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Kurzfassung

Optische Materialien mit negativem Brechungsindex haben sich in den letzten Jah-

ren zu einem der bedeutendsten Forschungsthemen auf dem Gebiet der Photonik

entwickelt. Ausgelöst wurde diese Entwicklung durch theoretische und experimen-

telle Arbeiten zu spektakulären potentiellen Anwendungen dieser Materialien wie

der “Superlinse”, die eine optische Abbildung jenseits des Beugungslimits erlau-

ben sollte, sowie optischer “Tarnkappen”, die es ermöglichen sollten, Objekte in

bestimmten Frequenzbereichen für elektromagnetische Strahlung wie Vakuum er-

scheinen zu lassen. Eines der größten Hindernisse für die praktische Realisierung

dieser Anwendungen ist die starke Absorption, die die negative Brechung in allen

bisher zu diesem Zweck untersuchten bzw. konstruierten Materialien begleitet. Die

vorliegende Arbeit “Quantum interference and absorption suppression in negati-

ve index materials” untersucht, inwieweit Quanteninterferenzphänomene, wie sie

aus der Quantenoptik atomarer Systeme bekannt sind, ausgenutzt werden können,

um einerseits die Absorption drastisch zu reduzieren und andererseits bereits bei

kleinen Dichten einen negativen Brechungsindex zu erzielen.

Insbesondere werden resonante kohärente Effekte analog zur elektromagnetisch

induzierten Transparenz untersucht. Hierbei werden durch Anlegen eines äußeren

Kopplungsfeldes die Hauptbeiträge der Absorption unterdrückt und gleichzeitig

eine resonant überhöhte Kreuzkopplung zwischen den elektrischen und magne-

tischen Komponenten des Probe-Feldes induziert. Diese Kreuzkopplung hat den

Vorteil, dass man die Bedingung negativer Permeabilität zur gleichzeitigen Erzeu-

gung eines negativen Brechungsindex nicht erfüllen muss, wie es bei Medien ohne

Kreuzkopplung der Fall wäre.

In einem einführenden Kapitel werden die Grundlagen der Theorie negativer

Brechung erläutert und die experimentellen Techniken zur Herstellung von ent-

sprechenden Materialien dargestellt. Es stellt sich dabei heraus, dass, obwohl die

experimentelle Umsetzung negativer Brechung in den letzten Jahren einen rasan-

ten Fortschritt verzeichnen konnte, alle derzeit verfügbaren Medien unter enormer

Absorption leiden. Im Hinblick auf die Anwendung elektromagnetisch induzierter

Transparenz zur Lösung dieses Problems werden im Anschluss deren grundlegende

Resultate einführend zusammengefasst.

In Kapitel 2 werden allgemeine Materialien mit einer Kopplung zwischen elek-

trischen und magnetischen Freiheitsgraden im Hinblick auf die Realisierung nega-

tiver Brechung diskutiert. Solche Kreuzkopplungen manifestieren sich z.B. in einer

chiralen Antwort oder im Auftreten eines magnetoelektrischen Effekts. Es wird

gezeigt, dass man einen negativen Brechungsindex erzeugen kann ohne gleichzeitig

negative Permeabilität vorauszusetzen. Somit kann die größte Schwierigkeit in der



Erzeugung negativer Brechung im optischen Spektralbereich umgangen werden.

Das hat zur Folge, dass die Dichte an Streuern im Vergleich zu nichtkreuzge-

koppelten Realisierungen mehrere Größenordnungen kleiner und damit realistisch

gewählt werden kann.

Kapitel 3 hat eine konkrete Umsetzung der in Kapitel 2 entwickelten Ideen

zum Inhalt. Dazu wird ein atomares System untersucht mit einem Niveauschema,

in dem ein elektrischer und ein magnetischer Dipolübergang durch Anlegen eines

äußeren Feldes gekoppelt werden. In diesem System wird nicht nur die zuvor disku-

tierte Kreuzkopplung induziert sondern auch elektromagnetisch induzierte Trans-

parenz. Letztere bewirkt eine starke Unterdrückung des Imaginärteils der elektri-

schen Suszeptibilität. Unter Einbeziehung von Lokalfeldkorrekturen kann damit

gezeigt werden, dass negative Brechung induziert werden kann, deren Verhältnis

von Brechung zu Absorption einige Größenordnungen größer ist als bei aktuellen

experimentellen Umsetzungen. Weiterhin wird gezeigt, dass mit Hilfe des äußeren

Feldes auch die Stärke des negativen Index kontrolliert werden kann und sich somit

das vorgestellte Schema zur Entwicklung schaltbarer Komponenten eignet.

Während in Teil I der Arbeit die Materialantwort eines Ensembles kohärent ge-

triebener atomarer Dipolstrahler durch makroskopische Suzeptibilitäten beschrie-

ben wurde, wird in Teil II eine mikroskopische Theorie der Materialantwort abge-

leitet. Wann immer der Brechungsindex eines Mediums wesentlich von 1 abweicht,

ist eine Kontinuumsbeschreibung der optischen Eigenschaften des Materials nicht

mehr adäquat. Die wichtigste und von der mikroskopischen Struktur des Materi-

als weitgehend unabhängige Korrektur ist die im dielektrischen Fall als Clausius-

Mossotti-Relation bekannte Lokalfeldkorrektur. Teil II der Arbeit beschäftigt sich

mit einer mikroskopischen Theorie dieser Korrekturen für Materialien mit magne-

tischen Freiheitsgraden. Dabei zeigt sich, dass eine Kombination von Lokalfeldkor-

rekturen für die elektrischen und magnetischen Freiheitsgrade dazu führen kann,

dass mit zunehmender Teilchendichte die Absorption des Materials sinkt und der

Brechungsindex gleichzeitig dem Wert n = −2 zustrebt. Dabei wurde das Medi-

um durch ein Gitter von Punktteilchen modelliert und durch Vielfachstreuung die

selbstkonsistente Lösung der elektromagnetischen Antwort ermittelt.

Im letzten Teil wird eine Variante des quantenmechanischen Purcell-Effektes

betrachtet. Dabei wird die natürliche Linienbreite eines Atoms vor einem Spiegel

betrachtet auf dessen Oberfläche eine Schicht eines Materials mit negativer Bre-

chung aufgebracht wurde. Aufgrund der perfekten fokussierenden Eigenschaften

dieser Schicht zeigt ein Atom mit makroskopischem Abstand zum Spiegel je nach

Polarisierung totale Unterdrückung oder Überhöhung der spontanen Zerfallsrate.

viii



Abstract

Optical materials with a negative index of refraction have evolved in the last

couple of years into one of the most important areas in photonics research. This

progress has been stimulated by spectacular proposed applications like the “super-

lens” which allows for resolution beyond the diffraction limit and “optical cloaks”

which enable objects to appear as vacuum to electromagnetic waves of a certain

wavelength. One the major obstacles to the practical implementation of such ap-

plications is the strong absorption present in all hitherto constructed media with

a negative refractive index. The Thesis “Quantum interference and absorption

suppression in negative index materials” deals with the exploitation of quantum

interference phenomena known from the quantum optics of atomic systems to yield

significant reduction of absorption and simultaneously allow for a negative index

of refraction at comparably small densities.

In particular resonant coherent effects similar to electromagnetically induced

transparency are studied. An external coupling field is used to suppress the main

contributions to the absorption while simultaneously inducing a resonantly en-

hanced coupling between the electric and magnetic components of the probe field.

As an advantage of this coupling compared to media without cross-coupling the

constraint of negative permeability does not need to be fulfilled in order to induce

negative refraction.

In an introductory chapter the basic theory of negative refraction is sketched

and the experimental techniques used to construct materials with a negative index

of refraction are explained. Although the experimental realization of negative index

materials made breathtaking progress in recent years, it turns out that all actual

media suffer from a tremendous absorption. In the following the basic results of

the theory of electromagnetically induced transparency are introduced as they will

be used in the solution of these problems.

Chapter 2 deals with general materials which display a coupling between elec-

tric and magnetic degrees of freedom regarding the realization of negative refrac-

tion. Such a cross-coupling is found for example in a chiral response or in materials

which show the magneto-electric effect. As a result such media allow for negative

refraction without requiring a negative permeability. Thus the major obstacle in

the generation of negative index materials in the optical spectrum can be overcome.

This allows negative refraction at much lower and therefore realistic densities of

scatterers compared to materials without such cross-couplings.



Chapter 3 deals with a particular implementation of the preceding ideas. In

particular a level scheme is proposed in which an electric and a magnetic dipole

transition are getting coupled by applying a strong external field. By doing so not

only the cross-coupling according to chapter 2 is implemented but simultaneously

electromagnetically induced transparency is obtained. This leads to a significant

reduction of the imaginary part of the electric susceptibility which presents the

major contribution to the overall absorption properties. Including local field cor-

rections this results in an induced negative refractive index with a ratio of refrac-

tion to absorption which is orders of magnitude larger than in current experiments.

Moreover it is shown that the value of the (negative) refractive index can be tuned

by means of the external coupling field as well. Hence switchable components for

applications seem possible by utilization of the described level scheme.

In part I of this thesis the electromagnetic response of an ensemble of coherently

driven atomic dipole emitters has been modeled by macroscopic susceptibilities. In

contrast part II utilizes a microscopic theory for the same purpose as a macroscopic

description ceases to be adequate as soon as the index of refraction of a medium

differs significantly from the vacuum value n = 1. The most important correction

for dielectric media which does not depend on the particular microscopic structure

of the material is the Clausius-Mossotti local field correction factor. Part II of

the thesis concerns with a microscopic model of such corrections for media with

magnetic degrees of freedom. It turns out that combining appropriate local field

corrections for the electric and magnetic degrees of freedom, respectively, yields a

decrease of absorption with increasing number density of scatterers. Simultane-

ously, the refractive index reaches the value n = −2 asymptotically. The material

is modeled by a lattice of point scatterers and solved for the self-consistent elec-

tromagnetic response function using multiple scattering techniques.

The last part deals with a variant of the quantum mechanical Purcell effect.

The natural linewidth of an atom placed in front of a mirror with a coating of

a negative index material is obtained using a Green function technique. As a

result of the perfect focusing properties of the negative refractive coating an atom

with a macroscopic distance to the mirror displays either a total suppression or an

enhancement of the spontaneous decay rate depending on its polarization state.
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CHAPTER 1

Introduction and outline

1.1 Motivation

Photonics research in general and artificial materials with a negative index

of refraction in particular experienced an increasing amount of interest in

the last couple of years. This progress has been driven by spectacular pro-

posed applications like the “superlens”, which allows for resolution beyond

the diffraction limit [1], or even “optical cloaks”, which make objects appear

transparent to electromagnetic waves of a certain wavelength [2, 3, 4]. It

has led to a tremendous number of metamaterial designs to achieve negative

refraction [5, 6, 7, 8, 9, 10, 11]. Simultaneously, the concept of photonic crys-

tals [12, 13] has been applied to concepts of effective negative indices as well

[14]. Unlike metamaterials, photonic crystals are characterized by a spatial

variation of optical properties due to structured dielectric or metallic bod-

ies on the order of a wavelength rather than subwavelength structures. For

certain photonic crystal designs this leads to circular equi-frequency surfaces

near the band edge with a negative curvature. As a result beam propa-

gation properties are effectively described by a negative index of refraction

[15, 16, 17, 18].

One of the major obstacles to the practical implementation of such appli-

cations is the strong absorption present in all media with negative refractive

3



4 1.2. METAMATERIALS: STATE OF THE ART

index investigated so far. This thesis aims at exploiting quantum interference

phenomena from quantum optics of atomic systems to yield significant reduc-

tion of absorption and simultaneously allow for a negative index of refraction.

In particular, resonant coherent effects similar to electromagnetically induced

transparency are used to suppress the main contributions to the absorption.

In addition an external coupling field is applied to simultaneously induce a

resonantly enhanced coupling between the electric and magnetic components

of the probe field. As an advantage of this coupling compared to media with-

out cross-coupling the constraint of negative permeability does not need to

be fulfilled in order to induce negative refraction.

1.2 Metamaterials: State of the art

The history of negative refraction research separates roughly into two un-

equal eras. Before the year 2000 there were only few mentionings of the

notion of negative refraction [19, 20, 21]. From these the article of V. Vese-

lago [21] is best known as it analyzes negative refraction using the concepts

of the material permittivity ε and permeability µ. It also discusses some

fundamental phenomena associated with a negative refractive index like the

inverse Doppler shift, inverse Cerenkov radiation and most importantly the

flat lens [cf. Fig. 1.1(a)]. Although Veselago realized that negative refraction

in naturally occurring media does not exist he provided a route to negative

refraction: simultaneous negative permittivity and permeability (ε, µ < 0)

yield negative refraction, i.e., n < 0. This seems to be peculiar as the def-

inition of the index of refraction n =
√

εµ at first glance leads to identical

results for the two cases ε, µ > 0 and ε, µ < 0, respectively. As Veselago

noticed ε and µ are fundamentally complex functions with the physical con-

straint Im[ε], Im[µ] ≥ 0 for passive media. As a result the square root of the

complex function n =
√

εµ has to be taken such that Im[n] ≥ 0 holds, from

which the limit Re[n] < 0 for the case Re[ε], Re[µ] < 0 follows. It is worth

noting, that negative index materials always display unavoidable dispersion.

The electromagnetic field energy must never attain negative values which

can only be fulfilled as long as the conditions d
dω

(ωRe[ε(ω)]) ≥ 0 as well as
d

dω
(ωRe[µ(ω)]) ≥ 0 are met.
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object
plane

image
plane

n = −1

(a) Propagating modes are focused.

object
plane

image
plane

n = −1

(b) Evanescent waves inside the slab are

amplified.

Figure 1.1: The perfect flat lens.

The second era of negative index research started in 2000 in which major

experimental and theoretical breakthroughs triggered an exponential grow of

interest in this field. In the theoretical article of Sir John Pendry [1] it is

shown that Veselago’s flat lens is also a perfect lens under the assumptions

that the permittivity and the permeability are identically negative and non-

absorptive, e.g. ε = µ = −1, and the impedance of the flat lens is matched

to the surroundings. This perfect lens allows for image resolution unlimited

by the wavelength λ due to the “amplification” of evanescent waves with

transverse wave vectors k⊥ larger than k = 2π/λ inside the slab of the flat

lens. As these evanescent modes transport information about object details

smaller than λ the resolution of the lens can in principle be infinite. The

physical reason of the “amplification” is the off-resonant coupling of the

signal field to a surface plasmon mode [22, 23] which results in the amplitude

distribution of the evanescent modes depicted in Fig. 1.1(b).

In the year 2000 there was also the first report about the realization of a

medium which fulfilled Veselago’s requirement of negative permittivity and

permeability [5]. This led shortly thereafter to the first experimental verifica-

tion of negative refraction [6] in the microwave regime using metamaterials.

These materials are assembled from artificial functional units whose size is

much smaller than the resonance wavelength at which they are supposed to

work. Hence with the wavelength of interest these constituents can not be
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(a) A split ring resonator

[25].

(b) Photography of the material used by Shelby

et al. [6].

Figure 1.2: The first realization of a negative refracting material [6]. The

metallic wires provide Re[ε] < 0 below the plasma frequency; the split ring

resonators yield a strong magnetic resonance with Re[µ] < 0. The dimension

of the unit cell is 5mm whereas the resonant wavelength is 3cm.

resolved. The material is effectively homogeneous and a permittivity and a

permeability can be assigned. Again it was Sir John Pendry who made crucial

contributions which made overlapping negative electric permittivity [24] and

negative magnetic permeability [25], and hence the aforementioned experi-

mental success possible. Here, negative permittivity Re[ε] < 0 is provided

by an array of thin wires which yield a plasma frequency in the GHz-regime

[24]. The magnetic response is provided by split ring resonators [25] with

a strong magnetic resonance over spectral regions, where Re[µ] < 0 holds.

Fig. 1.2 shows the first experimentally implemented negative index material

which made use of ordinary circuit board material.

In the subsequent development the concept of thin wires and split ring

resonators was further established [26, 27, 28, 29, 30], and by miniaturization

the resonance frequency was increased from THz [7, 31, 32] to the infrared

[8, 9] and even to the visible spectrum [9, 33] while simultaneously morph-

ing the complicated split ring resonators into simpler versions (cf. Fig. 1.4).

However, this concept did not yield negative refraction but only Re[µ] < 0

for increasing resonance frequencies.

The metamaterial branch of negative index material research experienced
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(a) Short wire pairs [38]: Symmetric and an-

tisymmetric current distributions contribute

to the electric and magnetic response, respec-

tively.

(b) Inverted structure ac-

cording to Babinet’s prin-

ciple: Double fishnet [43].

Figure 1.3: Modern designs of metamaterials.

a major impulse by the invention of rather simple but functional structures.

A pair of metallic nanopillars [34] or short wires [10] support an electric as

well as a magnetic resonance via symmetric and antisymmetric (Fig. 1.3)

current distributions. As miniaturization of wire pairs is fairly easy com-

pared to split ring resonators, Re[µ] < 0 [34, 35, 36] and Re[n] < 0 materials

[10, 37, 38] up to the visible spectrum have been demonstrated. In contrast

to the split ring resonator design, these media have the advantage of showing

a negative index while being irradiated perpendicularly [see Fig. 1.3(a)] com-

pared to the experimentally problematic parallel propagation axis for split

ring metamaterials. Using Babinet’s principle of optics [39, 40] the short wire

pairs translate to a double fishnet structure with rectangular [11, 41, 42, 43]

or circular holes [44] which can support higher currents and hence yield better

results in terms of response strength.

Fig. 1.4 shows the time evolution of metamaterial research regarding in-

creasing resonance frequencies. The full and the open symbols denote nega-

tive refractive Re[n] < 0 and negative permeability Re[µ] < 0 media, respec-

tively, while the colors encode the used structure from original (orange) and

simplified (green) split ring resonators to short wire pairs (blue) and fishnet

(red) designs.

Though there is obviously a tremendous progress in pushing the spectral

regions of negative refraction to higher and higher frequencies, there are some

fundamental issues that need to be addressed before applications like the

super lens [1] or electromagnetic cloaking [2, 3, 4] in the visible spectrum can
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[5]
[26]

[29]

[7]

[8]

[32]
[9]

[35]
[10]

[44]
[11]

[43]

[31]

[6]

Figure 1.4: The evolution of metamaterial research. The full symbols denote

a negative refractive index Re[n] < 0 while the open symbols denote a neg-

ative permeability Re[µ] < 0. The structures evolved from the original split

ring resonator design (orange) to a simplified split ring (green) and finally to

short wire pairs (blue) and the Babinet inverted fishnet (red). The numbers

denote the corresponding references. (graph taken from [45])

be realized. One of these issues is given by the fact that the negative index

materials especially for high frequencies are only low-dimensional, i.e., show

Re[n] < 0 only for a certain propagation direction. Moreover, the refractive

index for this particular propagation direction is polarization dependent. The

most severe constraint, though, is given by the large absorption present in

the metamaterial approach, commonly measured by the figure of merit

FoM = −Re[n]

Im[n]
(1.1)

which is supposed to reach high positive values.

However, the experimental figures of merit for negative index media in the
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Reference year FoM

[10] 2005 ≪ 1

[38] 2006 ≪ 1

[43] 2007 0.5

[44] 2005 . 1

[42] 2006 3

Table 1.1: Exemplary values of FoM .

near-infrared or visual spectrum are usually1 less than 1 (FoM ≪ 1 [10, 38],

FoM = 0.5 [43], FoM . 1 [44]) and reach FoM = 3 at best [42] (cf. table

1.1). Note that these FoM ’s are obtained for silver structures, which provide

the least metallic losses. As theoretical studies [47, 48] have shown, this is

an intrinsic problem as a numerical optimization of design elements of the

fishnet materials suggests that FoM = 3 is already the theoretical maximum.

1.3 Electromagnetically induced transparency

An effective means of suppressing absorption in ensembles of near resonant

quantum oscillators, such as atoms or molecules, is given by electromagneti-

cally induced transparency (EIT), which can alter the absorption spectrum

such that a perfect reduction of the losses appears on resonance. It has

mostly been observed in atomic vapors [49, 50] as well as in doped crystals

[51], but is explicitly not limited to quantum systems2 [52]. The most generic

system displaying EIT is given by a 3-level atom with a level scheme depicted

in Fig. 1.5(a) which due to its similarity to the greek letter Λ is frequently

called Λ-scheme. It consists of two (meta-)stable ground states |1〉 and |2〉
and a common upper state |3〉. This upper state is connected by a “coupling”

field with Rabi frequency Ωc to the meta-stable state |2〉 and similarly by the

“probe” field with Rabi frequency Ωp to the ground state |1〉. To discuss the

key features of EIT we assume the coupling field to be resonant but allow a

1See also the review [46].
2See also chapter 5.
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|1〉

|3〉

|2〉

γ2

γ3

ΩcΩp

(a)

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

∆/γ3

(b)

Figure 1.5: (a) The generic Λ-scheme of EIT. (b) Real (solid) and imaginary

(dashed) parts of the linear response susceptibility in arbitrary units as a

function of the detuning ∆.

detuning ∆ = ωp − ω31 for the probe field.

Without coupling field, the linear probe field absorption spectrum has an

ordinary Lorentzian structure and a corresponding dispersion of the real part

of the susceptibility χ(ω). In contrast, the application of the coupling laser

can alter the spectrum fundamentally. Fig. 1.5(b) shows a typical spectrum

for EIT: The absorption line develops a dip of low absorption while the real

part of χ(ω) displays strong linear dispersion around resonance. Note that

for γ2 = 0, i.e., a perfectly stable ground state |2〉, the susceptibility vanishes

exactly on resonance, ∆ = 0. The width of the transparency window will

then be governed by the coupling strength Ωc. For large coupling Ωc ≫ γ3

the splitting of the absorption is linear in Ωc while for small coupling the

transparency window becomes significantly smaller than the natural width

γ3 of the resonance line. Note that in all cases (γ2 = 0), the susceptibility

vanishes for ∆ = 0, which can not be explained by simple line splitting.

Under the condition

γ2 ≪ γ3 (1.2)

all features of EIT can be obtained if the Rabi frequency satisfies Ω2
c > γ2γ3.

The absorption on resonance in that case is governed by Im[χ(0)] ∼ γ3γ2/Ω2
c .

Thus for meta-stable states |2〉 significant suppression of absorption can be

obtained. Note that γ2 does not have to be the population decay rate out of
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Figure 1.6: Explanations for EIT: (a) dressed state picture (b) quantum

interference of different excitation paths.

state |2〉, but any rate which leads to a dephasing of the coherence between

the ground states |1〉 and |2〉 must be taken into account3.

Experimentally, EIT can be used to transfer a light beam through oth-

erwise opaque atomic vapors by application of a coupling laser field [54, 55],

thus the name electromagnetically induced transparency as proposed by Har-

ris et al. [56]. Apart from the spectroscopic properties, EIT has strong influ-

ence on the propagation properties of light pulses. Due to the steep linear

dispersion within the transparency window the group velocity of light pulses

can be reduced by orders of magnitude thus leading to ultraslow light and

even stopping of light pulses in coherently driven media [57, 58, 59].

The physical origin of EIT is explained by the effect of coherent pop-

ulation trapping (CPT) [60] which can be described in several ways. The

influence of a strong coupling field Ωc cannot be treated perturbatively in

the limit γ2 → 0. Thus for small Ωp the subsystem of states |2〉, |3〉 including

Ωc forms a new set of eigenstates

|a±〉 =
1√
2

(|2〉 ± |3〉) (1.3)

dressed by the presence of the strong coupling Ωc. The eigenenergies of these

dressed states form a doublet as depicted in Fig. 1.6(a). A probe field tuned

to the center between |a+〉 and |a−〉, which corresponds to ∆ = 0, couples

3For quantum dots see, e.g., [53].
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to a superposition of |a±〉 with equal weights. As a result the transition

probability for leaving the ground state |1〉 vanishes identically yielding a

vanishing susceptibility on resonance. This peculiar result is due to the

dressed state decay channels being correlated, i.e., ending up in the same final

state. The total transition probability amplitude hence is a superposition of

|1〉 → |a+〉 → “decay” and |1〉 → |a−〉 → “decay” which turn out to interfere

destructively.

The aspect of quantum interference can also be discussed in the bare

state representation. The transition probability to excite the atom out of the

ground state |1〉 to the upper state |3〉 and successive decay from that state is

a superposition of the probability amplitude of the direct path |1〉 → |3〉 →
“decay” and all amplitudes of higher order paths which reach the final state

|3〉 only after a number of transitions to the state |2〉 and back to |3〉, e.g.,

|1〉 → |3〉 → |2〉 → |3〉 → “decay” (1.4)

[cf. Fig. 1.6(b)]. In EIT these amplitudes of higher order paths interfere de-

structively with the direct excitation amplitude such that the total transition

amplitude vanishes (see also [57, 61]).

For arbitrary strengths of the probe field Rabi frequency Ωp the complete

3-state system has to be diagonalized including Ωc and Ωp. One finds that

one of the new dressed states does not incorporate the strongly decaying

upper state |3〉 but is only comprised of the ground states |1〉 and |2〉. As

this state does not lead to fluorescence, it is called “dark” state. When fields

Ωc and Ωp are applied, the system will ultimately be optically pumped into

this dark state, in which it does not interact with the electromagnetic fields

any more. The population is thus trapped in the dark state thus the name

“coherent population trapping”. Besides optical pumping, a major means

of reaching the dark state is the use of adiabatic evolution techniques like

STIRAP [62].

One essential aspect of EIT, besides the destructive interference of the

linear response susceptibility, is the simultaneous constructive interference

for the nonlinear response [56, 63]. In particular we assume to drive the

transition |1〉−|2〉, which is electric-dipole forbidden, by either a 2-photon or

a magnetic transition [cf. Fig. 1.7(a)]. The nonlinear susceptibility χnl for the
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Figure 1.7: (a) Closed loop Λ-scheme with higher order nonlinear suscepti-

bilities. (b) Imχ (solid) and Imχnl (dashed) in arbitrary units as a function

of the detuning ∆.

parametric generation of radiation from the |3〉−|1〉 transition in the presence

of strong coupling Ωc then has a maximum on resonance [57, 64]. As discussed

above, the linear susceptibility for the aforementioned radiation from the

|3〉 − |1〉 transition simultaneously has a minimum [cf. Fig. 1.7(b)]. Thus

EIT allows for efficient nonlinear processes without absorbing the generated

radiation.

1.4 Outline of the thesis

One main aspect of this thesis is to connect the ideas of negative refraction

using quantum oscillators (atoms, molecules, excitons, . . . ) with suppression

of absorption by means of EIT. In particular, I will show in part I that neg-

ative refraction in atomic media is feasible when a magnetoelectric coupling

between the electric and magnetic degrees of freedom is introduced. Such a

cross-coupling can be induced in atomic systems by strongly coupling elec-

tric and magnetic transitions. In chapter 3 it is explicitly analyzed how EIT

suppresses the absorption efficiently, while enhancing the nonlinear response,

which in this case is given by the cross-coupling. As a result, negative refrac-

tion in atomic media takes place at densities which are orders of magnitude

smaller than in corresponding proposals that do not employ such induced
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cross-couplings. Simultaneously, the absorption coefficient drops due to EIT

to values that are orders of magnitude smaller than in current metamaterials

[Kästel2007b, Kästel2008]. In chapter 4, I discuss important questions re-

garding the applicability of those ideas. In particular, I show that a medium

that displays such a coupling can be impedance matched to the surround-

ings, which is a crucial issue for any optical component. I also show that the

value of the refractive index can be fine-tuned by external fields which may

be important for switchable devices. I conclude this part with an explicit

analysis of the tensorial properties of such media.

A crucial input used in part I are Clausius-Mossotti local field correction

factors. As the simultaneous application for electric and magnetic degrees

of freedom leads to a counterintuitive behavior in the limit of high densities

part II is devoted to a microscopic analysis of the local field factors. From

a phenomenological derivation based on macroscopic considerations I find in

chapter 6 that the simultaneous application of the local field corrections to

electric and magnetic oscillators, which employ only purely radiative broad-

ening, results in a vanishing absorption for high densities, while in the same

limit the index of refraction approaches the value n = −2. In the following

section I discuss formal considerations of a microscopic model of the mate-

rial response, which includes Clausius-Mossotti factors, at the example of

dielectric media. By generalizing to pure magnetic and magneto-dielectric

materials in chapters 8 and 9, respectively, I confirm the findings of the

phenomenological discussion in the framework of this microscopic treatment

[Kästel2007c].

Part III is devoted to a quantum optical application of negative refrac-

tion. In particular the Purcell effect which an atom experiences in front of

a mirror is discussed: The spontaneous population decay rate for dipoles

oriented along the surface of the mirror is completely suppressed as the dis-

tance of the atom to the mirror vanishes. Likewise, atomic dipoles oriented

perpendicularly display an enhanced linewidth. As the distance of the atom

to the mirror for this effect must be on the order of the transition wavelength

an experimental study represents a hard task. After a review of the quantiza-

tion procedure of the electromagnetic field including macroscopic dispersive

and inhomogeneous bodies in chapter 10 [Kästel2003] I show that this prob-
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lem can be alleviated by covering the mirror by a layer of a medium with a

negative index of refraction. As a result the effect takes place at potentially

macroscopic distances to any surface [Kästel2005a, Kästel2005b]. In chapter

12, I analyze limitations of this effect due to imperfect, i.e., absorbing media,

finite apertures and the unavoidable dispersion associated with any negative

index material.





Part I

Electromagnetically induced

magneto-electric cross coupling

and negative refraction

17





CHAPTER 2

Negative refraction by magneto-electric cross

couplings

Linear media are characterized by a linear functional relations between the

polarization P(r, ω) and the electric field amplitude E(r, ω) and similar rela-

tions for the magnetization M(r, ω) and the magnetic field amplitude H(r, ω)

P(r, ω) = χ̄e(ω)E(r, ω), M(r, ω) = χ̄m(ω)H(r, ω). (2.1)

Here χ̄e(ω) and χ̄m(ω) are the electric and magnetic susceptibility tensors,

respectively. It turns out that (2.1) is not capable to describe all effects

of linear optical systems such as, e.g., optical activity, which describes the

rotation of linear polarization in optically active, chiral media independent

of the propagation direction of light. In general the constitutive relations

P =χ̄eE +
ξ̄EH

4π
H

M =
ξ̄HE

4π
E + χ̄mH

(2.2)

have to be considered. Here ξ̄EH and ξ̄HE denote tensorial coupling coeffi-

cients between the electric and magnetic degrees of freedom. These media

with magneto-electric cross coupling will become of particular interest in the

following. Note that here and in the following the coefficients χ̄e(ω), χ̄m(ω),

ξ̄EH, and ξ̄HE are unitless as we employ Gaussian units throughout this the-

sis.

