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The Road goes ever on and on

Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.
And whither then? I cannot say.

Bilbo Baggins
John Ronald Reuel Tolkien
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Abstract

The Bose polaron, a quasi-particle formed by an impurity interacting with a gas of condensed
bosonic atoms, is a fundamental problem of many-body physics. The Fréhlich model accurately
describes the polaron’s properties for scenarios with weak impurity-boson coupling. In this
model, the interaction is characterized by the generation, emission, and binding of Bogoliubov
phonons, which are small excitations of a homogeneous condensate. However, the Frohlich
model is no longer adequate for strong coupling between impurity and boson, as the impurity
deforms the Bose gas substantially. In this thesis, a different model is developed to describe
the one-dimensional Bose polaron. It takes into account the feedback effect of the impurity
on the condensate at the mean-field level and is suitable for treating the strong impurity-
boson coupling limit. Both equilibrium and non-equilibrium properties of the Bose polaron
are investigated, focusing on one-dimensional systems.

First, the ground state properties of a single polaron are characterized. As the impurity
becomes dressed by the deformation cloud, it undergoes a shift in energy and an increase in
the effective mass. Both quantities are derived analytically and compared to exact diffusion
Monte Carlo simulation results, showing excellent agreement.

The theory is then extended to a pair of impurities to study the polaron interaction induced by
the many-body environment, leading to the formation of a bipolaron. The induced potential
is derived in Born-Oppenheimer approximation of heavy impurities and extended to include
the leading order Born-Huang correction. Both the potential, and the binding energy of
the bipolaron exhibit excellent agreement with the results obtained from exact Monte Carlo
simulations.

Subsequently, non-equilibrium properties are investigated by generalizing to a fluctuating im-
purity coupling. It is demonstrated how noise tuning of this interaction can be employed to
control coherent currents in the condensate flowing towards the impurity and accompanied by
an incoherent counterflow of excited atoms. Depending on the strength of the noise and the
velocity of a single impurity, three distinct dynamical regimes emerge: 1. A linear response
regime, II. a Zeno regime with suppressed currents, and III. a regime of continuous soliton
emission. This analysis is further extended to a pair of noisy impurities, where the influence
of induced currents by the individual impurities on each other is investigated.

Finally, the thesis examines the polaron formation dynamics after either a sudden quench or
quasi-adiabatic turn-on of the impurity-boson coupling strength. A diverse range of dynamical
regimes is found, including reversible and non-reversible deceleration of the impurity. Surpris-
ingly, even backscattering of the impurity can occur, which is correlated to the emission of
solitons. To analyze the influence of quantum fluctuation, the time evolution is simulated in a
harmonically trapped system, using a Truncated-Wigner formalism.

Overall, this thesis presents a new and efficient method for describing heavy impurities in
weakly interacting Bose-condensates, accurately predicting polaron properties even for large
impurity-boson coupling.
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Zusammenfassung

Das Bose-Polaron, ein Quasiteilchen, welches aus einer Verunreinigung innerhalb eines Ga-
ses bosonischer Teilchen entsteht, ist ein fundamentales Problem der Vielteilchenphysik. Bei
schwacher Kopplung zwischen Verunreinigung und Bosonen beschreibt das Frohlich-Modell
prazise die Eigenschaften des Polarons. Innerhalb dieses Modells wird die Wechselwirkung als
der Prozess der Erzeugung, Emission und Bindung von Bogoliubov-Phononen beschrieben,
welche schwache Anregungen eines ungestorten Kondensats darstellen. Bei starker Kopplung
erweist sich das Frohlich-Modell jedoch als unzureichend, da die Verunreinigung das Bose-Gas
dann stark deformiert. In dieser Dissatation wird deshalb ein alternatives Modell zur Be-
schreibung des 1D Bose-Polarons genutzt, das die Riickkopplung der Verunreinigung auf das
Kondensat in Molekularfeldndherung beriicksichtigt. Sowohl Gleichgewichts- als auch Nicht-
Gleichgewichtseigenschaften von Bose-Polaronen werden analysiert, wobei der Schwerpunkt
auf eindimensionalen Systemen liegt.

Zunachst werden die Grundzustandseigenschaften eines einzelnen Polarons charakterisiert. Da
die Verunreinigung von einer Deformationswolke umgeben wird, ergibt sich eine Energiever-
schiebung, sowie die Zunahme der effektiven Masse des Teilchens. Beide Groflen werden ana-
lytisch abgeleitet und mit exakten Monte-Carlo-Simulationen verglichen, wobei sich eine her-
vorragende Ubereinstimmung zeigt.

Um anschlieend die Wechselwirkungen zwischen den Polaronen zu untersuchen, erfolgt ei-
ne Verallgemeinerung von einer auf zwei Verunreinigungen. Die Vielteilchenumgebung indu-
ziert eine Kopplung, welche zur Bildung eines Bipolarons fiihrt. Das induzierte Potenzial wird
in Born-Oppenheimer-Naherung fiir schwere Verunreinigungen hergeleitet, einschliefllich der
Born-Huang-Korrektur. Sowohl das Potential als auch die Bindungsenergie des Bipolarons
zeigen exzellente Ubereinstimmung mit Resultaten aus exakten Monte-Carlo-Simulationen.
Im Anschluss werden nicht-Gleichgewichtseigenschaften durch Verallgemeinerung auf eine fluk-
tuierende Kopplung zwischen Kondensat und Verunreinigung untersucht. Es wird aufgezeigt,
wie durch Anpassung der Rauschparameter kohérente Strome im Kondensat kontrolliert wer-
den kénnen. In Abhéngigkeit der Intensitét des Rauschens und der Geschwindigkeit der ein-
zelnen Verunreinigung zeigen sich drei dynamische Regime: I. Ein lineares Regim, II. ein Zeno
Regime mit unterdriickten Strémen und III. ein Regime mit kontinuierlicher Solitonenemissi-
on. Die Analyse wird auf ein Paar rauschender Verunreinigungen verallgemeinert, wobei der
Einfluss der induzierten Strome der einzelnen Verunreinigungen aufeinander untersucht wird.
Zuletzt wird die Dynamik der Polaron-Bildung bei kohdrenter Kopplung zwischen Kondensat
und Verunreinigung untersucht, sowohl nach plotzlichen als auch nach adiabatischen Einschal-
ten der Kopplungsstiarke. Es werden verschiedene dynamische Regime identifiziert, darunter
sowohl eine reversible als auch nicht-reversible Verlangsamung der Verunreinigung. Sogar die
Riickstreuung der Verunreinigung kann auftreten, was mit Emission von Solitonen einhergeht.
Um den Einfluss von Quantenfluktuation zu analysieren, wird die Zeitentwicklung in einem
harmonisch gefangenen System mit Hilfe des Truncated-Wigner-Formalismus simuliert.
Zusammenfassend préasentiert diese Arbeit eine Methode zur Beschreibung schwerer Verunrei-
nigungen in schwach wechselwirkenden Bose-Gasen, die selbst bei starker Kopplung gultig ist.
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1 Introduction

The polaron is a paradigmatic quasiparticle in condensed matter physics, emerging as a com-
posite of a mobile impurity interacting with a surrounding many-body system of bosons or
fermions. It was first introduced by Landau and Pekar , to describe the motion of a
single electron in a crystal lattice. The electron displaces the atoms in the lattice from their
equilibrium position and polarizes the surrounding medium, which can be described as a dress-
ing by phonons. The polaron concept has been generalized to a wide range of applications
across condensed-matter physics, ranging from charge transport in organic semiconductors to
high-T,. superconductors . It is vital for understanding transport, response, and induced
interaction in a variety of different systems.

More recently, ultra-cold quantum gases have become a versatile experimental platform for
studying polaron physics with high precision and in novel regimes. Length and energy scales
are very different from solids and can be controlled and manipulated more easily. The Fermi-
polaron, an impurity immersed in a gas of fermions, has been studied in a number of different
experiments . However, fewer experiments have been conducted on the Bose polaron
. Due to the high compressibility of a Bose gas, the presence of an impurity can lead
to a substantial number of excitations, and interactions within the Bose gas become essential.
One-dimensional systems, experimentally studied in Refs. , are of particular interest
because they exhibit pronounced quantum effects, given that the particles must tunnel through
each other when they exchange positions. Furthermore, it is advantageous that analytically
exact solutions and efficient numerical methods are available in one spatial dimension [22].
In addition, the suppressed g3 correlation function reduces three-body losses compared to the
three-dimensional case .

The interaction strength between the impurity and the surrounding medium can be effectively
adjusted over a wide range, spanning from weak to strong coupling. This tuning can be

Or) = T+ ()

Figure 1.1: a) Illustration of the extended Frohlich model. A large number of phonons are
created around the impurity, such that phonon-phonon interactions are relevant. b) The ap-
proach of a deformed condensate avoids this problem, resulting in small quantum fluctuations.
Reprinted figure with permission from . Copyright (2021) by the American Physical Soci-
ety.
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achieved using methods such as Feshbach [24] or confinement-induced resonances [25].

Many theoretical works addressing the Bose polaron describe the interaction between the
impurity and bosons as a coupling, binding, and emission of Bogoliubov phonons of a uniform
superfluid. This results in a Hamiltonian similar to the Frohlich model used in solid-state
systems [26], which has been used to predict ground state [27H34] and dynamical [35H44]
properties of single impurities, as well as induced interactions between multiple polarons [45-
48]. However, for strong impurity-bath coupling, the Bose gas becomes highly deformed,
leading in this picture to a large phonon density, such that phonon-phonon interactions become
crucial.

The aim of this thesis is to analyze a different theory of the Bose polaron, which incorporates
the back action of the impurity already on a mean-field level. The new approach effec-
tively minimizes quantum fluctuations for all impurity-boson coupling constants. By modeling
the system in the Lee-Low-Pines frame [49|, effectively co-moving with the impurity,
the treatment developed here keeps the entanglement between impurity and bosons. Since
the theory employs a [MF| approximation, it is limited to parameter regimes where quantum
fluctuations are small. The two necessary conditions are, first, a weakly interacting Bose gas
indicated by a small Tonks parameter v = gm/n [50, 51|, which scales as the ratio of the
kinetic to interaction energy of a 1D Bose gas. Here, g represents the Bose-Bose coupling
constant, and m (n) corresponds to the boson mass (density). Second, the transforma-
tion introduces a different kind of interaction, which is small for a heavy impurity mass M.
Therefore, the necessary conditions for the applicability of the approach are

!

71 (1.1)
!

m < M, (1.2)

which is discussed in detail in Section Notably, unlike the Frohlich model, this new theory
provides reasonable results for arbitrary impurity-boson coupling constants gig, even in the
strong coupling limit. Prior to and during the development of this thesis, other publications
have employed similar methodologies to predict equilibrium properties of polarons [52-57] and
bipolarons [55| 58, 59]. Additionally, some works have also explored related non-equilibrium
properties |57}, 60]. A comparison of these studies to the publications contained in this thesis
is provided in Section [I.3.5]

This thesis aims to further investigate the equilibrium, non-equilibrium, and steady-state prop-
erties of one-dimensional Bose polarons in the strong coupling limit using this novel technique.
It seeks to address important questions such as

e What are the steady state properties of Bose polarons?

e How does its energy and effective mass scale at large impurity-boson coupling strengths?

During the formation of the Bose polaron, the impurity significantly deforms the condensate,
especially for large impurity-bath coupling. This results in an energy shift and alterations
in the transport characteristics. The latter can be attributed to the increase in the effective
mass of the polaron. Different theories have been developed to compute this effective mass for
one-dimensional Bose polarons [33, 52, [61], each based on different assumptions. Furthermore,
experimental measurements of the effective mass have been conducted, as shown in Ref. [16].
Using the novel technique, we calculate this mass, which exhibits excellent agreement with

exact diffusion Monte Carlo (DMC]) simulation [P1].



e What is the nature of induced interactions between polarons?

e How do they contribute to the formation of bipolarons?

Interactions mediated by a many-body environment play a crucial role in the field of many-
body physics. One noteworthy example is Cooper paring |62], which emerges from the phonon-
mediated interaction between electrons, offering an explanation for conventional superconduc-
tivity. For Bose polarons in the strong coupling regime, the formation of quasi-particles and
the induced interactions are closely intertwined. These mediated interactions have the capabil-
ity to bind pairs of impurities, resulting in the creation of bipolarons. Bipolarons are subjected
to play an essential role in high-T,. superconductivity [5], and play an important role in the
conductivity of polymers [63H67].

e How can a noisy impurity be used to control superfluid currents in a Bose gas?

A remarkable feature of cold bosonic atoms is the phenomena of superfluid flow. It has been
experimentally observed in various contexts [68, |69], including one-dimensional ring geome-
tries demonstrating persistent flows |[70H72]. Despite these advancements, attaining precise
control over superfluid flow remains challenging in cold atom experiments. While conventional
methods for inducing currents often rely on establishing chemical potential differences, em-
ploying moving barriers, or introducing synthetic magnetic fields, the present study introduces
a novel approach. It demonstrates that superfluid currents can be controlled precisely using
local fluctuating potentials.

e« What dynamical processes occur when an impurity is injected into a Bose gas?

e How and in which time scale is a polaron formed?

A question that naturally arises after studying the steady-state properties of polarons is
whether and how the system evolves into this state after the impurity is injected into the
system. Numerous theoretical investigations based on the Frohlich model have delved into
these dynamical properties |35, |37+42]. In the Frohlich model the polaron is formed and an
initially moving impurity decelerated by the emission of phonons. However, in the limit where
the impurity substantially deforms the condensate, only little is known [57, |60]. Apart from
emitting Bogoliubov phonon-like density waves, the impurity also has the capability to gen-
erate grey solitons, which substantially impact the system’s dynamic behavior. The intricate
effects of these solitons are very difficult to accurately account for using a Frohlich approach
but are naturally incorporated in the novel approach used in this work.

The model of the deformed condensate analyzed in this thesis serves as a robust theoretical
framework for addressing these questions. It provides analytical solutions for steady-state
properties and enables efficient computational simulations for studying non-equilibrium states.
The model exhibits remarkable agreement with exact ab initio simulations, and corrections
to the [MF| approximation are often negligible or can be incorporated by semiclassical phase-
space methods. In summary, this thesis introduces a model that proves to be highly effective
in describing Bose polarons within the strong coupling regimes.



1 Introduction

1.1 Outline

In this thesis, we will discuss the development and application of a new approach, modeling the
Bose polaron in one spatial dimension. The advantage of the model developed here lies in its
ability to correctly include the deformation of the condensate induced by the impurity on a [MF|
level. This feature makes it particularly advantageous for sizeable impurity-boson coupling,
making it superior in that limit to models like the Frohlich model |26} 27]. Additionally, the
new model correctly accounts for the correlation between the impurity and the bosons, which is
neglected in other approaches like the model of coupled equations for a separate impurity
and condensate wave functions |7376]. These other two methods are presented in Section
The disadvantages of these two methods compared to the one used in this thesis are discussed
there.

