (7.42) for dielectric
media. This follows immediately from comparing (7.72) and (7.49) together
with the corresponding relation between the bare polarizability a(w) and the

bare optical potential V' (w) using (see Appendix A)
1 c0) —i
=2 00k -Kw) =3 e " GOR,w). (7.74)
K R

Correspondingly the infinite sum over K in (7.73) contains the divergent

GO(0,w). As in section 7.2 the physical polarizability &(w) is introduced as



CHAPTER 7. DIELECTRIC MEDIA 115

the combination (7.34) of the bare optical potential V (w) and G (0,w). As
expected, the treatment in reciprocal space thus gives the same dispersion
relation as the Green function formalism. But only the multiple scattering
Green function technique allowed us to find the single scatterer result which

appears in the renormalization treatment of the lattice.






CHAPTER 8

Magnetic media

Local field effects are of course not restricted to dielectric materials. Although
atomic magnetic dipole transition moments are usually orders of magnitude
smaller than corresponding electric dipole transition moments, local-field cor-
rections can become important in pure magnetic systems or artificial media,
such as metamaterials, for which magnetic dipole moments can have the
same order of magnitude than corresponding electric dipole moments. Thus
along the lines of chapter 7 we will now analyze local field corrections for
diamagnetic! media. Similarly as for dielectric materials we will make use of
a simple cubic lattice of point magnetic dipoles (see Fig. 8.1) which will allow
us to sum the diagram series of the T-matrix analytically and determine the
dispersion relation which includes the Clausius-Mossotti corrections.

We start with a classical treatment similar to the dielectric case. Along
the same lines as for dielectrics (cf. chapter 7) one can show [93] that the local
magnetic field, i.e., the field which excites the individual magnetic dipoles
on a microscopic level, is given by the macroscopic magnetic field H and the

magnetization M as

4
Hlocal =H+ ?ﬂ-M (81)

The magnetization M itself is defined by om where p denotes the number

density of the magnetizable particles and m the induced magnetic moment.

! As for dielectric media no permanent dipole moments is assumed to exist.

117
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Figure 8.1: Microscopic model of a pure diamagnetic material. Point mag-
netic dipoles with a magnetizability ay(w) form a simple cubic lattice with

lattice constant a.
For linear media, m is proportional to the local magnetic field
m = aH(w)Hloca1 (82)

where oy (w) denotes the corresponding magnetizability constant. We elim-
inate Hj,.a and obtain a connection between the macroscopic fields H and

M in terms of the microscopic factor ay(w). As in chapter 7 we find

M = ooy (w) (H + Z%Tm) (8.3)

which can be compared to M = x,,,(w)H. The magnetic susceptibility x,,(w)

thus reads

o (w)
X (w) = — 2 (8.4)

1— ?QaH(w)

which is in exact analogy to the dielectric result (6.10). As in the dielectric
case we treat this case in the following in a fully microscopic treatment based

on a simple cubic lattice of point scatterers.
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8.1 Multiple scattering in real space

Similar to the macroscopic treatment above we construct a microscopic the-
ory in one-to-one correspondence to the dielectric case. We derive from
Maxwell’s equations (7.2) and (7.3) a Helmholtz equation for the magnetic
field. In contrast to the dielectric case, the electric displacement operator is
now given by D(r,w) = E(r,w) whereas the magnetic field is related to the
induced magnetization via B(r,w) = H(r,w) 4+ 47M(r,w). This results in
the vectorial Helmholtz equation

2 2

~

~ ~ 4 ~
V x V x Hr,w) — %H(r,w) - gv x j(r,w) + 47r°:—21v1(r,w). (8.5)

Under the assumption of linear media the magnetization is proportional to
the magnetic field

~

M(r,w) = o (r,w)H(r,w) (8.6)

with ay(r,w) being the independently obtained single particle magnetizabil-
ity modulated with a spatial distribution function. We introduce the Green
function Gy (r,r’,w) indicated with g in order to make a distinction to the

electric case by

A 4 PR
H(r,w) = S dEr'Gy(r, v, w)V" x jr',w). (8.7)
c

The magnetic Helmholtz equation (8.5) hence translates to the defining equa-

tion for the Green function

ucj—jll — V" x er] Gu(r,r',w)=4(r—r)1 — 4wi—jaH(r,w)gH(r, rw).
(8.8)
Note that the form of (8.8) is equivalent to the corresponding dielectric equa-
tion (7.9). Without any further calculations we therefore summarize the re-
sults for the scattering at a single magnetic point dipole in vacuum and a

simple cubic lattice of magnetic point particles, respectively.

(a) For a single point magnetic dipole ay(r,w) consists of the magnetiz-

ability ay(w) which acts at a single position r4

ap(r,w) =ag(w)d(r —ry) (8.9)
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The corresponding single particle T-matrix then reads
ty(r, v’ w) =ty(w)d(r —ra)o(r' —ry4). (8.10)

where the spectral scattering amplitude ¢y (w) contains the divergent
term g}f)(o, w) which we together with the bare magnetizability inter-
pret on the lines of (7.34) as the physical magnetizability ay(w). As a

result the renormalized T-matrix reduces to
ty(w) = Vi (w) (8.11)

with Vi (w) = —4m(w?/c?)ap(w) being the physical optical potential.
Note that the vacuum Green function for the magnetic case g}f,))(r —
r',w) is of course identical to the vacuum Green function G (r —r', w)
for the dielectric case. To simplify the notation in the following we will

therefore only use GO (r — r',w) rather than G\ (r — r', w).

For a simple cubic lattice of magnetic point particles with a magnetiz-

ability ay(w) we set
an(r,w) =ap(w) > d(r—R). (8.12)

By comparison with (7.50), this leads to the expression

-1
TH(k, k/, w) _ (2711-)3 Z e—i(k—k/)R{VH(w)—l_Ze—ik’Rg(O)(R’ w)}
R R£0
(8.13)

for the renormalized scattering T-matrix of the lattice. By exploiting

the determinantal condition (7.42), we determine the dispersion rela-
tion k(w) for the high density limit (ka < 1). In contrast to section
7.2 the wave vector for a scalar magnetizability oy (w) is now related
via k(w)? = p(w)w?/c? to the permeability pu(w) = 1 + 47y, (w) of the
medium rather than the permittivity. It reads
oy (w)
A _
1 — —opag(w)
3
All conclusions and generalizations to tensorial media apply identically

p(w)=144r

(8.14)

compared to the case of dielectric materials.
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8.2 Solution in reciprocal space

The treatment in reciprocal space has the same similarity to the dielectric
case as the summation of the T-matrix. In particular, the Helmholtz equation

without free sources for the magnetic case reads

2

~

2
V x V x H(r,w) — °‘C’—2H(r,w) - 4w°‘c’—2M(r,w). (8.15)

Note that this is formally identical to (7.68) under the duality transformation
E(r,w) — H(r,w) and P(r,w) — M(r,w). For linear media we thus get the

reciprocal version of the Helmholtz equation

S G0 (k — K,w) + —— Fo(0,0) = 0.  (8.16)
K

w_ZozH(w)

2 ad

The roots of the determinant of the system matrix of the algebraic set of
equations (8.16) then determine the dispersion relation which for a scalar

medium response is characterized by the permeability (8.14).

8.3 The question of H versus B

In the treatment of the magnetic materials we implicitly accepted that the
magnetization is induced by the magnetic field H. By contrast, in a Hamil-
tonian description of the interaction of light and (magnetic) matter the in-

teraction term in dipole approximation reads

~

Hy=-m-B (8.17)

with the magnetic induction field B rather than H. This suggests to use the

definition
m = ozB(w)Blocal (818)

rather than (8.2) on the microscopic level in order to derive local field cor-

rections. Note that ap(w) and ay(w) from (8.2) have to be distinguished.