19
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2.1 Magneto-dielectric media without cross

coupling

Before introducing concepts related to electromagnetically induced cross cou-

pling we study the possibilities of negative refraction in media with consti-

tutive relations given in (2.1). As negative refraction demands magnetic

degrees of freedom we consider a medium composed of two species A, B. Let

system A be composed of electric dipole oscillators with a number density ̺A

and a dipole moment dA. Likewise species B may consist of magnetic dipole

oscillators with corresponding number density ̺B and a magnetic dipole mo-

ment µB. In order to have a sufficiently large medium response we operate

near resonance. As the electric and magnetic resonances must overlap spec-

trally in order to obtain a negative refractive index we choose the respective

resonance frequencies to be identical ωA = ωB = ω0. We assume a single-

resonance response for the linear polarizabilities αA(ω) and αB(ω) of system

A and B, respectively. The permittivity ε = 1 + 4π̺AαA(ω) and the perme-

ability µ = 1 + 4π̺BαB(ω) then read

ε = 1 +
4π

2~

̺Ad2
A

∆− iγA
(2.3)

and

µ = 1 +
4π

2~

̺Bµ2
B

∆− iγB
. (2.4)

γA and γB denote the corresponding linewidths and ∆ = ω0−ω is the detun-

ing of the probe field frequency ω from the (common) resonance frequency

ω0.

For given oscillators the only experimentally free parameters in (2.3) and

(2.4) are the detuning ∆ and the densities ̺A and ̺B. In order to get a

negative refractive index Re[n] < 0 we need to have Re[ε] < 0 and Re[µ] < 0

simultaneously. Therefore we have to tune close to resonance ∆ ≈ 0 which

will inevitably cause significant absorption of the probe beam. Furthermore

we need comparably high densities ̺A, ̺B to compensate the vacuum con-

tribution in the permittivity and the permeability.

From the Wigner-Weisskopf theory [65] we find that for purely radiatively

broadened electric oscillators the natural linewidth γA in Gaussian units is
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given by

γA =
4ω3

0d
2
A

3~c3
, (2.5)

i.e., quadratic in the electric transition moment dA. The same result can

be obtained from the vacuum limit of a general quantization scheme1 which

incorporates arbitrary dispersive electric and magnetic media represented by

the classical Green function G(r, r′, ω) [66, Kästel2003], from which we find

the general expression

γA =
8πω2

0d
2
A

~c2
Im[G(rA, rA, ω0)]. (2.6)

An application of this theory to magnetic oscillators yields the corresponding

expression2

γB =
8πµ2

B

~

−→∇ × Im[G(rA, rA, ω0)]×
←−∇ (2.7)

which simplifies for the vacuum case G ≡ G(0) to γB = 4ω3
0µ

2
B/(3~c3). Thus

the Wigner-Weisskopf result for electric dipoles in free space applies iden-

tically to magnetic ones with the electric dipole moment replaced by the

corresponding magnetic one.

In particular the radiative linewidth for each species is proportional to the

square of the corresponding transition moment, e.g., γA ∼ d2
A. Provided that

the transitions under consideration are radiatively broadened it follows that,

sufficiently close to resonance ∆ ≪ γA, γB, electric and magnetic responses

have approximately the same strength, entirely determined by the transition

frequency ω0 and the respective density ̺i. In other words, as soon as the

electric polarizability is strong enough to compensate the vacuum response

and therefore result in a negative permittivity Re[ε] < 0, the permeability

reaches negative values as well Re[µ] < 0.

As an example we assume electric and magnetic atomic transitions in

the optical spectral range. We assume a typical value γB = 1kHz for the

magnetic transition [67] and correspondingly γA = 1372γB (for the factor

1372 see the discussion below). The density needed to obtain Re[n] < 0

1Cf. part III.
2In cartesian coordinates the expression (

−→∇ × Im[G(rA, rA, ω0)] ×
←−∇)in is given by

limr1→rA
limr2→rA

εijk∂r1

j ∂r2

m Im[Gkl(r1, r2, ω)]εlmn.
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Figure 2.1: Real (solid) and imaginary (dashed) parts of the refractive index

n =
√

εµ of the 2-species model [eqns. (2.3), (2.4)]. Note that FoM ≤ 1 holds.

The parameters are: γA = 1372kHz, γB = 1kHz, γp = γA, ̺A = 2 · 1015/cm3,

̺B = 2 · 1019/cm3. The dipole moments are related to the natural linewidth

by Wigner-Weisskopf theory for a wavelength λ = 600nm.

then is about ̺A = ̺B = 1015/cm3. In vapors for such densities additional

collisional dephasing rates γp are in general larger than the radiative width of

the magnetic transition γB. Due to that additional broadening the strength

of the magnetizability αB(ω) and hence the magnetic susceptibility is reduced

by a factor of up to α2 = 137−2 (α: Fine structure constant) as compared to

the electric one. This ratio is due to a general estimate for typical electric

and magnetic dipole transition moments in atomic systems [67]

µB ≈ αdA. (2.8)

As a result the density of magnetic scatterers must be larger than ̺A in order

to compensate for the reduced magnetizability αB(ω). For an additional

broadening on the order of the electric radiative linewidth γp ≈ γA this leads

to requiring ̺B ≈ 1019/cm3 to obtain Re[µ] < 0 instead of ̺B ≈ 1015/cm3 in

the radiative broadening limit. The corresponding refractive index n =
√

εµ

is shown in Fig. 2.1. As the negative refraction is achieved by a resonant

scheme we obtain substantial losses and thus the figure of merit at most

reaches values on the order of one: FoM ≤ 1.

Note that high densities with simultaneously small homogeneous broaden-

ings can only be achieved in solid state systems like an ensemble of quantum

dots, electron-hole pairs (excitons), doped (laser) crystals or color centers
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each of which has its specific advantages, like large transition moments in

color centers, but also its drawbacks as the usually tremendous inhomoge-

neous broadenings in quantum dot ensembles due to the delicate manufactur-

ing process, which can decrease the effective density by many orders of mag-

nitude. The most common materials in the optical regime, which merge the

advantages of high density in solid state media with the coherence properties

of free space atoms, are doped crystals, in particular at cryogenic tempera-

tures, which allow one to eliminate detrimental effects of crystal properties

(phonons) onto the dephasing rates. Compared to laser crystals with doping

rates of 1 − 10 mass% [68] in experimental reports about coherence effects

in doped crystals [51, 61, 69] the doping rate usually is about 0.05 mass%

which corresponds to about 1019/cm3 active particles. As the crystal field

contributes a significant inhomogeneous width, the effective density is further

reduced. Thus, apart from the absorption problem, a direct implementation

of negative refraction in doped crystals seems questionable as the required

densities in combination with small homogeneous broadenings can not be

provided.

2.2 Magneto-electric cross-coupling and neg-

ative refraction: Fundamental concepts

The figure of merit of negative refraction in atomic media can be enhanced

significantly while simultaneously relaxing the requirements concerning the

necessary density of active scatterers by consideration of more general me-

dia as we will show below. In the magneto-dielectric media of section 2.1

the electric and magnetic properties of the material were separated which is

reflected in the applied material equations (2.1). We now turn to more gen-

eral media with a magneto-electric cross-coupling displayed in the material

equations

P =χ̄eE +
ξ̄EH

4π
H,

M =
ξ̄HE

4π
E + χ̄mH

(2.9)
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which can equivalently be expressed as

D = ε̄E + ξ̄EHH, B = ξ̄HEE + µ̄H. (2.10)

The permittivity is given by the electric susceptibility ε̄ = 1 + 4πχ̄e and

similarly the permeability is given by the magnetic susceptibility µ̄ = 1 +

4πχ̄m. Note that all coupling coefficients are in general complex-valued 3×3-

matrices. In such materials the electric Polarization P is not only induced

by the electric field E as in dielectric or magneto-dielectric materials but

also gets a contribution proportional to the magnetic field H. Likewise the

magnetization M is coupled to the electric field E. Note that the form of

the material equations (2.9) is not unique but presents just one possibility to

express the aforementioned cross-coupling of electric and magnetic material

properties.

The first usage of material equations which employ cross-coupling coeffi-

cients are known from Born [70, 71] and later by Fedorov [72] who used

D =ε[E + β∇×E],

B =µ[H + β∇×H]
(2.11)

in order to describe optical active media in which the plane of the linear

polarization is rotated in the presence of chiral molecules. The strength of

the optical activity is given by the factor β which is called chirality parameter.

The cross-coupling inherent to equations (2.11) is seen by recasting them with

the help of Maxwell’s equations for time-harmonic waves into the form

D =ε̃E + ζH,

B =µ̃H− ζE
(2.12)

used by Tellegen [73] to describe an electrical device called gyrator. Note that

compared to (2.11) the interpretation of the permittivity has changed. While

for time-harmonic fields ε in (2.11) is the permittivity taken at a vanishing

magnetic induction B = 0, the corresponding ε̃ is the permittivity taken at

H = 0 with ε̃ = ε/(1 − ω2εµβ2/c2). Similar considerations apply for the

permeabilities µ and µ̃, respectively. Equations (2.9), (2.10) which will be

employed in the following represent a generalization of these early approaches

to tensor valued coefficients.
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Yet another form of material equations is used in the work of Cheng and

Kong [74] who used

cD =P · E + cL ·B,

H =M· E + cQ ·B
(2.13)

which is best suitable for a covariant description of cross-coupled media.

Here the coupling coefficients P, Q, L, and M are again complex-valued

3×3-matrices. Media of the type (2.13) are called bianisotropic media [75] a

term which, in contrast to isotropic, anisotropic or biisotropic, highlights the

tensor structure of the parameters. As a realization of cross-coupling they

did not consider chirality3, but the magneto-electric effect found in moving

dielectrics [76, 77] that get polarized in a magnetic field and magnetized in an

electric field, as well as in certain crystals, e.g., antiferromagnets [78]. Note

that (2.13) is equivalent to (2.10) with ε̄ = (P − L · Q−1 · M)/c, µ̄ = Q−1/c,

ξ̄EH = L·Q−1/c, and ξ̄HE = −Q−1 ·M/c. We thus conclude that, for optical

activity, the magneto-electric effect is merely a special case of (2.10) under

the assumption of ξ̄EH = ξ̄t
HE as used, e.g., in [79] or in covariant form in

[80].

As mentioned above in the following we will use the form (2.10) of the

material equations for cross-coupled media to show how negative refraction

in such materials emerges. By equating (2.10) with the Maxwell equations

in time Fourier space

ω

c
D = −k×H,

ω

c
B = k× E (2.14)

we find after elimination of the magnetic field strength H the Helmholtz

equation [
ε̄ + (ξ̄EH +

c

ω
k×)µ̄−1(

c

ω
k×−ξ̄HE)

]
E = 0 (2.15)

which governs the propagation k(ω) in a medium given by the response

tensors ε̄, µ̄, ξ̄EH , and ξ̄HE.

For the sake of simplicity we want to restrict the general form (2.15) to

a scalar version in order to discuss the prospects of negative refraction. We

hence first arbitrarily choose the wave to propagate into z-direction. Addi-

tionally we assume the permittivity ε̄ and the permeability µ̄ to be isotropic

3which of course is contained in (2.13) as special case
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ε̄ = ε1, µ̄ = µ1 as we are interested in the aspects of wave refraction and

propagation due to the cross-coupling coefficients. This still leaves the choice

of the polarization vector of the transverse beams. As a result, only the up-

per left 2× 2-submatrizes of the tensors ξ̄EH and ξ̄HE are relevant which can

be expanded in the four matrices e± ⊗ e∗
±, e± ⊗ e∗

∓ with the circular polar-

ization basis vectors e± = (ex ± iey)/
√

2. Here ⊗ denotes a dyadic product

(a⊗b)ij = aibj and ∗ means a complex conjugation which for circular polar-

ization basis vectors has to be applied to ensure the orthogonality relations

e∗
± · e± = 1, e∗

± · e∓ = 0. At this point we restrict ourselves to media that

allow for conservation of the photonic angular momentum at their interfaces.

In particular we assume the response matrices ξ̄EH and ξ̄HE to be diagonal

in the basis {e+, e−, ez}. This results, e.g., for ξ̄EH, in

ξ̄EH = ξ+
EH e+ ⊗ e∗

+ + ξ−EH e− ⊗ e∗
− + ξz

EH ez ⊗ ez

=




(ξ+
EH + ξ−EH)/2 −i(ξ+

EH − ξ−EH)/2 0

i(ξ+
EH − ξ−EH)/2 (ξ+

EH + ξ−EH)/2 0

0 0 ξz
EH


 .

(2.16)

By noting that ez × e± = ∓ie±, the Helmholtz equation (2.15) simplifies for

the right4 circular polarization vector e− to the scalar equation

εµ−
(
ξ−EH + i

c

ω
k−

z

)(
ξ−HE − i

c

ω
k−

z

)
= 0 (2.17)

which can be solved for k−
z . As k−

z is related to the corresponding refractive

index via n− = k−
z c/ω we find

n− = ±

√

εµ−
(
ξ−EH + ξ−HE

)2

4
+

i

2

(
ξ−EH − ξ−HE

)
. (2.18)

The sign of the root has to be chosen such that the resultant imaginary part

stays positive for the case of a passive medium. Similarly the refractive index

of the right circular polarization is found to read

n+ = ±

√

εµ−
(
ξ+
EH + ξ+

HE

)2

4
− i

2

(
ξ+
EH − ξ+

HE

)
. (2.19)

4The basis vector e− describes a field amplitude which rotates clockwise when viewed

against the direction of propagation. Alternatively such a polarization is said to have

negative helicity, i.e., transports a spin −~ per photon.
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From a similar consideration, Pendry [81] noted that for a system un-

der the above mentioned assumptions the refractive index (2.18) can become

negative without requiring a negative permeability Re[µ] < 0 thus circum-

venting the most prominent obstacle on the road to Re[n] < 0 in atomic

media. This important finding can be seen better under the assumption that

ξ−EH = −ξ−HE in which case the cross-coupling term under the square root

vanishes. If we additionally restrict the phase of the complex number ξ−EH to

ξ−EH = iξ, ξ > 0, equation (2.18) simplifies to

n− =
√

εµ− ξ. (2.20)

Thus if we find a system in which the value of ξ gets comparable to
√

εµ

we expect a negative refractive index. Note that here not only the absolute

value of ξ matters but that we have to fix the phase of ξ−EH and ξ−HE in order

to find a negative index of refraction Re[n−] < 0.

In chapter 3 we will show that in atomic media these requirements can be

met by artificially inducing a coupling of a magnetic and an electric dipole

transition. Considering the amplitude criterion, this is because the cross-

coupling coefficients are in general proportional to the combination dAµA

of electric and magnetic transition moments, respectively. From the discus-

sion in section 2.1 it therefore follows (for media with additional broadening

mechanisms) that the chiralities scale as ξ−EH , ξ−HE ∼ αχe. This is about a

factor of 137 better than the scaling of the magnetic susceptibility, for which

we found χm ∼ α2χe. We will furthermore show that the introduction of a

strong external coupling field leads to quantum interference effects similar to

electromagnetically induced transparency (EIT) and thus to low absorption

with FoM ≫ 1.

2.3 Tensorial effects

A comprehensive treatment of the propagation properties of a plane wave

in a general linear medium described by (2.10) has to include the tensor

properties of ε̄, µ̄, ξ̄EH, and ξ̄HE, respectively. To find the wave vector k of

a non-trivial field solution one has to solve (2.15) or alternatively exploit the
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condition

det
[
ε̄ + (ξ̄EH +

c

ω
k×)µ̄−1(

c

ω
k×−ξ̄HE)

]
= 0. (2.21)

A similar determinantal condition is given by O’Dell [80] who noted that a

solution where the tensors ε̄, µ̄, ξ̄EH, and ξ̄HE do not fulfill any restrictions

is very tedious. For specialized situations such as biisotropic [81, 82] as well

as some particular tensor-valued media [83, 84, 85, 86] explicit solutions are

known, however.

In order to specialize the general description, the constraints

ε̄ = ε̄†, µ̄ = µ̄†, ξ̄HE = ξ̄†EH (2.22)

are known [75, 85] to be sufficient but not necessary for lossless media. Here †

denotes complex conjugation and matrix transposition. For general dissipa-

tive media, though, no necessary constraints can be found but the one given

by Lakhtakia and Weiglhofer [87]. Without relying on physical concepts like

nondissipativity or reciprocity they exploit the mathematical structure of

Maxwell’s equations. Using the covariant form of electrodynamics they find

the scalar condition

tr
[
ξ̄EHµ̄−1 + µ̄−1ξ̄HE

]
= 0 (2.23)

where “tr” denotes the trace of a matrix.

Hence the general response tensors ε̄, µ̄, ξ̄EH , and ξ̄HE are only con-

strained by the single scalar condition (2.23). We will therefore not try to

give a general solution but discuss the prospect of negative refraction in cross-

coupled materials for two fundamental examples. In particular, we will focus

on the possibility of finding an isotropic negative index of refraction, which

does not depend on the polarization state of the beam.

2.3.1 Biisotropic media

A special case of (2.16) is represented by biisotropic media which are de-

scribed by scalar coefficients ε̄ = ε1, µ̄ = µ1, ξ̄EH = ξEH1, and ξ̄HE = ξHE1,

respectively, as already discussed by Pendry [81]. In view of the constraint

(2.23) we note that ξEH = −ξHE =: ξ must hold. For a beam propagating in

the (now arbitrary) z-direction k ∼ ez the Helmholtz equation (2.15) decou-

ples into two scalar relations if the polarization vectors are taken to be e+
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and e−, respectively. The corresponding refractive indices n± = k±
z c/ω are

then found to be given by

n+ = ±√εµ− iξ, n− = ±√εµ + iξ. (2.24)

Note the sign change of the ξ term. Due to the isotropy of the response

tensors the direction of propagation is arbitrary and thus the refractive index

is angle independent. But from the aforementioned sign change we conclude

that in general

n+ 6= n−, (2.25)

thus the index of refraction depends on the polarization state of the probe

beam, i.e., the medium displays isotropic chirality. This isotropy also holds

for the energy propagation properties described by the Poynting vector S =

Re [E×H∗] /2, for which we find S ∼ k.

Considering an application of such a material in a flat lens we note that

point sources of light do not radiate in a single circular polarization, but

beam components for different angles will in general be composed of both

e+ and e− polarizations. As a result, biisotropic materials are useless for a

perfect lens as the different polarization components will experience different

refraction angles. Furthermore, in view of chapter 3 it is unclear as to how

such a material should be implemented in atomic media.

2.3.2 Polarization independent media

As a second example we consider a medium which displays a polarization

independent index of refraction for at least one direction of propagation. In

particular we assume isotropic permittivity ε̄ = ε1 and permeability µ̄ = µ1
but tensors ξ̄EH, ξ̄HE which do not couple left and right circular polarizations

for at least one propagation direction as discussed in section 2.2. In view of

(2.18) and (2.19) we define ξ−EH = −ξ+
EH and ξ−HE = −ξ+

HE , respectively. This

results in tensors of the form

ξ̄EH = −ξEH e+ ⊗ e∗
+ + ξEH e− ⊗ e∗

− =




0 iξEH 0

−iξEH 0 0

0 0 0


 (2.26)
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where we skipped the ± indices and similar for ξ̄HE . Note that we assumed

ξz
EH = ξz

HE = 0 for the sake of simplicity. In contrast to the biisotropic case

we find identical refraction

n+ = n− = ±

√

εµ− (ξEH + ξHE)2

4
+

i

2
(ξEH − ξHE) (2.27)

for the two polarizations for the z-direction.

For directions other than that we solve (2.21) for |k| = k of the angle

dependent wave vector k = k (sin θ cos φ, sin θ sin φ, cos θ). We find an angle

dependent index of refraction n = kc/ω

n = ±
√

ǫµ− ξEHξHE −
(ξEH − ξHE)2 cos2 θ

4
+

i

2
(ξEH − ξHE) cos θ (2.28)

which does not depend on the polarization state. Thus the medium shows

a non-chiral but anisotropic response. For θ = 0, i.e., propagation in z-

direction, we recover (2.27).

Media, which obey (2.26), allow, in contrast to biisotropic materials, for

refractive indices that are polarization independent but display a strong an-

gular dependence. As these angular dependent terms affect only the cross-

couplings, a change of direction from z to −z reverses their effect. Thus fol-

lowing the discussion in section 2.2 on negative refraction in materials with

cross-couplings we note that reversing the direction of propagation might

make a negative index positive5.

From equation (2.21) we observe that the cross coupling coefficients are

always paired with the operator of the vector product with the k-vector.

This operator reads in {x, y, z}-basis

k× =




0 −kz ky

kz 0 −kx

−ky kx 0


 . (2.29)

For propagation in z-direction, equation (2.29) reduces to a similar structure

than (2.26). But in contrast to (2.26) the matrix (2.29) changes for different

angles which finally yields the angular dependence of (2.28).

5Cf. also section 4.3.
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(a) (b)

Figure 2.2: (a) The angle α (2.32) between the Poynting vector S and the

wave vector k as a function of the polar angles θ, φ which determine the

direction of k. The z-axis is directed upwards. (b) shows the same inverted

along the z-axis.

No weakening of the angular dependence is obtained when additional

couplings are introduced to ξ̄EH and ξ̄HE, e.g.,

ξ̄EH =
1√
3




0 iξEH −iξEH

−iξEH 0 iξEH

iξEH −iξEH 0


 , (2.30)

in order to mimic (2.29). The tensor (2.30) just corresponds to a rotation of

the preferred axis to the volume diagonal.

The angular dependence of the index of refraction (2.28) vanishes in the

case ξEH = ξHE = ξ resulting in

n = ±
√

εµ− ξ2. (2.31)

Thus we find an isotropic index of refraction which does not depend on the

polarization state. We emphasize that (2.31) can attain negative values. For

example using the values6 ε = 0.1 + 0.001i, µ = 1.5 + 0.001i, ξ = 0.01 + i

for the permittivity, the permeability and the cross-coupling ξ, respectively,

leads to n = −1.07 + 0.008i. The propagation properties of light beams are

nevertheless highly non-trivial as the Poynting vector7 S = Re [E×H∗] /2

6Similar numbers are found in chapter 3.
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k(θ)S(θ)

Figure 2.3: Misalignment between the Poynting vector and the wave vector

in the x-z-plane.

and the k-vector in general point in different directions. Figure 2.2 shows

the angle

α = arccos
(
k̂ · S/|S|

)
(2.32)

between the Poynting vector S and the normalized wave vector k as a function

of the polar angles θ, φ which describe the direction of k. Again the values

ε = 0.1 + 0.001i, µ = 1.5 + 0.001i, ξ = 0.01 + i have been used to determine

the Poynting vector S. We note that only for θ = {0, π}, i.e., for forward and

backward z-directions, S and k are aligned but point in opposite directions.

Figure 2.3 shows some more explicit examples for the x-z-plane, in which the

Poynting vector and the wave vector always fall into the plane. In general

the Poynting vector will also attain components out of the plane. Although

the imaging properties of a medium described by (2.26) are not studied in

detail it seems questionable that it will allow for applications like a perfect

lens. In order to give a final answer to this question the imaging properties

of a flat lens need to be analyzed which requires to determine the tensorial

Green function for such a medium which is a very involved and difficult task.

In order to find negative refraction in cross-coupled media independent of

polarization states and directions of propagation with no beam walk-off, one

would need to implement couplings depending on the probe beam direction

which contradicts the assumptions of linear response theory.

7which is found using (2.10), (2.14) and (2.31)
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An explicit example of a medium which is closely related to the case

discussed here is given in section 4.3.





CHAPTER 3

Implementation: 5-level scheme

3.1 Concepts of induced cross-coupling in

atomic media: 3-level scheme

As mentioned in chapter 2 an implementation of the ideas employing mag-

neto-electric cross-coupling and negative refraction in atomic media involves

electric and magnetic dipole transitions linked by an external control field. In

the following we will clarify these concepts by application to an appropriate

level scheme.

After restriction to a particular propagation direction and a definite po-

larization state we only have to deal with a scalar theory, for which we rewrite

(2.9) effectively as

D =εE + ξEHH,

B =ξHEE + µH.
(3.1)

Here E, H, B, and D are the (scalar) field amplitudes corresponding to the

polarization mode e−. Note that (3.1) in general holds only for the particular

tensor structures used in (2.16). The scalar coefficients ε and µ are the per-

mittivity and permeability, and ξEH and ξHE the scalar cross-coupling tensor

elements of the e−-mode, respectively. Hence from (3.1) we find (2.18) as

the index of refraction. In (3.1) and in the following we will drop the index

35
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B E

Ωc

γ2 γ3

|1〉

|2〉 |3〉

Figure 3.1: 3-level system allowing for the implementation of electro-

magnetically-induced cross-coupling. E, B are the electric and magnetic

components of the probe field, γ2 and γ3 are decay rates out of levels |2〉 and

|3〉, respectively. Ωc is an applied field that couples levels |2〉 and |3〉.

− for notational simplicity. Note further that for a scalar theory the distinc-

tion between chiral and non-chiral magneto-electric effects is irrelevant and

we henceforth use the terms “cross-couplings”, “chiralities”, and “chirality

parameters” interchangably to denote ξEH and ξHE.

Let us consider the 3-level scheme shown in Fig. 3.1. It consists of a

common ground state |1〉 and two upper states |2〉 and |3〉. The transition

|1〉 − |3〉 is supposed to be an electric dipole transition (E1) while |1〉 − |2〉
is a magnetic dipole transition (M1). For reasons of parity the transition

between levels |2〉 and |3〉 is magnetic dipole forbidden and, neglecting higher

multipole terms, can thus only support an electric dipole transition. E and B

denote the electric and magnetic components of the probe electromagnetic

wave which also show up in (3.1). We assume that levels |2〉 and |3〉 are

energetically degenerate so that the probe field can couple efficiently to both

the electric and magnetic dipole transition. So far this scheme is in linear

response identical to the one discussed in section 2.1 with ̺A = ̺B, i.e., there

is no cross-coupling.
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To induce a cross-coupling we add a strong resonant coherent field with a

Rabi frequency Ωc which induces a transition between states |2〉 and |3〉.
Then the electric dipole transition |1〉 − |3〉 and the magnetic transition

|1〉 − |2〉 are coupled in a way described by (3.1): When an electric field

amplitude E is applied, it induces electric dipole transitions and thus a po-

larization P but due to the coupling Ωc the magnetic dipole transition will

be driven as well which results in a magnetization M proportional to E, i.e.,

a nonzero chirality ξHE . Likewise, the coupling leads to a nonzero ξEH by

the application of a magnetic field B. In summary the coupling of an E1 and

a M1 transition as in Fig. 3.1 implements the material equations (3.1) and

thus potentially leads to Re[n] < 0 without requiring Re[µ] < 0.

The scheme of Fig. 3.1 has been discussed by Oktel and Müstecaplioglu

[88]. However they did not take into account cross-couplings, but relied on

the conditions Re[ε], Re[µ] < 0 to induce negative refraction which led to a

rather stringent density requirement comparable to that found in section 2.1.

As noted above, the radiative population decay rates γi are proportional

to the square of the respective transition moment. Thus from µA ∼ αdA

we find that γ2 ≪ γ3, i.e., the magnetic decay rate is much smaller than

the one of the electric transition (see also [67]). In other words, state |2〉,
which can be considered meta-stable, is coupled strongly by Ωc to the E1

probe field transition |1〉 − |3〉. On two-photon resonance this fulfills the

condition for electromagnetically induced transparency [57]. Therefore we

expect the absorption of the direct E-field response, i.e., the permittivity ε,

which represents the largest response and thus the main source of absorption,

to be suppressed by a factor of about γ3γ2/Ω2
c .

Figure 3.1 represents a closed loop scheme similar to the one from Fig. 1.7.

From studies of resonant nonlinear optics [56, 57, 63, 64] it is known that

the parametric coupling, which is here given by the chirality, experiences

constructive interference as long as the direct coupling interferes destruc-

tively, i.e., under conditions of EIT. Hence we expect quantum interference

effects to suppress the absorption Im[ε] while simultaneously enhancing the

cross-coupling coefficients. This should allow low-loss negative refraction for

densities significantly lower than in non-chiral proposals.

The simplistic scheme of Fig. 3.1 allows us to discuss qualitatively the
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fundamental advantages as compared to non-chiral proposals, and gives a

physical understanding of the underlying processes in a comparatively easy

way. However, it is not adequate for an experimental implementation, for

the following reasons:

(i) As we noted in section 2.2 the complex phase of the chirality coefficients

ξEH, ξHE must be adjustable in order to get Re[n] < 0. In the scheme

of Fig. 3.1, Ωc is a dc-field which has no phase itself. As a consequence

the phases of ξEH, ξHE are solely given by the intrinsic phase of the

transition moments and therefore can not be controlled.

(ii) One of the main advantages of the strong coupling Ωc is high-contrast

EIT. As it depends on the coherence between states |2〉 and |1〉 given

by the density matrix element ρ21 the corresponding dephasing rate

γ21 must stay small. Similar to ordinary EIT-Λ-schemes the transi-

tion between the two EIT “ground”-states |1〉 and |2〉 is electric dipole

forbidden. In vast contrast to ordinary EIT though, the energy split-

ting of |1〉 and |2〉 here is on the order of the probe field frequency,

i.e., up to optical frequencies rather than in the microwave regime.

As a consequence the coherence ρ21 is highly susceptible to additional

homogeneous or inhomogeneous broadenings which ultimately destroy

electromagnetically induced transparency.

(iii) Although the level scheme of Fig. 3.1 is not forbidden on fundamental

grounds it is a strong restriction to require that electric and magnetic

transitions be energetically degenerate while having a common ground

state.