The equation, primarily used to describe the Bose polaron in this thesis, is derived from
the microscopic Hamiltonian in Section In particular, details of this derivation that were
only briefly mentioned in the publications [P1HP4] are discussed more thoroughly. There are
two significant steps involved. First, the system is transformed into a frame co-moving with
the impurity. In this way, the impurity is described quantum mechanically without losing
correlations between impurity and bath. The second step involves a[MF]approximation, which
includes the condensate deformation.

Following this, Section examines the prerequisites necessary for the applicability of the
IMF] approximation. It discusses the constraints of certain parameters and compares them to
current experiments. Subsequently, the order of significant length and time scales is brought
to the attention. To accomplish this, data from an experiment documented in Ref. [16] is
employed, wherein Bose polarons were realized in a one-dimensional system.

The final section of the introduction establishes solutions of a homogeneous Gross—Pitaevskii
equation , which characterizes a weakly interacting Bose gas in itself without an impu-
rity. This exploration is a foundational step towards deriving the stationary states of polarons
and bipolarons while also contributing to the interpretation of numerical simulations in non-
equilibrium scenarios. The section presents localized solutions, known as solitons, and spatially
periodic states.

Afterwards, the primary results, the publications upon which this cumulative thesis is based,
are presented. The different regimes in which the system is studied are sketched in Figure [1.2
First, the ground state polaron properties are examined in Chapter [2| [P1]. For this, an ana-
lytic expression of the stationary ground state is derived by solving a generalized
The impurity deforms the condensate on a length scale given by the healing length of the con-
densate. This can be described as a dressing of the impurity by the deformation cloud and the
formation of a polaron. During this formation, the quasiparticle experiences a shift in energy
and an increase in the effective mass compared to the bare impurity. Both of these quantities
are derived analytically from the state and show good agreement to quasi-exact
simulations, the latter being derived in Ref. [33]. Jonas Jager numerically simulated quan-
tum corrections to the solution to estimate the influence of quantum fluctuations. These
corrections involve considering modified Bogoliubov phonons as excitations of the deformed
condensate, and they further improve the agreement with

In Chapter |P2], the theory is generalized to a pair of impurities to investigate polaron-
polaron interaction meditated by the condensate. Since the induced potential is attractive,
it binds the two polarons, forming a bipolaron. At first, the [MEF] equation is derived and
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Figure 1.2: Illustration of the different polaron properties studied in this thesis. a) Ground
state properties (polaron energy and mass) of a single mobile impurity . b) Polaron-polaron

interaction potential mediated by the Bose gas [P2]. ¢) Superfluid currents induced by a noisy
impurity |\ d) Dynamics of polaron formation |\

analytically solved in Born-Oppenheimer approximation, which is appropriate for heavy
impurity masses. This leads to a semi-analytic expression of the polaron interaction potential,
which is in excellent agreement with [DMC] simulations. Gregory Astrakharchik executed the
latter . To estimate the effect of a finite impurity mass, the Born-Huang correction
to the approximation is derived. The section concludes by calculating the bipolaron
binding energy for both bosonic and fermionic impurities, which is in excellent agreement with
[DMC] for impurity-boson mass ratios as low as three.

Up to this point, the system has been investigated with a constant impurity-boson coupling.
However, Chapter examines the effect of an in-time stochastic/noisy coupling constant.
It shows that noise can be utilized to control coherent superfluid currents. In the first part,
we analyze a static noisy impurity and demonstrate its similar impact on the condensate
to that of a local loss of particles [79[82]. This occurs because the noisy potential scatters
particles into highly excited states, effectively removing them from the condensate. As a
result, a coherent current is induced to counteract the local effective particle loss. The current
increases monotonically with growing noise up to a critical value, at which the system becomes
dominated by the quantum Zeno effect , leading to a reduction in transport. Subsequently,
we generalize to a noise source in an externally driven current or, equivalently, one dragged
through the condensate at a fixed velocity. Here, a new regime of continuous soliton emission
emerges. Following the approach of Chapter , the publication concludes by generalizing
to a pair of noisy impurities. We analyze how the currents induced by each contact influence
each other and show how noise tuning can be employed to control or stabilize the superfluid
current.

The publication in Chapter is once again focused on a single mobile impurity interacting
coherently with the Bose gas, however, with a focus on the formation dynamics of the polaron.
First, we further analyze the stationary states from Chapter for an arbitrarily large
polaron momentum, revealing a periodic dependency of the polaron energy and velocity on
the total momentum. Furthermore, the time evolution after either an adiabatic turn-on or
rapid quench of the impurity-boson coupling constant is investigated. Our findings reveal a
diverse range of dynamical regimes. For velocities exceeding a critical threshold, the impurity
experiences a non-reversible slowdown due to a friction force associated with the emission
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of Cherenkov radiation. Additionally, for subcritical initial impurity velocities, we observe a
reversible slowdown resulting from an increase in the effective mass during polaron formation.
Remarkably, for initially fast and heavy impurities, we uncover a backscattering phenomenon
caused by the emission of solitons. Lastly, the effect of quantum fluctuation is analyzed,
where we consider a trapped condensate to avoid 1D divergencies. Using a Truncated Wigner
simulation, we show under what conditions quantum fluctuations are small.

The final publication discussed in Chapter @[P5] is a supplementary project of this thesis. It
presents an experiment conducted primarily by Benjamin Nagler in the research group of Artur
Widera. This study explores the impact of a spatiotemporal disorder potential with tunable
correlation time on a three-dimensional Bose gas, expanding on the investigations presented in
Chapter [4[P3]. The latter focuses on the effects of a local noise potential on a one-dimensional
gas. The disorder potential heats the trapped Bose gas, leading to an evaporative particle
loss induced by the noise. The potential generates both a heating of the residual thermal
particles and creates excitations in the superfluid. My contribution to this work was mainly
the theoretical estimation of the direct excitation rate from superfluid to thermal atoms.

The Artificial Intelligence-based software [Deepl| and |Grammarly| were used in the writing
process of this thesis.


https://www.deepl.com/translator
https://www.grammarly.com/

1.2 Different theoretical approaches to Bose polarons

1.2 Different theoretical approaches to Bose polarons

There are several methods that have been employed to model the Bose polaron. This section
presents an overview of some alternative approaches to the one used in this thesis. Two, in
particular, are described in more detail. First, the Frohlich model and an extension of it in
Section which is one of the most commonly used models [27-48]. Second, the model
of coupled equations [73H76], as it is similar to the approach used in this thesis and is
outlined in Section [1.2.2]

In addition to these approaches, several others have been used to predict polaron properties.
Two of them are briefly mentioned here. The first is a simulation, which provides quasi-
exact ground state properties of Bose polarons and bipolarons [P2} 33, 34, [84]. However, this
method comes with a significant computational cost and only applies to finite-sized systems
of moderate particle-numbers. Despite its limitations, it serves as a valuable complement to
approximate calculations. In this thesis, it is used in Chapters [2| and |3| [P1, [P2] to validate
the [ME] approach developed here. A description of this method is available, e.g., in the
supplemental material of [P2] written by G. Astrakharchik.

In one-dimensional systems where the impurity and bosons have the same mass, and the cou-
pling between bosons matches that between the impurity and bosons, exact solutions for the
ground state can be obtained even analytically. This system is equivalent to an isospin—% Bose
gas, known as the Yang-Gaudin model, and corresponds to treading a single gas particle dis-
tinguishable from the other. The model has exact solutions for the ground state and excitation
spectrum derived through a Bethe ansatz [22, 85-87]. The authors of Ref. [61] determine the
properties of the polaron in this way.

All methodologies used to model the Bose polaron begin with the Hamiltonian of a single
mobile impurity within a Bose gas. In the case of a homogeneous one-dimensional system, it
is given by

R % L/2 . o2 N .
— X A
H=git [, @@ 58+ 30 @) tamie —R]éw),  (13)
where units with 2z = 1 are chosen. This is maintained throughout most parts of the thesis.
The boson (impurity) mass is given by m (M), and L is the system size. This thesis employs
a system with periodic boundary conditions (PBCs|) and models the thermodynamic limit as
L approaches infinity. The first quantized operators p and 7 represent the impurity momen-
tum and position operators respectively, while ¢(f) () is the second quantized annihilation
(creation) operator of a boson at position z. The operators fulfill the commutation relations

75| =i (1.4)
6(2),6' )] = oz — ) (15)
60 (@), 60 (w)] =o. (1.6)

At the ultra-cold temperatures of Bose—Einstein condensates , the kinetic energy of
the atoms is low compared to the interaction potentials, such that the interparticle article
potentials can be described in s-wave approximation [88,89]. Therefore, a Fermi-Huang pseudo
contact potential [25,/90} [91] is used in Equation (1.3]), where the boson-boson (impurity-boson)
coupling constant is given by g (g1)-
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Note, however, that according to the Mermin-Wagner-Hohenberg theorem[92, 93] there is no
true in one spatial dimension. Quasi-condensation, characterized by long wavelength
phase fluctuations, is nonetheless possible [88]. More on this subject is discussed in Sec-
tion [L3.2

Since Equation represents an interacting many-body quantum system, predicting its
behavior involves either computationally intensive simulations or approximative methods.

1.2.1 The (extended) Frohlich Model

The first approach presented is the Frohlich model of the Bose polaron, which is closely related
to the model developed by Frohlich in 1954 to describe an electron in a crystal lattice [26]. It
was first derived in the context of cold Bose gases in Ref. [27]. The Frohlich model is com-
monly used to describe both equilibrium [27-34, |45-48] and non-equilibrium [35-44] properties
of Bose polarons in different dimensions. The basic idea is to model the homogeneous Bose
gas in Bogoliubov approximation |88, 94] and subsequently introduce the interaction with the
impurity as a coupling to phononic excitations of the BEC| However, a major drawback of
this approach is its limited applicability to strong impurity-boson coupling. Some works have
attempted to address this limit using an extended Frohlich model [33]39]. Nevertheless, Chap-
ter |2 [P1] shows that this often leads to incorrect results. This issue occurs since the impurity
becomes dressed by many phonons at a large impurity-boson coupling constant. Consequently,
phonon-phonon interactions become significant even for weak boson-boson coupling.

The model is briefly introduced in the following, emphasizing the problematic approximations
made in the case of large impurity-boson coupling.

The first step in deriving the Fréhlich model is to disregard the impurity from the total
Hamiltonian operator (1.3|) and simplify the Hamiltonian of the Bose gas

. / R 2 R R R
iy = [ a0t - Z + 1od @) (@)] ) (17)

_L/2 2m

To proceed, the field operators are expanded around the [MF]| solution of a homogeneous con-
densate at density n, including fluctuations £(z)

o(x) = Vn+&(x). (1.8)
Although this step is not an approximation, it already foreshadows the main problem of the
Frohlich model. In the case of a large impurity-boson coupling, the impurity significantly
deforms the condensate density, as shown in Chapters and [5| [P1, [P2, [P4]. The
expansion in Equation is therefore not centered around the ground state of the
whole system, such that the fluctuations {(z) are no longer small for large gig. Nonetheless,
the standard derivation of the Fréhlich model involves neglecting terms larger than second
order in ¢ (z) in the Hamiltonian given by Equation and then diagonalizing it using a
Bogoliubov transformation [88|, 94]

A 1 A A
€@) = = 3 [ e b — w7 B (1.9)
k0

The factors u; and v are defined so that the transformed Hamilton operator is diagonal and
given explicitly in Refs. [88,94]. The transformation results in the Hamiltonian

FIB = FEy+ Z wki);rci)k + O(i)i), (1.10)
k40
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a) 10 b) c)
g o d) e) f)
0 7/’ : M 4»% ;9—&
0 1 2 3

Figure 1.3: a) Bogoliubov dispersion relation (blue), being linear for small £ < 1/¢ and
quadratic for large momenta k > 1/£. b)-f) Diagrammatic representation of phonon couplings
given by the terms proportional to gig in Frohlich Hamiltonian . The impurity is repre-
sented by red arrows and phonons by black ones. Included are single phonon b) emission and
c¢) absorption, as well as d) phonon scattering and two phonon e) emission and f) absorption.
Bl(j)

where describe the annihilation (creation) of a bosonic Bogoliubov-phonon with momen-

tum k. The Bogoliubov dispersion-relation is given by wy = clk|y/1 + %k‘%?, displayed in
Figure [1.3h). It is linear for large wavelengths (small k) compared to the healing length
¢ = 1/4/2gnm, where the speed of sound ¢ = /gn/m is the velocity of these phonons. For
short wavelengths, wy crosses over to a single-particle-like quadratic dispersion. Fy is a con-
stant energy offset that can be disregarded.
As a next step the impurity is introduced back into the system by expressing the total Hamil-
tonian given by Equation in terms of Bogoliubov phonons, resulting in the extended
Frohlich Hamiltonian

9

A=t b S bl + a7 Wi (5,4 by)
M k£0 L k£0

+ 223 I (W W + W W) Bl (1.11)

+ LW — Wt (IBL,ET_k + Bkiy,k/)} + o),

where the structure factors are given by Wy, = /ex/wg, with the free boson dispersion relation
¢, = k%/2m. The Hamiltonian describes the interaction between the impurity and the bosons

as a coupling to phononic excitation of the which consists of one-phonon terms (linear

in lA),(j)) and two-phonon terms (quadratic in B,(j)). These terms are depicted diagrammatically

in Figure )—f). In many cases, the two-phonon terms can be neglected; in that case, the
Hamiltonian is equivalent to the one described by Frohlich [26].

The aim of this thesis is not to analyze this Hamiltonian, as it has already been done in many
other publications [27-48]. However, the subsequent discussion gives an estimate of how the
phonon number scales with the coupling constant gig. The ground state is straightforward
to derive in the special case of a very heavy impurity, i.e. M — oo, and neglecting the two
phonon terms. In that case, the Hamiltonian is independent of the impurity momentum p, so
the position operator can be replaced by a c-number 7# = r. Without loss of generality, the
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impurity is localized in the center of the system, so r = 0. The Fréhlich model Hamiltonian is
then simplified to

A AL A n A~ N
H = Z [wkb};bk + QIBUZWk (b}; + bk>:| . (1.12)
k0
With these approximations, the ground state is given by a multi-mode coherent state |Sj) with
the amplitudes

n
5]@ = —gIB\/;Wk/wk. (1.13)
This leads to a rough scaling estimate of the phonon number in the Frohlich model
(Bl.br) o g (1.14)

As a result, a large coupling gig leads to a significant increase in the phonon density, making
phonon-phonon interactions relevant. Although the estimate is modified when solving the full
model given by Equation , the trend of a large phonon occupation number remains. As
shown in Chapter [2| [P1] and Ref. [33], this imposes the condition gip < gné for the applica-
bility of the Frohlich model. A possible approach to address this limitation is to include higher
order in terms IA),(j) in Equation , resulting in phonon-phonon interactions. However, this
Hamiltonian is as complicated, if not even worse, than the initial Hamiltonian for the bare

particles, given by Equation (1.3)).