122 8.3. THE QUESTION OF H VERSUS B

8.3.1 Macroscopic Treatment

From a phenomenological treatment [93] the local magnetic induction field
Bioca is given by the macroscopic induction field B and the magnetization
M via

47

Bioew = B~ 2 M. (8.19)

This can be understood in a simple manner. The fields Hjca and Bigeal
are microscopic fields by nature. Thus there are only point-like free sources
whose locations form a null set in space. Apart from this null set the fields
thus exist in vacuum and are hence identical Hjoco) = Bioea. Note that the
contribution of the magnetization of the probe dipole is explicitly excluded in
the evaluation of the local field at the position of the probe dipole. Equating
(8.19) and (8.1) then simply results in the definition H = B — 47M for the
macroscopic fields.

Equations (8.18) and (8.19) together with M = pm yield the relation of
the magnetization M and the field induction B in terms of the microscopic

magnetizability ap(w). Comparing to the macroscopic version

M = xm(w)H = X&fj‘;) B= +>Z:T<;2<W)B (8.20)
gives the sought relation between the microscopic and macroscopic parame-
ters

Xon(w) = QfﬂB(w) . (8.21)
1—- ?QQB(W)

Note that this result is exactly identical to the corresponding result (8.4)
with ay(w) replaced by ap(w). From the macroscopic derivation we thus

cannot distinguish between ap(w) and ay(w).

8.3.2 Microscopic Treatment

For a microscopic derivation of (8.21) we replace H(r,w) by the magnetic
induction B(r,w) in the Maxwell equations (7.2) and (7.3), from which we
then obtain the Helmholtz equation

2

V xV xB(r,w) — %B(r, w) = %v X j(r,w) +47V x V x M(r,w). (8.22)
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for B(r,w) rather than (8.5). Similar to (8.7) we introduce the Green function
Gp(r,r’ w), which relates the magnetic induction field strength to the source
current 4
B(r,w) = _ Pr'Ge(r, v, w) V" x j(r', w). (8.23)
c
As mentioned above, we use M(r,w) = ap(r,w)B(r,w), which yields the

defining equation for the Green function Gg(r,r’, w)

i—jﬂ — V' x er} Gp(r,v',w) =0(r—1r')1—47V xVxap(r,w)Gp(r, ' w).
(8.24)

Note the characteristic double curl expression in the material term. As a
result Gp(r,r',w) and Gy (r,r’,w) differ in general. Nevertheless the diagram
series for the T-matrices can be summed analytically for the single particle

as well as the lattice case (see Appendix B).

e The single particle T-matrix reads
tp(r,r,w) =tp(w)d(r —ra)d(r' —r4). (8.25)

with the spectral amplitude tz(w) given by the bare magnetizability
ap(w) and a divergent term which involves the double curl of the free

space Green function G (0, w)

N ()

Hence we introduce the physical magnetizability &p(w) which replaces

— -V xVxG90,w). (826)

the sum of the bare one and the divergent Green function term such
that (8.26) simplifies to

tp(w)™ = (4w°z—ja3(w)) _1. (8.27)

e For the case of a simple cubic lattice the T-matrix reads

3 Z —i(k—k)R

R -1 (8.28)
{VB(w)—l—ZZ2/ -V x V x GO(R, )}

Tk, K, w
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with the characteristic double curl showing up again. We combine the
R = 0 contribution of the infinite series and the bare ap(w) response
to the renormalized single particle magnetizability ap(w). Noting that
VxVxGORw = (w?/?)GO(R,w) for R # 0 holds, (8.28) sim-
plifies to

-1
Tp(k, K, w) = %)32 e TR {V3<w>1 =D e MRGO(R, w)} ,

(2
R R#£0
(8.29)

i.e., has the same form as (8.13). As a consequence we obtain the
permeability? (8.14) including Clausius-Mossotti local field corrections

with @y (w) replaced by ap(w).

Because the permeability must be unique we conclude that for the physical
magnetizabilities ay(w) = ap(w) holds. This is reasonable as B and H for
a single particle in free space are indistinguishable. In contrast the rela-
tion between the bare term ap(w) and the physical ap(w) differs from the

corresponding treatment of ay(w) since
V(W)™ = Va(w) 11 — (2 /w?)V x V x GO0, w) (8.30)

holds for Vp(w) = —4n(w?/c*)ap(w) rather than

Vir(w) ' = Vg (w) 1 — 690, w) (8.31)
for the corresponding Vi (w) = —47(w?/c*)ay(w). Here
V x V x G9(0,w) = (w?/c)GD(0,w) — 6§(0) (8.32)

contains a factor §(0). This factor stems from the aforementioned difference
between the microscopic fields Bjyca and Hyoea on the null set of real space
which contains the point particles. For a single particle this solely amounts
to the single point r = 0.

As the bare factors are not observable we conclude that for the determi-
nation of local field effects it does not matter whether we work with oy (w)
or ap(w). Since the usage of H prevents the clumsy double curl factors we

will therefore use that case in the treatment of more general materials.

2Note that this result can also be derived using a treatment in reciprocal space.



CHAPTER 9

Magneto-dielectric materials

After having discussed the Clausius-Mossotti type local field corrections for
pure electric and magnetic media we turn to the case of materials with simul-
taneous nontrivial permittivity € and permeability p. Microscopically such
materials incorporate polarizable as well as magnetizable particles. From the
macroscopic treatment of section 6.2 we predicted a rather peculiar behavior
of the refractive index in the limit of high densities: The real part saturates
at n = —2 while simultaneously the absorption vanishes as 1/p. Though the
microscopic results obtained for pure electric and magnetic media comply
with the respective macroscopic ones it is not clear whether this is true for
the case of magneto-dielectric media as well.

The simplest microscopic model of a magneto-dielectric medium employs
an electric and a magnetic simple cubic lattice displaced by Ar (see Fig. 9.1).
The corresponding electric and magnetic response functions read

ap(r,w) = apw) Y 6(r—R) = ap(w) Yk (9.1)

a3

and

an(r,w) = ag(w) Y §(r —R— Ar) = SiC) P )

a3
K
where the two sublattices are assumed to have the same lattice constant a

and thus identical lattice vectors R and inverse lattice vectors K.
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ap(w)
Ar

CYE<CU)

Figure 9.1: Unit cell of the simple cubic lattice with lattice constant a con-
taining an electric and a magnetic dipole with polarizability ap(w) and mag-
netizability ay(w), respectively. The magnetic dipole is displaced from the

electric one by a vector Ar.

Since for magneto-dielectric materials both the magnetization M and the
polarization P have to be taken into account we derive two coupled Helmholtz

equations
2

A

W2 - A7 W w w N
{V x V x —0—2} E(r,w) = 7@;_}(r,w) + 4W§P(r,w) + 47rsz X M(r,w)
(9.3)

[V x V x —ucj—;] H(r,w) = %V xj(r,w)+47ri—221\7l(r,w) —47?2’%V x P(r,w)

(9.4)
for the electric and magnetic field operators, respectively. Note that equation
(9.4) is determined by the curl of equation (9.3). Thus in principle it suffices
to use one of the two equations to describe the electromagnetic fields in a
magneto-dielectric medium.