Though the items (i)-(iii) indeed display severe limitations, a simple mod-

ification of the 3-level scheme of Fig. 3.1 suffices to alleviate these con-

straints. We replace the ground state |1〉 of the 3-level scheme by the

dark state |D〉 = (Ω2|1〉 − Ω1|4〉)/
√

Ω2
1 + Ω2

2 of the 3-level Λ-type subsys-

tem {|1〉, |4〉, |5〉} of the 5-level-scheme shown in Fig. 3.2. The transitions

|5〉 − |1〉 and |5〉 − |4〉 are supposed to be E1 transitions such that the mod-

ified 5-level scheme still fulfills parity selection rules. A related scheme has
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B E

B

E

Ω1

Ω2

Ωc

Ωc

|1〉
|1〉

|2〉
|2〉

|3〉

|3〉

|4〉

|5〉

Figure 3.2: Modification of the level scheme of Fig. 3.1. The ground state

|1〉 is substituted by the dark state |D〉 = (Ω2|1〉 − Ω1|4〉)/
√

Ω2
1 + Ω2

2 of the

3-level Λ-type subsystem formed by levels {|1〉, |4〉, |5〉}, respectively.

been discussed by Thommen and Mandel [89], however without the possibil-

ity of EIT and ignoring the chiral nature of the constituent relations1. Note

that level |4〉 can decay to the ground state only via a 2-photon transition.

Hence we assume |4〉 to be meta-stable γ4 ≪ γ3. By application of two

strong laser fields with Rabi frequencies Ω1 and Ω2, respectively, the subsys-

tem evolves to the dark state |D〉 by means of optical pumping. Once in the

dark state the system will stay there as long as the probe field amplitudes E

and B are treated in linear response. One recognizes that problems (i)-(iii)

are addressed:

(i) As the upper states |2〉 and |3〉 are not degenerate any more the coupling

Rabi frequency Ωc is now given by an ac-field which thus has a phase

relative to the beat-note of Ω1 and Ω2. By adjustment of it the phase of

the cross-coupling coefficients ξEH and ξHE can be controlled and hence

the conditions needed to induce negative refraction can be fulfilled.

(ii) The permittivity of the 5-level system at the probe field frequency is

now given by the direct response of the |3〉 − |4〉 transition. Thus the

critical parameter for EIT is the dephasing rate γ24 of the new EIT

1For a discussion of the Thommen-Mandel scheme and a correction of the results of

[89] see [Kästel2007a].
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“ground” state coherence ρ24. As levels |2〉 and |4〉 can be constrained

to be close to degenerate, ρ24 is mostly immune against additional

broadening mechanisms.

(iii) Although the electric and magnetic transitions are still degenerate, as in

the 3-level system of Fig. 3.1, they do not share a common state. Thus

the 5-level scheme leaves much more freedom regarding a realization in

atomic systems.

After having discussed the qualitative features of the 3-level scheme we rea-

soned why we need to consider the slightly more complicated 5-level system

for a serious implementation. In the following we will give an analytical

solution to the modified scheme and show under which conditions negative

refraction with low absorption can be achieved by means of electromagneti-

cally induced chirality.

3.2 Analytical solution: Single particle treat-

ment

For the following quantitative discussion, the 5-level scheme is shown in

greater detail in Fig. 3.3. Due to selection rules or non-resonance conditions,

only the sketched transitions are relevant. To find an analytical solution of

the response of a single system described by the 5-level scheme, we start with

the Hamilton operator including electric and magnetic dipole interactions

H = H0 − d · E(t)−µµµ ·B(t) (3.2)

with the free atomic part

H0 =
p2

2m
+ V (r) =

5∑

n=1

~ωA
n |n〉 〈n| (3.3)

which is assumed to include the relevant states |i〉, i ∈ {1, . . . , 5} only. Here

the ωA
n are the atomic eigenfrequencies of states |n〉, respectively. The electric

and magnetic field components can be decomposed into E(t) = E cos(ωpt)
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|1〉

|2〉

|3〉

|4〉

|5〉E

B

∆Eδc

∆B

Ω1

Ωc

Ω2

Figure 3.3: 5-level scheme for the implementation of negative refraction via

electromagnetically induced chirality. The magnetic dipole transition |2〉 −
|1〉 and the electric dipole transition |3〉 − |4〉 are coupled by Ωc to induce

chirality. The “ground”-state of the system is formed by the dark state

|D〉 = (Ω2|1〉 − Ω1|4〉)/
√

Ω2
1 + Ω2

2 of the subsystem {|1〉, |4〉, |5〉}.

and B(t) = B cos(ωpt), respectively, where ωp denotes the probe field fre-

quency. The electric and magnetic dipole moment operators are given by

d = er and µµµ = µB(J+S), respectively [67]. Following the discussion above,

we restrict ourselves to a particular mode of the electromagnetic field and

will thus use only the scalar amplitudes E and B rather than the full vec-

tor fields. Similarly, we will only take into account the corresponding scalar

projections of the electric and magnetic dipole moments.

By multiplying from the left and from the right with the identity operator

for the 5-level system 1 =
∑5

n=1 |n〉 〈n| we can rewrite the Hamiltonian in

the more convenient form [90]

H =
5∑

n=1

~ωA
n |n〉 〈n|+

{
−1

2
d34Ee−iωpt |3〉 〈4| − 1

2
µ21Be−iωpt |2〉 〈1|

−~

2
Ω1e

−iω1t |5〉 〈1| − ~

2
Ω2e

−iω2t |5〉 〈4| −~

2
Ωce

−iωct |3〉 〈2|+ H.c.

}
. (3.4)
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Here d34 = 〈3|e r · êE|4〉 and µ21 = 〈2|µµµ · êB|1〉 are the electric and mag-

netic dipole moments for the probe field transitions |3〉 − |4〉 and |2〉 − |1〉,
respectively. The strong fields are denoted by their Rabi frequencies Ω1 =

〈5|d|1〉 ·E1/~, Ω2 = 〈5|d|4〉 ·E2/~, and Ωc = 〈3|d|2〉 ·Ec/~ with correspond-

ing field frequencies ω1, ω2, and ωc, respectively. Note that the Hamiltonian

(3.4) is given under rotating wave approximation.

In general the dipole transition moments are complex numbers, hence

the Rabi frequencies are complex as well, but by adjusting the phases of the

atomic states |n〉 the phases of those complex numbers can be eliminated.

In the closed-loop 5-level system we can choose all but one of the transition

moments to be real. In particular we choose Ω1 and Ω2 as well as d34 and

µ21 real but let Ωc remain complex.

So far we have only considered unitary time evolution. In order to include

losses we use the Liouville equation of the density matrix ρ̂

˙̂ρ = − i

~
[H, ρ̂]−L(ρ̂) (3.5)

where the non-unitary part is given in Lindblad form [90] by

L(ρ̂) =
∑

ij∈{21,32,34,54,51,41}

γi→j

2

(
σij

+σij
− ρ̂ + ρ̂σij

+σij
− − 2σij

− ρ̂σij
+

)
. (3.6)

Here we restricted the number of decay channels as indicated in the summa-

tion where γi→j denotes the corresponding decay rate from some upper state

|i〉 to state |j〉. The projectors are given by σij
+ = |i〉 〈j| and σij

− = |j〉 〈i|,
respectively. Although this treatment is exact for decay processes within the

level scheme of Fig. 3.3 we will substitute the density matrix equation for the

ground state ρ11 by the explicit conservation of probability
∑5

n=1 ρnn = 1.

Because in linear response coherence decay rather than population decay pro-

cesses are of interest, this procedure guarantees the existence of a non-trivial

stationary state solution under all circumstances.

Before we solve (3.5), we note that in linear response the excitation of the

quantum system is assumed to stay entirely in the ground level. Therefore

one usually discards any diagonal density matrix elements ρnn, n 6= 1 which

give the probability to find the system in the excited state |n〉, n 6= 1. Then

the set of relevant density matrix components simplifies significantly. In



CHAPTER 3. IMPLEMENTATION: 5-LEVEL SCHEME 43

general, this procedure only applies for levels which are connected to the

ground state by weak fields. However, for the 5-level scheme the ground state

|1〉 is coupled by strong fields Ω1 and Ω2 to the excited states |4〉 and |5〉,
therefore the subsystem {|1〉, |4〉, |5〉} has to be solved exactly. The solution

of the full 5-level scheme will be treated in the above mentioned perturbative

approach afterwards.

The appropriate differential equations for the density matrix elements of

the subsystem {|1〉, |4〉, |5〉} are found by projecting the Liouville equation

(3.5) for the case E = B = 0 onto diagonal components ρnn = 〈n|ρ̂|n〉

ρ̇44 = −γ4ρ44 + γ5→4ρ55 +
1

2

(
iΩ2e

iω2tρ54 + c.c.
)
,

ρ̇55 = −γ5ρ55 +
1

2

(
iΩ1e

−iω1tρ15 + iΩ2e
−iω2tρ45 + c.c.

)

as well as off-diagonal components 〈n|ρ̂|k〉, n > k

ρ̇41 = −(iω41 + γ41)ρ41 +
i

2

(
Ω2e

iω2tρ51 − Ω1e
−iω1tρ45

)
,

ρ̇51 = −(iω51 + γ51)ρ51 +
i

2
Ω2e

−iω2tρ41 −
i

2
Ω1e

−iω1t (ρ55 − ρ11) ,

ρ̇54 = −(iω54 + γ54)ρ54 +
i

2
Ω1e

−iω1tρ14 −
i

2
Ω2e

−iω2t (ρ55 − ρ44) .

Note that we left out the equation for ρ11 as it will be replaced by the

conservation of probability constraint later. Here ωij = ωA
i − ωA

j denote the

atomic level spacings and the γi are the total decay rates out of level |i〉.
In particular, we have γ2 = γ2→1, γ3 = γ3→2 + γ3→4, γ4 = γ4→1, and γ5 =

γ5→1 + γ5→4. Furthermore γij = (γi + γj)/2 denote the natural decoherence

rates2.

To get rid of the fast oscillatory terms we transform to a rotating frame

by setting ρ̃41 = ρ41e
i(ω1−ω2)t, ρ̃51 = ρ51e

iω1t, and ρ̃54 = ρ54e
iω2t for the off-

diagonal density matrix elements. As we aim at steady state solutions we

subsequently ignore the time derivatives ˙̃ρij = 0 of the slowly varying ρ̃ij .

We thus end up with a set of algebraic equations

0 = −γ4ρ44 + γ5→4ρ55 +
1

2
(iΩ2ρ̃54 + c.c.) ,

2Additional dephasing will be discussed later.
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0 = −γ5ρ55 +
1

2
(iΩ1ρ̃15 + iΩ2ρ̃45 + c.c.) ,

0 = −(i(δ1 − δ2) + γ41)ρ̃41 +
i

2
(Ω2ρ̃51 − Ω1ρ̃45) , (3.7)

0 = −(iδ1 + γ51)ρ̃51 +
i

2
Ω2ρ̃41 −

i

2
Ω1 (ρ55 − ρ11) ,

0 = −(iδ2 + γ54)ρ̃54 +
i

2
Ω1ρ̃14 −

i

2
Ω2 (ρ55 − ρ44) .

Here the definitions δ1 = ω51 − ω1 and δ2 = ω54 − ω2 for the detunings of

the |5〉− |1〉 and |5〉− |4〉 transition apply, respectively. As mentioned above

the equation for ρ11 has been ignored. It is replaced by the conservation of

probability

ρ11 = 1− ρ44 − ρ55 (3.8)

which ensures non-zero solutions for the density matrix elements.

Solving (3.7) and (3.8) under the condition of 2-photon resonance δ1−δ2 =

0 we find for the 3-level Λ-subsystem

ρ
(0)
11 =

|Ω2|2
|Ω1|2 + |Ω2|2

+ O

(
γ4

γ5

)
, ρ

(0)
44 =

|Ω1|2
|Ω1|2 + |Ω2|2

+ O

(
γ4

γ5

)
,

ρ̃
(0)
41 =− Ω1Ω2

|Ω1|2 + |Ω2|2
+ O

(
γ4

γ5

)
, ρ

(0)
55 = ρ̃

(0)
51 = ρ̃

(0)
54 = 0 + O

(
γ4

γ5

)
.

(3.9)

Here O(γ4/γ5) indicates corrections linear in the small ratio γ4/γ5. We added

the superscript (0) because these solutions are, though correct to all orders

of Ω1 and Ω2, of zeroth order in the probe field amplitudes E and B. Note

also that (3.9) for a meta-stable state |4〉, i.e. γ4 ≪ γ5 indeed corresponds to

the pure dark state |D〉 = (Ω2|1〉 − Ω1|4〉)/
√

Ω2
1 + Ω2

2 via ρ̂subsys = |D〉 〈D|
as discussed in section 3.1.

Compared to the strong fields Ω1 and Ω2 the probe field amplitudes E and

B are assumed to be weak. Hence the population distribution given by (3.9)

will not change notably and we are allowed to treat the effect of the probe

field perturbatively. In the density matrix equations of the 5-level system

we therefore set ρ22 = ρ33 = 0 and neglect the coupling Rabi frequencies

Ω1 = Ω2 = 0 as they are already taken into account of in the solution (3.9).

We specialize to stationary solutions by transforming to a rotating frame
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defined by ρ̃21 = ρ21e
iωpt, ρ̃31 = ρ31e

i(ωp+ωc)t, ρ̃32 = ρ32e
iωct, ρ̃42 = ρ42e

i(ωc−ωp)t,

and ρ̃34 = ρ34e
iωpt and subsequently neglect time derivatives of the slowly

rotating matrix elements. The system of algebraic equations then reads

0 = −(i∆B + γ21)ρ̃21 +
i

2

(
µ21B

~
ρ

(0)
11 + Ω∗

c ρ̃31

)
,

0 = −(i(∆B + δc) + γ31)ρ̃31 +
i

2

(
d34E

~
ρ̃

(0)
41 + Ωcρ̃21 −

µ21B

~
ρ̃32

)
,

0 = −(iδc + γ32)ρ̃32 +
i

2

(
d34E

~
ρ̃42 −

µ21B

~
ρ̃31

)
, (3.10)

0 = −(i(δc −∆E) + γ42)ρ̃42 +
i

2

(
d34E

~
ρ̃32 −

µ21B

~
ρ̃

(0)
41 − Ωcρ̃43

)
,

0 = −(i(−∆E) + γ34)ρ̃43 −
i

2

(
d34E

~
ρ

(0)
44 + Ω∗

c ρ̃42

)
.

Note that these equations are valid, i.e., stationary solutions exist, only if

the condition

ωc = ω1 − ω2 (3.11)

holds. Otherwise some time dependent exponentials do not vanish. This

implies that ∆E = ∆B + δc must hold to guarantee that the total frequency

of a closed loop sums up to zero. Experimentally the constraint (3.11) can

be realized by parametric difference frequency generation of the strong fields

Ω1, Ω2, and Ωc [91].

Before we proceed we note that the induced polarization P is proportional

to the coherence ρ̃34 of the electric dipole transition |3〉−|4〉multiplied by the

corresponding transition moment d34. Likewise the induced magnetization

M is proportional to the density matrix element ρ̃21 and the magnetic dipole

moment µ21. Hence the coefficients of ρ̃34 and ρ̃21 linear in either E or B

define the sought polarizabilities

P =̺d34ρ̃34 := ̺αEEE + ̺αEBB,

M =̺µ21ρ̃21 := ̺αBEE + ̺αBBB.
(3.12)

Here ̺ denotes the number density of atoms (not to be confused with the

density operator ρ̂). We thus solve for the density matrix elements ρ̃34 = ρ̃∗
43
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and ρ̃21 linear in E and B and finally obtain the polarizabilities

αEE =
i

2~

d2
34ρ

(0)
44 (γ42 + i(∆E − δc))

(γ42 + i(∆E − δc))(γ34 + i∆E) + |Ωc|2/4
, (3.13)

αBB =
i

2~

µ2
21ρ

(0)
11 (γ31 + i(∆B + δc))

(γ31 + i(∆B + δc))(γ21 + i∆B) + |Ωc|2/4
(3.14)

as well as

αBE = − 1

4~

d34µ21ρ
(0)
41 Ω∗

c

(γ31 + i(∆B + δc))(γ21 + i∆B) + |Ωc|2/4
, (3.15)

αEB = − 1

4~

d34µ21ρ
(0)
41 Ωc

(γ42 + i(∆E − δc))(γ34 + i∆E) + |Ωc|2/4
. (3.16)

In order to discuss the results (3.13) – (3.16) we plug in some numbers. For

the magnetic dipole decay rate we set γ2 = 1kHz, for the electric dipole decay

rates γ3 = γ5 = (137)2γ2 and γ1 = γ4 = 0 for the population decay rates

of the (meta-)stable states |1〉 and |4〉, respectively. From the discussion

in section 2.1 we use the Wigner-Weisskopf result to determine the electric

and magnetic dipole matrix elements d34 and µ21 from the respective decay

rates d34(µ21) =
√

3γ3(γ2)~c3/(4ω3). To comply with the chosen decay rates

we use a typical optical frequency corresponding to λ = 600nm. We also

specialize to δc = 0, which corresponds to ∆E = ∆B. In the following all

spectra are plotted as functions of ∆ = −∆E = −∆B to ensure increasing

photon energies from left to right.

As noted above the Rabi frequencies of the Λ-type subsystem can be

chosen to be real. We let Ω1 = Ω2 = 102γ2. In contrast, the coupling Rabi

frequency Ωc = |Ωc|eiφ is a complex number whose phase (relative to that

of Ω1/Ω2) can be adjusted by the experimentalist. From (3.15) and (3.16)

it is apparent that the phase of the cross-coupling terms αEB and αBE is

determined by the phase φ of the coupling Rabi frequency Ωc.

Figure 3.4 shows the resultant polarizabilities (3.13) – (3.16) for the non-

coupling case Ωc = 0. Not surprisingly the chirality coefficients αEB and αBE

vanish exactly whereas the electric as well as the magnetic polarizability

show a Lorentzian resonance, respectively. Note that αEE and αBB have

the same strength. Note further that the frequency axis in the spectrum of
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Figure 3.4: Real (solid) and imaginary (dashed) parts of the electric (αEE)

and magnetic (αBB) polarizabilities as well as the chirality parameters (αEB,

αBE) in arbitrary but the same units for the case Ωc = 0.

αBB is scaled to the appropriate population decay rate γ2 of the magnetic

transition and is thus approximately a factor (137)2 narrower than the electric

resonance.

In Figure 3.5 the resultant spectra for the polarizabilities (3.13) – (3.16)

are shown for the case of a strong coupling Ωc 6= 0. As discussed in sec-

tion 2.2 a reasonable choice of the phase is such that αEB on resonance is

purely positive imaginary while αBE is purely imaginary as well but with a

minus sign. This choice can be realized in the 5-level scheme for φ = π/2.

We therefore set3 Ωc = 104γ2e
iπ/2. From Fig. 3.5 we find for this case signif-

icantly changed response functions. The electric polarizability αEE displays

electromagnetically induced transparency (EIT): As long as the coupling field

Ωc, (Ω2
c ≫ γ2γ3) is present we observe from (3.13) that αEE on resonance

is linear in the decoherence rate γ42, which in our case is small. Thus the

3An explanation for the value of |Ωc| can be given only after the inclusion of additional

broadenings (see section 3.4).
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Figure 3.5: Real (solid) and imaginary (dashed) parts of the electric (αEE)

and magnetic (αBB) polarizabilities as well as the chirality parameters (αEB,

αBE) in arbitrary but the same units for the case Ωc = 104γ2e
iπ/2.

most prominent feature of EIT emerges: Suppression of absorption on reso-

nance. At first glance the magnetic polarizability (or magnetizability) αBB

are not changed significantly. Note, however, that the spectrum of αBB is

now scaled to the width γ3 of the electric dipole transition. Therefore the

magnetic resonance experiences a considerable spectral broadening and re-

duction in strength. This is due to the presence of the strong coupling Ωc

which opens an additional decay channel of the meta-stable state |2〉 via the

excited state of the electric dipole transition |3〉. The two cross-couplings

αEB and αBE display spectra similar to a Lorentz line. On resonance we

indeed find αEB ∼ i and αBE ∼ −i as intended.

We verified numerically that all polarizabilities and cross-coupling terms

(3.13) – (3.16) fulfill the Kramers-Kronig relations [40]

αIJ(∆) =
1

πi
P
∫ ∞

−∞

αIJ(∆′)

∆′ −∆
d∆′ (3.17)

and thus represent causal response functions.
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3.3 Limits of linear response theory

When dealing with magnetic dipole transitions one has to be careful not to

cross the limits of linear response theory. This is because magnetic transitions

start to saturate at much lower probe field amplitudes than electric ones.

This can be seen from the upper state population of a 2-level electric dipole

atom on resonance which in leading order in the transition Rabi frequency

ΩE = dE/~ reads

ρ22 =
Ω2

E

2γ21γ2

+ O
(
Ω4

E

)
. (3.18)

This result can be found from the Liouville equation (3.5) for a 2-level sys-

tem with upper state |2〉 and dipole transition moment d. From the Wigner-

Weisskopf result for the population decay rate γ2 we can rewrite (3.18) ex-

plicitly for an electric dipole transition

ρ
(E)
22 =

3c3

8~ω3

E2

γ21,E

(3.19)

which hence is governed by the applied electric field strength E and the

(intrinsic) decoherence rate γ21,E. The corresponding upper state population

of a magnetic transition can be found to be

ρ
(B)
22 =

3c3

8~ω3

B2

γ21,B
. (3.20)

The assumption that the population stays in the ground state which is em-

ployed in linear response theory is violated quadratically with the applied

field strength. This corresponds to an additional term in ρ21 which adds a

χ(3) nonlinearity and hence marks the limits of linear response.

We compare (3.19) and (3.20) by noting that in Gaussian units the electric

and magnetic field amplitudes E and B of a free wave not only have identical

units but also the same magnitude, E = B. Hence the ratio of upper state

populations for an electric and a magnetic 2-level atom can be estimated by

ρ22,B

ρ22,E
=

γ21,E

γ21,B
(3.21)

Using γ21,B ≈ α2γ21,E which holds in radiatively broadened systems we there-

fore conclude that magnetic transitions start to saturate at much lower probe

field intensities.
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In order to find the limits of linear response theory for the 5-level scheme

employed here we solve the Liouville equation (3.5) numerically to all orders

in the electric and magnetic field amplitudes E and B. Since the estimate

(3.21) is worst if additional broadening mechanisms are discarded we here

restrict to naturally broadened resonances.

As we focus on steady state solutions, we employ a similar rotating frame

as in section 3.2. We cast the resulting set of 25 algebraic equations in

a matrix form by arranging the 5 diagonal ρ11 . . . ρ55 and 20 off-diagonal

density matrix elements ρ̃21 . . . in a 25-dimensional vector ~ρ. Note again

that the equation for ρ11 is explicitly given by conservation of probability

ρ11 + ρ22 + ρ33 + ρ44 + ρ55 = 1. (3.22)

The set of algebraic equations therefore is given by the inhomogeneous matrix

equation

M~ρ = ~a (3.23)

with the inhomogeneity vector ~a = (1, 0, 0, 0 . . . ).

From the numerical inversion of the matrix M, which contains all cou-

plings, detunings, and decay rates, we find the sought density matrix elements

ρ̃34 and ρ̃21. As in (3.12) the matrix elements ρ̃34 and ρ̃21 are functions of

the electric and magnetic field amplitudes E and B

ρ̃34 = f(E, B), ρ̃21 = g(E, B). (3.24)

Since we need to compare with the result of linear response theory the func-

tions f(E, B) and g(E, B) have to be separated as in (3.12):

d34ρ̃34 = αEE(E, B)E + αEB(E, B)B, (3.25)

µ21ρ̃21 = αBE(E, B)E + αBB(E, B)B. (3.26)

Note that each of the general polarizabilities αIJ(E, B) is a function of both

probe field amplitudes E and B. Therefore at first glance the separation in

(3.25) and (3.26) does not seem to be unique. This is not the case, though.

From the formal expansion of f and g in a power series in E and B

f(E, B) =
∑

n,m

fnmEnBm, g(E, B) =
∑

n,m

gnmEnBm (3.27)
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we can discard all terms with an even total number of field amplitudes: As

each field amplitude in the rotating frame comes with a factor e−iωpt, or the

complex conjugated eiωpt, only with an odd number of probe field amplitudes

E and B all but one exponentials cancel such that the (rotating) polarizabil-

ities oscillate with the probe field frequency ωp. Thus the expansion (3.27)

can be separated uniquely into

f(E, B) =
∑

n,m

fE
nm|E|2n|B|2mE +

∑

n,m

fB
nm|E|2n|B|2mB,

g(E, B) =
∑

n,m

gE
nm|E|2n|B|2mE +

∑

n,m

gB
nm|E|2n|B|2mB.

By comparison to (3.25) and (3.26) we find for the sought αIJ(E, B) as

functions of the numerically accessible f(E, B) and g(E, B):

αEE(E, B) =
d34

2E
[f(E, B) + f(E,−B)], (3.28)

αEB(E, B) =
d34

2B
[f(E, B) + f(−E, B)], (3.29)

αBE(E, B) =
µ21

2E
[g(E, B) + g(E,−B)], (3.30)

αBB(E, B) =
µ21

2B
[g(E, B) + g(−E, B)]. (3.31)

The comparison of the exact αIJ(E, B) to the linear response results αIJ

from (3.13) – (3.16) is shown in Fig. 3.6. Here we use

log

∣∣∣∣
αIJ − αIJ(E, B)

αIJ

∣∣∣∣ (3.32)

to express the deviation of the approximate linear expressions αIJ from the

numerically extracted values αIJ(E, B).

We show the real and imaginary parts of (3.32) for two different probe

field Rabi frequencies. The solid lines correspond to ΩE = γ2 and the dashed

lines to ΩE = 10 × γ2, respectively. Here ΩE = d34E/~ and ΩB = µ21B/~

apply, thus ΩE = 137ΩB holds, where E and B are the electric and magnetic

probe field amplitudes, respectively.

One recognizes that the relative difference of the exact to the approximate

result is always less than 10−2 for ΩE = 10γ2 and less than 10−4 for ΩE = γ2
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Figure 3.6: Deviation (3.32) of real and imaginary parts of the exact

αIJ(E, B) compared to the linear response results for 2 different probe field

Rabi frequencies: ΩE = γ2 (solid) and ΩE = 10× γ2 (dashed).

and therefore negligible for these probe field Rabi frequencies. Comparing

to (3.18) we find that the probe field Rabi frequency Ω̃E = γ3

√
ρ

(E)
22 can

be estimated for a naturally broadened electric dipole 2-level atom to be

Ω̃E = 13.7γ2 if we allow for a 1% upper state population ρ
(E)
22 = 10−2. As this

is the same order of magnitude as the probe field Rabi frequency ΩE = 10γ2

which led to a 1% error of the linear response result αIJ compared to the

exact αIJ(E, B) we conclude that the 5-level scheme is not significantly more

sensitive to nonlinearities due to saturation effects than any ordinary electric

dipole transition.

This behavior is a consequence of the strong coupling Ωc by which the

magnetic transition is effectively broadened due to additional decay channels

as discussed in section 3.2 and hence less susceptible to saturation.
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3.4 Non-radiative broadenings

From the discussion in section 2.1 it is apparent that magnetic dipole tran-

sitions need to include additional non-radiative broadening mechanisms to

yield realistic results. In principle, there are two distinct types of broadening:

Homogeneous and inhomogeneous. They will be analyzed separately in the

following.

The most common additional homogeneous broadening is due to (elastic)

collisions. These collision can occur, for instance, between the same or dif-

ferent kinds of atoms in gaseous media, or between atoms in a doped crystal,

and phonons of the crystal lattice. As these collisions happen randomly, the

energy levels of the atom are altered randomly during a collision due to the

interaction energy. This can be modeled by a random phase with a width γp

in frequency space. From an averaging treatment in time [90] the distribution

is found to be a Lorentzian

L(x) =
1

π

γp

γ2
p + x2

. (3.33)

Its influence on the polarizabilities (3.13) – (3.16) can be determined by

adding such random phase terms xE , xB, xc to every static detuning ∆E , ∆B,

δc, respectively, (e.g. ∆E −→ ∆E + xE) and convolute with the Lorentzian

L(x), e.g.,

α̃EE =

∫
dxEdxBdxcα

EE(xE , xB, xc)L(xE)L(xB)L(xc). (3.34)

For the 5-level scheme we assume that levels |2〉 and |4〉 are approximately

degenerate in such a way that they experience correlated phase fluctuations.

As a result we apply the same width γp for ∆E and δc but leave γ42 unaltered.

For reasons of simplicity we also pick γp for ∆B. The convolution (3.34)

then has an analytical solution from which we find that the inclusion of a

homogeneous broadening into the 5-level scheme Fig. 3.3 is obtained by the

substitution rules

γ42 −→ γ42, γ21 −→ γ21 + γp,

γ34 −→ γ34 + γp, γ31 −→ γ31 + 2γp,
(3.35)



54 3.4. NON-RADIATIVE BROADENINGS

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.4
-0.2

0
0.2
0.4
0.6
0.8

-1 -0.5 0 0.5 1

-4
-2

0
2
4
6
8αEE

∆/γ3 ∆/γ3

∆/γ3 ∆/γ3

αBB

αEB αBE

×137 ×137

×1372

Figure 3.7: Real (solid) and imaginary (dashed) parts of the electric (αEE)

and magnetic (αBB) polarizabilities as well as the chirality parameters (αEB,

αBE) for arbitrary but the same units for Ωc = 0. In contrast to Fig. 3.4

additional homogeneous broadenings according to eq. (3.35) with γp = 103γ2

apply.

for the polarizabilities (3.13) – (3.16) which affect only the off-diagonal decay

rates. Thus γ42, which is relevant for EIT, remains unbroadened. In contrast

the coherences between any other pair of states suffer from broadenings γp

or 2γp, respectively.

The additional width of the homogeneous broadening is set to γp = 103γ2

which is typical [69] for the most realistic implementation in rare-earth doped

crystals at cryogenic temperatures, in which the optically active electrons are

protected from the crystal field by outer electrons.

Having chosen the value of γp we can now justify the choice of |Ωc| in

our previous numerical calculations. From (3.15) and (3.16) we note that

there exists an optimal value of |Ωc| at which αBE and αEB on resonance,

and hence the chiral character of the medium, reaches a maximum. These

optimal values differ for αBE and αEB due to a non-symmetric influence of
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Figure 3.8: Real (solid) and imaginary (dashed) parts of the electric (αEE)

and magnetic (αBB) polarizabilities as well as the chirality parameters (αEB,

αBE) for arbitrary but the same units for Ωc = 104γ2e
iπ/2. In contrast to

Fig. 3.5 additional homogeneous broadenings according to eq. (3.35) with

γp = 103γ2 apply.

the additional homogeneous broadening γp on the decoherence rates γ21, γ31,

γ34, and γ42, respectively. For γp = 103γ2 we find |Ωc|opt to be 137γ2 and

1370
√

20γ2 for αEB and αBE , respectively. As a compromise we use the

aforementioned value |Ωc| = 104γ2.