1.2.2 Theory of coupled mean-field equations

The subsequent section presents a first approach to include the condensate deformation on a
[MEF]level. The method involves solving coupled equations for distinct impurity and condensate
wave functions. It has been used in [73H76] to characterize the system for strong impurity-
boson coupling, surpassing the limitations of the Frohlich model. Nevertheless, a limitation of
this approach is its omission of all correlations between the impurity and the bosons.
To derive the coupled equation it is instructive to rewrite the total Hamiltonian in
second quantization for the boson and impurity
N L/2 N 2 N . N
= 7 1w {d@)] - 5E + bod @) 6)
—L/2 2m
) (1.15)

1) - 22+ b (@) d@) .

¢z, 1) ()

Figure 1.4: Schematic depiction of the coupled approach. It is assumed that the system
is in a product state of a wave function each for the impurity ¢ (z,t) and bosons ¢(x,t).
Impurity-boson correlations are neglected.

10



1.2 Different theoretical approaches to Bose polarons

where zﬁm(x) are the impurity field operators. One way to derive the equations is, first to
calculate the Heisenberg equations of motion 0; ¢ = z[ﬁ , o] for gg(:v) and @ZAJ(.I) Subsequently,
a product state ansatz |¢(x,t)) ® |[¢(z,t)) is applied, where both impurity and Bose gas are in
a coherent state with complex amplitudes ¥ (z,t) and ¢(x,t). As a result, the complex wave
functions need to fulfill the coupled

2

0, 6(,1) = [~ 2=+ giplu(, O + glo(x, O] o(z.)
4 (1.16)

0 (1) = [ o+ gl 0] iz )

By the application of the product state ansatz, impurity-boson correlations are neglected,
which is an inadequate approximation. For a large impurity-boson coupling, the coupled [MF]
model predicts a phase separation of the gas and the impurity, which is shown in Ref. [75]
and depicted in Figure Since both ¥ (x) and ¢(z) are wave packets, it is evident that the
system is not in an eigenstate of the total momentum operator. However, the Hamiltonian
(1.3) is translationally invariant, implying that the true ground state of the system must also
be an eigenstate of the total momentum operator.

In this thesis, a different [MF] approach is primarily employed, which has the capability to
incorporate correlations between the impurity and bosons. The stationary states derived in
this way are eigenstates of the total momentum operator.

11
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1.3 Polaron mean-field theory in the co-moving frame

This section introduces the theory used mostly in this thesis to describe the properties of
Bose polarons. Compared to the approaches discussed in Section it has some advantages.
First, it is a[ME| theory that includes the deformation of the condensate. This corresponds to a
similar expansion of the field operators as used in the Frohlich model discussed in Section
and is given by

¢(z) = ¢(z) + &(x). (1.17)

Compared to the expansion in the Frohlich model, given by Equation , the wave-
function ¢(z) includes the coupling to the impurity. As a result, the fluctuations £(x) are
small for arbitrary gig and can often even be neglected.

Compared to the approach of coupled equations of Section the approach derived
here includes correlations between impurity and bosons. This is archived by working in a frame
of reference, co-moving with the impurity using the or polaron transformation [49]. This
corresponds to a approximation for the impurity-boson correlation function rather than
treating each species individually.

This novel technique is used in this thesis to predict the ground state |[P1] and dynamical
[P4] properties of a single impurity and generalized to either include a dissipative impurity-
boson interaction [P3] or describe two impurities [P2] to predict mediated impurity-impurity
interaction. A short derivation is shown in these publications, still, since it is a central part of
this thesis, a more comprehensive derivation of the technique is presented in the subsequent
section.

First, the transformation is introduced in Section Second, the equations are
derived in Section Subsequently, some additional remarks about the approach are men-
tioned. The role of impurity-bath correlations are discussed in Section and an expression
for the particle current is derived in Section [1.3.4 The section concludes by mentioning other
publications that apply the method described in the following and compares these works with
the ones contained in this thesis in Section [[.3.5

1.3.1 Lee-Low-Pines transformation

The first step of analyzing the polaron Hamiltonian given by Equation (1.3) is to eliminate
the impurity degrees of freedom. For this purpose, the conservation of the total momentum
p + Pg is utilized, where

. L2 R
Pg=—i / dz ¢' ()0, () (1.18)
—L/2

is the total momentum operator of the Bose gas. It is conserved in homogeneous systems with
IPBCs| which are predominantly studied in this thesis. The conservation law can be exploited
using the unitary [LLP| transformation

ﬁLLP = exp(—iﬂf’B), (1.19)

which represents a translation of the Bose gas into a frame co-moving with the impurity. More
precisely, the previous impurity operators p and 7 represent in the [LLP] frame the center of

12



1.3 Polaron mean-field theory in the co-moving frame

Laboratory frame Lee-Low-Pines frame
P T2 L3

rnp

Figure 1.5: Illustration of the transformation. In the laboratory frame, the position
of impurity (red) and bosons (blue) is used as a coordinate. In contrast, in the frame,
the boson coordinates are defined relative to the impurity’s position, and the center-of-mass
operators of the entire system replace the impurity operators.

mass operators of the entire system. In contrast, the field operator ¢() (x) annihilates (creates)
a boson relative to the position of the impurity. This is shown by the transformation rules

center of mass: p = (?ELP (ﬁ+ 15]3> ULLp (1.20)
relative coordinate: () (z—7) = UELP ¢ (z) Uprp, (1.21)

and is 1llustrated in Figure[I.5] By applying the [LLP]transformation to the Hamilton operator
in Equation (1 , one arrives at

Hip = UELP HUp
1
(p PB) (1.22)

L/2 2 R R N
+ / dz ¢ ( >[—f—;+%gw(x—fw(x—f)+gIBa<x—f>}¢<x—f>.

Given the presence of the Hamiltonian can be made independent of #, by shifting
within the integral by #. Thus the total momentum p commutes with the Hamiltonian, is
conserved, and can be replaced by a c-number p, what results in

L/2 R 2

Fue = s (0= Po) s [ dedl (@) = 22 + 298 (003(0) + gd(@)] d(a). - (1.23)
Here, the symbol :: denotes normal ordering, i.e., interchanging all creation operators to the
left and annihilation operators to the right, and 7 = (1/M + 1/m)~! is the reduced mass.

The main advantage of this technique is that it allows for the exact removal of impurity oper-
ators from the system without making any additional approximations. As a result, it ensures
the inclusion of impurity-boson correlations. An inherent drawback lies in the additional non-
local interaction term ]313 /2M present in the Hamiltonian, which is quartic in the field
operators ¢(1) (z). This term represents an interaction between the bosons mediated by the
mobile impurity. Nevertheless, its effects can be reasonably approximated, particularly when

dealing with heavy impurity masses M > m.

1.3.2 Mean-field approximation

Next, since the Hamiltonian in Equation ([1.23)) still describes an interacting many-body sys-
tem, further approximations are needed to predict the properties of the system. This is done

13



1 Introduction

in most parts of this thesis using a [MEF| approximation. In order to derive the [MEF| equation,
first, the Heisenberg equation of motion 3,5&(30) = i[ﬁLLp, quS(a:)], for the field operator is cal-
culated. Secondly, it is assumed that the bosons are all condensed , such that the system is in
a multi-mode coherent state |¢(z,t)) with a complex wave-function ¢(z,t). This is equivalent
to replacing the operators ¢?(:):, t) by a complex field ¢(z,t) in the Heisenberg equation. As a
result, the complex field has to fulfill a nonlinear partial differential equation (PDE])

2

0 6(.1) = [~ O 4 i0(0) 0 + gl + o ()]0, 1), (1.24)

where the v(t) is the velocity of the impurity

o(t) = 77 Ip— Po(t)]

(1.25)

1 b2 R
= M [p+z/_L/2 dx qb(.%',t) 83: gb(.%’,t)‘| :

Equation (1.24)) is a |GPE] as for example derived in Refs. [88] 89|, except of the additional
derivative proportional to v(t). The additional term appears because Equation describes
the Bose gas in the[LLP|frame, co-moving with the impurity at velocity v(t). Since the impurity
velocity given by Equation depends on the total Bose gas momentum Pg(t), the new
term describes a rather unusual nonlinear and nonlocal coupling.

Stationary solutions of this equation have been studied analytically for a fixed velocity v in
Refs. [P1, 52, [95]. In general, the time-evolution for an arbitrary initial condition must be
simulated numerically, as done in Ref. |[P4] 57, [60]. The results of these studies are compared
in more detail in Section Appendix [B| presents an efficient numerical method for solving
Equation , which incorporates the nonlocal interaction term.

However, special care must be taken when treating a one-dimensional Bose gas using a coherent
state approximation. As stated by the Mermin-Wagner-Hohenberg theorem [92, (93] there is no
true BEC] in homogeneous systems in less than three spatial dimensions. Nevertheless, quasi-
condensates, characterized by long wavelength phase fluctuations, exist in one-dimensional
systems [88]. These fluctuations prevent a true long-range order, so a coherent field ¢(z,t)
cannot describe a macroscopic quasi-condensate. As shown in Ref. [88] this is quantified by
an exponentially decaying density matrix, with a length scale Ly given by

n

= 1.26

where kp is the Boltzmann constant. However, this thesis investigates the impact of impurities
on such a 1D Bose gas, which only influences the system locally on the scale of the healing
length £ = 1/y/2gnm. At sufficiently low temperatures, the system is coherent within the
influence of the impurity and, therefore, can be described by a coherent field ¢(x,t) within
this range. However, if the effects of quantum corrections to the [MF] approximation are to be
investigated, as done in Chapters 2| and [5| the phase fluctuations lead to infrared divergences.
The way in which these can be handled is mentioned in the corresponding sections.

1.3.3 Impurity-boson correlation

In the following, the significance of impurity-boson correlations is emphasized. It is shown
that these correlations are inherently integrated into this approach, making it superior to other

14



1.3 Polaron mean-field theory in the co-moving frame

methods which neglect them, such as coupled which employ separate wave-functions
for each impurity and boson [73H76], see Section As previously mentioned, the total
momentum p commutes with the Hamiltonian Hyrp, see Equation 1} The energy eigen-
states are, therefore, always a product state of the center of mass state |p) and a state for
the bosons in the co-moving frame, which is assumed to be a coherent state |¢(z)). While it
might seem that correlations are not relevant due to the system being separated in the [LLP]
frame, it is important to note that impurity-boson correlations in the laboratory frame are, in
fact, non-trivial. This can be demonstrated by transforming the product state back into the
laboratory frame resulting in

. 1 (L2 :
Ourlp©l6@) =7 [ dre i@ loe+ ). (1.27

Here |r) is an eigenstate of the position operator 7, and given by the Fourier transformation

Ip) = % —Lﬁz dr e=%" |r). Equation (1.27)) is not a product state of the impurity and bosons if

¢(x) is not a constant function. This indicates that impurity-boson correlations are included
in the approach.

An argument where the incorporation of correlations becomes even more evident is that the
Bose gas density n(x) = |¢(x)|? in the frame corresponds to the relative impurity-boson
density-density correlation function in the laboratory reference frame. This follows directly
from the transformation rule in Equation

n(@) = (¢ (@ - 7) d(x — 7)) (1.28)

= [ar (3@ =) b~ 1) i) ). (1.29)

Here 1[}“) (r) are second quantized impurity field operators, which are related to 7 in the
subspace of a single impurity by ¢ ()1 (r) = 6(r — #). Since n(x) is not constant (see. [P1-
P4]), it proves that non-trivial impurity-boson correlations are included in this approach.

1.3.4 Particle current

An important property, particularly for [P3], is the particle current within the Bose gas. To
calculate it, a continuity equation for the bosons is derived from Equation (|1.24])

O n(z,t) = — 0y j(x,t), (1.30)

where the particle density is n(z,t) = |¢(z,t)|*> and the current

j(z,t) = %Im |6(2,)" 0, 6(x,1)] — v(t) n(z,t). (1.31)
It is noteworthy that the term —wv(t) n(z,t) does not appear in the standard definition of a
particle current. It arises because the continuity equation follows from the particle-number
conservation in the laboratory, not the m frame. So j(z,t) is the current in the laboratory
frame, while ¢(z,t) describes the Bose gas in the co-moving frame, resulting in the
additional term.

15



1 Introduction

1.3.5 Other publications using this model

Apart from the publications included in this thesis [P1-P4], other studies have employed the
approach described in this section to model Bose polarons. In the following, I will discuss the
similarities and differences between these works.

Ref. [95] discusses a nonlinear flow past a delta potential in one spatial dimension. The
equation that was investigated for this purpose is equivalent to Equation for an infinitely
heavy impurity M — oo, or fixed velocity v(t) = v. The stationary solutions in this limiting
case are derived in this publication.

The ground state [MF]solution of a single polaron was studied for a vanishing total momentum
p = 0 in Ref. [52], where they arrived at the same expression for the polaron energy
as presented in this thesis in Chapter [2| [P1]. However, Ref. [52] did not discuss the impact
of quantum fluctuations. The MF ground state solution was extended to encompass a finite,
although not arbitrarily large, total momentum in Refs. [53] [57], where they derived a part
of the energy-momentum relation for small to intermediate p compared to the gas density n.
Nevertheless, neither of these publications determined the complete relation for arbitrary p,
which is thoroughly discussed in Chapter [5| [P4]. We show that the energy and velocity of the
polaron exhibit periodic behaviors with respect to the total momentum.

Around the same time as our publication on induced polaron interactions, detailed in Chap-
ter [PQ], two other manuscripts were also published, both of which identified the same
potentials within the approximation [55| 59]. However, there were distinct differences in
their focus and findings. The study in Ref. [55] is limited to the scenario where at least one of
the two impurities is infinitely repulsive. In contrast, Ref. [59] and our work explore the case
of two impurities with arbitrary but equal coupling constants. Moreover, in addition to the
potential, Ref. [59] accounts for the effects of quantum fluctuations, leading to a different
asymptotic scaling of the potential for large impurity distances. The first-order Born-Huang
correction, which incorporates the impact of a finite impurity mass on the interaction poten-
tial, is only determined in our study. Furthermore, the bipolaron energy is calculated in our
work but not in the other two publications [55, 59].