Before we tackle the problem of finding a solution to equations (9.3) and
(9.4) we note that the pure electric and magnetic systems of chapters 7 and 8
were conceptually identical. In a first step the scattering problem for a single
point-like particle was solved by a direct summation of the respective T-

matrix. Afterwards for the generalization to quasi-homogeneous bulk media
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a lattice model of point scatterers was employed. Since the lattice is built
by stacking unit cells in all directions, the T-matrix of the lattice contains
a contribution due to the scattering at different lattice sites as well as the
scattering at an individual unit cell, i.e., a single particle, which has been
obtained previously. The problem presented by magneto-dielectric media is
different since the unit cell contains two point particles: A polarizable and
a magnetizable one. As a result the solution of the scattering problem of a
single unit cell already becomes involved. Fortunately, it turns out that it
suffices to consider the k-space solution for the lattice case since, as we show
below, the same renormalization procedures as in the pure media cases are
going to be applied independently. Hence no additional information about
the scattering of electromagnetic waves at a single magneto-dielectric unit

cell is needed.

We substitute the magnetization M(r,w) and similarly the polarization
P(r,w) in the two Helmholtz equations (9.3) and (9.4) using (9.2) and (9.1),
respectively. As indicated above it suffices in principle to use one of the
two equations (9.3) and (9.4). To do so, we would have to eliminate one of
the two fields E(r,w) and H(r,w) with the help of Maxwell’s equations in
the material terms. This would lead to clumsy curl terms which make the
solution tedious. We will pursuit a different approach: The usage of both

Helmholtz equations simultaneously. Hence we deal with [j(r,w) = 0]

2 A

2
{v X V x —“’_2} B(r,w) = 41 —ap(r, w)E(r,w) + 41—V X ay(r, w)H(r,w)
C C C
(9.5)

and

~ ~

2 2

{v X V x —“’—2} F(r,w) = dm—a(r, w)H(r, w)—4mis V x ag(r, 0)B(r, w).
c c c

(9.6)

As a result of the cross coupling of the two equations it is not clear whether

the local field corrections decouple in an electric and a magnetic part as they

do in the macroscopic treatment.

In a similar manner as in section 7.3 we derive the Fourier representations
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of (9.5) and (9.6) which read

1

S "GO (k — B S _
GOk - K,w)+ Fan() Ex(0,w)
2 ad (9.7)
iKAr k- K R
anle) g~ UK g

2
—ap(@) K Y1 - |k - K|2Aw k
c 2
and

GOk -Kw)+ —5F—
; 47Tw—2 ()

2 a? (9.8)
B waE(w) Z wze_lKAr(k —K)x Ew(0,w).

ZQH((")) K 21— k- K]PAy
C

—_

I:Ik(Ara w) =

Here we used the abbreviations Ey (0, w) = Y E(k—K,w) and Hy(Ar, w) =
S e KA H(k — K, w) for the amplitudes of the plane wave solutions with
respect to the wave vector k evaluated at r = 0 and r = Ar, respectively.

As discussed in sections 7.2 and 7.3 the term ) ,C’;z()/)(k — K, w) contains
the divergent contribution G()(0,w). Together with the bare polarizabilities
ap(w) and apy(w) it forms the physical polarizabilities ap(w) and apy(w),
respectively, in complete agreement with the treatment for pure electric and
magnetic materials.

In contrast the terms 37, eFKAr {,2/2] — |k — K|2A,_k} ' (k — K)x
are finite as we show in Appendix C. Thus after absorbing the divergent term
G©(0,w) in the physical polarizabilities we restrict the analysis to K = 0 so
that (9.7) and (9.8) simplify to

—— 1 1 -
0)(k — E =
AT )
e @ (9.9)
ap(w) kx A

= Hy(Ar,w)
w 2 )
—ap(W) “ 1 _ g2a,
c 2



CHAPTER 9. MAGNETO-DIELECTRIC MATERIALS 129

and

— 1 1 A
0)(k,w) — Hy (A =
g ( 7w) 3w2/c2 + w_2&H(w) k( I',w)
2 ad (9.10)
k N
_ WO‘E(”) X B0, w).

2
_ w
o (W) 51—k

Note that, apart from ﬂk(Ar, w) which is irrelevant for the determination of
the dispersion relation k(w), for K = 0 the dependence of the final expres-
sions on Ar vanishes identically.

The dispersion k(w) can be obtained from (9.9) and (9.10) as before by
noting that non-trivial field solutions exist if and only if the determinant of
the system matrix vanishes (cf. section 7.3). Thus we have to eliminate one
of the field amplitudes and condition k(w) on the vanishing of the system
determinant.

Although this procedure yields the correct dispersion relation and thus the
local field corrections, the resultant equation can be simplified significantly by
projecting onto transverse solutions. This can be done by using the projector
Ay, with which we multiply equations (9.9) and (9.10) from the left. Noting
that A -k ® k=0 and Axkx = k x Ay holds, we find

1 1

—_

—~ AE(0,w) =
w? 2 3w?/c? +4 Wapw) | TF k(0 )
_ 7T_
c? 2 ad (9.11)
1 A
= 51—[(&)) 5 k x Aka<AI',W)
—ap(w)Y _ 2
c 2
and
1 1 1 A
- k x AHi (A =
=l e + 47r°"_2 o) | A k(Ar,w)
c? 2 a? (9.12)
ap(w k2 ~
w E( ) 9 AkEk(Oaw)7



130

respectively. Note that by this the system matrix becomes diagonal, i.e., a
scalar. After elimination of one of the two field variables the condition for

the existence of non-trivial solutions reads

1 1 1 1 1 1

W_Q 2 B 3W2/C2 + W_Q&E<CL)) w_Q e B 3(,()2/C2 + W_Q&H<w)

c? 2 ad c? 2 ad

(9.13)

Note that the bare polarizabilities ap(w) and ay(w) drop out as they should.
Thus the resulting index of refraction n(w) introduced via k = n(w)w/c solely
depends on the renormalized physical polarizabilities ag(w) and dpg(w). In
complete agreement with the classical treatment we find [Kéastel2007¢| for

n(w)

0tp(w) |+ oty (W)
47 47

1— ?Q&E@)) 1-— ?Q&H(w)

n(w)= |[1+4+4r (9.14)

which therefore separates nicely into the permittivity (7.63) and the perme-
ability (8.14).

We conclude that the microscopic treatment of chapters 7 — 9 supports
the reasoning of section 6.2. In particular, (9.14) leads to the high density
limit n = —2 + 10, i.e., predicts vanishing absorption with increasing density
of scatterers. As already noted in section 6.2 this result seems unphysical.
It indeed is a consequence of the assumptions made, the main one for the

densities considered here being:

Only pure electromagnetic interactions are considered. Interatomic col-
lisions, or collisions of atoms with phonons are not taken into account

as the simple cubic lattice is assumed to be rigid.

Collisions would most importantly add dephasing rates to the free space

linewidth, which would therefore become density dependent. Thus the high
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Figure 9.2: Real (solid) and imaginary (dashed) parts of the permittivity
£(0) and the permeability u(0) as well as the imaginary (dotted) part of

n(0) = \/e(0)u(0) as a function of the rescaled density parameter N. The
linewidth is assumed to be density dependent v = 7o(1 + SN) with 5 = 10.

density limit will depend crucially on the specific type of density dependence
of the additional collisional broadening.
For illustration purposes we consider a linear density dependence of the

linewidth assuming
7 ="%(1+ 5N) (9.15)

with 3 > 0. We apply the notation from section 6.2 using a single reso-
nance model for the permittivity as well as the permeability. In particular
N = d*0/(2hyp) holds'. Fig. 9.2 shows the resulting density dependence of
the response functions on resonance using (9.15) with 5 = 10 rather than
B =0 as in Fig. 6.3(d). Note that the index of refraction takes on positive
values including strong absorption with increasing number density of scat-
terers. Note further that this general conclusion is not specific to the choice
of linear density dependence but for intermediate densities is valid for higher

exponents as well.