The polarizabilities (3.13) – (3.16) including an additional homogeneous

broadening are shown in Fig. 3.7 for the case Ωc = 0 and in Fig. 3.8 for Ωc =

104γ2e
iπ/2. All other parameters are the same as in section 3.2. The width γp

is still an order of magnitude smaller than the electric dipole transition. As

a result, without coupling (Fig. 3.7) αEE stays almost unchanged compared

to the case without homogeneous broadening (Fig. 3.4). For αBB there is a

significant change compared to Fig. 3.4, though. The response is now roughly

a factor α2 = 137−2 weaker (αEE ≈ 1372αBB) and almost as broad as the

electric resonance. Note that in contrast to Fig. 3.4 all spectra are scaled
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to the width γ3 of the electric dipole transition. For non-vanishing coupling

Ωc = 104γ2e
iπ/2 (Fig. 3.8) all polarizabilities αIJ are nearly preserved as the

coupling itself provides an effective broadening larger than γp: |Ωc| ≫ γp.

Most importantly we note that EIT is preserved.

In contrast to homogeneous broadening, the inclusion of inhomogeneous

mechanisms like Doppler broadening cannot be done analytically as it de-

mands the convolution with a Gaussian

G(x) =
1√

2πγG

e−x2/2γ2

G

rather than the Lorentzian L(x). In doped crystals a substantial inhomoge-

neous width is caused by inhomogeneities of the crystal field. Hence a suffi-

ciently narrow-band probe field will only “see” an effectively reduced density

of scatterers which is approximately given by the ratio of the homogeneous

to the inhomogeneous width ̺eff ≈ ̺γp/γG. It can be shown that the com-

paratively long homogeneous coherence times can nevertheless be exploited

by the application of certain techniques used recently for the implementation

of coherent population transfer methods like RAP [69] or STIRAP [92]: In a

first step a spectral hole is burned into the inhomogeneous profile, into which

a homogeneously broadened anti-hole is prepared.

3.5 Local field effects: From microscopic to

macroscopic responses

So far we have dealt with the local response of an individual atom. These

local fields differ, especially for dense media, from the applied external fields.

The correspondence between the microscopic polarizabilities αIJ (3.13) –

(3.16) and the macroscopic response functions ε, µ, ξEH, and ξHE from (3.1)

is obtained from local field corrections of the Clausius-Mossotti type (see also

part II for a microscopic derivation).

For the implementation of local field corrections we interpret E and B in

(3.4) as local fields. As the local fields act in vacuum Bloc = H loc holds [93]
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Figure 3.9: Real (solid) and imaginary (dashed) parts of the permittivity ε for

the densities (a) ̺a = 5·1013cm−3, (b) ̺b = 5·1014cm−3, (c) ̺c = 5·1015cm−3,

and (d) ̺d = 5 · 1016cm−3.

and we hence write

P =̺αEEEloc + ̺αEBH loc,

M =̺αBEEloc + ̺αBBH loc.
(3.36)

The connection to the macroscopic averaged field amplitudes and to the

corresponding macroscopic response functions is given by

Eloc = E +
4π

3
P, H loc = H +

4π

3
M, (3.37)

which relates E to its microscopic counterpart Eloc, and H to H loc, respec-

tively. These relations can be determined by phenomenological considera-

tions [40, 93] but prove to be consistent with a microscopic theory of local

field effects (see part II).

We eliminate the microscopic amplitudes Eloc and H loc with the help of

(3.37) from (3.36) in favor of the Maxwell fields E and H . By comparison to
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Figure 3.10: Real (solid) and imaginary (dashed) parts of the permittivity ε,

the permeability µ, and the cross-coupling coefficients ξEH and ξHE including

local field corrections for the density ̺ = 5 · 1016cm−3.

(3.1) we find

ε =1 + 4π
̺

Lloc

{
αEE +

4π

3
̺
(
αEBαBE − αEEαBB

)}
,

µ =1 + 4π
̺

Lloc

{
αBB +

4π

3
̺
(
αEBαBE − αEEαBB

)}
,

(3.38)

for the permittivity and the permeability and

ξEH = 4π
̺

Lloc
αEB, ξHE = 4π

̺

Lloc
αBE , (3.39)

for the cross-coupling coefficients. The common denominator reads

Lloc = 1− 4π

3
̺

[
αEE + αBB +

4π

3
̺
(
αEBαBE − αEEαBB

)]
.

Note that (3.38) reduces to the well known Clausius-Mossotti result [40] for

the dielectric case αIJ = 0, IJ ∈ {EB, BE, BB}.
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Figure 3.11: Real (solid) and imaginary (dashed) parts of the refractive index,

including local field effects for two different densities.

The influence of local field effects on the spectra is shown in Fig. 3.9 for the

permittivity ε. Figs. 3.9(a) – 3.9(d) show ε for the densities ̺a = 5·1013cm−3,

̺b = 5·1014cm−3, ̺c = 5·1015cm−3, and ̺d = 5·1016cm−3, respectively. For ̺a

we find a similar spectrum as for the uncorrected αEE of Fig. 3.8. Increasing

the density by an order of magnitude mainly increases the strength of the

response by a factor of 10 as well [Fig. 3.9(b)]. As a result of the local

field corrections an asymmetry emerges. The left part of the spectrum is

broadened while the part above resonance moves towards resonance and gets

narrower. This behavior is far more pronounced for the increasingly higher

densities ̺c and ̺d. The low frequency part is already out of sight while the

blue-detuned part of the spectrum evolves into a sharp resonance. Note that

the spectra 3.9(c) and 3.9(d) are scaled to the homogeneous broadening γp.

This is a common behavior of all four local field corrected response functions

(3.38) and (3.39) as shown in Fig. 3.10 for the density ̺ = 5 · 1016cm−3.

This common effect is mainly governed by the leading term of the de-

nominator Lloc. The position and the width of the resonance of Fig. 3.10 are

hence given by the real and imaginary part of the root of the denominator

of 1/(1− 4π
3
̺αEE), respectively.
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Figure 3.12: Real (solid) and imaginary (dashed) parts of the non-chiral

refractive index, including local field effects for a density of ̺ = 5 · 1016cm−3

as a function of ∆. Compared to Fig. 3.11(b) here ρ
(0)
41 = 0 applies.

3.6 Refractive index

With the permittivity ε, the permeability µ as given by eq. (3.38), and the

chirality parameters ξEH and ξHE (3.39) we have collected all ingredients

needed to determine the index of refraction from eq. (2.18). As an example,

Fig. 3.11(a) shows the real and imaginary parts of the refractive index as

a function of the probe field detuning ∆ for a density of ̺ = 5 · 1014cm−3.

As before we use γp = 103γ2 and leave all other parameters as defined in

section 3.2. A comparison with Fig. 3.8 reveals that the spectrum of the

refractive index is dominated by the permittivity ε including the prominent

features of EIT: Suppression of absorption and steep slope of the dispersion

on resonance. Obviously there is no negative refraction yet.

In Fig. 3.11(b) the spectrum of n is shown for a higher density of ̺ =

5 ·1016cm−3. Note that in contrast to Fig. 3.11(a) the frequency axis is scaled

in units of the homogeneous broadening γp rather than γ3. The observed ab-

sorption spectrum displays a broad window with Im[n] ≈ 0. Simultaneously

the refraction becomes negative and shows a strong dispersion around res-

onance as expected for negative n (see chapter 1). Most importantly we

find simultaneously substantial negative refraction and minimal absorption
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Figure 3.13: Real (solid) and imaginary (dashed) parts of the refractive index

as a function of the phase φ of the coupling Rabi frequency Ωc.

[Kästel2007b, Kästel2008] for this density4.

Although the Clausius-Mossotti corrections at this density contribute a

resonance to the response functions ε, µ, ξEH , and ξHE (see Fig. 3.10) this

resonance does not show up in the refractive index. Combined Clausius-

Mossotti local field corrections for more general media than pure dielectrics

tend to yield a negative refractive index for high densities (see part II). To

rule out that the negative refraction observed in Fig. 3.11(b) is solely a result

of such a behavior, we compare Fig. 3.11(b) to a non-chiral version. Since

setting Ωc = 0 would affect the spectra of ε and µ significantly we artificially

set ρ
(0)
41 = 0 so that the cross-coupling vanishes without influencing the direct

responses ε and µ. The non-chiral version of the index of refraction for a

density ̺ = 5 · 1016cm−3 is shown in Fig. 3.12. Clearly there is no negative

refraction for the non-chiral index of refraction at this density. Hence we

conclude that the cross-coupling is crucial for Re[n] < 0.

This result can also be seen from Fig. 3.10. In the spectral region where

the index of refraction in Fig. 3.11(b) reaches its minimum of about Re[n] ≈
−1 · · · − 1, 5 the magnetic permeability Re[µ] is strictly positive. In contrast

ξEH and ξHE are almost purely imaginary as intended with Im[ξEH ] ≈ 1 . . . 2

4Note that the required density is about a factor 102 smaller than the density needed

in a similar scheme in which cross-couplings were not taken into account [88].
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Figure 3.14: The refractive index, including local field effects for a density of

̺ = 5 ·1017cm−3 as well as the figure of merit FoM for two different densities.

and Im[ξHE ] ≈ −1 · · · − 2 negative. Therefore we come to the same conclu-

sion: The negative refraction at this density is clearly a consequence of the

chiral cross-coupling.

Up to now, the phase φ of the coupling Rabi frequency Ωc has been

set to φ = π/2 after the qualitative discussion of section 3.2. In Fig. 3.13

we plot the phase dependence of the refractive index taken at the spectral

position ∆ ≈ −0.045γp at which n reaches its minimum [cf. Fig. 3.11(b)].

As expected, the value of the refractive index depends strongly on the phase

φ. For example changing the phase by δφ = π reverses the influence of the

chirality compared to the non-chiral result which in this case is approximately

zero (cf. Fig. 3.12) and thus gives a positive index of refraction Re[n] > 0.

Note that the symmetry Re[n(φ)] = −Re[n(2π− φ)] is coincidental since for

the chosen parameters ε ≈ 0.

By further increasing the density of scatterers ̺ the optical response of the

medium increases. As an example Fig. 3.14(a) shows the spectrum of n for

̺ = 5 ·1017cm−3. Compared to the case of ̺ = 5 ·1016cm−3 of Fig. 3.11(b) the

strength of the response increases while the absorption Im[n] stays small. As

a consequence the figure of merit for negative refraction FoM (1.1) increases

with density and reaches rather large values as shown in Fig. 3.14(b). These

values which reach FoM ≈ 35 for ̺ = 5 · 1016cm−3 and FoM & 350 for
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Figure 3.15: The response functions as well as the refractive index n as

a function of the logarithm of the density log ̺. The spectral position is

taken to be about the minimum of the refractive index shown in Fig. 3.11(b)

(∆ = −0.043γp).

̺ = 5 · 1017cm−3 should be contrasted to previous theoretical proposals as

well as experimental results on negative refraction in the optical or near

infrared regime for which the figure of merit FoM is typically less than unity

(see chapter 1).

The density dependence of the response functions ε, µ, ξEH, and ξHE as

well as the index of refraction n taken at the spectral position ∆ = −0.043γp

at which Re[n] reaches its minimum for ̺ = 5·1016cm−3 is shown in Fig. 3.15.

We observe that Re[n] reaches increasingly negative values with increasing

density while Im[n] forms a maximum but stays comparatively small (note

that Im[n] in Fig. 3.15(a) is amplified by a factor of 50). The permit-

tivity Re[µ] increases with increasing densities while Im[ξEH] and Im[ξHE ]

[Fig. 3.15(b)] show similar but inverse characteristics. As expected Re[ε]

evolves to negative values for higher densities but as a consequence of the

resonance induced by the local field corrections starts to climb again. We

once more conclude that the negative refraction Re[n] < 0 observed at this

spectral position is a consequence of the cross-coupling.

The maximum of Im[n] from Fig. 3.15(a) is surprising as an increasing

density of scatterers should lead to an increasing absorption. Hence the de-
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crease is at first sight a peculiar behavior which demands an explicit expla-

nation. Such an explanation can easily be found: At the densities5 employed

in Fig. 3.15(a) the spectral band with minimal absorption broadens with in-

creasing density due to local field effects [cf. Figs. 3.11(b) and 3.14(a)]. Hence

the chosen spectral position wanders relatively from the tail of the band edge

to the middle of the minimal absorption band.

5For very high densities local field corrections lead to a decreasing Im[n] for different

reasons. See part II.



CHAPTER 4

Applicability of the 5-level scheme

4.1 Impedance matching

Any optical application has a significant element other than the functional

unit: The boundary to its surroundings. For linear optical elements like

lenses, prisms, etc., the shape of the boundary even accounts for most of the

functionality. Hence as a basis of any application we study the impedance

of a flat surface interconnecting a chiral and a non-chiral material. The goal

here is to find conditions under which the boundary between non-chiral and

chiral, negative refracting media is non or little reflecting.

We suppose a boundary with normal vector n = ez at z = 0 between

a non-chiral medium 1 (z < 0) with ε1, µ1 and medium 2 (z > 0) which

employs a chirality (ε2, µ2, ξEH, ξHE). Note that the response tensors are

assumed to be of the form used in section 2.2 such that we can restrict to an

effectively scalar theory for one polarization state of a wave propagating in

z-direction. This is valid as the polarizations e+, e− denote eigensolutions

for both media.

We decompose the e− wave solution for medium 1 into an incoming Ei

and a reflected part Er

E1(r) = (Eie
ik1z + Ere

−ik1z)e− (4.1)

(k1 = |ki| = |kr|). In medium 2 (z > 0) only a transmitted wave Et shall

65
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exist due to the boundary condition at infinity

E2(r) = Ete
ik2ze−. (4.2)

A similar decomposition is applied for the magnetic field H(r). The solutions

are connected at the boundary corresponding to the conditions n × (E2 −
E1) = 0 and n× (H2−H1) = 0 for the electric and magnetic field strengths,

respectively, from which we find at z = 0

Ei + Er = Et, Hi + Hr = Ht. (4.3)

A second set which connects the electric and magnetic fields within materials

1 and 2 respectively is obtained from Maxwell’s equations in Fourier space

(2.14) together with the material equations (2.10). For medium 1 we get

ki × e−Eie
ik1z + kr × e−Ere

−ik1z =
ω

c
µ1

(
Hie

ik1z + Hre
−ik1z

)
e−. (4.4)

We note that ez × e± = ∓ie± holds. Hence (4.4) simplifies for z = 0 to the

scalar equation

ik1(Ei − Er) =
ω

c
µ1(Hi + Hr). (4.5)

Here ki = −kr = k1ez has been applied. Similarly we obtain for medium 2

ik2Et =
ω

c
(ξHEEt + µ2Ht). (4.6)

From (4.3), (4.5), and (4.6) we eliminate the magnetic field amplitudes and

solve the resulting equations for the ratio of reflected and incoming electric

field wave amplitudes which reads

Er

Ei
=

1−
√

µ1

ε1

n2 + iξHE

µ2

1 +

√
µ1

ε1

n2 + iξHE

µ2

. (4.7)

The wave numbers k1 and k2 in (4.5) and (4.6) have been replaced by

k1 = n1ω/c =
√

ε1µ1 ω/c and k2 = n2ω/c, respectively. Equation (4.7) is

a generalization of the well-known Fresnel formulas for normal incidence to

a chiral medium. Impedance matching is defined as the vanishing of the



CHAPTER 4. APPLICABILITY OF THE 5-LEVEL SCHEME 67

-0.2 -0.1 0 0.1 0.2
-4

-2

0

2

4

6

8

∆/γp

Figure 4.1: Real (solid) and imaginary (dashed) parts of the refractive index

as well as the real (dash-dotted) and imaginary (dotted) parts of the inverse

impedance Z−1
2 from (4.9) as a function of the detuning ∆ for ̺ = 1.56 · 1017

cm−3.

reflected wave Er = 0, i.e., a complete transfer of the incoming field into

medium 2: √
µ1

ε1

n2 + iξHE

µ2
= 1. (4.8)

Using the explicit form of n2 for the particular polarization mode (2.18) we

find the more convenient expression

√
ε1

µ1
=

√
ε2

µ2


±
√

1−
(

ξEH + ξHE

2
√

ε2µ2

)2

+
i

2

ξEH + ξHE√
ε2µ2


 (4.9)

which obviously simplifies for the non-chiral case ξEH = ξHE = 0 to the well

known [40] result √
ε1

µ1
=

√
ε2

µ2
.

The right hand side of (4.9) hence is the inverse impedance Z−1
2 of the chiral

medium 2. Note that as a result of causality the sign of the square root

in Z2 has to be taken for passive media such that Re[Z2] ≥ 0 is obtained

[30]. We plot the real and imaginary parts of Z−1
2 as well as the spectrum of

the index of refraction in Fig. 4.1. Under the assumption of medium 1 being
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vacuum ε1 = µ1 = 1 impedance matching exists if the right hand side of (4.9)

equates to 1+i0. The density ̺ = 1.56·1017 cm−3 has been optimized roughly

such that we find at the spectral position ∆ = 1.17 · 10−2γp for the index of

refraction n = −1, 0003 + i0, 009 while the impedance simultaneously reads

1.003+ i0.0006. The corresponding figure of merit then is about FoM ≈ 110.

4.2 Tunability

The most astounding application of a negative refractive index is the so called

perfect lens1 [1] which allows sub-diffraction limit resolution [94] due to an

amplification of evanescent waves inside a slab of a material with Re[n] < 0

[23]. One major requirement for the material of the flat superlens is an all-

angle negative refractive index. Hence most current metamaterials are not

suited for sub-diffraction limit imaging applications as they in general show

Re[n] < 0 behavior only for a particular direction of propagation. Conse-

quently there are only few reports of experimental sub wavelength resolution

based on negative refraction. It has been demonstrated using 2D photonic

crystals [95, 96], a 3D photonic crystal [17] in the microwave regime as well

as for a left-handed 2D transmission line material[97, 98] which operated in

the microwave spectrum as well.

From an analysis of the dispersion relation of surface plasmons [99] which

influence the transmission properties of a negatively refracting slab signif-

icantly Smith et al. [100] and Merlin [101] independently realized that an

isotropic index Re[n] < 0 is not sufficient for sub-diffraction limit imaging,

though. In fact for a slab of thickness d surrounded by vacuum and an in-

tended resolution ∆x the refractive index must match n = −1 with an error

∆n not exceeding

∆n = exp

{
−2πd

∆x

}
. (4.10)

For high frequencies sub-diffraction limit resolution has been reported only

within the near field domain [102, 103]. There an ultraviolet (365nm) image

has been shown to display a significant improvement of the resolution when

a thin metallic slab is placed between the source and the image. This is a

1Cf. chapter 1.
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Figure 4.2: Real (solid) and imaginary (dashed) parts of the refractive index

as a function of the coupling field Rabi-frequency |Ωc| relative to the radiative

decay rate γ3, for ̺ = 1.56 · 1017 cm−3.

direct consequence of the operation in the near or static field regime in which

electric and magnetic field amplitudes can be regarded as being independent.

Hence a metal (usually silver to minimize losses) slightly below the plasma

frequency fulfills Re[ε] < 0 and thus suffices to focus the electric field and

produce an image.

For a metamaterial with Re[n] < 0 eq. (4.10) presents a considerable

obstacle for the operation of a superlens approaching far field distances as it

demands an extreme fine-tuning of the refractive index in order to achieve a

resolution beyond the diffraction limit. Such a fine-tuning can be provided

by the tunability of the strength of the coupling field. In Fig. 4.2 we show

the real and imaginary parts of n as a function of log[|Ωc|/γ3] for the density

̺ = 1.56 · 1017 cm−3 employed in section 4.1. We find that for values of the

coupling Rabi frequency Ωc around the electric dipole decay rate γ3 negative

refraction around n = −1 with a slope γ3
∂Re[n]
∂|Ωc|

. 1. Hence by a stabilization

of the coupling laser power the quantum interference scheme allows for small

∆n and therefore for accordingly small values of ∆x, i.e., potentially sub-

diffraction limit imaging even in the far field regime.

Apart from potential imaging applications the 5-level quantum interfer-
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ence scheme allows for switchable devices operating in a wide range of positive

and negative refractive indices with simultaneously small losses.

4.3 Beyond 1D: Tensorial analysis

In section 2.2 we specialized our discussion to an effectively scalar 1D theory

by restricting to a particular direction of propagation and left circular po-

larization (e+). Fig. 4.3 shows a level structure and geometry in which the

requirements of section 2.2 are fulfilled and hence the scalar theory is valid.

We assume propagation along the ez-direction and similarly the field vec-

tor of the coupling field Ec should point in ez-direction as well [Fig. 4.3(a)].

Compared to Fig. 3.2 the states |2〉 and |3〉 are replaced by the magnetic

Zeeman-levels corresponding to an angular momentum with J = 1. The

Clebsch-Gordon coefficients for the J = 1 to J = 1 transition |2〉 − |3〉 allow

for the ez-polarized coupling field Ec only the couplings |2, +〉 − |3, +〉 and

|2,−〉 − |3,−〉. Hence the cross-coupling tensors ξ̄EH, ξ̄HE indeed have the

form (2.16) with ξz
EH = 0 = ξz

HE. As a result for the tensor elements ξ−EH,

ξ−HE, as well as ε− and µ− for right circularly polarized waves the scalar the-

ory of chapter 3, i.e., the solutions (3.38) and (3.39), applies (see Figs. 3.8

and 3.11).

In order to find the corresponding response for the e+-polarization we

have to replace the transition moments for the “-”-branch (Fig. 4.3) by the

corresponding “+”-branch moments. In general transition moments between

states |γ, J, M〉 and |γ′, J ′, M ′〉 where J and M denote angular and magnetic

quantum numbers while all other quantum numbers are summarized in γ are

given by the Wigner-Eckart theorem [67]

〈γ, J, M |Oq|γ′, J ′, M ′〉 = (−1)J−M

(
J 1 J ′

−M q M ′

)
〈γ, J ||O||γ′, J ′〉.

(4.11)

Here Oq denotes the qth component (q ∈ {+1, 0,−1}) of the irreducible

vector operator O which for electric dipole transitions is given by (cf. section

3.2) O = er while for magnetic transitions we have to use O = µB(J + S).

As the reduced matrix element 〈γ, J ||O||γ′, J ′〉 is independent of M and M ′
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Figure 4.3: (a) Geometry of the 1D implementation: The probe light trav-

els in z-direction with corresponding transversal field vectors while the field

vector of the coupling field points along ez. (b) Level scheme for 1D im-

plementation. No cross coupling between right and left circular polarization

components occurs.

any differences of the matrix elements due to magnetic quantum numbers M ,

M ′ are solely given by the product of (−1)J−M and the Wigner 3-j symbol.

Hence once a particular matrix element for specific values of M and M ′ is

known, all matrix elements of the same J , J ′ configuration can be found from

(4.11) by comparison.

We note that we assigned in section 2.2 an index − to material tensor com-

ponents corresponding to right circular waves with e−-polarization. Similarly

we decompose the electromagnetic field vectors as

E = Exex + Eyey + Ezez = −E+e+ + E−e− + Ezez (4.12)
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with E± = ∓(Ex ∓ iEy)/
√

2. In particular E+ and E− denote the ampli-

tudes of the left and right circular polarizations, respectively. The magnetic

induction B is decomposed similarly. With the orthogonality properties of

e± taken into account the interaction Hamiltonian −µµµ ·B for magnetic dipole

transitions translates to

−µµµ ·B = −µB(J+ + S+)B+ − µB(J− + S−)B− − µB(J0 + S0)Bz. (4.13)

Here J± = ∓(Jx ± iJy)/
√

2 and J0 = Jz [104] as well as corresponding

relations for S denote the components q ∈ {+1, 0,−1} of the irreducible

vector operator µµµ = µB(J + S). As a result of the properties of the 3-j

symbol in (4.11) the transition moment between states |2,−〉 and |1〉 has a

contribution solely from the q = −1 vector component as already depicted

in Fig. 4.3(b), i.e., a transition with e−-polarization. Similar to the field

amplitude we thus indicate with a −:

µ−
21 = 〈2,−|µB(J− + S−)|1〉 =

1√
3
〈2||µµµ||1〉. (4.14)

To find µ+
21 we now can exploit the Wigner-Eckart theorem from which we

easily obtain

µ+
21 = 〈2, +|µB(J+ + S+)|1〉 =

1√
3
〈2||µµµ||1〉. (4.15)

Thus the matrix elements of the magnetic dipole transitions are independent

of the polarization state

µ−
21 = µ+

21. (4.16)

Similarly we find for the electric dipole probe field transition |3〉− |4〉, which

is a J = 1 to J = 0 transition as well, that d−
34 = d+

34 holds. For the matrix

elements which appear in the coupling Rabi frequencies Ω±
c we find however

d+
32 = 〈3, +|ez|2, +〉 = 1√

6
〈3||d||2〉 (4.17)

and

d−
32 = 〈3,−|ez|2,−〉 = − 1√

6
〈3||d||2〉, (4.18)
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respectively. Hence the coupling Rabi frequencies of the left and right circular

branches Ω±
c = d±

32Ec,z/~ display a relative sign

Ω+
c = −Ω−

c . (4.19)

Inspecting equations (3.13) – (3.16) we note that this results in αEB
− = −αEB

+

and similarly αBE
− = −αBE

+ for the cross coupling coefficients while the

electric and magnetic polarizabilities are identical for both polarizations

αEE
+ = αEE

− and αBB
+ = αBB

− . From the treatment of the local field cor-

rections in section 3.5 we find similar relations for the coefficients relevant

for the refractive index:

ε+ = ε−, µ+ = µ−,

ξ+
EH = −ξ−EH , ξ+

HE = −ξ−HE.
(4.20)

In the following we will hence suppress the index ± for the permittivity and

the permeability.

One recognizes that these sign relations correspond identically to the

example discussed in section 2.3.2. Most importantly we conclude that the

refractive index is independent of the polarization state of the incoming wave

n+ = n−. (4.21)

Therefore the electromagnetically induced cross coupling in the scheme of

Fig. 4.3 does not correspond to a chirality for which the circular components

should have different refractive indices.

4.3.1 Angular dependence

To extent the discussion to waves for which propagation is not restricted

to the ez-direction we allow for angles θ, φ for the direction of incidence k

with respect to the coupling field Ec. We assume a local basis where ez ∼ k

serves as quantization axis of the atoms. Therefore a wave propagating in θ,

φ direction will encounter an unchanged atomic level structure but an angle

dependent coupling field with components

Ec,x = |Ec| sin θ cos φ, Ec,y = |Ec| sin θ sin φ, Ec,z = |Ec| cos θ.

(4.22)
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Ωc
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E+

B−
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|3,−〉

|2,−〉

Ω2

|2, 0〉|2, +〉

|3, 0〉|3, +〉

|4〉

Figure 4.4: For a direction of incidence other than the direction of the cou-

pling field vector E numerous additional angle dependent couplings occur.

Thus a change of the propagation direction in the local basis affects only the

coupling Ωc. The |1〉 − |4〉 transition is assumed to be a J = 0, M = 0 to

J = 0, M = 0 transition and thus the dark state is spherically symmetric and

does not depend on polar angles φ and θ. For θ = 0 the description therefore

reduces to the scheme of Fig. 4.3 as discussed before. Figure 4.4 shows

the corresponding level scheme with all angle dependent strong couplings.

We note that the angle dependent coupling field amplitudes for the circular

components are given by Ec,± = |Ec| sin θe∓iφ/
√

2. Hence the amplitudes of

the various Rabi frequencies between states {|3〉} and {|2〉} are given by

Ω++
c =

〈3, +|d0|2, +〉Ec,z

~
= +Ωc,0 cos θ,

Ω−−
c =

〈3,−|d0|2,−〉Ec,z

~
= −Ωc,0 cos θ,

Ω+0
c =

〈3, +|d+|2, 0〉Ec,+

~
= +

Ωc,0√
2

sin θ, e−iφ

Ω0−
c =

〈3, 0|d+|2,−〉Ec,+

~
= +

Ωc,0√
2

sin θ, e−iφ (4.23)

Ω−0
c =

〈3,−|d−|2, 0〉Ec,−

~
= +

Ωc,0√
2

sin θ, eiφ
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Ω0+
c =

〈3, 0|d−|2, +〉Ec,−

~
= +

Ωc,0√
2

sin θ.eiφ

Here Ωc,0 = 〈3||d||2〉 · |Ec|/(
√

6~) applies. As a result of the angle dependent

coupling Rabi frequencies the polarizabilities become angle dependent as

well. The cross coupling coefficients for electrically induced magnetization

are found from a similar treatment as in section 3.2. They read

ᾱBE = αBE




cos θ 0 sin θ
e−iφ

√
2

0 − cos θ sin θ
e+iφ

√
2

sin θ
e+iφ

√
2

sin θ
e−iφ

√
2

0




(4.24)

with

αBE = − 1

4~

d34µ21ρ
(0)
41 Ω∗

c,0

(γ31 + i(∆B + δc))(γ21 + i∆B) + |Ωc|2/4
. (4.25)

Here we used d+
34 = d0

34 = d−
34 as well as µ+

21 = µ0
21 = µ−

21 according to

the Wigner-Eckart theorem. Note that the matrix (4.24) is given in the

{+,−, z}-basis2, the coefficient αEB
+z for example which describes the e+-

polarized electric field induced by a ez-polarized magnetic field is given by

the upper right entry. A similar result for ᾱEB applies with αBE replaced by

αEB = − 1

4~

d34µ21ρ
(0)
41 Ωc,0

(γ42 + i(∆E − δc))(γ34 + i∆E) + |Ωc|2/4
. (4.26)

Similarly the electric polarizability reads

ᾱEE =αEE1
+

αEE|Ωc|2
D42D34




sin2 θ

8
−sin2 θe2iφ

8
−sin θ cos θeiφ

4
√

2

−sin2 θe−2iφ

8

sin2 θ

8

sin 2θe−iφ

8
√

2

−sin θ cos θe−iφ

4
√

2

sin 2θeiφ

8
√

2

cos2 θ

4




(4.27)

2This applies to the matrix (4.27) as well.