In addition to the studies on ground state properties, there are investigations of the polaron
formation dynamics, akin to the analysis presented in Chapter |5| [P4]. Specifically, Refs. [57,
60] explore the time evolution following a quench of the coupling constant. However, their
analysis is not as detailed as those contained in this thesis. In Ref. [60], besides examining
the [ME]| dynamics, the authors also consider the impact of quantum corrections and derive the
absorption spectrum. On the other hand, Ref. [57] quantifies the strength of the friction force
resulting from the emission of density waves. Nevertheless, the effects of the three distinct
mechanisms responsible for impurity deceleration (emission of density waves, an increase in ef-
fective mass, and soliton emission) are comprehensively discussed only in our work in Chapter
[P4]. Furthermore, our study addresses the time evolution during a quasi-adiabatic turn-on
of the coupling constant. It investigates the effects of quantum fluctuations in a harmonically
trapped system, which sets it apart from the works mentioned above.

Besides the studies of the one-dimensional Bose polarons, the approach was also generalized
to higher dimensions in Refs. [54, 56, 58]. More on the application of the theory in higher
dimensions is discussed in Section
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1.4 Limitation of the theory and experimental consideration

Given that the central model employed in this thesis, detailed in Section relies on a
approximation, it is important to acknowledge its limitations. This section outlines the prereq-
uisites for the applicability of this theory and contrasts it with current experimental findings.
Some experiments have explored three-dimensional Bose polarons [17H19] 21]. Nevertheless,
this section will primarily focus on Ref. [16] as it was conducted using a weakly interacting
one-dimensional Bose gas, which is mainly studied in this thesis. The discussion focuses on the
parameters utilized in this experiment. Their result, the measurement of the polaron mass,
is addressed in Appendix [Al Other experiments have also analysed 1D Bose polarons, but
in the limiting case of strong Bose-Bose interaction 15| [20], which cannot be characterized
with the methods used in this thesis. To avoid confusion when comparing the theory with
experimental data, SI units are used in this section, including for the reduced Planck constant
h~ 1.055 x 10734 Js.

A necessary condition for the applicability of the [MEF| approximation is that interaction terms
in the Hamiltonian given by Equation are small compared to the kinetic energy
of the particles. This concerns besides the usual contact interaction § [ dx ¢t (2)2p(x)? in
between bosons, also the term ]51% /2M as it is quartic in the field operators.

The impact of the usual contact interaction has already been explored in many works. To
quantify the interacting strength in a 1D Bose gas Refs. [50, 51| introduce the Tonks parameter
v = gm/h*n where g is the boson-boson coupling constant, m the boson mass and n the particle
density. It represents how the interaction energy of the particles scales compared to the kinetic
energy. If v is small, interaction effects are weak, allowing the Bose gas to be treated within
the approximation, i.e., we have to require

!

v < 1. (1.32)

The experiment of Ref [16] gives a realistic order of magnitude for the Tonks parameter ~.
This experiment used a quasicondensate of 3’Rb atoms, corresponding to a mass of m = 87u.
According to their data, the 1D Bose-Bose coupling constant is ¢ = 2.36 x 1073"Jm and the
peak gas density n = 7um~!. After back-inserting the necessary factors of h, this corresponds
to a Tonks parameter of v = 0.44. This value is smaller than 1, however, not significantly. In
principle, it should be possible to reduce this parameter further in experiments.

One way to achieve this is the employment of confinement-induced resonances as derived in
Ref. [25]. One-dimensional Bose gases are usually realized by employing a tight transversal
confinement potential at frequency w on a three-dimensional gas of atoms. The effective 1D
limit is reached as soon as the length scale related to this potential | = y/2h/mw is the smallest
length scale of the system. It is important to note that the 1D scattering length a;p = —2h/mg
depends on this length scale [ and, consequently, the trapping frequency w. Ref. [25] shows
that it is related to the 3D scattering length a by

2

an =5 (1+¢H 7). (1.33)

where ((3) ~ —1.46 is the Riemann zeta function. Thus, different Tonks parameters can be
realized by tuning the trapping frequency. The tuning of v can also be realized utilizing a
magnetic Feshbach resonance [24]. In the experiment of Ref. [16], a Feshbach resonance is
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Figure 1.6: Periodic table of the elements, showing the atomic species in which laser cooling
has been demonstrated up to March 2016. Note that noble gases are typically cooled in a
metastable state. The figure was published in Ref. [96] under the terms of the |Creative
Commons Attribution 3.0 Unported license (CC BY 3.0).

used to tune the impurity-boson coupling constant to an arbitrary value. However, using this
technique to independently tune g and gig is impossible.

Next, the unusual nonlocal interaction term ]3]% /2M is to be investigated. It describes an
interaction between the bosons mediated by the impurity and originates from the description
in the [LLP] frame, see Section The term is small compared to the kinetic energy of the
Bose gas if the impurity mass is large compared to the boson mass

!

M > m. (1.34)

This is the second necessary condition for the applicability of the [MF] approximation.

The mass ratio is, however, not arbitrarily selectable in cold gas experiments since laser-
coolable atoms must realize both impurity and bath. Atomic species in which laser cooling has
been demonstrated are shown in Figure |[1.6| [96]. Some experiments [18] realize the distinction
between impurity and bath by using different metastable hyperfine states of the same atomic
species, restricting the investigation to equal mass ratio M = m. Others use different atoms,
e.g., Ref. [16] use 87Rb for the gas and *'K for the impurities, resulting in a mass ratio of
M = 0.47m, which unfortunately represents a light impurity. If the experiment would change
the role of impurity and bath, it would result in a for the [MF| approach much more favorable
ratio of M = 2.1m. According to current technical possibilities [96], the upper limit for the
mass ratio would be given by a 2%*Hg impurity atom [97] immersed in a of “He atoms [98|
99 (if radioactive elements are excluded). This corresponds to an upper bound of M = 51m.

It is important to emphasize that the two conditions v = gm/h*n < 1 and M > m are
independent of the impurity-boson coupling constant gig. Remarkably, the approach of this
thesis yields accurate results for a wide range of gig values. Chapters and [] [P1, [P2, [P4]
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1.4 Limitation of the theory and experimental consideration

demonstrate that significant condensate deformation occurs for

giB 2, gng. (1.35)

The commonly used Frohlich model discussed in Section fails to provide reasonable results
in this limit, whereas the model in the frame does.

Finally, this section provides an estimate of the relevant scales in SI units for the context of
this work, using the experimental parameters from Ref. [16] once again.

The healing length £ = h/\/2gnm ~ 150nm is a significant length scale. It appears, for
instance, as the characteristic length of the deformation induced by the impurity. Additionally,
the range of the induced polaron-polaron interaction, as determined in Section 3| [P2], is also
on the order of &.

The relevant time scale is the inverse of the chemical potential, /gn, which is approximately
64us. Non-equilibrium phenomena studied in Sections {4| and [5[ [P3, [P4] occur on this time
scale.

An important velocity can be derived from the two scales, the speed of sound ¢ = \/gn/m =
V2gné /h, which is in the order of 3.4mm/s. This velocity represents the speed at which signals
propagate through the condensate and is also an order of magnitude estimation for the critical
velocity below which polaron formation becomes possible, which is discussed in Section [5| [P4].
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1 Introduction

1.5 Analytic solution of the homogeneous Gross—Pitaevskii
equation

This section excludes the impurity and focuses exclusively on the properties of the Bose gas
itself. The gas is assumed to be weakly interacting, and it is described in the approximation
using a [GPE|] Presented are some known solutions of this equation, which will later play
a crucial role in deriving the stationary states of the Bose polaron in Chapter [2[ [P1] and
the bipolaron in Chapter [3| [P2]. Additionally, these states are vital for understanding the
simulation of the non-equilibrium polaron properties in Chapters {4| and |5| [P3, [P4]. In the
following, only the essential building blocks necessary for the subsequent analyses in this
thesis are presented. For a more comprehensive analysis of the subject of cold Bose gases, the
books [88, 89] provide more extensive coverage.

The following section presents solutions of the homogeneous in its simplest form

: 9; 2

0 ¢(x,t) = | = 3= + glo(x,t)|(a,1). (1.36)
It includes only dispersion via the kinetic energy and a nonlinearity generated by the Bose-
Bose contact interaction. The latter is always repulsive in this thesis, so g > 0. Although
the [GPE] is nonlinear, it has several known analytical solutions. A straightforward but vital
solution is a constant density n of atoms

¢(x,t) = V/ne ", (1.37)

where 1 = gn is the chemical potential. It is the ground state of the system and minimizes
the total energy

2

L/2 )
E= [ doglwty[- o= + ol OF] o(a.0) (1.38)

L2
which results in the expression for the energy of a homogeneous Bose gas
E = 1gn’L. (1.39)

The subsequent sections present two types of excited states of the [GPE|l First, local disper-
sionless wave excitations known as solitons are discussed in Section Second, stationary
states that are periodic in space are explored in Section [1.5.2

1.5.1 Soliton

A fundamental solution of the is a solitary wave, or simply soliton |88 [100]. It is
a localized disturbance that can propagate through the system without a change of form.
Nonlinear effects in the medium thereby cancel the dispersion of the wave. Solitons have a
long history beyond the field of ultra-cold atoms, starting with the observation of shallow water
waves in 1834 by John Scott Russell [101]. They exist for several different nonlinear equations,
for example, the Korteweg-de-Vries equation [102], which describes the propagation of these
shallow water waves, or the [GPE] which is used in this thesis to model Bose condensates.
Despite being realized in various systems, solitons share some common properties, which Russel
has already described [101]:
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1.5 Analytic solution of the homogeneous Gross—Pitaevskii equation

e They are stable waves that can travel long distances without dispersing.
o The size of the soliton wave is related to its speed.

¢ Solitary waves do not scatter when they interact with each other. They can pass through
each other without any disturbance.

The simplest kind of a solitary wave for repulsive Bose-Bose interaction is a dark soliton, given
by the wave function

d(z,t) = /n e " tanh ( (1.40)

%)
v2¢)”
where n is the asymptotic density, u = gn the chemical potential and { = 1/y/2gnm the
coherence or healing length of the Bose gas. The latter is a typical length scale of a condensate,
referring to the distance over which the wave function tends to its bulk value when subjected
to a local disturbance. A dark soliton is a stationary state, corresponding to a soliton at
zero velocity. It represents a local density disturbance where the density drops to zero at the
center, which is why it is named a "dark" soliton. The density depletion is accompanied by a
discontinuous phase jump of m, see Figure [1.7]

However, besides the stationary solitary waves, those moving at a fixed velocity do exist. To
show this a Galilean transformation is applied to the , into a frame moving at fixed
velocity v by

¢(x7 t) = (5(‘7: — vt, t)a (141)
resulting in the transformed equation
L 2 .
i0h 9, t) = | = 35 +iv s + gldla, 1) | b(a, ). (1.42)

As a side note, this differential equation is very similar to Equation (1.24)), which describes the
Bose gas in the frame co-moving with the impurity. This is rather not surprising since

a) 1.0 b) /2
g N
o> =
=051 = 0
= 50
BSS z
0.0 5 T T T _7T/2 1 T T T
-5 0 ) -5 0 )

(x —wt)/¢ (x —wt)/¢

Figure 1.7: a) Density and b) phase of a grey soliton for different velocities. The shades of
blue, from darkest to lightest, correspond to v/c = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. As the velocity
increases, the soliton becomes less depleted, and the phase jump becomes smaller.
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1 Introduction

the Galilean transformation (1.41)) resembles a classical version of the transformation
UrrLp = exp(—i7Pg), where the impurity operator 7 is replaced by the c-number v t.
A solution to Equation (|1.42), the wave function describing the moving soliton, is given by

2 — ot ,
$(x,t) = v/n |i = + /1= = tanh (“) et (1.43)
C C

where ¢ = \/% = /2gn¢é is the speed of sound in the condensate. Notably, moving solitons
can only exist if their velocity v is below the speed of sound. In Figure the density and
phase of this solution are depicted for different velocities v. In contrast to a stationary dark
soliton, the minimum density of a moving one is nonzero, but it scales with nyy, = nv? /02,
which is why they are often referred to as grey solitons. Furthermore, the phase of a grey
soliton also exhibits a "jump"; However, this "jump" is continuous and always less than .
For a vanishing velocity v = 0, the wave function of a moving soliton goes over into the dark
soliton state given by Equation . However, as v increases up to ¢, the soliton vanishes,
and the state crosses over to a condensate of constant density, see Equation (|1.37)).

The energy of a moving soliton can be determined from Equation (1.38). After subtraction of
the energy %gn2L of a homogeneous condensate, the grey soliton energy is given by

3/2
4 v? 4 2n
E=-nc|l-— ~ —ne—— v +0(v! 1.44

3 ( 02> 3 c * ( ) (144)
Notably the soliton energy decreases with increasing velocity, which corresponds to a negative
effective soliton mass of —4n/c. This behavior can be understood by considering that solitons
represent hole excitations in the condensate.

1.5.2 Periodic solution

In addition to the localized solutions, solitary waves, the also admits solutions that are
periodic in space. These periodic solutions are essential in deriving the stationary bipolaron
wave function in Chapter [P2], as the Bose gas in between the two impurities is given by such
a state. In this context, the focus remains solely on stationary solutions, analogous to dark
solitons at zero velocity. While periodic solutions can also be generalized to running waves, as
shown in Ref. [103], such generalization is irrelevant in this thesis.

The wave function for the periodic solutions is expressed as

2nv ( x )
e s | ———,v |,
1+v EV1+v

where sn represents a Jacobi-elliptic function |[104], which is a generalization of trigonometric
and hyperbolic function. The healing length ¢ = 1/,/2gnm and chemical potential u = gn is
defined as in Section The second parameter v of the elliptic function is real-valued and
between 0 and 1. It is related to the period length X of the state by

X =461+ v K(v), (1.46)

where K(v) it the complete elliptic integral of the first kind [104]. The relation between X and v
is shown in Figure ), from which it becomes apparent that the solution exists only for waves

P(x,t) = (1.45)
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1.5 Analytic solution of the homogeneous Gross—Pitaevskii equation

with a period X > 27w€. The density, corresponding to the wave function in Equation ,
is displayed for different period lengths X in Figure As X approaches infinity, the state
becomes exactly equal to a single dark soliton located at x = 0, given by Equation . For
large but finite values of X > &, the condensate forms a lattice of solitons with a distance
of X/2 between them. The density remains flat in the space between these solitons with a
bulk value of n. However, as X approaches the minimum value of 27¢, the Bose gas cannot
reach a bulk value, resulting in sinusoidal density oscillations. Since the healing length & is
the characteristic length scale on which the Bose gas is deformable, no stable periodic solution
exists below the critical value.

An energetic argument can also explain the vanishing solution for a small lattice spacing. The

A

ratio of interaction energy (V) to kinetic (7") is given by

(V) ig Jdzle(@ D' @+ m)K@) - 20+ v)EW) i)
(@) " & Jdwlosow OF ~ (F1+ K@)+ (1+EW)’ |

where E(v) it the complete elliptic integral of the second kind [104]. This ratio is plotted as
a function of the lattice spacing X in Figure [I.8b). For large X > ¢, the majority of the
condensate has a constant density, resulting in a small kinetic energy <T> < <V> However, as
X is lowered towards the critical value, the curvature of the wave function increases, leading
to an increase in the kinetic energy, until (T") becomes much larger than (V). The interaction
energy drops to zero at the critical value, which is only possible for a vanishing gas density.
Therefore, the critical value of X = 27 marks the boundary below which stable periodic
solutions do not exist due to the resulting vanishing gas density.