LCf. section (6.2).






Part 111

Purcell effect over macroscopic
distances using negative-index

materials
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CHAPTER 10

Macroscopic field quantization and atomic
linewidth

This part is devoted to the Purcell effect [114]' displayed by emitters put in
front of a (perfect) mirror. The presence of the mirror leads to a deformation
of the local density of states of the electromagnetic field. As the available
electromagnetic modes represent final states of a spontaneous decay process
it is apparent from Fermi’s golden rule that the natural linewidth will depend
on the surrounding geometry.

After the quantization procedure for electromagnetic fields including ar-
bitrary geometries presented by linear response functions € and p has shortly
been reviewed in the present chapter we will focus on a geometry given by
a perfect mirror coated with a negatively refracting medium in chapter 11.
We show in particular that for the case of this layer having ¢ = p = —1 the
Purcell effect known from an atom put onto the surface of a perfect mirror
now takes place for potentially macroscopic distances between the atom and
the mirror. In chapter 12 limitations of this findings due to absorption, fi-
nite transversal extension of the geometry and frequency dispersion will be

analyzed.

1See also section 6.1.
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10.1 Quantization of the electromagnetic field

in the presence of macroscopic bodies

The usual scheme used to quantize the electromagnetic field in vacuum can
not be applied to situations in which boundary conditions due to dispersing
and absorbing macroscopic bodies have to be fulfilled. This is due to the fact
that the electromagnetic field in the presence of absorption can no longer be
decomposed into modes. Instead we here use a quantization scheme which is
based on classical Green functions in the macroscopic linear passive medium
(66, Késtel2003]. This Green function implicitly contains information about
all spatial and spectral properties and can be viewed as a generalization of
the mode decomposition technique.

We start from the Heisenberg equation of the electric field operator in

time Fourier space, i.e., the Helmholtz equation (9.3) without free sources
2

{v x V x —i—j} E(r,w) = 4%%?(1‘,@0) + 4m%v x M(r,w).  (10.1)
In contrast to part II we do not focus on finding the Green function or equiv-
alently the T-matrix for a microscopic arrangement of scatterers, though.
Instead the polarization P and magnetization M are related to the electric
and magnetic field strengths by macroscopic susceptibilities, respectively. For
absorbing media we additionally have to introduce Langevin noise operators

[65] in order to preserve the quantum mechanical commutation relations
P(r,w) = X.(r,w)E(r,w) + Py(r,w), (10.2)
M(r,w) = Ym(r,w)B(r,w) + My(r,w). (10.3)
In a microscopic description the noise operators can ultimately be related
to matter operators. Since magnetization M and polarization P result in
general from different constituents of the material we have to distinguish
noise operators for P and M. Since <15N(r,w)> = 0 and <1\7IN(r,w)> =0
hold for the noise sources the expectation values of equations (10.2) and

(10.3) simplify to the classical relations.

We introduce the classical Green function as in chapter 7 via

~

E(r,w) = 47?2’% /d?’r’g(r,r’,w)jN(r’,w) (10.4)
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with the tensor valued Green function now being a solution of

2

V" x V' x —i—Q&t(r,w) G(r,r',w) = d(r — ). (10.5)

p(r, w)

Here p(r,w) = [1 — 4mxn(r,w)] ™! and e(r,w) = 1 + 47mx.(r,w) are the in
general inhomogeneous and frequency dependent complex permeability and
permittivity, respectively. In contrast to part II the electric field (10.4) here
is not given by free sources but is entirely determined by the quantum noise

source

jn(r,w) = —iwPx(r,w) + ¢V x My(r,w), (10.6)
i.e., (10.4) gives the quantum mechanical vacuum electric field operator.
We rewrite the noise polarization P ~n(r,w) and the noise magnetization

My (r,w) using

By o

and

My (r,w) = Z\/ 4—z2|1m[/{(r, w)]| £ (x, w) (10.8)

with k(r,w) = 1/u(r,w) being the inverse permeability. It can be shown
[66, Kéastel2003] that the assumption of independent bosonic commutation

relations

A 0r0), 7] = Gt = )0 — )

(10.9)
100,w), 100, 0)] = 0

for the noise polarization and magnetization leads to the correct equal time?

commutation relations of the electromagnetic field operators

[Ek(r,t),Ek/(r’,t)] —0= [Bk(r,t),Bk/(r',t) ,

) ) (10.10)
[Ek(r, t), B (1, t)] = —ihdmcepn O o(r —1').

°Time dependent operators are given by Fourier transforming according to O(t) =
I dwe= ™t O(w) +h.c. = O (1) + O (¢).
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Figure 10.1: Sketch of the quantization scheme of the electromagnetic field

in the presence of macroscopic magneto-dielectric bodies.

Note that in the course of proving (10.10) the relation

2

Im [G;(r, 1", w)] = /d3sw—Im[5(s,w)]Qim(r,s,w)g}‘m(r',s,w)

2
+/d3s Im[k(s, w)]| 05 Gim(x, s,w) [05G, (' s,w) — 35,G;, (r',;s,w)]
(10.11)

has to be applied which will get important in the following as well.

It is worth noticing that in the vacuum limit e(r,w) — 1+ 40, p(r,w) —
1+10 the quantization scheme presented here attains [66, 144] the well known
plane wave mode decomposition quantization scheme [65].

Hence (10.4) defines a valid quantization of the electromagnetic quan-
tum vacuum in the presence of general linear and passive magneto-dielectric
bodies. As a summary the electromagnetic fields and the macroscopic mate-
rial distributions are getting combined to a medium-assisted electromagnetic

field and subsequently quantized as sketched in Fig. 10.1.

10.2 Spontaneous decay rate

In order to find an expression for the natural linewidth of an atom coupled

to the quantized electromagnetic field we need to consider time evolution
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problems. We thus first note that the Hamilton operator of the field reads

HF_/d3 / do Y hwf@i(r,w) - £ (r,w). (10.12)

a=—e,m
We next introduce a 2-level atom with transition frequency w4 which is

governed by the atomic Hamilton operator
Hy = hwy |u) (ul (10.13)

where |u) (u| is the projector onto the upper state |u). Note that this extra
atom does not belong to the macroscopic bodies included in the quantization
process obtained in section 10.1. The interaction between atom and medium-
assisted electromagnetic field in dipole and rotating wave approximations is
given by [66, 145]
H; = —6"E®)(r,)-d - hec. (10.14)
where o = |l) (u| with |l) being the atomic ground state.
The sought time evolution of the system is given by the Schrédinger
equation
ih%|\l’> — H|T) (10.15)

where H = H F+ H A+ H ; is the full Hamilton operator. We expand the

state vector according to

T) = O (et u)@0) /d3/ dwz C9 (r,w, t)e )@
(10.16)

Here ‘15 ) r, > = fi(a)(r,w)\0> are one-photon Fock states of the electro-

magnetic field including macroscopic bodies which are characterized by the
permittivity ¢ and the permeability p and |0) denotes the electromagnetic
vacuum state. From the Schrédinger equation we derive differential equations

for the probability amplitudes C,,(t) of the atomic upper state
. ' °° 4 d |
Cu<t) _ % TWay /d3

'[z Im[e(r,wn%(m,r,w>0§e’<r7w,t>

IIm[k(r, w)]|€jmn0h, Grj(ra, T, w)C,Sm)(r, w, t)] g Hw—wa)t
(10.17)
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as well as the electromagnetic field probabilities