76 4.3. BEYOND 1D: TENSORIAL ANALYSIS

with

αEE =
i

2~

d2
34ρ

(0)
44 (γ42 + i(∆E − δc))

(γ42 + i(∆E − δc))(γ34 + i∆E) + |Ωc|2/4
(4.28)

and D42 = (γ42+ i(∆E−δc)), D34 = (γ34+ i∆E). The magnetic polarizability

ᾱBB is given by (4.27) with αEE replaced by

αBB =
i

2~

µ2
21ρ

(0)
11 (γ31 + i(∆B + δc))

(γ31 + i(∆B + δc))(γ21 + i∆B) + |Ωc|2/4
(4.29)

and D42D34 substituted by D31D21 = (γ31 + i(∆B + δc))(γ21 + i∆B).

Note that all scalar coefficients αIJ are identical to the ones (3.13) – (3.16)

obtained from the scalar treatment. For incidence in z-direction the tensors

simplify significantly. The cross-couplings reduce to the diagonal elements

of the upper left 2× 2-submatrix denoting the magneto-electric couplings of

the left and right circular components, respectively. The polarizabilities ᾱEE,

ᾱBB simplify in the limit θ = 0 to diagonal tensors with entries (3.13) and

(3.14), respectively, for the left and right circular components, i.e., includ-

ing EIT for the electric polarizability, and a simple resonance structure for

the αzz components. Note furthermore that the constraint (2.23) is fulfilled

identically by the scheme from Fig. 4.4 for any angles θ, φ.

The angular dependence results in a refractive index which is angle depen-

dent as well. Under the assumption of isotropic permittivity and permeability

we find angle dependent terms identical to (2.28):

n = ±
√

ǫµ− ξEHξHE −
(ξEH − ξHE)2 cos2 θ

4
+

i

2
(ξEH − ξHE) cos θ. (4.30)

The true index of refraction which takes the full form of (4.27) into account,

i.e., the angle dependent correction to ε and µ gets however much more

complicated. We therefore just note that even for the idealized case of (4.30)

with isotropic ε and µ the value of Re[n] will in general vary over a broad

spectrum of positive and negative values for different angles. This can be seen

from (4.30) by consideration of the two limiting cases for which the beam

propagates either in“+ez”- or “−ez”-direction, i.e., for θ = {0, π}. Compared

to +ez-incidence for θ = π only the cross-coupling coefficients change sign

due to the term cos θ. Fig. 4.5 shows the resulting idealized index of refraction

(4.30) as a function of the polar angle θ for a density ̺ = 5 · 1016cm−3 and
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Figure 4.5: Real (solid) and imaginary (dashed) parts of the refractive index

as a function of θ.

spectral position slightly below resonance3, ∆/γp = −0.035. A similar effect

can be induced alternatively by changing the phase of the Rabi frequency Ωc

by a factor of π which as well leads to drastic changes of the value of the

refractive index as can be seen from Fig. 3.13. Thus the application of a ez-

polarized coupling field induces a preferred axis with a unique direction and

hence beam propagation properties which are strongly angular dependent.

3Cf. Fig. 3.11(b).





CHAPTER 5

Outlook: EIT in metamaterials

As noted in chapter 1 the concept of EIT is not limited to quantum systems

like atoms but is applicable to classical oscillators as well [52]. Whenever

x

y

a

(a)

ω[THz]

(b)

Figure 5.1: (a) Simple SRR structure used in current metamaterial experi-

ments. (b) Measured reflection and transmission spectra due to an electric

field polarized along the x-direction. (figures taken from [105])

an oscillator with a broad resonance, i.e. with large damping is coupled to

an oscillator with a narrow resonance, i.e. small damping an “EIT dip” in

the loss power spectrum appears. This statement holds in particular also

for split ring resonators (SRR) used in metamaterial research as shown in

79
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Hy

Ex

(a)

ω[THz]

(b)

Figure 5.2: (a) SRR molecule used for the implementation of EIT in meta-

material structures. One SRR is rotated by 90◦ with respect to the other.

(b) Measured reflection and transmission spectra. (figures taken from [105])

Fig. 5.1(a).

A single SRR with the open side pointing in y-direction as the one in

Fig. 5.1(a) displays several electric and magnetic resonances dependent on

propagation direction and polarization state. For an electric field polarization

in x-direction an oscillating current density connecting the two open ends of

the SRR can be excited leading to an electric resonance at some frequency

ω0. This frequency is governed by the effective length 3a of the antenna

like structure where a denotes the arm length of the SRR. If for example

a = 400nm holds, the resonance frequency is around 90THz at which a

single Lorentzian line appears as shown in Fig. 5.1(b). The linewidth γ in

Fig. 5.1(b) taken from [105] is mostly due to radiative broadening. Similarly

an electric field polarized in y-direction “sees” roughly an effective length of

only 1a corresponding to a resonance frequency of about 3ω0. In addition to

the electric resonances the SRR displays a magnetic resonance at about ω0

for magnetic fields pointing in z-direction.

Consider for example the structure shown in Fig. 5.2(a) as proposed by

H. Giessen et al. [105]. It consists of two simplified split ring resonators

one of which is rotated by 90◦ with respect to the other. The incident light

shall have the polarization indicated in Fig. 5.2(a), i.e. it is assumed to

travel in z-direction. As a single SRR is frequently termed “artificial atom”
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Figure 5.3: Effective Λ-type 3-level scheme for EIT in metamaterials.

the combination of two SRRs shall be called “artificial molecule”. From

the discussion above we note that the incident light couples only to the

electric resonance with frequency ω0 of the left SRR as the electric resonance

of the right SRR for this polarization is far off resonance. The right SRR

nevertheless gets excited due to inductive or different coupling as the distance

between the two SRRs becomes smaller.

The right SRR does of course possess also an electric resonance at fre-

quency ω0, however with polarization in y-direction. Thus at the frequency

ω0 there are in principal two possibilities to excite the right split ring res-

onator: either via the electric or the magnetic resonance. The experimental

data indicate that the electric resonance of the right SRR associated with

the magnetic resonance of the right SRR as indicated in Fig. 5.3 must be

weak. As the linewidth γ0 of the magnetic resonance is much smaller than

the electric one γ we find EIT conditions fulfilled. We hence sketch the re-

sults of the discussion in an effective 3-level Λ-scheme as shown in Fig. 5.3.

The relevant “bare” states of the artificial molecule are given by the ground

state in which no electric current is excited at all and an “upper” state cor-

responding to the current distribution of the electric resonance in the left

SRR. These two states are coupled by the applied x-polarized electric field

Ex. The third state of the Λ-scheme is represented by the magnetic resonance

current distribution in the right SRR which is connected to the upper state
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via the inductive coupling. In addition the coupling of electric and magnetic

resonances at ω0 of the right SRR is indicated.

Fig. 5.2(b) shows a measured spectrum of the absorption profile. Com-

pared to the uncoupled case [Fig. 5.1(b)] we find a prominent dip in the

absorption line which is typical for EIT. The separation of the two newly

established absorption lines in combination with the depth of the absorption

dip is too small to warrant an explanation on the lines of simple line splitting.

This results represent the first demonstration of EIT in metamaterials, a

field which experiences a rapidly growing amount of interest. Of course these

measurements display only a first step to low loss negative refraction meta-

materials incorporating EIT. Future directions must contain a better under-

standing of the loss mechanisms of the various states depicted in Fig. 5.3. In

particular it is not clear as to how strong the coupling between the magnetic

and the still existing electric resonance in the right SRR is as well as how such

a coupling influences the EIT performance. A good deal of work should be

devoted to the development of new designs which incorporate ideas related

to EIT [106] in order to connect with a negative index of refraction. In par-

ticular the fact that combined split ring resonators allow for magneto-electric

cross-coupling tensors as, e.g.

ξ̄EH =




0 0 ξxz
EH

0 0 ξyz
EH

0 0 0


 (5.1)

should be considered in detail regarding the possibility of inducing Re[n] < 0

without having the constraint Re[µ] < 0 to be fulfilled.



Part II

Microscopic approach to local

field corrections
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CHAPTER 6

Macroscopic approach to local field

corrections

Negative refraction requires a magnetic response of some sort. Either a mag-

netization has to be induced by magnetic fields, corresponding to a per-

meability µ as, e.g., in classic metamaterial experiments [5, 6] or due to a

magneto-electric coupling effect [81, 82] (see part I). Another key point to

media with a negative reactive index lies in the general need for the response

to be rather large in order to overcome the vacuum contribution to the re-

fractive index and obtain Re[n] < 0. It is known that a description in terms

of macroscopic material response functions ceases to be adequate under such

conditions. The most important correction due to microscopic theories for

dielectric media which does not depend on the particular microscopic model

of the material is the Clausius-Mossotti local field correction factor. In this

chapter a quasi-macroscopic theory of virtual cavity local field correction

factors is generalized to magneto-dielectric media which display a non-trivial

magnetic permeability and the resultant effects of the combined local field

corrections are discussed. It will be shown that local field contributions on

a combined system of electric and magnetic resonances with an overlapping

spectrum have, under certain conditions, a rather peculiar effect.
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6.1 Introduction

The linear response of a medium composed of particles with a vacuum (elec-

tric) polarizability α is governed by the “local”, i.e., microscopic, field Elocal

which acts on the constituents rather than the averaged Maxwell field EM .

Derivations of the local field acting on a particle in a solid located at ri usu-

EM

R

Figure 6.1: Virtual sphere separating the near zone from the far zone.

ally separate the surrounding material in a part far from ri which is treated

macroscopically and the near vicinity treated in a microscopic fashion. This

separation into near and far zones is most often done by introduction of a

virtual sphere (cf. Fig. 6.1) with radius R which is supposed to be small

compared to the characteristic length scale over which the averaged field EM

changes. This length scale will in general be at least on the order of a wave-

length but can also be given by, e.g., the absorption length. Thus Elocal is

composed of the averaged Maxwell field and a contribution due to scattering

from surrounding particles

Elocal(ri) = EM(ri) +
∑

j 6=i

Eij . (6.1)

Here Eij denotes the field at ri scattered from particle “j” located inside

the virtual cavity. This shows that the determination of the self-consistent

scattering solution and therefore the local field presents a genuine many-body

problem.

For dilute materials the contribution Eij is negligible due to large averaged

separations between the constituents in the sphere with radius R. Thus
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the induced atomic dipole moment in linear response is solely given by the

averaged field p = αEM . Therefore for spectral regions far off resonance

where the polarizability is small enough or a sufficiently small density of

polarizable particles the permittivity ε is simply given by

ε(ω) = 1 + 4π̺α(ω). (6.2)

The polarizability α(ω) is in general frequency dependent and ̺ denotes the

number density of particles. Note further that the factor 4π stems from the

usage of Gaussian units. For a vanishing α(ω) (6.2) simplifies to ε(ω) = 1

and thus to the case of propagation in vacuum.

In contrast the scattered field amplitude in dense media can differ signifi-

cantly from the Maxwell field EM and is usually strongly space dependent on

length scales of the average nearest neighbor distance. As (6.2) establishes

a relation between the microscopic atomic or molecular polarizability α(ω)

and the macroscopic response function ε(ω) this issue naturally is not cap-

tured by the theory of macroscopic electrodynamics which deals with fields

averaged over volumes which can contain a huge number of particles.

Surprisingly enough there are phenomenological treatments from a time

at which not even the particle nature of matter has been established. Mossotti

[107] and Clausius [108] independently calculated the dielectric constant of

metallic particles embedded in dielectrics and Lorenz [109] and Lorentz [110]

studied the corresponding refractive index1. The result is hence named

Clausius-Mossotti or Lorentz-Lorenz relation depending whether it is writ-

ten in terms of the permittivity ε or the refractive index n of the medium in

question.

Following a classical derivation of the local field effects for dielectric media

[40, 111] we turn to a quantitative treatment. As noted above the local field

(at any point) is decomposed as

Elocal = EM + Ei (6.3)

where the scattering contribution is summarized as an additional microscopic

internal field Ei. The surrounding medium is assumed to be divided by a

1See [40, 111, 112].
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virtual sphere into an inner and an outer part as discussed above. This cavity

is assumed to be macroscopically small but still large enough to contain very

many identically polarized atoms. Following the discussion above the term

“macroscopically small” means that the macroscopic (averaged) polarization

P can be taken to be constant over the volume of the virtual cavity. To

obtain the local field quantitatively we evaluate the field strength due to the

polarized atoms inside the cavity for both a microscopic and a macroscopic

model:

(a) The atoms inside the cavity are considered to be arranged in a simple

cubic lattice. As the cavity is microscopically large we can approxi-

mately assume an infinite lattice with a discrete translational invari-

ance. Due to the macroscopically small radius of the cavity we further-

more assume the particles to be polarized equally both in magnitude

and orientation.

(b) The medium in the virtual cavity is treated macroscopically. Only the

total dipole moment of the medium inside the cavity is known.

The internal field Ei thus is given by the difference of the microscopic and

the averaged macroscopic results:

Ei = E(a) −E(b). (6.4)

The microscopic contribution E(a) is determined by a summation of the field

amplitudes due to the dipole radiation patterns of all individual dipoles of

the infinite lattice which yields [40]

E(a) = 0 (6.5)

due to the symmetry of the lattice. Note that the dipoles of the lattice are

not supposed to interact with each other directly. In contrast E(b) is given by

the field strength inside a homogeneously polarized sphere with polarization

P [40]

E(b) = −4π

3
P. (6.6)

The local field Elocal is therefore given by

Elocal = EM +
4π

3
P. (6.7)
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From that one can find the connection between the microscopic polarizability

α and the susceptibility χ using the corresponding definitions of the polar-

ization P. Microscopically it is defined as the average induced atomic dipole

moment which is proportional to the microscopic field strength Elocal

P = ̺p = ̺α(ω)Elocal = ̺α(ω)

(
EM +

4π

3
P

)
(6.8)

while the macroscopic susceptibility is defined as the ratio of P and the

average field EM

P = χ(ω)EM . (6.9)

Here ̺ is the number density of atoms and p is the induced atomic dipole

moment. From (6.8) and (6.9) we readily find the sought local field correction

to the susceptibility [40, 93]

χ(ω) =
̺α(ω)

1− 4π

3
̺α(ω)

. (6.10)

Equivalently the ratio Elocal/EM of local and average field amplitudes can be

expressed using ε = 1 + 4πχ as the Clausius-Mossotti local field factor

LCM =
ε + 2

3
(6.11)

which is also named Lorentz-Lorenz or virtual cavity local field factor for the

case ε = n2.

It is instructive to discuss the emergence of local field effects in gaseous

media. From chapter 7 it will become aparent that the Clausius-Mossotti

relations are implicitly contained in the Green function given by

G(r, r′) = G(0)(r, r′) +
∑

i

∫
d3r1G(0)(r, r1)Vi(r1)G(r1, r

′) (6.12)

where Vi denotes the optical potential of the ith particle and G(0) and G
denote the vacuum and full Green functions, respectively. As the positions

of the scatterers in a gas are not fixed one usually transforms (6.12) into a

non-discrete version using an averaged particle position distribution p(r).

G(r, r′) = G(0)(r, r′) + V

∫
d3r1p(r1)G(0)(r, r1)G(0)(r1, r

′)

+ V 2

∫
d3r1d

3r2p(r1, r2)G(0)(r, r1)G(0)(r1, r2)G(0)(r2, r
′) + . . .

(6.13)
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The higher order terms are given by joint particle position propabilities, e.g.,

p(r1, r2) to find particle 2 at position r2 under the condition that particle

1 is located at r1. These joint propabilities separate into single particle

propabilities

p(r1, r2) ≈ p(r1)p(r2) (6.14)

in good approximation which allows to simplify (6.13) for homogeneous single

particle distributions to

G(r, r′) = G(0)(r, r′) + ̺ V

∫
d3r1G(0)(r, r1)G(r1, r

′) (6.15)

which can be solved for G in Fourier space. This then yields expression (6.2)

for the permittivity. The mistake made assuming (6.14) in a continuum

description of the medium is for the case r1 = r2, i.e., for the spatial nullset

for which 2 particles are physically on the same position. As this is not

allowed the joint probability has to vanish on this nullset. One might naively

argue that this should have no consequence as it affects only a nullset in

coordinate space. The importance of this nullset stems from the δ-function

in the vacuum Green function G(0) (cf. Appendix A) which leads to a finite

contribution. Removing the δ-contribution in G(0) which effectively accounts

for p(r, r) = 0 results in the local field factor (6.10) [113]. Thus local field

effects are due to 2 particles being forbidden to take a single position which

is automatically fulfilled for the lattice model used above.

Experimental tests of the validity of the local field factor (6.11) make use

of the Purcell effect [114] named after E. M. Purcell who first claimed that the

natural linewidth of atomic resonances depends on the radiative density of

states. Most prominently this happens for emitters inside a resonant cavity

[115] for which the Purcell effect has been first confirmed experimentally

[116, 117, 118, 119, 120]. Similar to a resonator the mode spectrum of the

electrodynamic vacuum is shaped as well by the presence of only one metallic

or dielectric surface [121, 122, 123, 124, 125]2.

In order to alter the radiative density of states fundamentally a simple di-

electric medium suffices, however. For the case of decaying atoms embedded

in a dielectric material with a permittivity ε and a refractive index n =
√

ε

2Cf. also part III.
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the Purcell effect amounts to the correction of the spontaneous emission rate

according to [126]

Γ = nΓ0. (6.16)

Here Γ denotes the radiative decay rate which is compared to the corre-

sponding linewidth in vacuum Γ0. Additionally local field factors apply to

(6.16) which have to be taken quadratically as the spontaneous decay rate is

proportional the square of the electric field

Γ = nL2
CMΓ0. (6.17)

In addition to the virtual cavity local field correction factor LCM there is a

second well known model which assumes a macroscopic dielectric medium

with a real cavity of radius R in the center of which the particular atom is

placed. One finds [127, Kästel2003]

LRC =
3ε

2ε + 1
. (6.18)

Interestingly enough both local field factors are applicable depending on the

system under examination. There are experimental reports which favor the

virtual cavity model [128, 129, 130] but also experiments which use the real

cavity correction factor [131, 132, 133]. As a bottomline, for pure media

the virtual cavity model seems to be valid [134, 135] while the spontaneous

decay of an atom of a different species embedded in a dielectric host material

can be governed by either LCM or LRC depending on whether the impurity

substitutes a host atom or is placed on an interstitial position [136, 137],

respectively. Hence for pure media with a negative refractive index we have

to consider Clausius-Mossotti virtual cavity local field correction factors as

well (cf. section 3.5).

6.2 Magneto-dielectric materials

As opposed to pure dielectrics, there is only little literature [93] about pure

magnetic media. As electric and magnetic effects in linear response are con-

nected by means of a duality transformation, pure magnetic materials with
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a permeability µ are governed by a similar Clausius-Mossotti relation with

the electric polarizability αe replaced by the magnetizability αm.

Even more general materials which involve electric and magnetic subsys-

tems simultaneously and thus are crucial to the understanding of negative

refraction have, to our knowledge, not been treated. Since in classical macro-

scopic electrodynamics the problems for the electric and the magnetic degrees

of freedom separate, Clausius-Mossotti relations have to be applied indepen-

dently. In order to understand the differences to pure media arising from this

treatment let us first consider a purely dielectric medium with a polarizability

αe(ω) = α′
e(ω) + i α′′

e(ω) (6.19)

which does not depend on the density. In particular let us assume that

the linewidth of αe(ω) is density independent and the medium is radiatively

broadened. Using (6.19) the high density limit of the permittivity ε = 1 +

4πχ(ω) including Clausius-Mossotti local field corrections (6.10) is found to

be

ε(ω)
̺→∞−→ −2 + i

9α′′
e(ω)

4π|αe(ω)|2̺−1. (6.20)

We note that for sufficiently high densities the response saturates at a value

of −2 while the imaginary part vanishes as 1/̺. Thus the corresponding

refractive index will attain a purely imaginary value n = i
√

2, i.e., the local

field corrections ensure that high densities lead to increasing absorption and

ultimately to the emergence of a stop band for which the medium becomes

totally opaque.

In order to analyze this general result in more detail we assume a single

resonance polarizability

αe(ω) =
1

2~

d2

∆− iγ
(6.21)

as in (2.3). The effect of virtual cavity local field factors to the macroscopic

response then amounts to

ε(ω) = 1 + 4π
d2̺

2~(∆−∆L − iγ)
(6.22)

with the density dependent Lorentz frequency shift ∆L = 4π
3

d2

2~
̺ [138]. The

detuning is given by ∆ = ω0 − ω where ω0 denotes the atomic resonance
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Figure 6.2: Real (solid) and imaginary (dashed) parts of the permittivity

ε(ω) as well as the imaginary (dotted) part of n(ω) =
√

ε(ω). Figures (a),

(b), and (c) show spectra as a function of the detuning δ for (a) N = 0.01,

(b) N = 0.1, and (c) N = 1 while (d) shows the dependence of ε(0) and n(0)

on the rescaled density parameter N .

frequency. Figure 6.2(a) shows a spectrum of (6.22) as well as Im[n(ω)] =

Im[
√

ε(ω)] as a function of the dimensionless detuning δ = −∆/γ for the

rescaled (dimensionless) density parameter N = d2̺/(2~γ) = 0.01, i.e., in the

linear limit for which local field corrections do not contribute significantly. In

Figures 6.2(b) and 6.2(c) similar spectra are shown for N = d2̺/(2~γ) = 0.1

and N = d2̺/(2~γ) = 1, respectively. We observe that, as soon as the

response differs significantly from 1, the resonance shifts to lower energies

due to the Lorentz shift while the strength of the response increases due to

the fundamental dependence of ε(ω) on the density ̺. As a result the values

of the permittivity and the index of refraction attain the values ε(0) = −2

and n(0) = i
√

2 with increasing density as shown in 6.2(d). We note that

the absorption Im[n(ω)] increases monotonically with increasing density. We
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Figure 6.3: Real (solid) and imaginary (dashed) parts of the permittivity

ε(ω) and the permeability µ(ω) as well as the imaginary (dotted) part of

n(ω) =
√

ε(ω)µ(ω). Figures (a), (b), and (c) show spectra3 as a function of

the detuning δ for (a) N = 0.01, (b) N = 0.1, and (c) N = 1 while (d) shows

the dependence of the response functions ε(0) and µ(0) as well as n(0) on

the rescaled density parameter N .

stress again that this analysis does not depend on the nature of the resonance

and thus is valid for magnetic resonances as well.

If the Clausius-Mossotti relations are assumed to apply independently to

the electric and magnetic subsystems a dramatic change occurs for media

with overlapping electric and magnetic resonances. Denoting the magneti-

zability by αm(ω) = α′
m(ω) + i α′′

m(ω) yields an identical limiting behavior

of the permeability for high densities compared to (6.20). Hence both the

permittivity and the permeability asymptotically attain values of ε = −2

and µ = −2 independently. In contrast to pure media this does not lead

to strong absorption, though, but rather to a negative refractive index with
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vanishing absorption for increasing densities

n(ω) = −2 + i

(
9α′′

e(ω)

8π|αe(ω)|2
+

9α′′
m(ω)

8π|αm(ω)|2
)

̺−1. (6.23)

This quite peculiar behavior is illustrated in Figs. 6.3(a)–(c) which show the

spectra of a permittivity and permeability with a spectral overlap3. The

Lorentz shift applies independently to both degrees of freedom. Hence when

both material functions develop negative real values the index of refraction

becomes negative as well. Figure 6.3(d) shows the density dependence of

the material functions taken at zero detuning. It is apparent that due to

the Lorentz shift with simultaneous increase of the response strength the

refractive index attains n = −2 + i0 in the limit of high densities.

In conclusion, an increase of the number density of scatterers leads to a

decrease of absorption. This most unexpected behavior seems unphysical and

demands a more profound investigation on the basis of a purely microscopic

model.

3 It is not relevant which resonance line is assumed to be the magnetic one.





CHAPTER 7

Microscopic model of local field corrections in

dielectric media

As mentioned above the derivation of local field corrections is a genuine

many-body problem, which is an aspect not considered in the macroscopic

treatment of chapter 6, and hence is not capable of a satisfactory support of

the result of section 6.2. In addition it does not give any information about

the kind of polarizability α(ω) that has to enter the macroscopic permittivity

(6.10) for the case of dense media. One might expect to find a polarizability

dressed by the surrounding medium.

In order to address these questions we will present in the following two dif-

ferent microscopic derivations of local field effects in dielectrics which include

many-body physics: The solution of the electromagnetic multiple scattering

problem of a lattice model and the solution of the Heisenberg equations

of motion for the electric and magnetic field operators in reciprocal space.

Both models will be needed for a subsequent generalization to magnetic and

magneto-dielectric media.

7.1 Formal considerations

In order to describe dielectric materials microscopically and thus include

many-body effects we consider a simple cubic lattice of atoms with an electric

97
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α(ω)

a

Figure 7.1: Microscopic model of a pure dielectric material. Polarizable

particles with a polarizability α(ω) form a simple cubic lattice with lattice

constant a.

dipole moment α(ω) (Fig. 7.1). Note that we assume any effects of permanent

dipole moments to vanish exactly. The connection between the electric field

E(r, ω) and the Polarization P(r, ω) in linear response approximation can be

written

P(r, ω) = α(r, ω)E(r, ω) (7.1)

with a dimensionless function α(r, ω). Note that α(r, ω) fulfills the relation

α(r, ω) = α(r + R, ω) for any lattice vector R = a(nex + mey + lez) of

the simple cubic lattice. Here a is the lattice constant of the simple cubic

lattice and {n, m, l} are integer numbers. Note further that the r-dependent

function α(r, ω) is not the polarizability of the atoms but generalizes the

factor ̺α(ω) in (6.8).

In order to find the dispersion relation k(ω) and thus the refractive index

including local field effects we continue by formulating the basic equation

governing the electromagnetic many-body problem in terms of a Helmholtz

equation. To do so we start with the Heisenberg equations for the electric

and magnetic field operators in dielectric media which are given by Maxwell’s
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equations

∇ · B̂(r, t) = 0,

∇ · D̂(r, t) = 4π ˆ̺(r, t)
(7.2)

as well as

∇× Ê(r, t) +
1

c

∂

∂t
B̂(r, t) = 0,

∇× Ĥ(r, t)− 1

c

∂

∂t
D̂(r, t) =

4π

c
ĵ(r, t).

(7.3)

Here ˆ̺(r, t) and ĵ(r, t) are the charge density and current density operators

of the free sources, respectively. We Fourier transform (7.2) and (7.3) with

respect to time which, along with Ĥ(r, ω) = B̂(r, ω) for dielectric media,

which yields

∇ · B̂(r, ω) = 0,

∇ · D̂(r, ω) = 4π ˆ̺(r, ω),
(7.4)

∇× Ê(r, ω)− i
ω

c
B̂(r, ω) = 0,

∇× B̂(r, ω) + i
ω

c
D̂(r, ω) =

4π

c
ĵ(r, ω).

(7.5)

Utilizing the continuity equation in Fourier space iω ˆ̺(r, ω) = ∇ · ĵ(r, ω),

equations (7.4) follow immediately from (7.5). Eliminating the magnetic

field B̂(r, ω) from (7.5) and letting D̂(r, ω) = Ê(r, ω) + 4πP̂(r, ω) thus leads

to the vectorial Helmholtz equation

∇×∇× Ê(r, ω)− ω2

c2
Ê(r, ω) = 4πi

ω

c2
ĵ(r, ω) + 4π

ω2

c2
P̂(r, ω) (7.6)

which in the following serves as a starting point for the determination of

the dispersion relation k(ω) and thus the local field corrections to the linear

response. As α(r, ω) is assumed to model the microscopic spatial positions

of electrically polarizable particles as well as corresponding atomic charge

densities, Ê(r, ω) represents the microscopic electric field including many-

body scattering contributions.
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7.2 Multiple scattering in real space

As we will see, one way to solve (7.6) in general is the use of Green function

techniques within a multiple scattering formalism. We thus introduce the

complex valued classical Green tensor G(r, r′, ω) which relates the electric

field operator Ê(r, ω) at r with the source current density at position r′

Ê(r, ω) = −4πi
ω

c2

∫
d3r′G(r, r′, ω)̂j(r′, ω). (7.7)

We emphasize that unless we restrict to some particular polarization G ≡ Gij

is in general a tensorial function. As discussed earlier for linear media the

polarization operator P̂(r, ω) is related to the electric field operator via

P̂(r, ω) = α(r, ω)Ê(r, ω). (7.8)

Here only the electromagnetic field is treated quantum mechanically. The

dynamics of each atom of the lattice is assumed to be already solved inde-

pendently and its effect is summarized in the c-number polarizability α(ω).

As this restricts the approach to the perturbative linear response limit and

assumes fixed positions of the scatterers, cooperative effects such as super-

and subradiance [139, 140] as well as effects due to center of mass proper-

ties of the atoms like atomic scattering and phonons which represent effective

broadening mechanisms in solid state physics are not contained in the theory.

The many-body aspects are reduced to electromagnetic back-action due to

scattering of photons which suffices to describe local field corrections. Note

that α(r, ω) is in general a tensorial, complex-valued function of space and

frequency.

We insert (7.7) together with (7.8) into (7.6) which results in the classical

Helmholtz equation for the tensor Green function G(r, r′, ω)
[
ω2

c2
1−∇r ×∇r×

]
G(r, r′, ω) = δ(r− r′)1− 4π

ω2

c2
α(r, ω)G(r, r′, ω). (7.9)

Note that the coefficient in (7.7) has been chosen such that only a δ(r − r′)

contribution remains from the source current density ĵ(r, ω) and that the sign

on the left hand side complies with the convention of [134]. Note again that

(7.9) contains no quantum mechanical operators. Thus the Green function
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formalism combined with the approximations mentioned above allows one to

map the quantum mechanical to a purely classical problem.

7.2.1 General solution

In the following we show that the general solution of (7.9) naturally leads

to an interpretation in terms of multiple scattering, even for the simple case

of a single scatterer in vacuum. We first note that the full Green function

G(r, r′, ω) fulfills a Dyson equation

G(r, r′, ω) = G(0)(r− r′, ω)− 4π
ω2

c2

∫
d3r1G(0)(r− r1, ω)α(r1, ω)G(r1, r

′, ω)

(7.10)

which can be seen immediately from the Helmholtz equation (7.9). Unfor-

tunately G(r, r′, ω) is determined by (7.10) only through an integral relation

in terms of α(r, ω) and the vacuum Green function1 G(0)(r − r′, ω). Hence,

(7.10) in general demands a self-consistent treatment. For the sake of gener-

ality we define the optical potential V (r, r′, ω) = −4π ω2

c2
α(r, ω)δ(r− r′) such

that (7.10) reads

G(r, r′, ω) = G(0)(r−r′, ω)+

∫∫
d3r1d

3r2G(0)(r−r1, ω)V (r1, r2, ω)G(r2, r
′, ω).