This critical value is essential in Chapter [P2] for modeling a strong repulsive bipolaron
(giB > g). We will see that the impurities must be positioned at a node of such a periodic
function, as they repel the gas strongly. If their distance is smaller than the critical value

X /2 = 7§, the condensate density must vanish between them.

a b) 1.0 1
) 1.0 > L 6
: —
o &
= A i F*
5 0.5 - 0.5 <
= L9 ~—
00 T T T OO T T T T O
—20 0 20 0 2 47 6w 87 107w

r/€ X/¢

Figure 1.8: a) Density of the periodic solution of a The shades of blue, from darkest
to lightest, correspond to different period lengths X/{ = oo, 30, 10, 7. The condensate is a
lattice of evenly spaced dark solitons for a large spacing X > £. However, the density becomes
sinusoidal for small X > 27¢. b) The parameter v is represented in black as a function of
the period of the wave function. The red curve depicts the ratio of interaction (V) to kinetic
energy (T). A stable solution only exists for X > 27¢.
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2 Strong-coupling Bose polarons in one
dimension: Condensate deformation and
modified Bogoliubov phonons

Jonas Jager, Ryan Barnett, Martin Will, and Michael Fleischhauer,
Phys. Rev. Research 2, 033142 (2020).

This study investigates the ground state properties of a single 1D Bose-polaron, particularly
emphasizing the regime of a strong impurity-boson coupling strength gig. Our primary objec-
tives are determining the polaron energy Fp and effective mass m*. To accomplish this, we
employ a [MF]| theory, which includes the deformation of the condensate induced by the impu-
rity. In order to account for the effect of quantum fluctuations, we add phononic excitation on
top of the deformed solution by solving the Bogoliubov-de-Gennes equation.
First, we determine the ground state of the polaron for both repulsive and attractive
impurity-boson interactions. The state is derived in the thermodynamic limit and for a small
polaron momentum p. We employ the approximation of the ground state wave-function
to calculate the polaron energy and mass. The expressions given in the publication can be
simplified to

N 3/2
Ep:§n0[1+gx+x3—<1+x2) ], (2.1)

m* = M + 4v2 né {m_ll (2.2)

Here, the dimensionless parameter y = gig/(2v/2gné) indicates if the condensate undergoes
substantial deformation when |x| 2 1. Other parameters are the impurity and boson masses,
M and m, and the reduced mass 7 = (1/M + 1/m)~". The rescaled healing length is £ =
1/4y/2mgn, and the speed of sound ¢ = /gn/m. Note that the result obtained from the
dispersive definition of the mass F = Ep + p?/2m* + O(p*), is consistent with the kinematic
definition M/m* = lim,_,o(1 — Pg/p). Here, Py is the momentum of the Bose gas.

The mass and energy expressions are compared to results from other theoretical approaches
in Figure Notably, both quantities exhibit good agreement with results obtained from
quasi-exact simulation. However, theories based on the extended Frohlich model deviate
for gig > gné ~ 2g , for the parameters of Ref. [16]. This occurs because the Fréhlich model
does not properly account for the condensate deformation (see Section . In the case
of a strongly repulsive polaron, the impurity repels the condensate away from its position,
leading to an identical density profile and energy as those of a dark soliton. However, for a
large coupling gig > g, there is a substantial discrepancy between the polaron mass results
obtained from and While predicts a finite value, the theory suggests a
divergent result. Further investigation revealed that this discrepancy arises due to finite size
effects in the simulations, as the total mass of the system bounds the polaron mass (see
supplemental material [B] of Chapter [3] [P2]).

25


https://doi.org/10.1103/PhysRevResearch.2.033142

2 Phys. Rev. Research 2, 033142 (2020)

©) yd (®) 10
/ 0.8 4

S0 © 00— 06 4

2

Eyp aggm

v w

8 g

1 1
S

~
S
VM /m*

/ —— MF + BdG

— MF 0.4 MF + app. BdG
MF + app. BdG — MF
10 4 —e— DMC 0.2 4 == DMC
RG, ext. Frohlich RG, ext. Frohlich
== MF, ext. Frohlich == MF, ext. Frohlich
0 T T T 0:0 9 T T
107! 10° 10! 102 103 107t 100 10! 102
9B/9 98/9

Figure 2.1: a) Polaron energy Ep and b) mass m* as a function of the impurity-boson cou-
pling constant gig for the parameters of the experiment of Ref. [16]. The Tonks parameter
is v = gm/n = 0.44 and the mass ratio M = 0.47m. The 1D boson-boson scattering length
is apg = —2m/g . The theory developed here, in- and excluding the correction, is
compared to a quasi-exact DMC]simulation and results based on the extended Frohlich model,
both derived in Ref. [33].

Next, we highlight the significance of employing[PBC¢glin calculating the effective polaron mass
m*. When are applied, a phase gradient in the order of the inverse system size 1/L is
present far away from the impurity. While this gradient tends to zero in the thermodynamic
limit, it results in a non-zero contribution to the total Bose gas momentum Pg. It is crucial
to account for this term to ensure the equality of the kinematic and dispersive polaron mass.
Moreover, additional reasons are mentioned in the publication for employing but an
important one is missing. As discussed in Section [I.3.1} the[LLP|transformation only decouples
the center-of-mass motion if the system obeys Otherwise, the total momentum is
not conserved, and the momentum operator cannot be replaced by a c-number, which is a
fundamental assumption throughout the publication.

Finally, the influence of quantum fluctuations is investigated by expanding the bosonic field

operators ¢(z) around the solution ¢(x), by
(z) = ¢(x) + &(2). (2.3)

Since the [ MF] approximation already yields good results, quantum fluctuations are small,
such that we only keep terms up to quadratic order in f (z). Afterward, the Hamiltonian is
diagonalized numerically by a[BdG| transformation. Figure shows that the agreement with
results from [DMC]is further improved by including the [BAG]| correction.

Author contributions

In this study, Jonas Jager and I developed and applied the [MF|theory described in Section
We solved it analytically for the steady-state solution and deduced an analytic expression
for the polaron energy and mass. Furthermore, Jonas Jager and Ryan Barnett performed
numerical simulations to account for corrections to the [ME|approximation using a [BdG] theory.
The original idea for this approach came from Michael Fleischhauer, who also supervised the
entire project. All authors were involved in discussions on results and contributed to the
writing and reviewing process of the manuscript.
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‘We discuss the interaction of a quantum impurity with a one-dimensional degenerate Bose gas forming a Bose

polaron. In three spatial dimension, the quasiparticle is typically well described by the extended Frohlich model,
in full analogy with the solid-state counterpart. This description, which assumes an undepleted condensate, fails,
however, in 1D, where the backaction of the impurity on the condensate leads to a self-bound mean-field polaron
for arbitrarily weak impurity-boson interactions. We present a model that takes into account this backaction and
describes the impurity-condensate interaction as coupling to phononlike excitations of a deformed condensate.

A comparison of polaron energies and masses to diffusion quantum Monte Carlo simulations shows very good

agreement already on the level of analytical mean-field solutions and is further improved when taking into

account quantum fluctuations.

DOI: 10.1103/PhysRevResearch.2.033142

I. INTRODUCTION

The polaron, introduced by Landau and Pekar [1,2] to
describe the interaction of an electron with lattice vibrations
in a solid, is a paradigmatic model of quasiparticle formation
in condensed-matter physics. A hallmark feature of the quasi-
particle is mass enhancement: the electron becomes dressed
by a cloud of phonons which in turn affects its dynamical
properties. The polaron concept has wide applications across
condensed-matter physics ranging from charge transport in
organic semiconductors to high-7, superconductivity [3,4].

More recently, neutral atoms immersed in quantum gases
have attracted much attention since they are experimentally
accessible platforms for studying polaron physics with high
precision and in novel regimes. For example, the impurity-
bath interaction can be tuned from weak to strong coupling
employing Feshbach resonances [5]. In such systems, the
impurity atom is immersed in a superfluid and a polaron
is formed by its interaction with the collective excitations
of the superfluid. The Fermi-polaron, i.e., an impurity in
a degenerate Fermi gas, has been studied in a number of
experiments [6—14]. In contrast, only a few experiments on
Bose polarons exist [15-18]. Due to the compressibility of a
Bose gas, a large number of excitations can be generated, and
interactions within the Bose gas are important.

Theoretical works addressing the Bose polaron most often
describe the interaction with the impurity as a coupling to
Bogoliubov phonons of a uniform superfluid [19-24]. The
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resulting (extended) Frohlich Hamiltonian is formally iden-
tical to the one used in solid-state systems [25], amended
with two-phonon scattering terms. Efficient approaches for its
solution beyond the perturbative regime have been developed
in the past, including variational [24,26,27], field-theoretical
[19,28-30], renormalization group (RG) [23,31], and open-
system approaches [32], as well as quantum Monte-Carlo
simulations [23,33,34]. However, as well known from the ex-
ample of electrons in superfluid helium, a strongly interacting
impurity can also distort the superfluid itself [35]. This de-
formation creates a potential for the impurity which can lead
to a self-bound state. In 3D, the normalized impurity-Bose
interaction has to exceed a critical value for this, given by the
inverse gas parameter [36-38]. Since for typical condensates
the gas parameter is very small, the extended Frohlich model
remains adequate.

The situation is different in 1D, which was experimentally
realized in Ref. [15]. Here an arbitrarily weak deformation
of the condensate leads to a self-localized impurity [37]. This
restricts the accuracy of the Frohlich model to the perturbative
regime. In fact, a comparison between exact diffusion Monte
Carlo (DMC) simulations of the full model with RG solutions
of the extended Frohlich model in Ref. [23] shows that this
model is only accurate for weak interactions and breaks
down completely for attractive interactions at intermediate
interactions.

In this paper, we follow a different approach, and expand
the Bose quantum field about the exact mean-field solution
in the presence of the mobile impurity in the Lee-Low-
Pines (LLP) frame [39]. Such a treatment incorporates the
backaction of the impurity already at the mean-field level
as in Refs. [36-38], but keeps the entanglement between
impurity and BEC by working in the LLP frame. Quantum
effects are then taken into account by the coupling to phonon-
like excitations of the deformed superfluid. Motivated by
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experiments [15] and the availability of semianalytic mean-
field solutions, we here consider a 1D quasi condensate with
weak to moderate boson-boson interactions. While the exper-
iments are performed in a harmonic trap, we assume peri-
odic boundary conditions when introducing phonons. Strictly
speaking, there is no BEC in a homogeneous 1D system
and also the quasiparticle concept is believed to break down
[40,41] due to a diverging number of low-energy excitations
emitted by the impurity. Thus, special care must be taken
when calculating quantum effects. We derive the effective
Hamiltonian for the deformed phonons and solve them in
the Bogoliubov approximation. Our treatment carries over
naturally to higher dimensional systems with the only dif-
ference that the mean-field solutions have to be obtained
numerically. Other treatments of the 1D polaron based on
a factorization of the N-particle wave function in the LLP
frame exist that take the deformation of the condensate into
account [42-45]. The scope of extending them to incorporate
quantum fluctuations is limited, however. We note that the
standard arguments to define the polaron mass, applicable
for Frohlich-type models, give nonsensical results here and
require a careful reconsideration. We derive analytical ex-
pressions for the mean-field polaron wave function, from
which we reproduce previous approximations for the pola-
ronic mass and energy. We then calculate quantum correc-
tions by solving the Bogoliubov deGenne equations in a
self-consistent approach. Our results are benchmarked against
recent DMC results [23]. We find very good agreement in
all regimes for repulsive interactions underpinning the hy-
pothesis that expanding about the nonuniform condensate
is an excellent starting point. We also present results for
attractive interactions. Here we find again very good agree-
ment with DMC for the energy of the polaron but less good
agreement for the mass. We attribute this discrepancy to
the existence of many-particle bound states in the attractive
regime [23,33].

II. MODEL AND PROPER DEFINITION
OF POLARON MASS

Our starting point is a single impurity atom coupled to N
identical bosons in one dimension, described by the Hamilto-
nian

0 a I, &8s
H= [ dx¢'(x)| —5=0; + 7¢ ®)Px) —
2m
p2

s\~ P
+gm5(x—X)>¢(X)+W. €]

Here m (M) denotes the mass of the bosons (impurity atom),
qg(x) is the Bose field operator, ggg (g3) are the boson-
boson (boson-impurity) interaction strength, X (P) denotes
the position (momentum) operator of the impurity, and pu is
the chemical potential of the Bose gas. Throughout the paper,
we set i =1 and employ periodic boundary conditions of
length L. The relative interaction strength is denoted by n =
giB/gss and we introduce the healing length & = 1//2mu
and the speed of sound ¢ = /pu/m. Expanding the bosonic
field operator in Eq. (1) around a homogenous condensate

as d(x) = J/no + £(x) with ng = N/L leads to the extended
Frohlich Hamiltonian [24,25]. In this paper, we choose a
different starting point and consider the effects of the impurity
already at the level of the condensate.

Before delving into the solutions of the mean-field equa-
tions, it is important to point out some fundamental dif-
ferences between the ground state of the effective Frohlich
and the full Hamiltonian Eq. (1) for finite momentum. For
the Frohlich model, it is easy to show that for fixed total
momentum, the ground state is indeed the polaronic solution
[23,39,46]. The situation is very different for Eq. (1). Indeed,
the ground state for finite momentum for this case is the
uniformly boosted system. To see this, we introduce the
potentlal Q=H- vPy, with total momentum Py, = P + P
where Py = —i f ¢T(x)8,(¢>(x) dx. It is straightforward to see
that finding the constrained ground state of Eq. (1) (with
fixed total momentum) is equivalent to finding the uncon-
strained ground state of €2 for a given v which acts as a
Lagrange multiplier. Introducing the unitary transformation
Ucm =exp(— zthXcmv) with My, = Nm + M and Xcm =
M[m (m fdxxﬁ(x)d)(x) +MX ) to boost into the center-of-
mass frame, one finds & = 0c";n7:lljcm — %Mmlvz. With this
expression, one can clearly relate eigenstates of 7 with those
of . In particular, the ground state for finite momentum
(corresponding to finite v) is the boosted ground state and the
effective mass of the polaron always equals the total mass.
Such a uniformly boosted system is precluded in the Frohlich
model.