1 drwd, h w

h C 47'('2 & (1018)

v/ Im[e(r,w)|Gi;(ra, r, w)Cu(t)ei(”’“’A)t

Cr w,t) =

e T (10.19)
. |Im[/€(r, CU)] ‘Eszazng] (rA7 r, W)Cu(t)ei(wfw*‘)t_

Including the boundary condition CZ-(G) (r,w,0) = 0 we integrate the differ-
ential equations (10.18) and (10.19) of the photonic probability amplitudes
formally, and plug the solutions into (10.17). As a result of (10.11) the up-
per state population of the atom is thus governed by the integro-differential

equation

0 t
Cu(t) = —/ dw4w;§;dl Im[Gy(ra,ra,w)] / dre~@wat=1C (7).,

’ ’ (10.20)
In order to find an approximate analytical solution we assume that the fre-
quency spectrum of the Green function is sufficiently flat such that the w-
integration would yield a sharply peaked function in time. Hence we are
allowed to extend the lower limit of the 7-integration to —oo. Furthermore
the time scale on which the upper state population changes shall be small
compared to the aforementioned sharply peaked function in time. Thus we
take the quantity C,(7) at time ¢ with little error. After having applied this
so called Markov approximation the time integral can be evaluated analyti-

cally with the result

. ©  4u2dyd 1
Cu(t) = —/0 dw whc; "m[Gra(ra, ra,w)]Cu(t) (W‘S(w —wa) = iPw - wA)
(10.21)

or equivalently

Cult) = (—%A + mwA) Cu(t). (10.22)
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The coefficients are given by

8rw?dyd
YA = #’”Im[gkl(rmrmw/‘)] (10.23)

and

Sua = — “ (10.24)

4dkdlp/°° dwwj Im[Gpi(ra,ra,w)]
0 c W —wy
and denote the spontaneous upper state population decay rate and the Lamb
shift, respectively. Note that dw, though does not give correct results as the
Lamb shift is a relativistic effect.

In contrast 4 represents a valid result. The atomic decay rate in vacuum
for example can be found from the corresponding Green function given in
Appendix A. We note that Im[G©)(r4,r4,w4)] = lwa/(67c) holds, therefore

(10.23) reduces to the well known Wigner-Weisskopf solution (2.5)

(0) _ 4w8d?4

. 10.2
fYA 3h03 ( 0 5)

In general we conclude from (10.23) that the natural linewidth depends on
the photonic density of modes given by the Green function which is commonly

known as Purcell effect.






CHAPTER 11

Modified Purcell effect in front of a mirror

In this chapter we discuss a modification of the Purcell effect in front of a
mirror which alleviates the necessity to bring the radiating dipole within a
distance smaller than A to the surface. We consider the Purcell effect of a
2-level atom in front of a mirror covered by a layer of a material with an
index of refraction n = —1 [cf. Fig. 11.1(a)]. As discussed in chapter 1 such

a layer forms a perfect lens [cf. Fig. 1.1] when placed in vacuum.

Without the layer the upper state population decay rate displays strong
deviations from the free space rate if the distance of the atom to the surface
of the mirror is decreased below the transition wavelength [122]. In a classical
explanation [see Fig. 11.1(b)] the field amplitudes of the emitting dipole and
the induced mirror dipole interfere. For dipole polarizations parallel to the
surface these two fields are of the same strength but differ by a phase 7 as
soon as the distance of the atom and the mirror tend to zero. Hence the
respective decay rate should vanish exactly. Contrary for a perpendicular
polarization the decay rate is expected to be enhanced due to constructive

interference.

A major drawback of this effect is that it takes place only in the close
vicinity of a solid interface which represents a major experimental obstacle.
Consequently only few experimental publications exist [121, 123, 124, 125]

and there are no technological applications. As we show below coating the
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perfect mirror
N
Il
|
SH
I
perfect mirror

(a) (b)

Figure 11.1: (a) Atom in front of a perfect lens attached to a mirror. The
atom is placed in its own focus. (b) Mirror dipoles for parallel and perpen-

dicular polarization

mirror with a slab of a ¢ = 4 = —1 material avoids this obstacle. The neg-
ative index slab acts as a perfect lens which virtually transfers the presence
of the mirror regarding electromagnetic fields to a potentially macroscopic

distance into free space.

11.1 Green function for 3-layered media

To tackle these problems of an atom in front of a mirror with and without
a layer of a negative index material with n = —1 we note from (10.23) that
we need to find the corresponding Green functions. We will hence give the
retarded Green function corresponding to a 3-layer geometry as it includes
both cases.

The Green function of a homogeneous magneto-dielectric material with
permittivity e(w) and permeability p(w) expanded into plane waves can be
written as [146]

5 _ ol
00,0 = —o. 9022y

(11.1)

ip(w) . 1 )e®e+ h ® hylekt—) 5>
+ 22 [ g, — e
8 k|6 ® e +hy, @ hye®Ke) 2 <
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Figure 11.2: 3-layer geometry with the spatial regions 0 (z > 0), 1 (—d <
2 <0), and 2 (2 < —d). The Green function for the case of r and r’ being
placed in region 0 simultaneously is given by a superposition of the direct

path and a reflected path.

which is well suited for the planar geometry depicted in Fig. 11.1. It is given
by a superposition of either forward [k = (k,, ky, k)] or backward [K =
(ky, ky, —k.)] traveling plane waves with a polarization given by projections
onto the respective transverse basis vectors & = k x e./|k x e,| and h; =
é x k/|k| or hy = & x K/|k| denoting TE and TM modes, respectively.
In equation (11.1) ® denotes a dyadic product, ki = /k2+ k2 > 0 the
perpendicular wave vector component (d’k; = dk,dk,) and k, = \/m
with k2 = |k|? = e(w)pu(w)w? /2.

The Green function for the full 3-layer geometry as defined in Fig. 11.2
can be constructed from (11.1) by appropriate superposition of forward and
backward waves. In particular, the Green function G(°9 for which r and r’
are assumed to be in the vacuum region 0 [eg(w) = po(w) = 1] is given by
(z < 2)

' 1w
g(OO)(r’r/’w) _ '52 /kol_e—zKr .
8 ks (11.2)
[(RTEeik-ré 4 eiK-r é) ® e+ (RTMeik-r hf + eiK-r hb) ® hb] )

Here R™, R™ are reflection coefficients for TE and T'M waves, respectively.
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Likewise G19 i.e., for r in region 1, reads

i 1 . Kior ~ R
g(lO) (I', I'/, W) :@ /d2k’lk— [(CfTEGZkI-r e + CEEGZKl el) X e ( )
2 11.3

. (C}“Meikyr ﬁﬁl 4 CbTMez‘Kl-r flb,1) ® flb] o—iKr’

where the index ; denotes the z component of the wave vector to be explicitly
given by the permittivity e;(w) and permeability p;(w) of medium 1, k,; =
Ve (W) (w)w?/e® — k2, and finally G is given by

. . A o o
GO (r, v w) = é /koLk_[TTEéQ ®e+T™hys @ hyle™ e ™ (11.4)
m z

with corresponding T'E and T'M transmission coefficients.
Applying the boundary condition for electric and magnetic fields at the

interface between regions 0 and 1 [r = (z,y,0)]
e, x GV, 1 w)=e, x G, w), (11.5)

e, x [V" x G¥(r,r',w)] = e, x [V x G, r,w)]  (11.6)

po(w) i (w)

as well as at the interface between regions 1 and 2 [r = (z,y, —d)]

e. x G, v, w)=e, x G¥(r,r,w), (11.7)
Ml(w)ez x [V x G1r, v/, w)] = Miw)ez x [VF x G¥(r,r,w)]  (11.8)

we find the reflection coefficients of TE and T'M waves

i2k 1d
TE Rol + R12€Z 1
1+ R01R12€i2k271d

(11.9)

and o
2
RTM _ So1 + Sqe™t

1+ Sp1Sypei2k=ad”

Here, R;; and S;; are the basic reflection coefficients at the boundaries be-

(11.10)

tween the regions ¢ and j for TE and T'M modes

no_ pj(W)kzi — pi(w)k.,;
ij —
pj(w)ks i + pik.