(7.11)

To interpret the aspects of multiple scattering equation (7.11) is frequently

represented graphically in terms of diagrams� =� +�r r′ r r′ r r1 r2 r′
(7.12)

where �r r′
and �r r′

denote the full and vacuum Green

tensors G(r, r′, ω) and G(0)(r, r′, ω), respectively, while the optical potential

V (r, r′, ω) is denoted by�r r′
.

In order to investigate (7.11) systematically we introduce a notation sim-

ilar to Dirac’s brackets of quantum mechanics. This allows us to formulate

the theory in a coordinate independent manner which simplifies the amount

of algebra significantly. To this end we interpret all constituents of (7.11) as

1Cf. Appendix A.
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operators of an abstract Hilbert space, e.g., Ĝ(ω), V̂ (ω) etc. The correspond-

ing representations in real space are then given by a scalar product with real

space state vectors |r〉. In particular

V (r, r′, ω) = 〈r|V̂ (ω)|r′〉 (7.13)

leads to the aforementioned definition of the optical potential since V̂ (ω) =

−4π ω2

c2
α̂(ω) is diagonal in real space

V̂ (ω)|r〉 = −4π
ω2

c2
α(r, ω)|r〉 (7.14)

and the state vectors |r〉 fulfill

〈r|r′〉 = δ(r− r′). (7.15)

The operator Ĝ(ω) of the Green function2 relates the state of the current

density to the state of the electric field

∣∣∣Ê(ω)
〉

= −4πi
ω

c2
Ĝ(ω)

∣∣∣̂j(ω)
〉

(7.16)

which evaluates to (7.7) under a projection onto real space. This follows from

Ê(r, ω) =
〈
r
∣∣∣Ê(ω)

〉
(7.17)

and the completeness relation

∫
d3r |r〉〈r| = 1. (7.18)

Following these guidelines the coordinate free version of the integral equa-

tion (7.11) reads

Ĝ(ω) = Ĝ(0)(ω) + Ĝ(0)(ω)V̂ (ω)Ĝ(ω) (7.19)

which is sketched in a similar way as above.� =� +� (7.20)

2We observe that all such representation independent operators are elements of just one

abstract Hilbert space. This concept thus serves only as a means to simplify the algebra.
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Note that in contrast to (7.12) no coordinates appear. On the same lines

(7.19) can be used to find the Fourier representation by evaluating the cor-

responding matrix elements.

Unlike the real space version (7.11), the abstract form (7.19) gives a closed

formula for the full Green function Ĝ(ω). Instead of straightforwardly solving

(7.19) for Ĝ(ω) it is instructive to obtain the result by iteration which yields

Ĝ(ω) = Ĝ(0)(ω) + Ĝ(0)(ω)V̂ (ω)Ĝ(0)(ω) + Ĝ(0)(ω)V̂ (ω)Ĝ(0)(ω)V̂ (ω)Ĝ(0)(ω) + . . .

(7.21)

This can be cast in the form

Ĝ(ω) = Ĝ(0)(ω) + Ĝ(0)(ω)T̂ (ω)Ĝ(0)(ω) (7.22)

which serves as the definition of the scattering T -matrix

T̂ (ω) = V̂ (ω) + V̂ (ω)Ĝ(0)(ω)V̂ (ω) + . . . (7.23)

of the system which is entirely given by the known optical potential V̂ (ω) and

the vacuum Green function Ĝ(0)(ω). In the diagram representation equation

(7.22) reads� = � +�
where the rectangular box represents the T -matrix. This equation is straight-

forwardly interpreted. The propagation of an electromagnetic wave in a

polarizable medium [Ĝ(ω)] is given by a vacuum contribution [Ĝ(0)(ω)] and

a scattering part which consists of a vacuum propagation scattered at the

lattice followed by yet another propagation in vacuum. The direction and

amplitude of the scattering are contained in the T -matrix which we denote

as an empty square and which is given entirely by the optical potential V̂ (ω)

and the vacuum propagator� =� +�+�+ . . . (7.24)

Thus from (7.24) we see that the effective scattering T -matrix can be in-

terpreted as an infinite superposition of fundamental scattering events to all

orders in the optical potential V̂ (ω), hence the term multiple scattering. This

is a characteristic feature which is already found in classical problems, e.g.,
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the transmission properties of a Fabry-Perot interferometer can be explained

by an infinite superposition of multiple reflections (scattering events) at the

mirrors [141].

We conclude the general treatment by noting that the geometric sum

appearing in (7.23) can be summed formally to a closed formula for the

scattering T -matrix

T̂ (ω) = V̂ (ω)
∞∑

n=0

[
Ĝ(0)(ω)V̂ (ω)

]n
= V̂ (ω)

[1− Ĝ(0)(ω)V̂ (ω)
]−1

. (7.25)

Similarly the full Green function Ĝ(ω) is given by3

Ĝ(ω) =
[1− Ĝ(0)(ω)V̂ (ω)

]−1

Ĝ(0)(ω). (7.26)

Hence the solution of the full scattering problem and therefore the Helmholtz

equation (7.6) can be expressed in terms of Ĝ(ω) or T̂ (ω), respectively. Un-

fortunately a particular representation of the operator
[1− Ĝ(0)(ω)V̂ (ω)

]−1

can be obtained analytically only for systems with a high intrinsic symmetry.

7.2.2 Single scatterer

The most fundamental example of a system for which the inverse operator[1− Ĝ(0)(ω)V̂ (ω)
]−1

can be obtained analytically is a single point-like scat-

terer located at rA in free space (vacuum). To find the full Green function as

well as the scattering T -matrix we separate α(r, ω) in the frequency depen-

dent polarizability α(ω) and a space dependent term which for a point-like

particle is given by a single Dirac delta-function

α(r, ω) = α(ω)δ(r− rA). (7.27)

With (7.14) and (7.18) we find for the single particle scattering T -matrix4

t(r, r′, ω) = 〈r|T̂ (ω)|r′〉 from equation (7.25)

t(r, r′, ω) =

∫
d3r1〈r|V̂ (ω)|r1〉〈r1|

∞∑

n=0

[
Ĝ(0)(ω)V̂ (ω)

]n
|r′〉. (7.28)

3Cf. equation (7.19).
4which we denote by a small t
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The recursive application of

〈r1|Ĝ(0)(ω)V̂ (ω)|r2〉 = G(0)(r1 − rA, ω)V (ω)δ(r2 − rA) (7.29)

then yields for the T -matrix

t(r, r′, ω) = V (ω)
[1− V (ω)G(0)(0, ω))

]−1
δ(r− rA)δ(r′ − rA). (7.30)

Here V (ω) = −4π ω2

c2
α(ω) [note the difference to the operator V̂ (ω)] is the

frequency dependent optical potential of the point scatterer. Like α(r, ω)

the T -matrix can thus be separated into a space dependent and a dispersive

part:

t(r, r′, ω) = t(ω)δ(r− rA)δ(r′ − rA) (7.31)

with

t(ω) =
1

V (ω)−11− G(0)(0, ω)
. (7.32)

The corresponding full Green function G(r, r′, ω) is found immediately from

(7.22) and reads

G(r, r′, ω) = G(0)(r− r′, ω) + t(ω)G(0)(r− rA, ω)G(0)(rA − r′, ω). (7.33)

Thus a field generated at point r′ and observed at r consists of the unper-

turbed (vacuum) propagation interfering with a term which stems from a free

propagation to the point-like atom located at rA from where it is scattered

with an amplitude t(ω) to the detector which is placed at r.

Note that only the use of a point-like scatterer allows to sum the T -

matrix exactly. As a drawback the T -matrix incorporates the vacuum Green

function taken at the origin G(0)(0, ω) which is divergent [134] and thus leads

to an unphysically vanishing T -matrix. One way to obtain finite physical

quantities is to regularize G(0)(r, ω) by introducing cut-off parameters ΛT and

ΛL in reciprocal space for the transverse and longitudinal parts of the Green

function, respectively. In order to find the physical T -matrix the additionally

emerging terms due to the cut-off parameters need to be interpreted along

the lines of some atomic model with a finite support [134] instead of pointlike

particles. Unfortunately the regularization procedure is not unique and as a

result the T -matrix is not unique as well. This leaves unwanted ambiguities

which do not allow for a comparison to experimental data.
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This discrepancy is solved by the assumption that the potential V (ω)

and likewise the polarizability α(ω) of a mathematical point particle do not

belong to physical reality but are just unphysical notions which are commonly

denoted by the term “bare” potential and “bare” polarizability, respectively.

Only the sum of the unphysical inverse potential and the unphysical divergent

Green function G(0)(0, ω) gives the real, observable potential

Ṽ (ω)−1 = V (ω)−11− G(0)(0, ω) (7.34)

which we denote by a tilde. Correspondingly the physical polarizability α̃(ω)

reads

α̃(ω)−1 = −4π
ω2

c2
Ṽ (ω)−1. (7.35)

The T -matrix hence is now identical to the physical potential

t(ω) = Ṽ (ω). (7.36)

Thus the interpretation of the T -matrix in terms of multiple scattering events

is only valid for the bare potential. The renormalized scattering amplitude

of a single physical scattering event emerges as multiple scattering series of

bare events.

7.2.3 Simple cubic lattice of point dipoles

Having solved the scattering problem for a single particle we will next con-

sider a whole lattice of point-like scatterers following [134]. The dispersion

relation, which contains information about local field corrections for dense

media, will then be given by the T -matrix.

We assume a simple cubic lattice of point dipoles like the ones from section

7.2.2. Again α(r, ω) separates in the polarizability α(ω) which is assumed to

be identical for all lattice sites and a lattice function

α(r, ω) = α(ω)
∑

R

δ(r−R). (7.37)

The lattice vectors R of the simple cubic lattice are given by R ≡ Rnml =

a(nex + mey + lez) for integer {n, m, l}. In contrast to the case of just one

scatterer here the system has a discrete translational symmetry

α(r + R, ω) = α(r, ω) (7.38)
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for any lattice vector R. We therefore introduce a reciprocal wave vector

k̃ = k−K which separates into a contribution k from the first Brillouin zone

(1.BZ) and a reciprocal lattice vector K. The reciprocal lattice vectors are

defined by R ·K = 2πm with an integer number m and form a simple cubic

lattice themselves with lattice constant 2π/a. Note that the sign of K has

been chosen such that our definition corresponds to [134]. The completeness

relation in reciprocal space can hence be written1 =

∫R3

d3k̃
∣∣∣k̃
〉〈

k̃
∣∣∣ =

∑

K

∫

Vk−K

d3k̃
∣∣∣k̃
〉〈

k̃
∣∣∣

=
∑

K

∫

Vk

d3k |k−K〉〈k−K|.
(7.39)

Here Vk denotes the volume of the first Brillouin zone and Vk−K the same

volume but centered around −K. We thus express the electric field by its

Fourier components

Ê(r, ω) =
∑

K

∫

Vk

d3k 〈r|k−K〉
〈
k−K

∣∣∣Ê(ω)
〉

=(2π)−3/2
∑

K

∫

Vk

d3k ei(k−K)·r Ê(k−K, ω)

(7.40)

where we used

〈r|k〉 = (2π)−3/2eik·r. (7.41)

Due to the quasi-homogeneity of the material composed of the lattice of

point particles the eigensolutions are plain waves with a dispersion relation

k(ω). This dispersion relation implicitly contains the sought connection be-

tween the microscopic polarizability α(ω) and the (macroscopic) susceptibil-

ity χ(ω), i.e., the Clausius-Mossotti local field corrections. It can be shown

[142] that the dispersion relation k(ω) is determined by

det
[
T (k, ω)−1

]
= 0, (7.42)

the determinant of the inverse scattering T -matrix. In order to find k(ω) we

thus, as for a single scatterer, explicitly sum the diagram series (7.25) to find

the T -matrix of the simple cubic lattice represented by (7.37). In contrast
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to the case of a single dipole we now seek the T -matrix in k-space

T (k,k′, ω) =〈k|T̂ (ω)|k′〉

=

∫∫
d3r1d

3r2〈k|r1〉〈r1|V̂ (ω)
∑

n

[
Ĝ(0)(ω)V̂ (ω)

]n
|r2〉〈r2|k′〉.

(7.43)

For the first summand (n = 0) of (7.43) we employ the representation of

V̂ (ω) in k-space
V (ω)

(2π)3

∑

R

e−i(k−k′)R. (7.44)

For higher terms we need to evaluate summands like

Sn =
V (ω)

(2π)3

∑

R

∫
d3r2e

−ikReik′r2〈R|
[
Ĝ(0)(ω)V̂ (ω)

]n
|r2〉 (7.45)

for any positive integer n > 0. For n = 1 we find

S1 =
V (ω)

(2π)3

∑

R

e−i(k−k′)RV (ω)
∑

R

e−ik′RG(0)(R, ω) (7.46)

where the summation index R′ from the real space representation of the

second optical potential term V̂ (ω) has been replaced by the lattice vector

R = R−R′ which for any R corresponds to a finite shift of the infinite sum.

Note that this procedure is only valid for an infinitely extended medium.

With the same technique we find for S2

S2 =
V (ω)

(2π)3

∑

R

e−i(k−k′)R

[
V (ω)

∑

R

e−ik′RG(0)(R, ω)

]2

. (7.47)

By iteration one easily finds that in general for Sn we get

Sn =
V (ω)

(2π)3

∑

R

e−i(k−k′)R

[
V (ω)

∑

R

e−ik′RG(0)(R, ω)

]n

. (7.48)

Similar to the formal solution of the diagram series here the summands of

(7.43) form a geometric series. Hence the scattering T -matrix of an infinitely

extended simple cubic lattice of point dipoles reads [136]

T (k,k′, ω) = (2π)−3
∑

R

e−i(k−k′)R

{
V (ω)−1 −

∑

R

e−ik′RG(0)(R, ω)

}−1

(7.49)



CHAPTER 7. DIELECTRIC MEDIA 109

where, as above, the “bare” optical potential V (ω) is given by the polariz-

ability via V (ω) = −4π ω2

c2
α(ω).

As for a single scatterer we encounter a term proportional to the divergent

G(0)(0, ω) which we combine as in (7.34) with the “bare” potential V (ω) to

the physical potential of a single scatterer in free space, Ṽ (ω). The such

renormalized physical T -matrix for a lattice of point particles reads

T (k,k′, ω) = (2π)−3
∑

R

e−i(k−k′)R

{
Ṽ (ω)−1 −

∑

R6=0

e−ik′RG(0)(R, ω)

}−1

(7.50)

which now only involves the physical polarizability of a single particle Ṽ (ω)

and the contribution due to the multiple scattering to all orders at the lattice.

It is this scattering part which leads to the Clausius-Mossotti local field

corrections.

In order to prove this statement we need to sum the scattering contri-

bution, which unfortunately cannot be done exactly. We therefore establish

an approximate result for the limit of high densities of scatterers ̺ in which

ka ≪ 1 for the wave vector k = |k| and the lattice constant a holds. We

start by artificially including the R = 0 term in the summation
∑

R 6=0

e−ikRG(0)(R, ω) =
∑

R

Ξ(|R|)e−ikRG(0)(R, ω). (7.51)

In order to exclude the singular point R = 0 the smooth function Ξ(|R|) is

introduced which vanishes at the origin exactly, Ξ(0) = 0, and approaches

unity on a length scale which is small compared to the lattice constant a. By

application of Poisson’s summation formula [143]

∞∑

n=−∞

f(n) =
∞∑

k=−∞

∫ ∞

−∞

dxf(x)e−2πikx (7.52)

the sum over lattice vectors is transformed into a real space integral plus a

sum over reciprocal lattice vectors

∑

R 6=0

e−ikRG(0)(R, ω) =
∑

K

∫
d3r

Ξ(|r|)
a3

e−i(k+K)·rG(0)(r, ω). (7.53)

The appearance of the reciprocal lattice vectors K in (7.53) reflects the dis-

crete nature of the medium. In the continuous medium limit ka ≪ 1, i.e.,
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when the wavelength of the radiation in question is large compared to the

lattice spacing, the medium is essentially homogeneous and we are allowed

to keep only the K = 0 term in the sum. Thus for high densities the sum

in (7.51) is being replaced by an integral which, importantly, excludes the

origin by means of the function Ξ. Note that the restriction to low wave

numbers K = 0 corresponds to a spatial averaging over volumes with a di-

ameter of at least the lattice constant a [40] by which we formally transform

the microscopically treated medium to an averaged material as it appears in

macroscopic electrodynamics.

In the following we evaluate (7.53) by explicitly setting

Ξ(r) = 1− e−r2/∆2

(7.54)

which fulfills the condition Ξ(0) = 0. As we only deal with high densities

we only want to solve the integration in the limit ∆→ 0. We introduce the

Fourier transform of the retarded vacuum Green function (see Appendix A)

G̃(0)(p, ω) =
1

(ω2/c2 + iǫ)1− p2∆p

=
1

ω2/c2 − p2 + iǫ
∆p +

1

ω2/c2
p̂⊗ p̂

(7.55)

into (7.53). For the special case of (7.54) we hence find

∑

R 6=0

e−ikRG(0)(R, ω) ≈ 1

a3
G̃(0)(k, ω)

− 1

a3

1

(2π)3

∫
d3pG̃(0)(p, ω)

∫
d3re−r2/∆2

ei(p−k)·r

(7.56)

As the r-integration represents just a Fourier transform of the Gaussian, this

can be simplified to

∑

R 6=0

eikRG(0)(R, ω) ≈ 1

a3
G̃(0)(k, ω)

− 1

a3

π3/2∆3

(2π)3

∫
d3pG̃(0)(p, ω)e−∆2|p−k|2/4.

(7.57)
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The remaining p-integration is performed in spherical coordinates. To do so

we expand the angle dependent terms of the Gaussian for small ∆

e−∆2|p−k|2/4 ≈e−∆2(p2+k2)/4[1+

∆2/2(kzp cos θ + kyp cos φ sin θ + kxp sin θ sin φ)]
(7.58)

but keep the exponential for the p = |p| dependent contribution that provides

a cut-off in reciprocal space. Having performed the integration over the angles

θ and φ we are left with just one integration over p

∑

R 6=0

eikRG(0)(R, ω) ≈ 1

a3
G̃(0)(k, ω)− 1

a3

π3/2∆3

(2π)3

·
∫

dpp2e−∆2(p2+k2)/4
4π(3

ω2

c2
− p2 + iǫ)

3
ω2

c2
(
ω2

c2
− p2 + iǫ)

1 (7.59)

which can be carried out analytically. As mentioned above, for the continuous

media limit we restrict to the zeroth order in ∆ for which we finally obtain

∑

R 6=0

eikRG(0)(R, ω) ≈ 1

a3
G̃(0)(k, ω)− 1

a3

1

3ω2/c2
1. (7.60)

Thus the approximative renormalized T -matrix (7.50) for high densities for

the case of a simple cubic lattice of point electric dipoles reads

T (k,k′, ω) = (2π)−3
∑

R

e−i(k−k′)R

{
Ṽ (ω)−1− 1

a3
G̃(0)(k, ω) +

1

a3

1

3ω2/c2
1}−1

.

(7.61)

The only unknown parameter left, the dispersion relation k(ω), is fixed by

the condition (7.42). We hence have to determine the root of the determinant

of the inverse T -matrix which explicitly reads

det


−

1

4π
ω2

c2

α̃(ω)−1 − 1

a3
G̃(0)(k, ω) +

1

a3

1

3ω2/c2
1 = 0. (7.62)

To comply with the notation of chapter 6, we replace 1/a3 by the number

density of scatterers ̺. For an isotropic polarizability α̃(ω) ≡ α̃(ω)1 we
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expect the permittivity to be isotropic as well and the dispersion relation to

be quasi-scalar k(ω) = k(ω)k̂. We solve (7.62) for the permittivity ε(ω) given

by k(ω)2 = ε(ω)ω2/c2 from which we find the Clausius-Mossotti relation

ε(ω) = 1 + 4π
̺α̃(ω)

1− 4π

3
̺α̃(ω)

(7.63)

which is identical to the expression found from macroscopic considerations.

In contrast to (6.10), here the free space single-particle polarizability α̃(ω)

appears explicitly, which was not clear from the macroscopic treatment. This

results from the fact that only radiative interactions between atoms are cov-

ered by this treatment. Scattering processes between atoms and phonons

will contribute significantly to the effective polarizability.

We note that the derivation of (7.62) is not restricted to scalar polariz-

abilities. The procedure developed above is therefore also applicable to more

complicated situations, such as birefringent crystals. As a general example

we consider the anisotropic but diagonal polarizability

α(ω) =




αx(ω) 0 0

0 αy(ω) 0

0 0 αz(ω)


 . (7.64)

Note that we can always find a coordinate system in which the tensor α(ω)

has the structure of (7.64) due the general symmetry properties of pure di-

electric response tensors [75, 85]. We then find for a wave propagating in

x-direction k = k(ω)ex two distinct solutions

εy(ω) = 1 + 4π
̺α̃y(ω)

1− 4π

3
̺α̃y(ω)

(7.65)

and

εz(ω) = 1 + 4π
̺α̃z(ω)

1− 4π

3
̺α̃z(ω)

(7.66)

for linear y- and z-polarization, respectively. For waves traveling in other
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directions similar results apply. Hence the permittivity reads

ε(ω) = 1+4π




̺α̃x(ω)

1− 4π

3
̺α̃x(ω)

0 0

0
̺α̃y(ω)

1− 4π

3
̺α̃y(ω)

0

0 0
̺α̃z(ω)

1− 4π

3
̺α̃z(ω)




. (7.67)

7.3 Solution in reciprocal space

In the following we will pursue a different approach to find solutions of

the Helmholtz equation (7.6) that will become important for non-pure, i.e.,

magneto-dielectric materials. Conceptually we have dealt up to now with

scattering effects of a wave traveling from a spatial point r′, at which it has

been excited, to a point r. In contrast, we will now look for electromagnetic

field eigensolutions in the lattice system following [134], i.e., we consider the

Helmholtz equation (7.6) without free sources:

∇×∇× Ê(r, ω)− ω2

c2
Ê(r, ω) = 4π

ω2

c2
P̂(r, ω). (7.68)

As before, the polarization is connected to the electric field strength via

P̂(r, ω) = α(r, ω)Ê(r, ω), and α(r, ω) separates into the polarizability α(ω)

and the spatial distribution function for the simple cubic lattice of point

electric dipoles

α(r, ω) = α(ω)
∑

R

δ(r−R) =
α(ω)

a3

∑

K

eiKr. (7.69)

Note that we also give the representation in terms of reciprocal lattice vectors

K, which can be obtained by means of Poisson’s summation formula (7.52).

With the representation of the electric field vector in reciprocal space (7.40)

the Helmholtz equation thus reads
∫

Vk

dk
∑

K

[
ω2

c2
+ (k−K)× (k−K)×

]
Ê(k−K, ω)ei(k−K)r =

=−
∫

Vk

dk
∑

K

∑

K′

4π
ω2

c2

α(ω)

a3
eiK′rÊ(k−K, ω)ei(k−K)r.

(7.70)
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Note that with p × p× = − |p|2 ∆p the term in the brackets on the left

hand side represents the inverse vacuum Green function in reciprocal space

(7.55). On the right hand side we replace the summation over K′ by K′′ =

K − K′ and afterwards interchange the notations for K and K′′. Since∫
Vk

dk
∑

K
. . . ei(k−K)r is an ordinary Fourier transformation we obtain the

Fourier transformation of the Helmholtz equation by restriction to the kernel

[
G̃(0)(k−K, ω)

]−1

Ê(k−K, ω) = −
∑

K′′

4π
ω2

c2

α(ω)

a3
Ê(k−K′′, ω). (7.71)

Note that the effect of the lattice now manifests itself in a coupling of el-

ementary waves with different reciprocal lattice vectors K. We proceed by

multiplying with G̃(0)(k −K, ω) from the left and summing everything over

K. This results for a plane wave solution Êk(r = 0, ω) =
∑

K Ê(k −K, ω)

to a given wave vector k in the fundamental algebraic (in polarization space)

set of equations


∑

K

G̃(0)(k−K, ω) +
1

4π
ω2

c2

α(ω)

a3


 Êk(0, ω) = 0. (7.72)

Nontrivial solutions to the Helmholtz equation therefore exist if and only if

the determinant of the system matrix

det



∑

K

G̃(0)(k−K, ω) +
1

4π
ω2

c2

α(ω)

a3


 = 0 (7.73)

vanishes. Again the only free parameter left in (7.73) is the wave vector

k(ω). Note that this condition corresponds exactly to (7.42) for dielectric

media. This follows immediately from comparing (7.72) and (7.49) together

with the corresponding relation between the bare polarizability α(ω) and the

bare optical potential V (ω) using (see Appendix A)

1

a3

∑

K

G̃(0)(k−K, ω) =
∑

R

e−ikRG(0)(R, ω). (7.74)

Correspondingly the infinite sum over K in (7.73) contains the divergent

G(0)(0, ω). As in section 7.2 the physical polarizability α̃(ω) is introduced as
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the combination (7.34) of the bare optical potential V (ω) and G(0)(0, ω). As

expected, the treatment in reciprocal space thus gives the same dispersion

relation as the Green function formalism. But only the multiple scattering

Green function technique allowed us to find the single scatterer result which

appears in the renormalization treatment of the lattice.





CHAPTER 8

Magnetic media

Local field effects are of course not restricted to dielectric materials. Although

atomic magnetic dipole transition moments are usually orders of magnitude

smaller than corresponding electric dipole transition moments, local-field cor-

rections can become important in pure magnetic systems or artificial media,

such as metamaterials, for which magnetic dipole moments can have the

same order of magnitude than corresponding electric dipole moments. Thus

along the lines of chapter 7 we will now analyze local field corrections for

diamagnetic1 media. Similarly as for dielectric materials we will make use of

a simple cubic lattice of point magnetic dipoles (see Fig. 8.1) which will allow

us to sum the diagram series of the T -matrix analytically and determine the

dispersion relation which includes the Clausius-Mossotti corrections.

We start with a classical treatment similar to the dielectric case. Along

the same lines as for dielectrics (cf. chapter 7) one can show [93] that the local

magnetic field, i.e., the field which excites the individual magnetic dipoles

on a microscopic level, is given by the macroscopic magnetic field H and the

magnetization M as

Hlocal = H +
4π

3
M. (8.1)

The magnetization M itself is defined by ̺m where ̺ denotes the number

density of the magnetizable particles and m the induced magnetic moment.

1As for dielectric media no permanent dipole moments is assumed to exist.
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αH(ω)

a

Figure 8.1: Microscopic model of a pure diamagnetic material. Point mag-

netic dipoles with a magnetizability αH(ω) form a simple cubic lattice with

lattice constant a.

For linear media, m is proportional to the local magnetic field

m = αH(ω)Hlocal (8.2)

where αH(ω) denotes the corresponding magnetizability constant. We elim-

inate Hlocal and obtain a connection between the macroscopic fields H and

M in terms of the microscopic factor αH(ω). As in chapter 7 we find

M = ̺αH(ω)

(
H +

4π

3
M

)
(8.3)

which can be compared to M = χm(ω)H. The magnetic susceptibility χm(ω)

thus reads

χm(ω) =
̺αH(ω)

1− 4π

3
̺αH(ω)

(8.4)

which is in exact analogy to the dielectric result (6.10). As in the dielectric

case we treat this case in the following in a fully microscopic treatment based

on a simple cubic lattice of point scatterers.
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8.1 Multiple scattering in real space

Similar to the macroscopic treatment above we construct a microscopic the-

ory in one-to-one correspondence to the dielectric case. We derive from

Maxwell’s equations (7.2) and (7.3) a Helmholtz equation for the magnetic

field. In contrast to the dielectric case, the electric displacement operator is

now given by D̂(r, ω) = Ê(r, ω) whereas the magnetic field is related to the

induced magnetization via B̂(r, ω) = Ĥ(r, ω) + 4πM̂(r, ω). This results in

the vectorial Helmholtz equation

∇×∇× Ĥ(r, ω)− ω2

c2
Ĥ(r, ω) =

4π

c
∇× ĵ(r, ω) + 4π

ω2

c2
M̂(r, ω). (8.5)

Under the assumption of linear media the magnetization is proportional to

the magnetic field

M̂(r, ω) = αH(r, ω)Ĥ(r, ω) (8.6)

with αH(r, ω) being the independently obtained single particle magnetizabil-

ity modulated with a spatial distribution function. We introduce the Green

function GH(r, r′, ω) indicated with H in order to make a distinction to the

electric case by

Ĥ(r, ω) = −4π

c

∫
d3r′GH(r, r′, ω)∇r′ × ĵ(r′, ω). (8.7)

The magnetic Helmholtz equation (8.5) hence translates to the defining equa-

tion for the Green function
[
ω2

c2
1−∇r ×∇r×

]
GH(r, r′, ω) = δ(r− r′)1− 4π

ω2

c2
αH(r, ω)GH(r, r′, ω).

(8.8)

Note that the form of (8.8) is equivalent to the corresponding dielectric equa-

tion (7.9). Without any further calculations we therefore summarize the re-

sults for the scattering at a single magnetic point dipole in vacuum and a

simple cubic lattice of magnetic point particles, respectively.

(a) For a single point magnetic dipole αH(r, ω) consists of the magnetiz-

ability αH(ω) which acts at a single position rA

αH(r, ω) = αH(ω)δ(r− rA) (8.9)



120 8.1. MULTIPLE SCATTERING IN REAL SPACE

The corresponding single particle T -matrix then reads

tH(r, r′, ω) = tH(ω)δ(r− rA)δ(r′ − rA). (8.10)

where the spectral scattering amplitude tH(ω) contains the divergent

term G(0)
H (0, ω) which we together with the bare magnetizability inter-

pret on the lines of (7.34) as the physical magnetizability α̃H(ω). As a

result the renormalized T -matrix reduces to

tH(ω) = ṼH(ω) (8.11)

with ṼH(ω) = −4π(ω2/c2)α̃H(ω) being the physical optical potential.

Note that the vacuum Green function for the magnetic case G(0)
H (r −

r′, ω) is of course identical to the vacuum Green function G(0)(r− r′, ω)

for the dielectric case. To simplify the notation in the following we will

therefore only use G(0)(r− r′, ω) rather than G(0)
H (r− r′, ω).