We proceed as in the case of the Frohlich model and
eliminate the impurity position operator from Eq. (1) by a
LLP- [39] type transformation Uiip = exp(—iXﬁB). Here,
in contrast, the foral momentum of the bosons Py enters.
UpLp transforms to a comoving frame, where the impu-
rity is at the origin and its momentum is transformed to
the conserved total momentum of the system which can
be treated as a c-number P. By eliminating the impurity
from the problem by an exact transformation, entangle-
ment between the impurity and the condensate is already
included on the mean-field level and we do not have to
assume a factorized wave function as, for example, done
in Refs. [37,38]. At the same time, an impurity-mediated
interaction between the bosons ~ [ dx (P — IﬁB)2 /2M emerges
in the transformed Hamiltonian. To treat this, it will prove
helpful to introduce a Hubbard-Stratonovich field &, which
gives

S
HLLP

1
/ dx (x)(——a2 + SR @Wden — n+ 8135(X)>

xP(x) + a(P — Py) — EMaz, 2)

where @ satisfies Mii = P — 133, and can thus be viewed as the
impurity velocity. m, = (M + m)/Mm 1is the reduced mass,
and we defined rescaled healing length & = \/m/m.& and
speed of sound ¢ = /m/mqc.
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III. MEAN-FIELD SOLUTIONS
A. Mean-field equations in the presence of the impurity

We now expand ¢A7(x) =¢(x)+ é‘(x) and it = u+da,
where ¢ (x) and u are chosen to solve the mean-field equations
of Eq. (2); for details, see Appendix A,

1
(—2 37 + geld()* — pu + iuax)¢(x) =0, 3
my

3PN = 2m,gmep(0), 0))

subject to the boundary conditions ¢(%) =@(—%) and
|¢(£L/2)|* = ny + O(1/L). Note that to remedy the problem
of the uniformly boosted system being the ground state, we
require that the polaron is a local quantity. Thus the conden-
sate must be stationary far away from the impurity up to 1/L
corrections. Solutions of the mean-field equations exist in the
literature where the phase is not periodic [42,47] and have
been applied to the 1D polaron before [43—45]. The nonperi-
odic phase corresponds to unphysical sources at the boundary
and leads to wrong predictions such as a negative kinematic
polaron mass. We instead find the mean-field solution of the
form ¢(x) = /n(x)e?®™ (see Appendix A for more details),

n(x) = g%(l — Bsech®(v/B/2(Ixl +x0)/E)).  (5)

with g =1— Z—; +0O/L%) and p = gBBnS’IF — (0,01 )u +
O(1/L%). If we consider the mean-field solution alone,
we fix " =no(1 +2v2BE/L(1 — tanh(V/B/2x0/))) +
O(1/L?), where ny = N/L is the average density of bosons.
Upon considering quantum fluctuations later on, the mean-
field density needs to be adjusted. For the phase, we find
0(x) = 6p(x) + (2f(0) —2f(L/2))x/L with

NG )

eV2BGe+x0)/E 28 41

f(x) = arctan (

for x > 0 and 6y(x) = 2f(0) — f(—x) for x < 0. Finally, we
determine xo through the jump condition for the derivative. In

the limit u = 0, we find for gig > 0: xp = % log(y), withy =

1+ 8”5% +2Y2%E and for g <0, we have xp — xj =
Xo + im /2E(2/B)"/2. It is instructive to insert x§ into Eq. (5)
and obtain the density profile for the attractive side explicitly:

n(x) = gﬁ (1 + Besch®(v/B/2(Ix| + m/é)). (©6)

It becomes apparent that the density far away of the
impurity now is lowered instead of increased, and is
given by nF = ng(1 — 2/2BE /L(coth(v/B/2x0/E) — 1) +
O(1/L?). This seemingly small correction can have a
profound impact for |[n| > 1. In this limiting case,
(coth(y/B/2x0/E) divergences and a macroscopic large
amount of the bosons aggregates around the impurity. For a
finite system, this signals a collapse of the condensate onto
the impurity. Due to those effects, we restrict our analysis of
the attractive side to moderate values of |gig|.

In Fig. 1, mean-field predictions for condensate density
and phase are shown for different interaction strengths and
a slowly moving impurity. From the analytical solution, we

(a) 10
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—20 —10 0 10 20
z/€

FIG. 1. Mean-field solution for different interactions and various
couplings. All other parameters are as in Ref. [15],i.e., M/m = 0.47,
the peak density ng = 7/um, and ggg = 2.36 x 10~%" Jm. For the
phase, we fixed u = 0.01¢, which fixes the total momentum on the
mean-field level.

can derive a parameter characterizing the relative condensate
deformation,

n/nok = 127, )

with ¥ = ym,/m, where y = 1/(2n3£?) is the so-called
Tonks parameter of the 1D Bose gas [48,49], which should
be less than unity for the Bogoliubov approximation to hold.
The deformation becomes sizable if 1/ng& ~ 1.

With the analytical expressions for the condensate den-
sity and phase, we can calculate the polaron energy E, =
E(gs) — E(gis = 0) and the effective mass m™ of the polaron
using M/m* = lim,_o(1 — %), with Pg being the mean-field
momentum of the condensate, see Ref. [31]. This gives

WIF1\* 8 _(3y£l
ENE — _ L 8
P gm”°<|y|i1 T3\ qyrxry)  ®

for the energies of the repulsive (E;,’), upper sign) and attrac-
tive (E 1(,“), lower sign) polaron, and for the mass:

M MG? —1) ©
m* 8noEm/2 + MG — 1)
These expressions agree with previous findings in

Refs. [43,45]. It is interesting to note that for n — oo,
Eq. (8) approaches the energy of a dark soliton and the
effective mass m* goes to infinity which is in contrast to
results from the extended Frohlich Hamiltonian [23]. At this
point, we note that on the attractive side the solution will
collapse to a multiparticle bound state for n >> 1, which can
be easily seen by noting Ej — —oo for n — —oo.
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FIG. 2. Polaron mass calculated in mean-field approximation
with periodic boundary conditions (PBCs) or constant phase far away
from the impurity compared to DMC calculated in Ref. [23]. While
the solution using periodic boundary conditions agrees very well
with the DMC results, the constant phase solution (or nonperiodic
boundary conditions) yields a nonsensical result.

B. Boundary conditions

We are now going to address the aforementioned impor-
tance of the periodic boundary conditions for correctly calcu-
lating the effective mass. When imposing periodic boundary
conditions, one finds, unsurprisingly, a constant density far
away from the impurity, but in contrast the phase is linearly
changing at the order of 1/L and therefore not constant. One
might be tempted to use a solution where both density and
phase are truly constant far away from the impurity (up to
exponentially small corrections). A solution with this different
boundary condition would still be given by Egs. (A2) and
(A4), but with 6,(x) = 0. The effective mass can then be
deduced from the wave function in the same fashion as was
done for periodic boundary conditions and is plotted in Fig. 2.
Calculating the effective mass in this manner, one finds that
the effective mass decreases for increasing 1 and it can even
become negative. This unphysical result is in clear disagree-
ment with DMC results. Besides that, it also contains a phase
jump at infinity which introduces a source term there, which is
nonsensical. Addressing this issue from a more technical point
of view, it becomes apparent that, strictly speaking, functional
derivatives cannot be taken for the constant-phase solutions.

On a mean-field level, this can be alleviated by modifying
the functional derivatives by exactly this source term, as has
been done in the context of solitons [50,51]. Another possible
way to deal with the phase issue is to integrate the phaseout,
as has been done in Ref. [45]. Upon considering quantum
fluctuations on top of the mean-field solution, none of the
above-mentioned methods allow a straightforward generaliza-
tion. We found expanding about a periodic mean-field solution
to be indispensable for the Bogoliubov theory.

We note that this issue persists when extracting the mass
from the total momentum dependence of the mean-field en-
ergy of the system. That is, when enforcing the nonperiodic
phase and expanding the total mean-field energy to quadratic

order in the total momentum as £ ~ Ej + ﬁ, one obtains an
incorrect result for the polaron mass m*. On the other hand,
when extracting the polaron mass from expanding in u as
E ~Ey+ %m*uz, one fortuitously obtains the correct result
with both periodic and nonperiodic [44] mean-field solutions.
These difficulties can be traced to the fact that without the

phase correction, the mean-field equations of motion do not
form a Hamiltonian system. For the full quantum system, one
can deduce that the fundamental relation

d—E =u (10)

dp
holds exactly by the Feynman-Hellman theorem. Incidentally,
this relation can be used to obtain M/m* = lim,_,o(1 — %B),
which is used routinely to compute the polaron mass. With
periodic boundary conditions, one retains the exact relation
Eq. (10) within mean-field theory. On the other hand, when
the nonperiodic solution is used, a short calculation gives the
relation

dEnp 74 AB (1)
=u— un— s
dp dp

where E,;, is the total mean-field energy of the nonperiodic
state, 71 is the average density, and A6 is the phase change
across the condensate.

IV. QUANTUM FLUCTUATIONS

After expanding the fields in %, , in the quantum fluctua-
tions, we find up to second order in £¥(x) and 82

8BB

Hp = /dx [E'(x)( ~ 5 82 4 2gpplp(x)* — 1 + gBS(x) + iu8x>é(x) + 7(q/)(x)zs‘(x)z + Ha)}

—ish f dx(éT(x)qub(x) + qﬁ*(x)axé(x)) - %MMZ, (12)

with M8a = —i [ [¢*(0)3.€ () +ET ()3 (0)] dx+O(E (x)?),
which can be diagonalized by a Bogoliubov rotation to a
generalized basis of phonons on a deformed background.
We note that for distances far away from the impurity, i.e.,
|x| — oo, these phonons look like the ones of a homogeneous
BEC. This allows us to extract the quantum depletion (see
Ref. [52] for a detailed discussion on how to regularise the
arising UV divergences of the zero point energy). We find

\
for the quantum-corrected density far away from the impurity

ng=ny" + 1 /m.gppn)'" and thus we have to adjust the

mean-field density accordingly. To diagonalize Eq. (12), we
note that all terms involving é# become nonlocal and thus
difficult to handle in general, except for the special case p =
0. This enables us to diagonalize Eq. (12) and to calculate
the polaron energy for p = 0. For a moving impurity, we
introduce an approximation setting 8t =0 and keep u as
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FIG. 3. Polaron energy (a) and effective mass (b) for the re-
pulsive polaron. The curves are obtained using different theoretical
methods; all parameters are as in Ref. [15], where y ~ 0.438. The
DMC, RG, and MF (both based on the extended Frohlich model)
curves were calculated in Ref. [23]. We find exceptional agreement
with the DMC results for the energy as well as the effective mass
when expanding around the right mean-field solutions and including
quantum fluctuations. Only for the very strong coupling regime we
do not predict a saturation of the effective mass. The condensate
deformation becomes relevant for /ny€ > 1 Eq. (7), corresponding
here to n > 1.9, where predictions from the extended Frohlich model
start to deviate from the full model.

a variational parameter in the mean-field equations. After
diagonalizing the remaining quadratic Hamiltonian Eq. (12),
u is determined self-consistently,

Mu = P — (Pg), -

(Bg) = —i / ¢* ()P (x) dx — i{ / E7(x)9,& (x) dx),

where the expectation value is taken with respect to the
phonon vacuum. For a more detailed description, we refer
to Appendix B. Then it is straightforward to calculate the
effective mass including the quantum corrections M/m* =
Mu/p. As can be seen in Fig. 3(a), where the energies of the
full and approximate solution of the BdG equations are shown,
the approximate treatment of the Hubbard-Stratonovich field
is very good.
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FIG. 4. Polaron energy (a) and mass (b) calculated using differ-
ent methods for attractive impurity couplings. All parameters are as
in Ref. [15] and the RG, MF (based on the extended Frohlich model),
and DMC curves were calculated in Ref. [23]. For the polaron energy,
a surprisingly good agreement is achieved with the DMC results,
while the agreement is less good for the mass. We explain this by
the collapse of the solution to a multiparticle bound state, where we
do not expect the mean-field solution to be a good approximation.
Furthermore, we do not observe the transition from the attractive to
the repulsive polaron observed in the Frohlich model, signaled by the
breakdown of the RG treatment. For more detail on this transition, we
refer to Refs. [23,24].

V. DISCUSSION AND SUMMARY

Figure 3 shows that already the mean-field solution im-
proves the agreement with DMC simulations significantly
for g > 0 as compared to the Frohlich model. Including
quantum fluctuations leads to almost perfect agreement for the
energy. We find, however, that the effective mass diverges for
g8 — 00, even after including quantum fluctuations, which
seem to be in contrast to the DMC results [23]. This diver-
gence is a characteristic of the 1D geometry and is, for exam-
ple, also observed in the Tonks limit [34]. One would naively
expect this to happen since, for n > 1, the condensate is split
into two halves by the impurity, preventing any transport of
the condensate across it. The only possible contribution could
come from tunneling which is highly suppressed for n > 1.
The same reasoning explains why the quantum correction
to the effective mass is most significant for intermediate
couplings since here the classical current is reduced by the
strong condensate deformation, but tunneling is still relevant.
The question whether the effective mass actually saturates
remains open and other approaches such as DMRG could shed
more light on this. As shown in Fig. 4(a) the prediction for the
polaron energy is also in very good agreement with DMC data
for g < 0. While qualitatively less accurate for the mass, our
approach is free of divergences as compared to the extended
Frohlich model [Fig. 4(b)]. Note that these arguments rely
on treating the system as one-dimensional. For experimental
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systems in the one-dimensional regime, we expect that trans-
verse modes may become important for the limiting behavior
of M/m*. This analysis has to be done on a case to case
basis and we want to stress that all our calculations are
benchmarked against strict 1D numerical quantum Monte
Carlo results. For a detailed discussion on the influence of the
transverse mode and when it’s admissible to treat the system
investigated in Ref. [15] as strictly one-dimensional, we refer
to the detailed discussion in Ref. [23]. Another quantity of
experimental relevance [15] is the axial width of the polaron
(X3 - X )2)1/2. In the present paper, which is carried out
in the LLP frame and requires translational invariance, such
a quantity is infinite. Including a trap potential for the impu-
rity is beyond the scope of the present paper, but could be
addressed by using a variational ansatz that is a superposition
of ground states (of the infinite system) with different total
momenta. On the other hand, studies that do not invoke the
LLP transformation can lead to symmetry-broken mean-field
states with finite values of the axial width [36,38] even without
a trap, but these neglect impurity-BEC entanglement.