€j (w)kw- - 5i<w>kz,j

Sy =
’ J q(w)kzﬂ- +€i(w)kz,j

(11.11)
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11.2 Purcell effect without n = —1 coating

According to (10.23) the Green function G (r 4,14, w4) (11.2) together with
the reflection coefficients R™* and R™ is sufficient to quantitatively describe
the Purcell effect of atoms in such a 3-layer geometry. Setting £1(w) = —o0,
p1(w) = 1 corresponds to the 0 — 1 interface being a perfect mirror, i.e., the
scenario without mirror coating. As a result we find Ry; = —1 and Sg; = 1

from which we conclude
R™ = —1, R™ =1. (11.12)

The decay rates for dipoles with parallel and perpendicular orientation read

8mw? d?
= A= [G5) (ra,va,0)] (11.13)
and )
8rwid
’7,J4_ = ﬁlm [Qégo)(rA,rA,wA)} , (11.14)
respectively. With [é ® €],, = k2/k% and [hy ® hylee = —[h @ hylpe =
k2k?/(k*k%) the expression for 7&1 simplifies significantly to
2 12 2 2
| — wAda: de ka: 1— 2ik.z A 1 & 11.1
4= 52%re | e e (144 (11.15)

which can be integrated analytically to the expression (k= wa/c)

(11.16)

I 0) 3sin(2kz4)  3cos(2kz4))  3sin(2kza))
Ya =74 1 - - 2.2 3.3
4kz 8k?z5 16k3275

Similarly we find an expression corresponding to (11.15) for perpendicular
dipole orientation using [é ® €], = 0 and [flb ® flb]zz = [flf ® flb]zz = k2 /k?

2w d> k2 :
Nk = #Re U dzkiﬁ (1+ eQZkZZA)] : (11.17)

After performing the integrations this results in

(11.18)

L0 3cos(2kzy)  3sin(2kzy)
YA =7a Ak222 8k325,
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Note that (11.16) and (11.18) correspond identically to the classical result
for the Purcell effect of an atom in front of a mirror [122]. In particular for

emitters put directly onto the mirror (z4 = 0) we find indeed the two cases
0
74 =0, i =24, (11.19)

i.e., perfect suppression or enhancement by a factor of 2 for parallel and per-
pendicular orientations, respectively, as expected from the classical reasoning

above.

11.3 Purcell effect including n = —1 coating

The second case of a perfect mirror plus a coating layer with n = —1 is found
from analogous considerations. We set €1(w) = p1(w) = —1 for the negative
index material layer and e9(w) = —o00, pa(w) = 1 for region 2 as to get the

properties of a perfect mirror at the interface 1 — 2. Noting that under these
circumstances k,; = —k, due to the left-handedness of medium 1 with a

negative index of refraction we find
RTE — _672ik2d RTM — €72ikzd (1120)

for the T'E and T'M reflection coefficients, respectively, which lead to a spatial
shift on the order of twice the lens thickness d. A comparison to (11.15) and
(11.17) reveals that the space dependent spontaneous decay rates for the
modified Purcell effect [Fig. 11.1(a)] are indeed given by (11.16) for parallel
and (11.18) for perpendicular orientations with z4 replaced by z4 — d. In

particular the values
0
’YIL = 0, ’)/J_q = 2’7(4) (1121)

are now found not at z4 = 0 but at z4 = d, i.e., depending on the thickness
of the perfect lens layer, a distance d from the nearest surface in free space.
Fig. 11.3 shows the corresponding distance dependent linewidths for parallel
and perpendicular dipole orientations, respectively. Note that in the scaling
used here the surface 0 — 1 is placed at z = —d. In particular the atom is

a potentially macroscopic distance 2d from the perfect mirror when placed
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Figure 11.3: Spatial dependence of the normalized rate of spontaneous emis-
sion fyﬂ‘(zA) /’yilo) (solid) and 4 (2z4)/ 7540) (dashed) to the mirror surface.

into its own focus in which the strongest deviations from the free space decay
rate are obtained [Kéastel2005a, Késtel2005b).

We conclude that a perfect lens of thickness d between a perfect mirror
and an atom put at a distance 2d from the mirror allows for perfect suppres-
sion of the spontaneous decay rate. We emphasize that this setup removes
the necessity of placing the atom within a distance smaller than A\ to any
surface. Thus experimental techniques based on atomic traps are potentially
applicable which would enable single atom studies of the spatial dependence
of the Purcell effect.






CHAPTER 12

Limitations

The investigation of the modified Purcell effect of an atom in front of a
mirror covered by a negative index material layer in chapter 11 assumed
idealized conditions and thus needs to be checked for realistic conditions in
experiments. Furthermore, the effect of perfect suppression of spontaneous
emission as the atom is put into its own focus seem to be valid independently
of the distance to the layered medium which would contradict causality. We
will hence study how the visibility of the suppression of fyﬂl for z4 = d is
modified in the presence of absorption in the negative index layer and by a
finite radius of the mirror/layer geometry. Finally, in section 12.3 we show
that dispersion of the n < 0 material sets a maximum distance for the effect

to be seen, in accordance with causality arguments.

12.1 Finite absorption of the negative-index

material

From chapter 1 it is apparent that one of the most severe limitations of
negative index media is given by strong absorption. Even combining n <
0 with electromagnetically induced transparency as in part I leaves small
imaginary parts which can affect the performance of a flat lens significantly

as soon as its thickness exceeds the transition wavelength A4 substantially

151
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.

0

log {Im[n]}

Figure 12.1: The spontaneous decay rate nyL / 'yﬁlo) as function of the imaginary
part Im[n] of the refractive index for different values of the layer thickness d:

d = 1A, (solid), d = 10\ 4 (dashed), and d = 100\ 4 (dotted).

[cf. (4.10)].

We study the influence of absorption losses by introducing a similar imag-
inary part to the permittivity £;(w) and permeability pi(w) of the coating
layer. This effectively introduces an imaginary part to the index of refraction
as well n = —1+iIlm[n] while the real part is assumed to still have the perfect
value —1. As a result, the reflection coefficients R™ and R™ and hence the
Green function can not be simplified as in sections 11.2 and 11.3 but requires
numerical integration. Fig. 12.1 shows the spontaneous decay rate fyﬂ‘ / 'yilo) as
a function of log{Im|n|} for different layer thicknesses d. The spatial position
has been chosen z, = d where we have found perfect suppression for the ide-
alized case. This suppression is still present for small absorption coefficients
but is degraded as Im[n| increases. We note that the results for d = 10\ 4 and
d = 100\ 4 are entirely given by propagating modes, although for very small
thickness and hence small distance of the emitter to the surface (d = 1\,)
non-radiative decay channels start to play a role. This fact allows for a sim-
ple interpretation of the features found in Fig. 12.1 in terms of traveling

beams. Increasing Im[n] leads to absorption of propagating modes inside the
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layer medium. For increasing thickness the emitter cannot “see” the mirror
any more as soon as the absorption reaches a sufficient strength. For large
enough absorption coefficients/thickness the decay rate therefore attains its
free-space value. We note, however, that for sufficiently small thicknesses a
visible effect should occur at absorption coefficients which seem realistic for

media which employ electromagnetically induced transparency (cf. part I).