(b) For a simple cubic lattice of magnetic point particles with a magnetiz-

ability αH(ω) we set

αH(r, ω) = αH(ω)
∑

R

δ(r−R). (8.12)

By comparison with (7.50), this leads to the expression

TH(k,k′, ω) =
1

(2π)3

∑

R

e−i(k−k′)R

{
ṼH(ω)−1−

∑

R6=0

e−ik′RG(0)(R, ω)

}−1

(8.13)

for the renormalized scattering T -matrix of the lattice. By exploiting

the determinantal condition (7.42), we determine the dispersion rela-

tion k(ω) for the high density limit (ka ≪ 1). In contrast to section

7.2 the wave vector for a scalar magnetizability αH(ω) is now related

via k(ω)2 = µ(ω)ω2/c2 to the permeability µ(ω) = 1 + 4πχm(ω) of the

medium rather than the permittivity. It reads

µ(ω) = 1 + 4π
̺α̃H(ω)

1− 4π

3
̺α̃H(ω)

. (8.14)

All conclusions and generalizations to tensorial media apply identically

compared to the case of dielectric materials.
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8.2 Solution in reciprocal space

The treatment in reciprocal space has the same similarity to the dielectric

case as the summation of the T -matrix. In particular, the Helmholtz equation

without free sources for the magnetic case reads

∇×∇× Ĥ(r, ω)− ω2

c2
Ĥ(r, ω) = 4π

ω2

c2
M̂(r, ω). (8.15)

Note that this is formally identical to (7.68) under the duality transformation

Ê(r, ω)→ Ĥ(r, ω) and P̂(r, ω)→ M̂(r, ω). For linear media we thus get the

reciprocal version of the Helmholtz equation



∑

K

G̃(0)(k−K, ω) +
1

4π
ω2

c2

αH(ω)

a3


 Ĥk(0, ω) = 0. (8.16)

The roots of the determinant of the system matrix of the algebraic set of

equations (8.16) then determine the dispersion relation which for a scalar

medium response is characterized by the permeability (8.14).

8.3 The question of H versus B

In the treatment of the magnetic materials we implicitly accepted that the

magnetization is induced by the magnetic field H. By contrast, in a Hamil-

tonian description of the interaction of light and (magnetic) matter the in-

teraction term in dipole approximation reads

Ĥint = −m ·B (8.17)

with the magnetic induction field B rather than H. This suggests to use the

definition

m = αB(ω)Blocal (8.18)

rather than (8.2) on the microscopic level in order to derive local field cor-

rections. Note that αB(ω) and αH(ω) from (8.2) have to be distinguished.
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8.3.1 Macroscopic Treatment

From a phenomenological treatment [93] the local magnetic induction field

Blocal is given by the macroscopic induction field B and the magnetization

M via

Blocal = B− 2
4π

3
M. (8.19)

This can be understood in a simple manner. The fields Hlocal and Blocal

are microscopic fields by nature. Thus there are only point-like free sources

whose locations form a null set in space. Apart from this null set the fields

thus exist in vacuum and are hence identical Hlocal = Blocal. Note that the

contribution of the magnetization of the probe dipole is explicitly excluded in

the evaluation of the local field at the position of the probe dipole. Equating

(8.19) and (8.1) then simply results in the definition H = B − 4πM for the

macroscopic fields.

Equations (8.18) and (8.19) together with M = ̺m yield the relation of

the magnetization M and the field induction B in terms of the microscopic

magnetizability αB(ω). Comparing to the macroscopic version

M = χm(ω)H =
χm(ω)

µ(ω)
B =

χm(ω)

1 + 4πχm(ω)
B (8.20)

gives the sought relation between the microscopic and macroscopic parame-

ters

χm(ω) =
̺αB(ω)

1− 4π

3
̺αB(ω)

. (8.21)

Note that this result is exactly identical to the corresponding result (8.4)

with αH(ω) replaced by αB(ω). From the macroscopic derivation we thus

cannot distinguish between αB(ω) and αH(ω).

8.3.2 Microscopic Treatment

For a microscopic derivation of (8.21) we replace Ĥ(r, ω) by the magnetic

induction B̂(r, ω) in the Maxwell equations (7.2) and (7.3), from which we

then obtain the Helmholtz equation

∇×∇× B̂(r, ω)− ω2

c2
B̂(r, ω) =

4π

c
∇× ĵ(r, ω)+4π∇×∇×M̂(r, ω). (8.22)
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for B̂(r, ω) rather than (8.5). Similar to (8.7) we introduce the Green function

GB(r, r′, ω), which relates the magnetic induction field strength to the source

current

B̂(r, ω) = −4π

c

∫
d3r′GB(r, r′, ω)∇r′ × ĵ(r′, ω). (8.23)

As mentioned above, we use M̂(r, ω) = αB(r, ω)B̂(r, ω), which yields the

defining equation for the Green function GB(r, r′, ω)
[
ω2

c2
1−∇r ×∇r×

]
GB(r, r′, ω) = δ(r−r′)1−4π∇×∇×αB(r, ω)GB(r, r′, ω).

(8.24)

Note the characteristic double curl expression in the material term. As a

result GB(r, r′, ω) and GH(r, r′, ω) differ in general. Nevertheless the diagram

series for the T -matrices can be summed analytically for the single particle

as well as the lattice case (see Appendix B).

• The single particle T -matrix reads

tB(r, r′, ω) = tB(ω)δ(r− rA)δ(r′ − rA). (8.25)

with the spectral amplitude tB(ω) given by the bare magnetizability

αB(ω) and a divergent term which involves the double curl of the free

space Green function G(0)(0, ω)

tB(ω)−1 = −
(

4π
ω2

c2
αB(ω)

)−1

− 1

ω2/c2
∇×∇× G(0)(0, ω). (8.26)

Hence we introduce the physical magnetizability α̃B(ω) which replaces

the sum of the bare one and the divergent Green function term such

that (8.26) simplifies to

tB(ω)−1 = −
(

4π
ω2

c2
α̃B(ω)

)−1

. (8.27)

• For the case of a simple cubic lattice the T -matrix reads

TB(k,k′, ω) =
1

(2π)3

∑

R

e−i(k−k′)R

{
VB(ω)−1 −

∑

R

e−ik′R

ω2/c2
∇×∇× G(0)(R, ω)

}−1 (8.28)
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with the characteristic double curl showing up again. We combine the

R = 0 contribution of the infinite series and the bare αB(ω) response

to the renormalized single particle magnetizability α̃B(ω). Noting that

∇ × ∇ × G(0)(R, ω) = (ω2/c2)G(0)(R, ω) for R 6= 0 holds, (8.28) sim-

plifies to

TB(k,k′, ω) =
1

(2π)3

∑

R

e−i(k−k′)R

{
ṼB(ω)−1 −

∑

R6=0

e−ik′RG(0)(R, ω)

}−1

,

(8.29)

i.e., has the same form as (8.13). As a consequence we obtain the

permeability2 (8.14) including Clausius-Mossotti local field corrections

with α̃H(ω) replaced by α̃B(ω).

Because the permeability must be unique we conclude that for the physical

magnetizabilities α̃H(ω) = α̃B(ω) holds. This is reasonable as B and H for

a single particle in free space are indistinguishable. In contrast the rela-

tion between the bare term αB(ω) and the physical α̃B(ω) differs from the

corresponding treatment of αH(ω) since

ṼB(ω)−11 = VB(ω)−11− (c2/ω2)∇×∇× G(0)(0, ω) (8.30)

holds for VB(ω) = −4π(ω2/c2)αB(ω) rather than

ṼH(ω)−11 = VH(ω)−11− G(0)(0, ω) (8.31)

for the corresponding VH(ω) = −4π(ω2/c2)αH(ω). Here

∇×∇× G(0)(0, ω) = (ω2/c2)G(0)(0, ω)− δ(0) (8.32)

contains a factor δ(0). This factor stems from the aforementioned difference

between the microscopic fields Blocal and Hlocal on the null set of real space

which contains the point particles. For a single particle this solely amounts

to the single point r = 0.

As the bare factors are not observable we conclude that for the determi-

nation of local field effects it does not matter whether we work with αH(ω)

or αB(ω). Since the usage of H prevents the clumsy double curl factors we

will therefore use that case in the treatment of more general materials.

2Note that this result can also be derived using a treatment in reciprocal space.



CHAPTER 9

Magneto-dielectric materials

After having discussed the Clausius-Mossotti type local field corrections for

pure electric and magnetic media we turn to the case of materials with simul-

taneous nontrivial permittivity ε and permeability µ. Microscopically such

materials incorporate polarizable as well as magnetizable particles. From the

macroscopic treatment of section 6.2 we predicted a rather peculiar behavior

of the refractive index in the limit of high densities: The real part saturates

at n = −2 while simultaneously the absorption vanishes as 1/̺. Though the

microscopic results obtained for pure electric and magnetic media comply

with the respective macroscopic ones it is not clear whether this is true for

the case of magneto-dielectric media as well.

The simplest microscopic model of a magneto-dielectric medium employs

an electric and a magnetic simple cubic lattice displaced by ∆r (see Fig. 9.1).

The corresponding electric and magnetic response functions read

αE(r, ω) = αE(ω)
∑

R

δ(r−R) =
αE(ω)

a3

∑

K

eiKr (9.1)

and

αH(r, ω) = αH(ω)
∑

R

δ(r−R−∆r) =
αH(ω)

a3

∑

K

eiK(r−∆r), (9.2)

where the two sublattices are assumed to have the same lattice constant a

and thus identical lattice vectors R and inverse lattice vectors K.
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αE(ω)

αH(ω)

∆r

a

Figure 9.1: Unit cell of the simple cubic lattice with lattice constant a con-

taining an electric and a magnetic dipole with polarizability αE(ω) and mag-

netizability αH(ω), respectively. The magnetic dipole is displaced from the

electric one by a vector ∆r.

Since for magneto-dielectric materials both the magnetization M̂ and the

polarization P̂ have to be taken into account we derive two coupled Helmholtz

equations
[
∇×∇×−ω2

c2

]
Ê(r, ω) =

4π

c
i
ω

c
ĵ(r, ω) + 4π

ω2

c2
P̂(r, ω) + 4πi

ω

c
∇× M̂(r, ω)

(9.3)

and[
∇×∇×−ω2

c2

]
Ĥ(r, ω) =

4π

c
∇× ĵ(r, ω)+4π

ω2

c2
M̂(r, ω)−4πi

ω

c
∇× P̂(r, ω)

(9.4)

for the electric and magnetic field operators, respectively. Note that equation

(9.4) is determined by the curl of equation (9.3). Thus in principle it suffices

to use one of the two equations to describe the electromagnetic fields in a

magneto-dielectric medium.

Before we tackle the problem of finding a solution to equations (9.3) and

(9.4) we note that the pure electric and magnetic systems of chapters 7 and 8

were conceptually identical. In a first step the scattering problem for a single

point-like particle was solved by a direct summation of the respective T -

matrix. Afterwards for the generalization to quasi-homogeneous bulk media
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a lattice model of point scatterers was employed. Since the lattice is built

by stacking unit cells in all directions, the T -matrix of the lattice contains

a contribution due to the scattering at different lattice sites as well as the

scattering at an individual unit cell, i.e., a single particle, which has been

obtained previously. The problem presented by magneto-dielectric media is

different since the unit cell contains two point particles: A polarizable and

a magnetizable one. As a result the solution of the scattering problem of a

single unit cell already becomes involved. Fortunately, it turns out that it

suffices to consider the k-space solution for the lattice case since, as we show

below, the same renormalization procedures as in the pure media cases are

going to be applied independently. Hence no additional information about

the scattering of electromagnetic waves at a single magneto-dielectric unit

cell is needed.

We substitute the magnetization M̂(r, ω) and similarly the polarization

P̂(r, ω) in the two Helmholtz equations (9.3) and (9.4) using (9.2) and (9.1),

respectively. As indicated above it suffices in principle to use one of the

two equations (9.3) and (9.4). To do so, we would have to eliminate one of

the two fields Ê(r, ω) and Ĥ(r, ω) with the help of Maxwell’s equations in

the material terms. This would lead to clumsy curl terms which make the

solution tedious. We will pursuit a different approach: The usage of both

Helmholtz equations simultaneously. Hence we deal with [j(r, ω) = 0]

[
∇×∇×−ω2

c2

]
Ê(r, ω) = 4π

ω2

c2
αE(r, ω)Ê(r, ω)+4πi

ω

c
∇×αH(r, ω)Ĥ(r, ω)

(9.5)

and

[
∇×∇×−ω2

c2

]
Ĥ(r, ω) = 4π

ω2

c2
αH(r, ω)Ĥ(r, ω)−4πi

ω

c
∇×αE(r, ω)Ê(r, ω).

(9.6)

As a result of the cross coupling of the two equations it is not clear whether

the local field corrections decouple in an electric and a magnetic part as they

do in the macroscopic treatment.

In a similar manner as in section 7.3 we derive the Fourier representations
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of (9.5) and (9.6) which read



∑

K

G̃(0)(k−K, ω) +
1

4π
ω2

c2

αE(ω)

a3


 Êk(0, ω) =

αH(ω)
ω

c
αE(ω)

∑

K

eiK∆r(k−K)×
ω2

c2
1− |k−K|2∆k−K

Ĥk(∆r, ω)

(9.7)

and


∑

K

G̃(0)(k−K, ω) +
1

4π
ω2

c2

αH(ω)

a3


 Ĥk(∆r, ω) =

− αE(ω)
ω

c
αH(ω)

∑

K

e−iK∆r(k−K)×
ω2

c2
1− |k−K|2∆k−K

Êk(0, ω).

(9.8)

Here we used the abbreviations Êk(0, ω) =
∑

K Ê(k−K, ω) and Ĥk(∆r, ω) =∑
K e−iK·∆rĤ(k−K, ω) for the amplitudes of the plane wave solutions with

respect to the wave vector k evaluated at r = 0 and r = ∆r, respectively.

As discussed in sections 7.2 and 7.3 the term
∑

K G̃(0)(k−K, ω) contains

the divergent contribution G(0)(0, ω). Together with the bare polarizabilities

αE(ω) and αH(ω) it forms the physical polarizabilities α̃E(ω) and α̃H(ω),

respectively, in complete agreement with the treatment for pure electric and

magnetic materials.

In contrast the terms
∑

K e±iK·∆r {ω2/c21− |k−K|2∆k−K}−1
(k−K)×

are finite as we show in Appendix C. Thus after absorbing the divergent term

G(0)(0, ω) in the physical polarizabilities we restrict the analysis to K = 0 so

that (9.7) and (9.8) simplify to


G̃(0)(k, ω)− 1

3ω2/c2
+

1

4π
ω2

c2

α̃E(ω)

a3


 Êk(0, ω) =

=
αH(ω)
ω

c
αE(ω)

k×
ω2

c2
1− k2∆k

Ĥk(∆r, ω)

(9.9)
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and

G̃(0)(k, ω)− 1

3ω2/c2
+

1

4π
ω2

c2

α̃H(ω)

a3


 Ĥk(∆r, ω) =

= − αE(ω)
ω

c
αH(ω)

k×
ω2

c2
1− k2∆k

Êk(0, ω).

(9.10)

Note that, apart from Ĥk(∆r, ω) which is irrelevant for the determination of

the dispersion relation k(ω), for K = 0 the dependence of the final expres-

sions on ∆r vanishes identically.

The dispersion k(ω) can be obtained from (9.9) and (9.10) as before by

noting that non-trivial field solutions exist if and only if the determinant of

the system matrix vanishes (cf. section 7.3). Thus we have to eliminate one

of the field amplitudes and condition k(ω) on the vanishing of the system

determinant.

Although this procedure yields the correct dispersion relation and thus the

local field corrections, the resultant equation can be simplified significantly by

projecting onto transverse solutions. This can be done by using the projector

∆k, with which we multiply equations (9.9) and (9.10) from the left. Noting

that ∆k · k̂⊗ k̂ = 0 and ∆k k× = k×∆k holds, we find



1

ω2

c2
− k2

− 1

3ω2/c2
+

1

4π
ω2

c2

α̃E(ω)

a3


∆kÊk(0, ω) =

=
αH(ω)
ω

c
αE(ω)

1

ω2

c2
− k2

k×∆kĤk(∆r, ω)

(9.11)

and



1

ω2

c2
− k2

− 1

3ω2/c2
+

1

4π
ω2

c2

α̃H(ω)

a3


k×∆kĤk(∆r, ω) =

=
αE(ω)

ω

c
αH(ω)

k2

ω2

c2
− k2

∆kÊk(0, ω),

(9.12)
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respectively. Note that by this the system matrix becomes diagonal, i.e., a

scalar. After elimination of one of the two field variables the condition for

the existence of non-trivial solutions reads



1

ω2

c2
− k2

− 1

3ω2/c2
+

1

4π
ω2

c2

α̃E(ω)

a3







1

ω2

c2
− k2

− 1

3ω2/c2
+

1

4π
ω2

c2

α̃H(ω)

a3




=
k2

ω2

c2

(
ω2

c2
− k2

)2 .

(9.13)

Note that the bare polarizabilities αE(ω) and αH(ω) drop out as they should.

Thus the resulting index of refraction n(ω) introduced via k = n(ω)ω/c solely

depends on the renormalized physical polarizabilities α̃E(ω) and α̃H(ω). In

complete agreement with the classical treatment we find [Kästel2007c] for

n(ω)

n(ω) =

√√√√1 + 4π
̺α̃E(ω)

1− 4π

3
̺α̃E(ω)

√√√√1 + 4π
̺α̃H(ω)

1− 4π

3
̺α̃H(ω)

(9.14)

which therefore separates nicely into the permittivity (7.63) and the perme-

ability (8.14).

We conclude that the microscopic treatment of chapters 7 – 9 supports

the reasoning of section 6.2. In particular, (9.14) leads to the high density

limit n = −2 + i0, i.e., predicts vanishing absorption with increasing density

of scatterers. As already noted in section 6.2 this result seems unphysical.

It indeed is a consequence of the assumptions made, the main one for the

densities considered here being:

Only pure electromagnetic interactions are considered. Interatomic col-

lisions, or collisions of atoms with phonons are not taken into account

as the simple cubic lattice is assumed to be rigid.

Collisions would most importantly add dephasing rates to the free space

linewidth, which would therefore become density dependent. Thus the high
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Figure 9.2: Real (solid) and imaginary (dashed) parts of the permittivity

ε(0) and the permeability µ(0) as well as the imaginary (dotted) part of

n(0) =
√

ε(0)µ(0) as a function of the rescaled density parameter N . The

linewidth is assumed to be density dependent γ = γ0(1 + βN) with β = 10.

density limit will depend crucially on the specific type of density dependence

of the additional collisional broadening.

For illustration purposes we consider a linear density dependence of the

linewidth assuming

γ = γ0(1 + βN) (9.15)

with β > 0. We apply the notation from section 6.2 using a single reso-

nance model for the permittivity as well as the permeability. In particular

N = d2̺/(2~γ0) holds1. Fig. 9.2 shows the resulting density dependence of

the response functions on resonance using (9.15) with β = 10 rather than

β = 0 as in Fig. 6.3(d). Note that the index of refraction takes on positive

values including strong absorption with increasing number density of scat-

terers. Note further that this general conclusion is not specific to the choice

of linear density dependence but for intermediate densities is valid for higher

exponents as well.

1Cf. section (6.2).





Part III

Purcell effect over macroscopic

distances using negative-index

materials
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CHAPTER 10

Macroscopic field quantization and atomic

linewidth

This part is devoted to the Purcell effect [114]1 displayed by emitters put in

front of a (perfect) mirror. The presence of the mirror leads to a deformation

of the local density of states of the electromagnetic field. As the available

electromagnetic modes represent final states of a spontaneous decay process

it is apparent from Fermi’s golden rule that the natural linewidth will depend

on the surrounding geometry.

After the quantization procedure for electromagnetic fields including ar-

bitrary geometries presented by linear response functions ε and µ has shortly

been reviewed in the present chapter we will focus on a geometry given by

a perfect mirror coated with a negatively refracting medium in chapter 11.

We show in particular that for the case of this layer having ε = µ = −1 the

Purcell effect known from an atom put onto the surface of a perfect mirror

now takes place for potentially macroscopic distances between the atom and

the mirror. In chapter 12 limitations of this findings due to absorption, fi-

nite transversal extension of the geometry and frequency dispersion will be

analyzed.

1See also section 6.1.
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10.1 Quantization of the electromagnetic field

in the presence of macroscopic bodies

The usual scheme used to quantize the electromagnetic field in vacuum can

not be applied to situations in which boundary conditions due to dispersing

and absorbing macroscopic bodies have to be fulfilled. This is due to the fact

that the electromagnetic field in the presence of absorption can no longer be

decomposed into modes. Instead we here use a quantization scheme which is

based on classical Green functions in the macroscopic linear passive medium

[66, Kästel2003]. This Green function implicitly contains information about

all spatial and spectral properties and can be viewed as a generalization of

the mode decomposition technique.

We start from the Heisenberg equation of the electric field operator in

time Fourier space, i.e., the Helmholtz equation (9.3) without free sources
[
∇×∇×−ω2

c2

]
Ê(r, ω) = 4π

ω2

c2
P̂(r, ω) + 4πi

ω

c
∇× M̂(r, ω). (10.1)

In contrast to part II we do not focus on finding the Green function or equiv-

alently the T -matrix for a microscopic arrangement of scatterers, though.

Instead the polarization P̂ and magnetization M̂ are related to the electric

and magnetic field strengths by macroscopic susceptibilities, respectively. For

absorbing media we additionally have to introduce Langevin noise operators

[65] in order to preserve the quantum mechanical commutation relations

P̂(r, ω) = χe(r, ω)Ê(r, ω) + P̂N(r, ω), (10.2)

M̂(r, ω) = χm(r, ω)B̂(r, ω) + M̂N(r, ω). (10.3)

In a microscopic description the noise operators can ultimately be related

to matter operators. Since magnetization M and polarization P result in

general from different constituents of the material we have to distinguish

noise operators for P and M. Since
〈
P̂N(r, ω)

〉
= 0 and

〈
M̂N (r, ω)

〉
= 0

hold for the noise sources the expectation values of equations (10.2) and

(10.3) simplify to the classical relations.

We introduce the classical Green function as in chapter 7 via

Ê(r, ω) = 4πi
ω

c2

∫
d3r′G(r, r′, ω)̂jN(r′, ω) (10.4)
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with the tensor valued Green function now being a solution of

[
∇r × 1

µ(r, ω)
∇r ×−ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r− r′). (10.5)

Here µ(r, ω) = [1 − 4πχm(r, ω)]−1 and ε(r, ω) = 1 + 4πχe(r, ω) are the in

general inhomogeneous and frequency dependent complex permeability and

permittivity, respectively. In contrast to part II the electric field (10.4) here

is not given by free sources but is entirely determined by the quantum noise

source

ĵN (r′, ω) = −iωP̂N(r, ω) + c∇× M̂N (r, ω), (10.6)

i.e., (10.4) gives the quantum mechanical vacuum electric field operator.

We rewrite the noise polarization P̂N(r, ω) and the noise magnetization

M̂N (r, ω) using

P̂N(r, ω) = −
√

~

4π2
Im[ε(r, ω)] f̂ (e)(r, ω) (10.7)

and

M̂N(r, ω) = i

√
~

4π2
|Im[κ(r, ω)]| f̂ (m)(r, ω) (10.8)

with κ(r, ω) = 1/µ(r, ω) being the inverse permeability. It can be shown

[66, Kästel2003] that the assumption of independent bosonic commutation

relations

[
f

(a)
k (r, ω), f

(b)†
k′ (r′, ω′)

]
= δabδkk′δ(r− r′)δ(ω − ω′)

[
f

(a)
k (r, ω), f

(b)
k′ (r′, ω′)

]
= 0

(10.9)

for the noise polarization and magnetization leads to the correct equal time2

commutation relations of the electromagnetic field operators

[
Êk(r, t), Êk′(r′, t)

]
= 0 =

[
B̂k(r, t), B̂k′(r′, t)

]
,

[
Êk(r, t), B̂k′(r′, t)

]
= −i~4πc εkk′l ∂

r
l δ(r− r′).

(10.10)

2Time dependent operators are given by Fourier transforming according to Ô(t) =∫
∞

0 dωe−iωtÔ(ω) + h.c. = Ô(+)(t) + Ô(−)(t).
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f̂ (e)†

f̂ (m)†

f̂ (e)

f̂ (m)

ε(ω)

µ(ω) + â, â† =̂

Figure 10.1: Sketch of the quantization scheme of the electromagnetic field

in the presence of macroscopic magneto-dielectric bodies.

Note that in the course of proving (10.10) the relation

Im [Gij(r, r
′, ω)] =

∫
d3s

ω2

c2
Im[ε(s, ω)]Gim(r, s, ω)G∗jm(r′, s, ω)

+

∫
d3s |Im[κ(s, ω)]| ∂s

nGim(r, s, ω)
[
∂s

nG∗jm(r′, s, ω)− ∂s
mG∗jn(r′, s, ω)

]

(10.11)

has to be applied which will get important in the following as well.

It is worth noticing that in the vacuum limit ε(r, ω)→ 1 + i0, µ(r, ω)→
1+i0 the quantization scheme presented here attains [66, 144] the well known

plane wave mode decomposition quantization scheme [65].

Hence (10.4) defines a valid quantization of the electromagnetic quan-

tum vacuum in the presence of general linear and passive magneto-dielectric

bodies. As a summary the electromagnetic fields and the macroscopic mate-

rial distributions are getting combined to a medium-assisted electromagnetic

field and subsequently quantized as sketched in Fig. 10.1.

10.2 Spontaneous decay rate

In order to find an expression for the natural linewidth of an atom coupled

to the quantized electromagnetic field we need to consider time evolution
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problems. We thus first note that the Hamilton operator of the field reads

ĤF =

∫
d3r

∫ ∞

0

dω
∑

a=e,m

~ω f̂ (a)†(r, ω) · f̂ (a)(r, ω). (10.12)

We next introduce a 2-level atom with transition frequency ωA which is

governed by the atomic Hamilton operator

ĤA = ~ωA |u〉 〈u| (10.13)

where |u〉 〈u| is the projector onto the upper state |u〉. Note that this extra

atom does not belong to the macroscopic bodies included in the quantization

process obtained in section 10.1. The interaction between atom and medium-

assisted electromagnetic field in dipole and rotating wave approximations is

given by [66, 145]

ĤI = −σ̂†Ê(+)(rA) · d− h.c. (10.14)

where σ = |l〉 〈u| with |l〉 being the atomic ground state.

The sought time evolution of the system is given by the Schrödinger

equation

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉 (10.15)

where Ĥ = ĤF + ĤA + ĤI is the full Hamilton operator. We expand the

state vector according to

|Ψ〉 = Cu(t)e
−iωAt|u〉⊗|0〉+

∫
d3r

∫ ∞

0

dω
∑

a=e,m

C
(a)
i (r, ω, t)e−iωt|l〉⊗

∣∣∣1(a)
i , r, ω

〉
.

(10.16)

Here
∣∣∣1(a)

i , r, ω
〉

= f
(a)
i (r, ω)|0〉 are one-photon Fock states of the electro-

magnetic field including macroscopic bodies which are characterized by the

permittivity ε and the permeability µ and |0〉 denotes the electromagnetic

vacuum state. From the Schrödinger equation we derive differential equations

for the probability amplitudes Cu(t) of the atomic upper state

Ċu(t) =− i

~

∫ ∞

0

dω
4πωdk

c

√
~

4π2

∫
d3r

·
[ω

c

√
Im[ε(r, ω)]Gkj(rA, r, ω)C

(e)
j (r, ω, t)

−
√
|Im[κ(r, ω)]|εjmn∂

r
mGkj(rA, r, ω)C(m)

n (r, ω, t)
]
e−i(ω−ωA)t

(10.17)
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as well as the electromagnetic field probabilities

Ċ
(e)
i (r, ω, t) = − i

~

4πωdk

c

√
~

4π2

ω

c

·
√

Im[ε(r, ω)]G∗ki(rA, r, ω)Cu(t)e
i(ω−ωA)t

(10.18)

and

Ċ
(m)
i (r, ω, t) =

i

~

4πωdk

c

√
~

4π2

·
√
|Im[κ(r, ω)]|εjmi∂

r
mG∗kj(rA, r, ω)Cu(t)e

i(ω−ωA)t.

(10.19)

Including the boundary condition C
(a)
i (r, ω, 0) = 0 we integrate the differ-

ential equations (10.18) and (10.19) of the photonic probability amplitudes

formally, and plug the solutions into (10.17). As a result of (10.11) the up-

per state population of the atom is thus governed by the integro-differential

equation

Ċu(t) = −
∫ ∞

0

dω
4ω2dkdl

~c2
Im[Gkl(rA, rA, ω)]

∫ t

0

dτe−i(ω−ωA)(t−τ)Cu(τ).

(10.20)

In order to find an approximate analytical solution we assume that the fre-

quency spectrum of the Green function is sufficiently flat such that the ω-

integration would yield a sharply peaked function in time. Hence we are

allowed to extend the lower limit of the τ -integration to −∞. Furthermore

the time scale on which the upper state population changes shall be small

compared to the aforementioned sharply peaked function in time. Thus we

take the quantity Cu(τ) at time t with little error. After having applied this

so called Markov approximation the time integral can be evaluated analyti-

cally with the result

Ċu(t) = −
∫ ∞

0

dω
4ω2dkdl

~c2
Im[Gkl(rA, rA, ω)]Cu(t)

(
πδ(ω − ωA)− iP 1

ω − ωA

)

(10.21)

or equivalently

Ċu(t) =
(
−γA

2
+ iδωA

)
Cu(t). (10.22)
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The coefficients are given by

γA =
8πω2

Adkdl

~c2
Im[Gkl(rA, rA, ωA)] (10.23)

and

δωA =
4dkdl

~
P
∫ ∞

0

dω
ω2

c2

Im[Gkl(rA, rA, ω)]

ω − ωA
(10.24)

and denote the spontaneous upper state population decay rate and the Lamb

shift, respectively. Note that δωA though does not give correct results as the

Lamb shift is a relativistic effect.

In contrast γA represents a valid result. The atomic decay rate in vacuum

for example can be found from the corresponding Green function given in

Appendix A. We note that Im[G(0)(rA, rA, ωA)] = 1ωA/(6πc) holds, therefore

(10.23) reduces to the well known Wigner-Weisskopf solution (2.5)

γ
(0)
A =

4ω3
0d

2
A

3~c3
. (10.25)

In general we conclude from (10.23) that the natural linewidth depends on

the photonic density of modes given by the Green function which is commonly

known as Purcell effect.