In summary, we have shown that a nonperturbative descrip-
tion of the Bose polaron in 1D requires taking into account
the backaction to the condensate while keeping the impurity-
BEC entanglement. Since the density of phonons defined on
such a deformed background remains small, their intrinsic
interactions can be neglected to good approximation. Our
approach provides a quantitatively accurate and, to a large
extent, analytical description of Bose polarons even for strong
impurity-boson interactions as long as the boson-boson inter-
actions remain weak. Those findings suggest that a similar
method could be used to gain more insight into the polaron
formation following a sudden quench. We expect that it will
also allow a good description in 3D at and beyond the critical
strength of the impurity-boson interaction for self-trapping.
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APPENDIX A

In this Appendix, we provide some details on the solution
of the mean-field equations used in the main text. The mean-
field equations that need to be solved are

1
( - 3 + geBlo (0> — 1 + iqu)qs(x) =0,
2'nred

3P| = 2myeagd(0),
$(L/2) = ¢(—L/2),

Mu=p— Pg. (AD)

If we do not require periodic boundary conditions, analytical
solutions of the form |¢(x)|e/®™) can be found in the literature
[42,47]. To make use of those solutions, we make the follow-
ing ansatz:

P(x) = p(x)e™,

where we introduced 6;(x), which will be of O(x/L) and is
fixed later on to ensure periodicity of the phase for the mean-
field solutions, giving the overall phase 6(x) = 6y(x) + 6 (x).
Upon inserting our ansatz into Eq. (A1), we arrive at

(A2)

1 7 ~
( ~3 9; + geBlA(* — L + izzax>¢(x) =0,
Myed
3PS = 2mreagind(0), (A3)
" BEL/2) = G(~L/2),

with the redefinitions i = u + (8,0))u/M + O(1/L*) and
it = u — (0,6,)/(m;). The solution for this problem is now
given by [42,47]

160l = V/1u/gee(1 — Bsech?(v/B/2(1x] + x0)/E)'?,

fx) x>0
Oo(x) = {2
fO) = f(=x) x<0,
f(x) = arctan <6J2?(x+X())/§ —28+ 1)’ (A4)
with  f=1-95+001/L*) and  p=ggen) —

(30 (x)) u/M + O(1/L?). The jump condition determines
Xxo through a polynomial of order three, but only one
solution is stable. It is possible to extract quantities like
the critical momentum herein; for a detailed discussion
of this, we refer to Ref. [42]. For finite momentum, the
condition for xo has to be solved numerically but in the
limit p — 0 we can find the analytical solutions stated
in the paper. If we consider the mean-field solution
alone and require the number of condensed particles
N to stay constant on the mean-field level, we fix
ny' = nol1 4 2/2B&/L(1 — tanh(y/B/2x0/€))] + O(1/L?).
Lastly, we fix 6 (x) to ensure the periodicity of the phase by

1) = 27 (0) - F(L/2)]5. (AS)
At this point, we note that the 1/L corrections are indeed
important when calculating physical quantities. This
can be seen by considering the Boson momentum Pg =
()0 dx = [ n(x)d,00(x) dx + no[2(f(0) — f(L/2)].
From there we can derive the expressions for m* and E,, given
in the main text, which are both defined in the limit p — 0,
which allows us to state them fully analytically.

APPENDIX B

In the following, we give a short overview of the methods
used to obtain the quantum corrections to the mean-field solu-
tions. The major steps have been outlined in the main text, and
thus we focus on the numerical details. An extensive overview
of the techniques used here can be found in Ref. [53]. We note
that this is equivalent to solving the resulting Bogolibouv-de
Gennes equations. We start by discretizing ﬁfu, from the
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main text after either making the approximation of treating
u as a variational parameter or for p = 0 integrating out the
ii-field. For all numerical results presented here, the discretiza-
tion was done in real space and is therefore straightforward
apart from the delta distribution, which was approximated
by a Kronecker delta in the following way: §(x) — §;0/a,
where a is the discretization. This comes at the expense of
not accounting correctly for the UV behavior. The deviation
from the continuum UV behavior is due to discretizing the
derivative operators. Nevertheless, for the observables we
are interested in here, the UV behavior is not essential, and we
found fast convergence; thus, the diagonalization in real space
is justified. For notational convenience, we omit the hats on
all discretized operators. After discretization, the Hamiltonian
can be written as

1
Hip =) [Aiqufcﬁj + 5 Bijglb] + B:;@@)]

ij

1 1
=-o'Md — iTr(A), (B1)

2
where @ = [¢7, @1, .01, @1, ¢2, ...,] is the discrete ver-
sion of §(x) and M is the semipositive definite matrix

A B
w-[i 5]
At this point, we already note that the trace term is of
fundamental importance in 1D since it renders results like

the zero-point energy finite without performing additional
regularization. Following the steps outlined in Ref. [53], we

now diagonalize
A B

and thus find T such that TTMT = diag(w;, wy, ...,
Wy, W], Wy, ..., Wy,), while guaranteeing THhT = v,
which allows us to introduce new bosonic operators

(B2)

(B3)

W' = [bl, b}, ...b}, by, by, ...b,] through

=TV, (B4

for which the Hamiltonian takes diagonal form. The new
operators b; can be interpreted as quasiparticlelike bosonic
excitations with eigenenergy w;. For a stable polaron, the
energy of those excitations is minimized, i.e., the system is in
its vacuum state |0) with respect to the b;. From here it is then
easy to verify that the quantum corrections to the expectation
value of an observable of the form Op = 3, 0; il is

o 0

(Og) = <0|~I'*T*[0 0

]T\II|0)

— (o]w' [g ﬂ\pm) = Tr(F).

(B5)
To conclude this section, we will comment on the IR (infrared)
divergences that are characteristic in 1D systems and how they
are dealt with here. First, we note that quantities like the two-
point function

(] di) = OIC¥'T)(TW)0) ~ L (B6)
are indeed IR divergent in our treatment. For the global
quantities and p = 0, this can be dealt with as outlined in the
main text by considering the zero-point energy,

E= ;(Xi:wi—Tr(A))

which is UV and IR finite and then taking adequate derivatives
(i.e., with respect to the chemical potential for the depletion).
When considering ﬂls_u, for p # 0 without any approxima-
tions, the phonon momentum seems to be IR divergent and
also, for the polaron energy, we found a system-size depen-
dence. Lastly, we remark that in the approximate treatment,
i.e., when viewing u as a variational parameter, the phonon
momentum remains IR and UV finite. Therefore, we conclude
that all results presented in the main text are cutoff indepen-
dent, and no divergences occur.
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3 Polaron interactions and bipolarons in
one-dimensional Bose gases in the strong
coupling regime

Martin Will, Gregory E. Astrakharchik, and Michael Fleischhauer,
Phys. Rev. Lett. 127, 103401 (2021).

The main objective of this study is the extension of the [MF] theory to a pair of impurities,
which do not interact directly with each other. This generalization provides the opportunity
to study polaron interactions mediated by the many-body environment. Given the attractive
nature of the resulting interaction potential, it leads to the binding of the two polarons, forming
a bipolaron.

The equation describing a bipolaron can be derived similarly as for a single polaron, as
presented in Section However, a notable difference is that the [LLP] transformation does
not eliminate both impurity degrees of freedom from the Hamiltonian. It is applied to the
center of mass operators of the impurities but not to the relative impurity coordinate. To
address the relative degrees of freedom, a Born-Oppenheimer approximation is applied,
which is valid when the impurity mass is significantly larger than that of the surrounding
particles. As shown in the publication [P2], the resulting equation is given by

2
- ‘%T + glo@)1* - p+ g (3(z — Ir) + oz + ;r))] é(x) = 0. (3.1)

2m

Here m, = (1/m + 1/2M)~! denotes the reduced mass of the boson mass m and the total
impurity mass 2M. The chemical potential is given by p, while r is the distance between
the impurities. The ground state of this [MF]| equation, along with the polaron interaction
potential in the approximation, is derived in the publication [P2]. The potential is shown
in Figure [3.1h) and exhibits excellent agreement with results obtained from quasi-exact
simulations (symbols). Notably, for strongly repulsive impurities gig > gn& and a short
distance r < 7€ between them, relative to the rescaled healing length € = 1/1/2gnm,., the
potential is linear. This phenomenon arises because the gas is entirely expelled from the space
between the impurities, resulting in a constant force exerted by the gas surrounding the pair
that pushes the impurities toward each other.

Since the approximation is restricted to infinitely heavy impurities, we derive the leading-
order Born-Huang diagonal correction |77, |78]. This correction accounts for finite impurity
mass effects and introduces an additional potential

W) = o7 [ el (3.2)

The total potential is shown in the inset of Figure ) A remarkable feature of the Born-
Huang correction is the onset of a repulsive peak at a distance of » ~ 7w&. Note that this
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Figure 3.1: a) Effective polaron interaction potential for heavy impurities M — oo and dif-
ferent coupling constants 7 = gig/g. Solid lines represent results obtained from the theory,
dots are quasi-exact simulations, and dashed lines show a perturbative prediction from
. b) Bipolaron energies of the ground- and first excited-state for different mass ratios
and the Tonks parameter v = 1/8. Dashed lines correspond to the potential, and solid
include the Born-Huang correction. The different symbols mark the results obtained from a
simulation. The inset (n = 30, M = 3m) illustrates the relative impurity wave function
of the ground state (bosonic impurities) in green and the first excited state (fermionic impu-
rities) in purple, as well as the potential including the Born-Huang correction in black. The
first excited state is a bound state above the critical coupling constant 7.

maximum is unrelated to Friedel oscillations , which exist only in strongly interacting
gases (v > 1) and have an oscillation frequency proportional to 1/n. Unfortunately, [DMC
simulations of the interaction potential are difficult for finite impurity masses and involve large
statistical noise. Therefore, we were unable to prove the onset of these maxima using [DMC|
Finally, we derive the bound states of the interaction potential. The ground state, as well
as the first excited state (which can be mapped to the ground state for fermionic impurities),
are illustrated in the inset of ) The bipolaron energy corresponding to these states is
presented in Figure ) It demonstrates an excellent agreement with results obtained from
IDMC] simulations, even for mass ratios as low as M = 3m, particularly when accounting for
the Born-Huang correction.
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Copyright

Reprinted with permission from Martin Will, Gregory E. Astrakharchik, and Michael Fleis-
chhauer, Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong
Coupling Regime, Phys. Rev. Lett. 127, 103401 (2021).

Copyright (2021) by the American Physical Society.

36


https://doi.org/10.1103/PhysRevLett.127.103401

PHYSICAL REVIEW LETTERS 127, 103401 (2021)

Polaron Interactions and Bipolarons in One-Dimensional
Bose Gases in the Strong Coupling Regime

M. Will®,! G. E. Astrakharchik,? and M. Fleischhauer®'

1Defpartmem‘ of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
Departament de Fisica, Universitat Politecnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain

® (Received 9 February 2021; revised 3 May 2021; accepted 4 August 2021; published 31 August 2021)

Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can
experience strong interactions mediated by the many-body environment and form bipolaron bound states.
Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a
nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic
approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach
is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this
way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-
Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy
polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the
strong coupling limit, the potential substantially deviates from the exponential form valid for weak
coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang
corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find

excellent agreement with QMC results.

DOI: 10.1103/PhysRevLett.127.103401

Introduction.—Interactions between quantum particles
mediated by a many-body environment play an important
role in condensed-matter physics. Examples range from the
Ruderman-Kittel-Kasuya- Yodsia interaction of spins in a
Fermi liquid [1-3] to Cooper pairing of electrons in a solid
induced by lattice vibrations [4]. The mechanism that
causes such interactions can also substantially modify
the properties of individual impurities by forming quasi-
particles. A paradigmatic example is the polaron [5,6]
resulting from the electron-phonon coupling, also respon-
sible for Cooper pairing. In the strong coupling limit,
impurity interaction and quasiparticle formation are
strongly intertwined. Bipolarons are suspected to be essen-
tial for high-temperature superconductivity [7-9]. They are
important for the electric conductivity of polymers [10-14]
or organic magnetoresistance [15]. Their understanding is
one of the key questions of many-body physics.

In recent years, neutral atoms immersed in degenerate
quantum gases have become versatile experimental plat-
forms for accessing polaron physics in novel regimes and
with an unprecedented degree of control [16-31]. Length
and energy scales are very different from solids and can be
resolved and manipulated much more easily. Most impor-
tantly, polarons can be studied out of equilibrium with the
prospect of engineering their properties beyond what is
possible in equilibrium. One-dimensional (1D) gases are of
particular relevance as they show pronounced quantum
effects and powerful tools are available for their theoretical
description. It is possible to tune the impurity-bath

0031-9007/21/127(10)/103401(6)
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interaction all the way through weak to strong coupling,
e.g., by employing Feshbach and confinement-induced
resonances [32]. Contrary to higher dimensions, the system
remains stable even for infinite coupling since three-body
losses are greatly suppressed. Polaron interactions have so
far mostly been studied in regimes where the mediated
interaction between them is weak. A perturbative treatment
yields an exponential (1D) or Yukawa (3D) potential
between two impurities with the characteristic length scale
set by the healing length & [33-36]. A universal low-energy
theory of mobile impurities in one dimension has been
developed in Ref. [37], restricted to particle separations
much larger than £ where the interaction is weak. A unified
treatment for all distances, but for immobile impurities and
small impurity-boson couplings has been given in
Refs. [38,39]. While quantum Monte Carlo (QMC) methods
have been used to obtain polaron properties in a non-
perturbative manner [40-45] and there are numerical
mean-field studies in trapped systems extending into the
nonperturbative regime [46], analytic approaches have been
restricted to weak polaron-polaron couplings or noninter-
acting host gases [47-49]. The first attempt at strong polaron
coupling in interacting gases has been made only recently by
using a scattering-matrix expansion [50]. The authors
predict a deviation from the 3D Yukawa potential in agree-
ment with QMC simulations, but with some notable quan-
titative differences.

Here we develop an analytic theory of polaron inter-
actions in 1D Bose gases for arbitrary strength of the

© 2021 American Physical Society
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FIG. 1. (a) Sketch of a bipolaron composed of two impurities in
a 1D Bose gas. (b) In the commonly used extended Frohlich
model, a large number of phonons are created around the
impurity and phonon-phonon interactions need to be taken into
account. (c) In a description based on a deformed condensate, this
can be avoided.

d(z) = \/ng + &(x)

impurity-boson coupling, see Fig. 1(a) for a sketch. A
common description of the Bose-polaron takes into account
a coupling of the impurity only to Bogoliubov phonons
[36,51], see Fig. 1(b). This extended Frohlich model is,
however, not adequate for strong coupling, gig > g, even if
the boson-boson interaction itself is weak, since the
impurity generates a high-density cloud of phonons around
it and phonon-phonon interactions can no longer be
neglected. Here we use a different approach that accounts
for deformation of the superfluid by the impurities, see
Fig. 1(c) [43,52,53]. As shown in Ref. [53] and elucidated
in the Supplemental Material [54], this approach minimizes
quantum fluctuations and leads to highly accurate predic-
tions for single-polaron properties already on the mean-
field level, precise enough to differentiate finite-size effects.
J

. (P = Pg)?: +4p? . -1
By = ( B) 1 +4p +/dxCDT(x){2 9 —

4aM m

r

where :: denotes normal ordering, i.e., interchanging all
creation operators to the left and annihilation to the right,
and m, = 2Mm/(2M + m) is the reduced mass. P, which
previously was the c.m. momentum of the two impurities, is
in the new frame the total momentum of the system. It is a
constant of motion that can be replaced by a c-number P,
and we set P = 0. Note that the LLP transformation is
needed for any M < oo, even if one considers an impurity at
rest.