12.2 Finite transverse extension

The geometry discussed in chapter 11 suffers from an idealization, which
can never be implemented in experiments: The transverse extension of the
mirror including negative index coating is supposed to stretch to infinity. For
a rigorous analytical treatment, this assumption is necessary, though, as the
Green function can be expressed in closed form only in geometries with high
symietry.

Due to a finite radius this symmetry is no longer present. An approxi-

perfect mirror

Figure 12.2: Finite extension of the geometry in transverse direction.

mative solution can be given, though, as the imaginary part of the Green
function Im[G°)(r 4,14, w4)] for non-absorbing layer media is only com-
posed of propagating modes, i.e., modes with k£, < k. We assign an angle

sin(a) = k) /k measured against the surface of the layered medium under
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Figure 12.3: The spontaneous decay rate fyﬂ‘ / 7540) as a function of transverse

radius a of the negative index material with thickness d = 1A4. The mirror

itself was assumed to be of the same dimension as the coating.

which such modes propagate. The maximum angle a,,,x under which the
coating is still present is given by sin(amax) = a/va® + d?, where the pa-
rameter a denotes the transverse extension of the negative index layer as
depicted in Fig. 12.2. In order to simulate finite transverse radii we restrict
the integration over transverse wave vectors k, in the definition of the Green

function (11.2) to values

e

kp < k% (12.1)
L+ (5)

As the mirror itself is assumed to have the same radius for angles greater
than ap.., we have to use the free space Green function. For z4 = d the

resulting integrations can be done analytically with the result
[ 3/2
VA ( 3 2 1
—— =14 —(a/d) ) <7) , (12.2)
7510) 4 1+ (a/d)?

which is shown in Fig. 12.3. Note that for z4 = d only angles « larger than
than oy contribute to (12.2). Note furthermore that the visibility of the
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Figure 12.4: The spontaneous decay rate fyﬂl / 7540) as a function of the trans-
verse radius a of the negative index material for d = 10\ 4 (solid) and d = 1\ 4
(dashed), respectively. The mirror itself was assumed to still extend to in-

finity.

suppression of 7&1 / 7510) depends only on the ratio of the transverse radius a
to the thickness d. As this ratio in experimental situations will usually be
large, the limitation due to the transverse extension of the perfect lens does
not degrade the effect significantly.

If we assume that only the coating layer has a finite radius but the mirror
itself still extends to infinity for o > auay we need to use Im[G (00) (ra,ra,wa)l
with n = +1 rather than n = —1. Again only angles o larger than .y
contribute so that the geometry thus corresponds to a mirror with a circular
hole of radius a. As a result, diffraction effects are added to (12.2) such that a
dependency on d remains as shown in Fig. 12.4. For increasing thickness (and

thus distance d) they vanish, though, as the limit of ray optics is approached.

12.3 Dispersion effects

From the discussion above it seems as if the suppression of 7&1 /%(4?) would

prevail for any distance d as long as the transverse extension of the mir-
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ror/coating construction is large enough while the absorption coefficient
Im[n] stays negligible. For reasons of causality this must not be, though,
as for distances d larger than c/fyilo) an atom would decay before any (vir-
tual) photon reached the mirror in order to “find out” that the atom should
not to be decaying at all.

We note from (10.23) that the spontaneous emission rate is determined
by the imaginary part of the Green function Im[G(r4,ra,wa)| taken at the
transition frequency w,4. Thus, due to the linewidth of the resonance the
results from chapter 11 regarding the case of the index of refraction of the
coating layer n = —1 are valid only as long as the spectral width in which
n ~ —1 is larger than 7510). From the constraint that the electromagnetic field
energy be positive we conclude that media with a negative index of refraction
are unavoidably dispersive!, which requires that

L (Rele@)]) 20, L (@Rela@)) 20 (123)

hold. In the following we show that it is this dispersion which sets a limit to
the maximum distance for which 7&1 / %(f) = 0 for z4 = d can be found.
On resonance, at which n(ws) = —1 [e(wa) = p(wa) = —1] holds, (12.3)
implies a minimal dispersion
%n(wA) > w—lA. (12.4)
To see how dispersion affects the Green function G°?(w) we assume a linear
dispersion n(w) = —1+a(w—w4), a € R, around the resonance frequency wu.
We estimate the exponential term e?(*=175:)4 in (11.2) to be most sensitive
to a variation of the index of refraction. Hence we keep terms linear in « in
the exponential, and set n = —1 in all other terms. As a result we obtain

approximately

Im[G® (w)] ~ Re [ /0 1 de/T— €21+ €2) (1 - ez‘g”?d%aw—w)} . (12.5)

In order to prove this estimate, we numerically integrate the exact G0 (w)

using a particular causal model for the permittivity and the permeability

w2

= =1 P 12.6
e(w) = p(w) + B o” — v (12.6)

LCf. chapter 1.
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Figure 12.5: The approximate Green function Im[G°? (w)] from (12.5) using a
linear dispersion model for d = 10X 4 /(27) (solid) and d = 1A 4/(27) (dashed)
as well as an exact integration of Im[G(°? (w)] (dotted) using a causal model

for n(w) for d = 10\ 4/(27).

with w, = 0.46wg, v = 10~%wp. This model yields n(ws) = —1 +41073 at a
frequency w4 =~ 1.05157wy. Correspondingly, the imaginary part of the Green
function displays a strong dip near w = w4 for d = 10\ 4/(27) as shown in
Fig. 12.5. We compare this to the approximate solution (12.5) using the
same parameters (including o = 39/wp) from (12.6). From Fig. 12.5 we note
that the dip around w = w, is well described by (12.5), which suffices for our
purpose.

In Fig. 12.5 we also show (12.5) using d = 1A 4/(27), for which the spectral
width Aw of the dip in the Green function increases. In general we find from
(12.5) that

Awr (12.7)

wada

holds approximately. Remembering the lower bound on the dispersion o« =
L p(wa) in (12.4), we conclude that the frequency window of the Green

function narrows with increasing distance d as

Aw < ¢/d. (12.8)
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As a consequence the assumption that the spectrum of the Green function
is sufficiently flat, which is used in the Markov approximation, is violated if
d is too large (cf. section 10.2). In particular, Aw > %go) must be fulfilled.
Therefore the results of chapter 11 which implicitly made use of the Markov

approximation only hold for

C

d <K NOR (12.9)
YA

The condition (12.9) supports the simple picture used in the beginning
of this section: The Purcell effect works only as long as the free space decay

time is long compared to the time a photon travels to the mirror geometry.
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APPENDIX A

The vacuum Green function

The Helmholtz equation (7.9) simplifies for a(r,w) = 0, i.e., for vacuum, to

2

w r r / /
1=V xV'x GO@r —r',w)=d(r—1)1 (A1)

with GO (r — r’,w) being the corresponding vacuum Creen function. Note

that due to the translational invariance, we already used
GO, r' w) =60 -1 w). (A.2)

Fourier transforming (A.1) with respect to the spatial coordinate yields

{i—jﬂ—kkxkx} GO (k,w) = 1 (A.3)
which can be inverted to find the k-space representation of the vacuum Green
function