CHAPTER 11

Modified Purcell effect in front of a mirror

In this chapter we discuss a modification of the Purcell effect in front of a

mirror which alleviates the necessity to bring the radiating dipole within a

distance smaller than λ to the surface. We consider the Purcell effect of a

2-level atom in front of a mirror covered by a layer of a material with an

index of refraction n = −1 [cf. Fig. 11.1(a)]. As discussed in chapter 1 such

a layer forms a perfect lens [cf. Fig. 1.1] when placed in vacuum.

Without the layer the upper state population decay rate displays strong

deviations from the free space rate if the distance of the atom to the surface

of the mirror is decreased below the transition wavelength [122]. In a classical

explanation [see Fig. 11.1(b)] the field amplitudes of the emitting dipole and

the induced mirror dipole interfere. For dipole polarizations parallel to the

surface these two fields are of the same strength but differ by a phase π as

soon as the distance of the atom and the mirror tend to zero. Hence the

respective decay rate should vanish exactly. Contrary for a perpendicular

polarization the decay rate is expected to be enhanced due to constructive

interference.

A major drawback of this effect is that it takes place only in the close

vicinity of a solid interface which represents a major experimental obstacle.

Consequently only few experimental publications exist [121, 123, 124, 125]

and there are no technological applications. As we show below coating the

143
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Figure 11.1: (a) Atom in front of a perfect lens attached to a mirror. The

atom is placed in its own focus. (b) Mirror dipoles for parallel and perpen-

dicular polarization

mirror with a slab of a ε = µ = −1 material avoids this obstacle. The neg-

ative index slab acts as a perfect lens which virtually transfers the presence

of the mirror regarding electromagnetic fields to a potentially macroscopic

distance into free space.

11.1 Green function for 3-layered media

To tackle these problems of an atom in front of a mirror with and without

a layer of a negative index material with n = −1 we note from (10.23) that

we need to find the corresponding Green functions. We will hence give the

retarded Green function corresponding to a 3-layer geometry as it includes

both cases.

The Green function of a homogeneous magneto-dielectric material with

permittivity ε(ω) and permeability µ(ω) expanded into plane waves can be

written as [146]

G(0)(r, r′, ω) = −ez ⊗ ez
δ(r− r′)

k2
µ(ω)

+
iµ(ω)

8π2

∫
d2k⊥

1

kz





[ê⊗ ê + ĥf ⊗ ĥf ]e
ik(r−r′) z > z′

[ê⊗ ê + ĥb ⊗ ĥb]e
iK(r−r′) z < z′

(11.1)
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r′

012

r

zz = 0z = −d

Figure 11.2: 3-layer geometry with the spatial regions 0 (z > 0), 1 (−d ≤
z ≤ 0), and 2 (z < −d). The Green function for the case of r and r′ being

placed in region 0 simultaneously is given by a superposition of the direct

path and a reflected path.

which is well suited for the planar geometry depicted in Fig. 11.1. It is given

by a superposition of either forward [k = (kx, ky, kz)] or backward [K =

(kx, ky,−kz)] traveling plane waves with a polarization given by projections

onto the respective transverse basis vectors ê = k × ez/|k× ez| and ĥf =

ê × k/ |k| or ĥb = ê × K/ |k| denoting TE and TM modes, respectively.

In equation (11.1) ⊗ denotes a dyadic product, k⊥ =
√

k2
x + k2

y > 0 the

perpendicular wave vector component (d2k⊥ = dkxdky) and kz =
√

k2 − k2
⊥

with k2 = |k|2 = ε(ω)µ(ω)ω2/c2.

The Green function for the full 3-layer geometry as defined in Fig. 11.2

can be constructed from (11.1) by appropriate superposition of forward and

backward waves. In particular, the Green function G(00) for which r and r′

are assumed to be in the vacuum region 0 [ε0(ω) = µ0(ω) = 1] is given by

(z < z′)

G(00)(r, r′, ω) =
i

8π2

∫
d2k⊥

1

kz
e−iKr′·

[(
RTEeik·r ê + eiK·r ê

)
⊗ ê +

(
RTMeik·r ĥf + eiK·r ĥb

)
⊗ ĥb

]
.

(11.2)

Here RTE, RTM are reflection coefficients for TE and TM waves, respectively.
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Likewise G(10), i.e., for r in region 1, reads

G(10)(r, r′, ω) =
i

8π2

∫
d2k⊥

1

kz

[(
CTE

f eik1·r ê1 + CTE
b eiK1·r ê1

)
⊗ ê

+
(
CTM

f eik1·r ĥf,1 + CTM
b eiK1·r ĥb,1

)
⊗ ĥb

]
e−iKr′

(11.3)

where the index 1 denotes the z component of the wave vector to be explicitly

given by the permittivity ε1(ω) and permeability µ1(ω) of medium 1, kz,1 =√
ε1(ω)µ1(ω)ω2/c2 − k2

⊥, and finally G(20) is given by

G(20)(r, r′, ω) =
i

8π2

∫
d2k⊥

1

kz
[TTEê2 ⊗ ê + TTMĥb,2 ⊗ ĥb]e

iK2re−iKr′ (11.4)

with corresponding TE and TM transmission coefficients.

Applying the boundary condition for electric and magnetic fields at the

interface between regions 0 and 1 [r = (x, y, 0)]

ez × G00(r, r′, ω) = ez × G10(r, r′, ω), (11.5)

1

µ0(ω)
ez × [∇r × G00(r, r′, ω)] =

1

µ1(ω)
ez × [∇r × G10(r, r′, ω)] (11.6)

as well as at the interface between regions 1 and 2 [r = (x, y,−d)]

ez × G10(r, r′, ω) = ez × G20(r, r′, ω), (11.7)

1

µ1(ω)
ez × [∇r × G10(r, r′, ω)] =

1

µ2(ω)
ez × [∇r × G20(r, r′, ω)] (11.8)

we find the reflection coefficients of TE and TM waves

RTE =
R01 + R12e

i2kz,1d

1 + R01R12ei2kz,1d
(11.9)

and

RTM =
S01 + S12e

i2kz,1d

1 + S01S12ei2kz,1d
. (11.10)

Here, Rij and Sij are the basic reflection coefficients at the boundaries be-

tween the regions i and j for TE and TM modes

Rij =
µj(ω)kz,i − µi(ω)kz,j

µj(ω)kz,i + µikz,j
, Sij =

εj(ω)kz,i − εi(ω)kz,j

εj(ω)kz,i + εi(ω)kz,j
. (11.11)
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11.2 Purcell effect without n = −1 coating

According to (10.23) the Green function G(00)(rA, rA, ωA) (11.2) together with

the reflection coefficients RTE and RTM is sufficient to quantitatively describe

the Purcell effect of atoms in such a 3-layer geometry. Setting ε1(ω) = −∞,

µ1(ω) = 1 corresponds to the 0 – 1 interface being a perfect mirror, i.e., the

scenario without mirror coating. As a result we find R01 = −1 and S01 = 1

from which we conclude

RTE = −1, RTM = 1. (11.12)

The decay rates for dipoles with parallel and perpendicular orientation read

γ
‖
A =

8πω2
Ad2

x

~c2
Im
[
G(00)

xx (rA, rA, ωA)
]

(11.13)

and

γ⊥
A =

8πω2
Ad2

z

~c2
Im
[
G(00)

zz (rA, rA, ωA)
]
, (11.14)

respectively. With [ê ⊗ ê]xx = k2
x/k

2
⊥ and [ĥb ⊗ ĥb]xx = −[ĥf ⊗ ĥb]xx =

k2
xk

2
z/(k2k2

⊥) the expression for γ
‖
A simplifies significantly to

γ
‖
A =

ω2
Ad2

x

~πc2
Re

[∫
d2k⊥

k2
x

kzk2
⊥

(
1− e2ikzzA

)(
1 +

k2
z

k2

)]
(11.15)

which can be integrated analytically to the expression (k = ωA/c)

γ
‖
A = γ

(0)
A

[
1− 3 sin(2kzA)

4kzA
− 3 cos(2kzA))

8k2z2
A

+
3 sin(2kzA))

16k3z3
A

]
. (11.16)

Similarly we find an expression corresponding to (11.15) for perpendicular

dipole orientation using [ê⊗ ê]zz = 0 and [ĥb ⊗ ĥb]zz = [ĥf ⊗ ĥb]zz = k2
⊥/k2

γ⊥
A =

2ω2
Ad2

z

~πc2
Re

[∫
d2k⊥

k2
⊥

kzk2

(
1 + e2ikzzA

)]
. (11.17)

After performing the integrations this results in

γ⊥
A = γ

(0)
A

[
1− 3 cos(2kzA)

4k2z2
A

+
3 sin(2kzA)

8k3z3
A

]
. (11.18)
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Note that (11.16) and (11.18) correspond identically to the classical result

for the Purcell effect of an atom in front of a mirror [122]. In particular for

emitters put directly onto the mirror (zA = 0) we find indeed the two cases

γ
‖
A = 0, γ⊥

A = 2γ
(0)
A , (11.19)

i.e., perfect suppression or enhancement by a factor of 2 for parallel and per-

pendicular orientations, respectively, as expected from the classical reasoning

above.

11.3 Purcell effect including n = −1 coating

The second case of a perfect mirror plus a coating layer with n = −1 is found

from analogous considerations. We set ε1(ω) = µ1(ω) = −1 for the negative

index material layer and ε2(ω) = −∞, µ2(ω) = 1 for region 2 as to get the

properties of a perfect mirror at the interface 1 – 2. Noting that under these

circumstances kz,1 = −kz due to the left-handedness of medium 1 with a

negative index of refraction we find

RTE = −e−2ikzd, RTM = e−2ikzd (11.20)

for the TE and TM reflection coefficients, respectively, which lead to a spatial

shift on the order of twice the lens thickness d. A comparison to (11.15) and

(11.17) reveals that the space dependent spontaneous decay rates for the

modified Purcell effect [Fig. 11.1(a)] are indeed given by (11.16) for parallel

and (11.18) for perpendicular orientations with zA replaced by zA − d. In

particular the values

γ
‖
A = 0, γ⊥

A = 2γ
(0)
A (11.21)

are now found not at zA = 0 but at zA = d, i.e., depending on the thickness

of the perfect lens layer, a distance d from the nearest surface in free space.

Fig. 11.3 shows the corresponding distance dependent linewidths for parallel

and perpendicular dipole orientations, respectively. Note that in the scaling

used here the surface 0 – 1 is placed at z = −d. In particular the atom is

a potentially macroscopic distance 2d from the perfect mirror when placed
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Figure 11.3: Spatial dependence of the normalized rate of spontaneous emis-

sion γ
‖
A(zA)/γ

(0)
A (solid) and γ⊥

A(zA)/γ
(0)
A (dashed) to the mirror surface.

into its own focus in which the strongest deviations from the free space decay

rate are obtained [Kästel2005a, Kästel2005b].

We conclude that a perfect lens of thickness d between a perfect mirror

and an atom put at a distance 2d from the mirror allows for perfect suppres-

sion of the spontaneous decay rate. We emphasize that this setup removes

the necessity of placing the atom within a distance smaller than λ to any

surface. Thus experimental techniques based on atomic traps are potentially

applicable which would enable single atom studies of the spatial dependence

of the Purcell effect.





CHAPTER 12

Limitations

The investigation of the modified Purcell effect of an atom in front of a

mirror covered by a negative index material layer in chapter 11 assumed

idealized conditions and thus needs to be checked for realistic conditions in

experiments. Furthermore, the effect of perfect suppression of spontaneous

emission as the atom is put into its own focus seem to be valid independently

of the distance to the layered medium which would contradict causality. We

will hence study how the visibility of the suppression of γ
‖
A for zA = d is

modified in the presence of absorption in the negative index layer and by a

finite radius of the mirror/layer geometry. Finally, in section 12.3 we show

that dispersion of the n < 0 material sets a maximum distance for the effect

to be seen, in accordance with causality arguments.

12.1 Finite absorption of the negative-index

material

From chapter 1 it is apparent that one of the most severe limitations of

negative index media is given by strong absorption. Even combining n <

0 with electromagnetically induced transparency as in part I leaves small

imaginary parts which can affect the performance of a flat lens significantly

as soon as its thickness exceeds the transition wavelength λA substantially
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Figure 12.1: The spontaneous decay rate γ
‖
A/γ

(0)
A as function of the imaginary

part Im[n] of the refractive index for different values of the layer thickness d:

d = 1λA (solid), d = 10λA (dashed), and d = 100λA (dotted).

[cf. (4.10)].

We study the influence of absorption losses by introducing a similar imag-

inary part to the permittivity ε1(ω) and permeability µ1(ω) of the coating

layer. This effectively introduces an imaginary part to the index of refraction

as well n = −1+iIm[n] while the real part is assumed to still have the perfect

value −1. As a result, the reflection coefficients RTE and RTM and hence the

Green function can not be simplified as in sections 11.2 and 11.3 but requires

numerical integration. Fig. 12.1 shows the spontaneous decay rate γ
‖
A/γ

(0)
A as

a function of log{Im[n]} for different layer thicknesses d. The spatial position

has been chosen zA = d where we have found perfect suppression for the ide-

alized case. This suppression is still present for small absorption coefficients

but is degraded as Im[n] increases. We note that the results for d = 10λA and

d = 100λA are entirely given by propagating modes, although for very small

thickness and hence small distance of the emitter to the surface (d = 1λA)

non-radiative decay channels start to play a role. This fact allows for a sim-

ple interpretation of the features found in Fig. 12.1 in terms of traveling

beams. Increasing Im[n] leads to absorption of propagating modes inside the
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layer medium. For increasing thickness the emitter cannot “see” the mirror

any more as soon as the absorption reaches a sufficient strength. For large

enough absorption coefficients/thickness the decay rate therefore attains its

free-space value. We note, however, that for sufficiently small thicknesses a

visible effect should occur at absorption coefficients which seem realistic for

media which employ electromagnetically induced transparency (cf. part I).

12.2 Finite transverse extension

The geometry discussed in chapter 11 suffers from an idealization, which

can never be implemented in experiments: The transverse extension of the

mirror including negative index coating is supposed to stretch to infinity. For

a rigorous analytical treatment, this assumption is necessary, though, as the

Green function can be expressed in closed form only in geometries with high

symmetry.

Due to a finite radius this symmetry is no longer present. An approxi-

pe
rf
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t m
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or

d

a

kα

Figure 12.2: Finite extension of the geometry in transverse direction.

mative solution can be given, though, as the imaginary part of the Green

function Im[G(00)(rA, rA, ωA)] for non-absorbing layer media is only com-

posed of propagating modes, i.e., modes with k⊥ ≤ k. We assign an angle

sin(α) = k⊥/k measured against the surface of the layered medium under
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Figure 12.3: The spontaneous decay rate γ
‖
A/γ

(0)
A as a function of transverse

radius a of the negative index material with thickness d = 1λA. The mirror

itself was assumed to be of the same dimension as the coating.

which such modes propagate. The maximum angle αmax under which the

coating is still present is given by sin(αmax) = a/
√

a2 + d2, where the pa-

rameter a denotes the transverse extension of the negative index layer as

depicted in Fig. 12.2. In order to simulate finite transverse radii we restrict

the integration over transverse wave vectors k⊥ in the definition of the Green

function (11.2) to values

k⊥ ≤ k
a
d√

1 +
(

a
d

)2 . (12.1)

As the mirror itself is assumed to have the same radius for angles greater

than αmax, we have to use the free space Green function. For zA = d the

resulting integrations can be done analytically with the result

γ
‖
A

γ
(0)
A

=

(
1 +

3

4
(a/d)2

)(
1

1 + (a/d)2

)3/2

, (12.2)

which is shown in Fig. 12.3. Note that for zA = d only angles α larger than

than αmax contribute to (12.2). Note furthermore that the visibility of the
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Figure 12.4: The spontaneous decay rate γ
‖
A/γ

(0)
A as a function of the trans-

verse radius a of the negative index material for d = 10λA (solid) and d = 1λA

(dashed), respectively. The mirror itself was assumed to still extend to in-

finity.

suppression of γ
‖
A/γ

(0)
A depends only on the ratio of the transverse radius a

to the thickness d. As this ratio in experimental situations will usually be

large, the limitation due to the transverse extension of the perfect lens does

not degrade the effect significantly.

If we assume that only the coating layer has a finite radius but the mirror

itself still extends to infinity for α > αmax we need to use Im[G(00)(rA, rA, ωA)]

with n = +1 rather than n = −1. Again only angles α larger than αmax

contribute so that the geometry thus corresponds to a mirror with a circular

hole of radius a. As a result, diffraction effects are added to (12.2) such that a

dependency on d remains as shown in Fig. 12.4. For increasing thickness (and

thus distance d) they vanish, though, as the limit of ray optics is approached.

12.3 Dispersion effects

From the discussion above it seems as if the suppression of γ
‖
A/γ

(0)
A would

prevail for any distance d as long as the transverse extension of the mir-
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ror/coating construction is large enough while the absorption coefficient

Im[n] stays negligible. For reasons of causality this must not be, though,

as for distances d larger than c/γ
(0)
A an atom would decay before any (vir-

tual) photon reached the mirror in order to “find out” that the atom should

not to be decaying at all.

We note from (10.23) that the spontaneous emission rate is determined

by the imaginary part of the Green function Im[G(rA, rA, ωA)] taken at the

transition frequency ωA. Thus, due to the linewidth of the resonance the

results from chapter 11 regarding the case of the index of refraction of the

coating layer n = −1 are valid only as long as the spectral width in which

n ≈ −1 is larger than γ
(0)
A . From the constraint that the electromagnetic field

energy be positive we conclude that media with a negative index of refraction

are unavoidably dispersive1, which requires that

d

dω
(ωRe[ε(ω)]) ≥ 0,

d

dω
(ωRe[µ(ω)]) ≥ 0 (12.3)

hold. In the following we show that it is this dispersion which sets a limit to

the maximum distance for which γ
‖
A/γ

(0)
A = 0 for zA = d can be found.

On resonance, at which n(ωA) = −1 [ε(ωA) = µ(ωA) = −1] holds, (12.3)

implies a minimal dispersion

d

dω
n(ωA) ≥ 1

ωA
. (12.4)

To see how dispersion affects the Green function G(00)(ω) we assume a linear

dispersion n(ω) = −1+α(ω−ωA), α ∈ R, around the resonance frequency ωA.

We estimate the exponential term e2i(kz,1+kz)d in (11.2) to be most sensitive

to a variation of the index of refraction. Hence we keep terms linear in α in

the exponential, and set n = −1 in all other terms. As a result we obtain

approximately

Im[G(00)(ω)] ∼ Re

[∫ 1

0

dξ
√

1− ξ2(1 + ξ2)
(
1− ei

2ωAd

c
1

ξ
α(ω−ωA)

)]
. (12.5)

In order to prove this estimate, we numerically integrate the exact G(00)(ω)

using a particular causal model for the permittivity and the permeability

ε(ω) = µ(ω) = 1 +
ω2

p

ω2
0 − ω2 − iγω0

(12.6)

1Cf. chapter 1.
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Figure 12.5: The approximate Green function Im[G(00)(ω)] from (12.5) using a

linear dispersion model for d = 10λA/(2π) (solid) and d = 1λA/(2π) (dashed)

as well as an exact integration of Im[G(00)(ω)] (dotted) using a causal model

for n(ω) for d = 10λA/(2π).

with ωp = 0.46ω0, γ = 10−4ω0. This model yields n(ωA) = −1 + i10−3 at a

frequency ωA ≈ 1.05157ω0. Correspondingly, the imaginary part of the Green

function displays a strong dip near ω = ωA for d = 10λA/(2π) as shown in

Fig. 12.5. We compare this to the approximate solution (12.5) using the

same parameters (including α = 39/ω0) from (12.6). From Fig. 12.5 we note

that the dip around ω = ωA is well described by (12.5), which suffices for our

purpose.

In Fig. 12.5 we also show (12.5) using d = 1λA/(2π), for which the spectral

width ∆ω of the dip in the Green function increases. In general we find from

(12.5) that

∆ω ≈ c

ωAdα
(12.7)

holds approximately. Remembering the lower bound on the dispersion α =
d

dω
n(ωA) in (12.4), we conclude that the frequency window of the Green

function narrows with increasing distance d as

∆ω ≤ c/d. (12.8)
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As a consequence the assumption that the spectrum of the Green function

is sufficiently flat, which is used in the Markov approximation, is violated if

d is too large (cf. section 10.2). In particular, ∆ω ≫ γ
(0)
A must be fulfilled.

Therefore the results of chapter 11 which implicitly made use of the Markov

approximation only hold for

d≪ c

γ
(0)
A

. (12.9)

The condition (12.9) supports the simple picture used in the beginning

of this section: The Purcell effect works only as long as the free space decay

time is long compared to the time a photon travels to the mirror geometry.
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APPENDIX A

The vacuum Green function

The Helmholtz equation (7.9) simplifies for α(r, ω) = 0, i.e., for vacuum, to

[
ω2

c2
1−∇r ×∇r×

]
G(0)(r− r′, ω) = δ(r− r′)1 (A.1)

with G(0)(r − r′, ω) being the corresponding vacuum Green function. Note

that due to the translational invariance, we already used

G(0)(r, r′, ω) = G(0)(r− r′, ω). (A.2)

Fourier transforming (A.1) with respect to the spatial coordinate yields

[
ω2

c2
1+ k× k×

]
G̃(0)(k, ω) = 1 (A.3)

which can be inverted to find the k-space representation of the vacuum Green

function

G̃(0)(k, ω) =
1

ω2

c2
1− |k|2∆k

. (A.4)

Here the projector ∆k = 1 − k̂ ⊗ k̂ onto a space transverse to k̂ = k/k

(k = |k|) has been introduced. The matrix elements of the dyadic product

k̂⊗ k̂ are given by (
k̂⊗ k̂

)
ij

=
1

k2
kikj . (A.5)
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The explicit solution to (A.1) is found by Fourier transforming (A.4) back

into real space [134]. The retarded version reads

G(0)(r) = −eiωr/c

4πr
[P (iωr/c)1+ Q(iωr/c)r̂⊗ r̂] +

δ(r)

3ω2/c2
1 (A.6)

where r = |r|, r̂ = r/r and the functions P and Q are given by

P (x) = 1− 1

x
+

1

x2
, Q(x) = −1 +

3

x
− 3

x2
, (A.7)

respectively. Note the contact contribution proportional to δ(r) in (A.6).

As an important relation between the real space and the reciprocal space

representations we prove that

1

a3

∑

K

G̃(0)(k−K, ω) =
∑

R

e−ikRG(0)(R, ω) (A.8)

holds. Here R and K are lattice vectors and reciprocal lattice vectors of a

simple cubic lattice, respectively. We first replace G̃(0)(k−K, ω) on the left

hand side by its definition as the Fourier transform of G(0)(r, ω)

1

a3

∑

K

G̃(0)(k−K, ω) =
1

a3

∑

K

∫
d3rG(0)(r, ω)e−i(k−K)r (A.9)

and use
∑

K eiKr = a3
∑

R δ(r−R), which can be proven by means of Pois-

son’s summation formula. Thus the right hand side of (A.9) can be integrated

to yield (A.8).
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The magnetic scattering T -matrix (8.28)

The Helmholtz equation (8.24) for the Green function GB(r, r′, ω), in which

we substitute

αB(r, ω) = αB(ω)
∑

R

δ(r−R), (B.1)

for a single cubic lattice of point magnetic scatterers with magnetizability

αB(ω) is solved by

GB(r, r′, ω) =G(0)(r− r′, ω)+

+

∫
d3r1

∑

R

G(0)(r− r1, ω)∇r1 ×∇r1 × [−4παB(ω)δ(r1 −R)]GB(r1, r
′, ω)

(B.2)

which follows immediately from (8.24) and the properties of the free space

Green function G(0)(r, r′, ω). In order to get rid of the derivatives of delta

functions we integrate (B.2) partially, which yields terms involving G(0)(r−
r1, ω)×←−∇r1 ×←−∇r1 . In cartesian coordinates the result reads

[
G(0)(r− r1, ω)×←−∇r1 ×←−∇r1

]
in

= ∂r1

k ∂r1

mG
(0)
ij (r− r1, ω)εjklεlmn. (B.3)

Since the free space Green function is invariant under matrix transpositions

G(0)
ij (r) = G(0)

ji (r) the same feature holds for its defining equation (A.1). We

thus observe that the vacuum Green function fulfills

G(0)(r, ω)×←−∇ ×←−∇ = ∇×∇× G(0)(r, ω). (B.4)
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The first term G(0)(r−r1, ω)×←−∇r1×←−∇r1 of (B.2) can therefore be simplified

to (ω2/c2)G(0)(r − r1, ω) if we restrict ourselves to r 6= r1, i.e., if the source

and the observation point arguments of the Green function differ. Under this

assumption an iteration yields

GB(r, r′, ω) = G(0)(r− r′, ω)+

+

∫
d3r1

∑

R

ω2

c2
G(0)(r− r1, ω)[−4παB(ω)δ(r1 −R)]G(0)(r1 − r′, ω)

+

∫
d3r1d

3r2

∑

R,R′

ω2

c2
G(0)(r− r1, ω)[−4παB(ω)δ(r1 −R)]

G(0)(r1 − r2, ω)×←−∇r2 ×←−∇r2 [−4παB(ω)δ(r2 −R)]G(0)(r2 − r′, ω)

+ . . .

(B.5)

Note that we are allowed to simplify the double curl terms only for outer

vertices of the diagram series, i.e., for terms involving the coordinates r or r′.

The other terms which involve only dummy indices r1, r2, . . . correspond to

multiple scattering events at lattice sites. Therefore expressions like r1 − r2

can become zero and thus do not fulfill the restriction of above. Since the

T -matrix in real space representation is defined by

GB(r, r′, ω) =G(0)(r− r′, ω)

+

∫
d3r1d

3r2G(0)(r− r1, ω)TB(r1, r2, ω)G(0)(r2 − r′, ω)

we find

TB(r1, r2, ω) =
∑

R

ω2

c2
[−4παB(ω)]δ(r1 −R)δ(r1 − r2)

+
∑

R,R′

ω2

c2
[−4παB(ω)]2δ(r1 −R)

·
[
∇r2 ×∇r2 × G(0)(r1 − r2, ω)

]
δ(r2 −R′)

+ . . .

(B.6)

This general result can be specialized to the case of a single scatterer in

free space by keeping only one term R = rA of the sum over lattice vectors.
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Summing the resulting geometric series we find

tB(r1, r2, ω) =
−4π ω2

c2
αB(ω)

1 + 4παB(ω)∇×∇× G(0)(0)
δ(r1 − rA)δ(r2 − rA) (B.7)

for the T -matrix of a single magnetic scatterer located at rA. Note that this

T -matrix is only valid to construct Green functions between spatial points

r, r′ other than rA.

For the case of a simple cubic lattice we cast (B.6) in reciprocal space

TB(k,k′, ω) =

∫
d3rd3r′〈k|r〉TB(r, r′, ω)〈r′|k′〉. (B.8)

Renaming the summation indices similar to (7.49) by, e.g., R = R−R′ then

gives

TB(k,k′, ω) =
1

(2π)3

∑

R

e−i(k−k′)R

{
VB(ω)−1 −

∑

R

e−ik′R 1

ω2/c2
∇×∇× G(0)(R)

}−1 (B.9)

with the optical potential VB(ω) = −4π ω2

c2
α(ω).





APPENDIX C

Convergence behavior of (9.7) and (9.8)

We analyze the convergence behavior of the series

∑

K

e±iK∆r(k−K)×
ω2

c2
1− |k−K|2∆k−K

(C.1)

which emerge in the Fourier representation of the Helmholtz equations (9.7)

and (9.8) for the case of magneto-dielectric materials. In order to clarify the

notation we note that the cross product (k −K)× can be represented as a

matrix which in the canonical basis reads

(k−K)× =




0 −(kz −Kz) (ky −Ky)

(kz −Kz) 0 −(kx −Kx)

−(ky −Ky) (kx −Kx) 0


 . (C.2)

Since it commutes with [ω2/c21−|k−K|2∆k−K]−1 = G̃(0)(k−K, ω) equation

(C.1) is well defined.

We start by replacing the vacuum Green function G̃(0)(k −K, ω) by its

Fourier transform. The cross product (k−K)× can then be interpreted as a

curl of the exponential exp[−i(k−K)r]. After a partial integration, equation

(C.1) thus transforms into

−i
∑

K

∫
d3re±iK∆re−i(k−K)r∇× G(0)(r, ω). (C.3)
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Following equation (9.2), we replace the sum over reciprocal lattice vectors

by a sum over real space lattice vectors

−ia3
∑

R

∫
d3rδ(r−R±∆r)e−ikr∇× G(0)(r, ω), (C.4)

from which we get after an integration

−ia3
∑

R

e−ik(R∓∆r)∇× G(0)(R∓∆r, ω). (C.5)

Hence for ∆r 6= 0, (C.1) contains no contribution proportional to the diver-

gent term G(0)(0, ω). Note that the small r behavior of (C.5) corresponds to

the large K behavior of (C.1).

The behavior for large R on the other hand can be studied best in k-

space as the limit of small wave vectors. We rewrite the Green function

G̃(0)(k−K, ω), which shows up in (C.1), in terms of projectors onto transverse

∆k−K and longitudinal ̂(k−K)⊗ ̂(k−K) parts with respect to k−K

1

ω2

c2
1− |k−K|2∆k−K

=
1

ω2

c2
1− |k−K|2

∆k−K +
1

ω2/c2
̂(k−K)⊗ ̂(k−K).

(C.6)

Using the identities k × (k̂⊗ k̂) = 0 and k×∆k = k× equation (C.1) thus

simplifies to
∑

K

e±iK∆r

ω2

c2
1− |k−K|2

(k−K)× . (C.7)

We note that the vector k is an element of the 1. Brillouin zone of the simple

cubic lattice with reciprocal lattice vectors K. Thus |k| ≤ |K| holds. In

addition, the dispersion |k(ω)| has in general the same order of magnitude

as the free photon dispersion ω/c. A divergency of the series for small k can

therefore only stem from a resonance of the K = 0 term.

In the treatment of
∑

K G̃(0)(k−K, ω) for pure media, after having sepa-

rated the divergent term G(0)(0, ω), we restricted ourselves to the high density

limit, for which we only kept the K = 0 contribution (see discussion in sec-

tion 7.3). In the discussion of magneto-dielectric materials we also specialize

to K = 0. Hence the resonant term [ω2/c2 − |k|2]−1 is accounted for in the

condition (9.13) for the derivation of the dispersion k(ω).
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