GO (k,w) = WQ; (A.4)
0_21 — |k[2Ax

Here the projector Ay = 1 — k ® k onto a space transverse to k = k/k
(k = |k|) has been introduced. The matrix elements of the dyadic product
k ® k are given by
P 1
(k ® k) = bk (A.5)
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The explicit solution to (A.1) is found by Fourier transforming (A.4) back

into real space [134]. The retarded version reads

eiwr/c r
g(O)(r) S [P(iwr/c)1 + Q(iwr/c)t @ ] + 322/)02

1 A.
A7y ( 6)

where r = |r|, & = r/r and the functions P and () are given by

1 1 3 3
Plx)=1— -+ —, r)=—-14+4—-——, A7
(0)=1-—+— Q) - %
respectively. Note the contact contribution proportional to d(r) in (A.6).
As an important relation between the real space and the reciprocal space

representations we prove that
1 — _
= > GOk -Kw) =) e GOR,w) (A.8)
K R

holds. Here R and K are lattice vectors and reciprocal lattice vectors of a
simple cubic lattice, respectively. We first replace G (k — K,w) on the left

hand side by its definition as the Fourier transform of G (r,w)
1 ~(0) 1 —i(k—K)r
5> G0k-K.w) == / FrgO (r,w)e *Kr (A9)
K K

and use Y g " =a* > 1 §(r — R), which can be proven by means of Pois-
son’s summation formula. Thus the right hand side of (A.9) can be integrated
to yield (A.8).
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The magnetic scattering 7T-matrix (8.28)

The Helmholtz equation (8.24) for the Green function Gg(r,r’,w), in which

we substitute

ag(r,w) = ag(w Z(S r—R (B.1)

for a single cubic lattice of point magnetlc scatterers with magnetizability
ap(w) is solved by

Go(r,r' w) =GO (r — ', w)+
/d?’rlZg(O r—r;,w)V™ x V' x [—4rag(w)d(r; — R)]Gp(ry, v, w)

(B.2)

which follows immediately from (8.24) and the properties of the free space
Green function G (r,r',w). In order to get rid of the derivatives of delta
functions we integrate (B.2) partially, which yields terms involving G (r —
ry,w) X V¥t x V' In cartesian coordinates the result reads

GO(r —ry,w) x V' x V| =gV (- vy, w)ejmeimn. (B.3)
Since the free space Green function is invariant under matrix transpositions
g}f ) (r) = g](»?)(r) the same feature holds for its defining equation (A.1). We
thus observe that the vacuum Green function fulfills

GOr,w) x V x V =V x V x GO, w). (B.4)
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The first term GO (r —r, w) x Vrx U of (B.2) can therefore be simplified
to (w?/c?)GO(r — ry,w) if we restrict ourselves to r # ry, i.e., if the source
and the observation point arguments of the Green function differ. Under this

assumption an iteration yields
Go(r,r',w) =GV -1 w)+

2
+ /d3r1 Z i—QQ(O)(r — 11, w)[—4rag(w)é(r; — R)GV (r; — ', w)
R

2
+ /d3r1d3r2 r%/ ("Cj_zg(O) (I’ — Iy, w)[—47ra3(w)5(r1 — R)]
GO (1) — ra,w) x V™ x V™2 [—drag(w)d(rs — RGO (rs — 1/, w)
+...
(B.5)

Note that we are allowed to simplify the double curl terms only for outer
vertices of the diagram series, i.e., for terms involving the coordinates r or r’.
The other terms which involve only dummy indices ry, rs,... correspond to
multiple scattering events at lattice sites. Therefore expressions like ry — ry
can become zero and thus do not fulfill the restriction of above. Since the

T-matrix in real space representation is defined by
Go(r,r',w) =GO (r —1',w)

+ /d3r1d3r2g(0) (r —ry,w)Tp(ry,re, w)g@) (ro —1',w)

we find
Tp(ry,ro,w) = ; %2[—47Ta3(w)]5(r1 —R)(r; — 1)
+ Z/ “C’—j[—4m3(w)]25(r1 ~R) (B.6)
: [gz x V2 x GO(r; —1y,w)] §(r, — R)
+ ...

This general result can be specialized to the case of a single scatterer in

free space by keeping only one term R = r4 of the sum over lattice vectors.
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Summing the resulting geometric series we find

B —47?“;’—22a3(w)
1+ 4rap(w)V x V x GO(0)

tp(ry, T2, W) §(r1 —14)d(rs —14) (B7)

for the T-matrix of a single magnetic scatterer located at r4. Note that this
T-matrix is only valid to construct Green functions between spatial points
r,r’ other than ry.

For the case of a simple cubic lattice we cast (B.6) in reciprocal space
Te(k, k' w) = /d?’rd?’r’(k\r)TB(r, r',w)(r'|k'). (B.8)

Renaming the summation indices similar to (7.49) by, e.g., R = R — R/ then

gives

1 < /
TB(k, k/7 CL)) — - Z e*l(k*k R
(2m)® 4

B.9)

1 (
{V3<w>—1 - Y XV g(O)(R)}

with the optical potential Vg(w) = —47r“;—22a(w).






APPENDIX C

Convergence behavior of (9.7) and (9.8)

We analyze the convergence behavior of the series

Z e:l:iKAr(k o K) %
2

(C.1)
K 21— [k - KPA
C

which emerge in the Fourier representation of the Helmholtz equations (9.7)
and (9.8) for the case of magneto-dielectric materials. In order to clarify the
notation we note that the cross product (k — K)x can be represented as a

matrix which in the canonical basis reads

0 _(kz - Kz) (ky - Ky)
(k-K)x=[ (k.- K.) 0 —(k, — K,) |- (C.2)
_(ky o Ky) (k:v - K:v) 0

Since it commutes with [w?/c?1 — |k —K|?Ax_k] ™! = ab/)(k—K, w) equation
(C.1) is well defined.

We start by replacing the vacuum Green function ,C’;z()/)(k — K,w) by its
Fourier transform. The cross product (k — K)x can then be interpreted as a
curl of the exponential exp[—i(k —K)r|. After a partial integration, equation
(C.1) thus transforms into

—1i Z/d3reiiKAre_i(k_K)rV x GO (r,w). (C.3)
K
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Following equation (9.2), we replace the sum over reciprocal lattice vectors

by a sum over real space lattice vectors
—ia® ) / PPré(r — R £ Ar)e ™V x GO(r, w), (C.4)
R

from which we get after an integration

—ia® ) " e BFAY x GOR F Ar,w). (C.5)
R

Hence for Ar # 0, (C.1) contains no contribution proportional to the diver-
gent term G (0,w). Note that the small r behavior of (C.5) corresponds to
the large K behavior of (C.1).

The behavior for large R on the other hand can be studied best in k-
space as the limit of small wave vectors. We rewrite the Green function
a(]/) (k—K,w), which shows up in (C.1), in terms of projectors onto transverse
Ag_x and longitudinal (k/—T{) ® (k/—\K) parts with respect to k — K

1 1 1 —— ——
3 =z Akaerg—/CQ(k—K)@(k—K)-
Y k-KPA k21— k- K]
C C
(C.6)

Using the identities k x (k ® k) = 0 and k x A, = kx equation (C.1) thus

simplifies to
+iKAr
e

> = (k—K) x . (C.7)

K - [k—Kp
C

We note that the vector k is an element of the 1. Brillouin zone of the simple
cubic lattice with reciprocal lattice vectors K. Thus |k| < |K| holds. In
addition, the dispersion |k(w)| has in general the same order of magnitude
as the free photon dispersion w/c. A divergency of the series for small k can
therefore only stem from a resonance of the K = 0 term.

In the treatment of > éza)(k — K, w) for pure media, after having sepa-
rated the divergent term G (0, w), we restricted ourselves to the high density
limit, for which we only kept the K = 0 contribution (see discussion in sec-
tion 7.3). In the discussion of magneto-dielectric materials we also specialize
to K = 0. Hence the resonant term [w?/c* — |k[*]™! is accounted for in the
condition (9.13) for the derivation of the dispersion k(w).
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