Bipolaron of heavy impurities.—Different from the
single-polaron case, the LLP transformation does not
remove the impurity coordinates entirely. To this end,
we apply a Born-Oppenheimer (BO) approximation, valid

Employing this approach, we develop a mean-field theory
of bipolarons assuming a weakly interacting condensate
and moderately heavy impurities and verify the semi-
analytic predictions with QMC results.

Model.—We consider two impurities of equal mass M in
a 1D gas of bosons of mass m < M. We assume contact
impurity-boson interactions with coupling strength gz
which can be repulsive, gy > 0, or attractive, gz < 0.
We disregard a direct interaction between the impurities.
Introducing center-of-mass (c.m.) and relative impurity
coordinates R, # and momenta P, D, the Hamiltonian reads
(h=1)

L PP 44p? -1 fe s
H=J+/dxqa'(x){z—anggq:T(x)o(x)
m

— U+ g {5<x—ie—§) +5<x—fe+;)}}<i>(x).

(1)

Here 4 is the chemical potential of the gas, which in mean-
field approximation is u = gn,, with n, being the linear
density far away from both impurities. In the thermody-
namic limit, n, converges to the mean density n = N/L.
The interaction between the bosons of strength g is
assumed to be weak so that a Bogoliubov approximation
applies; i.e., the healing length & = 1/1/2mu [56] is large
compared to the mean interparticle distance 1/n. This
regime is characterized by a small Lieb-Liniger parameter
y = mg/n [57]. The dependence of the c.m. coordinate can
be eliminated using a Lee-Low-Pines (LLP) transformation
[58] U = exp (—iRPj), where Py = —i [ dx &' (x)0,D(x)
is the total momentum of the Bose gas,

p +§ci>+ci>+gm Hx—;) +5(x+§)} }&(x), 2)

I
for M > m, where the kinetic energy of the relative motion
is neglected and one can replace 7 by a c-number r. This
turns A1 p into a pure boson Hamiltonian.

In the following, we determine the ground state of (2) for
a weakly interacting gas, which amounts to assume small
quantum fluctuations &(x) on top of the mean-field solution
$o(x) of Eq. (2), ¢(x) = ¢o(x) + &(x). Note that this
differs from the common approach, where a small-fluc-
tuation expansion is applied in the absence of the impurities
first. In contrast, we take the backaction of the impurity into
account already at the mean-field level. As shown in
Ref. [53], this (i) leads to modified Bogoliubov phonons,
coinciding with the standard ones only in the long-
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wavelength limit k£ > 1, and (ii) minimizes their gener-
ation by the impurity, see Fig. 1. The smallness of quantum
fluctuations allows us to ignore them altogether when
considering the mediated impurity-impurity interaction at
distances of the order of a few rescaled healing lengths,
E=./m/m,& Only at large separations do quantum
fluctuations become relevant. They are responsible for
weak Casimir-type interactions scaling as 1/r> [37-39]
for finite g5 and 1/72 or 1/r if either one or both of the
static impurities have infinitely strong coupling [59,60]. We
will not consider these contributions here, but show
a posteriori that the corrections are small on absolute scale.

The mean-field solutions of (2) can be obtained ana-
lytically in the BO limit, see Supplemental Material [54]. In
particular, one finds for the interaction potential between
two impurities

1 442

4 gnjé
+ V2u+2
31+v

v cd(u,v) 3 [1+Vsn(u,v)]

+2E(am(u,u),v)—]

+v
3 14+v+D
. +1 =
Voed(u,v) [2+71 ; \/an(u,u)]},

3)

where u = r/(2& /T + v) is a normalized distance, and the
upper (lower) sign stays for repulsive (attractive) impurity-
boson interaction, E(x,v) is the incomplete elliptic integral
of the second kind, cd(x,v) and sn(x, v) are Jacobi elliptic
functions, and am(x, v) is the amplitude of these functions
[61]. The dimensionless parameter v = v(r,n) with || < 1
is given implicitly by

2%@cn(u,y) dn (u,v) = [1 + Vosn(u,v)]?,

involving the Jacobi elliptic sn, cn, and dn functions and
n=gmg/g- Here b =v forn >0 and o =1 for < 0. In
general, this equation has several solutions; however, the
physically relevant one is that with the largest v.

Figure 2 shows examples of the effective interaction
potential V(r), having a finite range defined by & The

strong coupling regime is reached when # > nyé=

1/4/2(m,/m)y [53]. In this case, the impurity causes a
sizable deformation of the Bose gas and V/(r) deviates
substantially from the perturbative exponential behavior at
short distances predicted in Ref. [39]. The logarithmic scale
in Fig. 2(b) emphasizes the exponential long-range behav-
ior of our result, V(r) ~ exp(—v/2r/&) (see Supplemental
Material [54]), which is sufficient for experimentally
relevant energy scales, while the Casimir term ~1/r3
[37,38] affects only the already small tails of the potential.

r/¢

FIG. 2. Effective impurity-impurity interaction as function of
distance in units of & = £ for different interactions # = g5/ g and
M — oo, where ¢ = \/gny/m is the speed of sound. Solid lines
represent semianalytical approximation Eq. (3), circles are QMC
results (error bars smaller than circle size), and dashed lines give
perturbative predictions from [38], including Casimir-type con-
tribution. (a) Comparison of effective potential V(r) for repulsive
impurity-boson interaction. The perturbative results were shifted
to match our predictions at infinite distance. (b) Interaction
potential on a semilog scale. Exponential decay for weak
impurity-boson couplings, 7 < 1, is seen as straight lines. The
Casimir effect (absent in the mean-field description) results in the
slower 1/7 decay at r > 6€.

In the limit # — oo, one finds the simple explicit form
4 I -
V(r)|11—>oo = gﬁgn0§ + Egnor for r < e, (4)

where the potential is linear, corresponding to a constant
attractive force acting between the impurities. This is
because for strong repulsion the Bose gas is completely
expelled in between the impurities, as long as r < z€ and
the attractive force results only from the pressure of the
Bose gas outside of the pair. This is further illustrated in the
Supplemental Material [54].

In the BO limit of massive impurities, the effective
interaction potential can be accurately obtained in QMC
simulations. In Fig. 2 we compare our analytic predictions
for repulsive impurity-boson coupling, # > 0, with QMC
data and find excellent agreement within a few-percent
margin. Unless stated otherwise, we used N = 100 bosons
in the QMC simulations. While lowest-order perturbative
theory predicts the same interaction strength in repulsive
(n > 0) and attractive cases (n < 0), nonperturbative
approaches show that V(r) is substantially stronger for
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attraction [see Fig. 2(b)]. This can be qualitatively under-
stood, as the maximal density defect produced is limited in
the repulsive case by full depletion, while it is unlimited in
the attractive case. This makes numerical calculations in the
attractive case more challenging.

Bipolaron of finite impurity mass.—The BO approxi-
mation applies to infinitely heavy impurities and becomes
increasingly inaccurate for light impurities. The leading-
order modification is the Born-Huang diagonal correction,
V(r) = V(r)+ W(r) [62,63]

W) =7 [ dxlooloP 5

where ¢y(x) is the mean-field wave function in the
presence of two impurities at (fixed) distance r. W(r)
accounts for the dependence of the background-gas wave
function on the impurity coordinates when calculating the
impurity kinetic energy. Including this term, the approach is
correct up to terms of order (m/M)>3/2. Since the derivative
of ¢y (x) with respect to r is analytically complicated, we do
not give an explicit expression for W(r). In Fig. 3(a) we
plot the total potential for # = 40 and different character-
istic mass ratios. Note that the finite impurity mass enters
here in two ways, through the reduced healing length & and
by the Born-Huang term W(r). A prominent feature is the
emergence of a local maximum at distance 7,,,, =~ 7€ when
W(r) is included. As discussed in the Supplemental
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FIG. 3. Interaction potential for mobile impurities. (a) Mean-

field potential including Born-Huang correction for different
mass ratios. (b) Total interaction potential U(r) from QMC
simulations for the mass ratio M = 3m, but 7 - oo and different
Lieb-Liniger parameters. Arrows point to analytical predictions
of maxima ry,, = 7& = 7/+/2m,u, where we used the equation
of state for x4 from Bethe ansatz [64].

Material [54] this maximum appears only for strong
impurity-boson coupling, i.e., if 73 nyé. Since for large
values of r, W(r) decays faster than V(r), the total potential
remains attractive at large distances.

While for an infinite impurity mass, the interaction
potential can be obtained directly in QMC simulations
from the ground-state energy, its estimation is more delicate
for finite values of M and involves the impurity-impurity
correlation function, g;;(x). Here the degrees of freedom of
the gas are integrated out and /g;;(x) is interpreted as a
wave function of the effective two-impurity Schrodinger
equation. The effective potential is proportional to

Vi (X)]"/\/gii(x), for details see Supplemental

Material [54]. The large statistical noise arising from

division by +/g;;(x) does not allow one to unambiguously
identify a local potential maximum in a weakly interacting
gas, y < 1. The maximum conjectured by the analytic
theory is, however, clearly seen in the regime of strong
interactions, y 2 1, and although being outside the range of
validity, its position is reasonably well predicted, see
arrows in Fig. 3(b). Note that, in the limit of a Tonks-
Girardeau gas [65], y — oo, the maxima coincide with the
first maximum of Friedel oscillations [66] at nyr = 1 and in
a super-Tonks-Girardeau gas would correspond to quasi-
crystal lattice spacing. The attractive polaron interactions
can lead to bound bipolaron states. In one dimension, at
least one two-body bound state exists if the Fourier trans-
form of the interaction potential at zero momentum is
negative. We calculated the bipolaron energy of the lowest
bound states for repulsive and attractive impurity-boson
couplings with and without the Born-Huang corrections
and compared the results to QMC simulations. While an
attractive contact interaction only allows for a single bound
state, here several ones are possible due to the finite
extension of the effective potential. Note, however, that
the first excited state of two bosonic impurities, mappable
to the ground state of two fermions, becomes bound only
above a critical interaction strength #,.. In Fig. 4 we plot the
energies of the ground and first excited states of the
bipolaron as a function of 7 = gg/g for a Bose gas with
Lieb-Liniger parameter y = 0.125 for repulsive and attrac-
tive interactions. Since the effective interaction potential is
unbounded in the attractive case, much larger bipolaron
energies are obtained for 7 — —oo. Once the Born-Huang
corrections are included, an excellent quantitative agree-
ment is found for mass ratios as small M/m = 3. As shown
in the Supplemental Material [54], the predictions become
less precise if the boson-boson interaction is increased, but
even for y = 1, the discrepancy is below the few-percent
level for 7 <1 and saturates below 15% for n — oo.
The bipolaron energies are in the same order as typical
single-polaron energies and in the strongly repulsive
regime grg >> gnoé they are comparable to the energy of
a dark soliton E ~ Anyc. For the experimental data of
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FIG. 4. Comparison of ground- and first excited-state energies
of bipolarons with QMC results (dots) for different mass ratios
m/M and weak-to-moderate boson-boson coupling y = 0.125.
Dashed lines correspond to BO potential V(r); solid lines include
Born-Huang correction V(r) + W(r). The red curves correspond
to attractive impurity-boson interaction (scaled by 0.01) and all
others to repulsive. The purple line is the ground-state energy for
fermionic impurities (i.e., first excited bipolaron state, scaled by
1.2), where the vertical line marks the interaction strength 7, ~ 3,
above which the two fermions form a bound state, calculated
from the mean-field potential. The inset (3 = 30; M = 3m)
illustrates the corresponding impurity wave functions in green
(purple) for bosonic (fermionic) impurities, as well as V(r) +
W(r) (black).

Ref. [26], where ny ~ 7um~! and ¢ ~ 3.4 mm/s, the latter

corresponds to temperatures of 7' = E/kp ~ 240 nK.
Conclusions.—We presented a detailed study of bipolar-
ons and polaron-polaron interactions in ground-state 1D
Bose gases. We have developed a semianalytical theory
applicable for weakly interacting bosons and valid for
arbitrarily strong impurity-boson interactions. As opposed
to solid-state systems, where impurities couple only to
collective excitations, the high compressibility of the Bose
gas makes it necessary to take into account the action of the
impurity to the quasicondensate. This was done by expand-
ing the quantum field of the bosons around a deformed
quasicondensate [53]. In this way the density of phonons
created by the impurities remains small also for strong
impurity-boson couplings and phonon-phonon interactions
can be disregarded. We derived the short-range potential
from analytic mean-field solutions in BO approximation
and found excellent agreement with QMC simulations.
In the limit of strong impurity-boson interactions,

gis/g9>1/4/2(m,/m)y, the potential deviates substan-
tially from the perturbative exponential form and attains a
linear short-range dependence. When lowest-order correc-
tions to the BO result are included, the potential becomes
nonmonotonic and attains a local maximum at a distance of
7E. As the interactions in the gas are made stronger, the
height of the peak is increased and its position moves
toward the first maximum of the Friedel oscillations.
Comparison with QMC simulations shows that the analytic
model provides a precise prediction for bipolaron energies

for bosonic and fermionic impurities. Thus, the mean-field
description beyond the Froehlich model constitutes an
excellent basis for the analysis of nonequilibrium and
many-body properties of Bose polarons. Going away from
equilibrium, e.g., by applying periodic drive or similar
Floquet techniques, will open new avenues to modify
interactions of impurities mediated by a many-body
environment with applications to fields such as high-T.
superconductivity and others. For this it is important to
have tractable theoretical tools at hand. The application of
our approach to the nonequilibrium physics of interacting
polarons will be the subject of future work.
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Note added.—Recently, we became aware of a recent
related work on bipolarons in the limiting case of infinite
impurity masses, using a different approach [67]. The
conclusions are in agreement with ours in this limit.
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A. Quantum Monte Carlo simulations

In order to obtain non-perturbative results we resort to the diffusion Monte Carlo method. It allows us to find the
properties of a many-body system numerically, starting directly from the microscopic Hamiltonian which we take in
the following form (h = 1)

. N 1 82 N Ny 1 82 N N
H:—;%aix?-f—;g(s(l‘z—x])—;maxzz+Z;QIB6(3:1_X])7 (1)

where z; are positions of N bosons and X are positions of Ny impurities. The simulation is performed in a box of
size L with periodic boundary conditions.

The diffusion Monte Carlo (DMC) method is based on solving the Schrédinger equation in imaginary time. The
contributions from excited states are exponentially suppressed for large propagation times and one is able to extract
the ground-state energy exactly. The convergence is enhanced by using an importance-sampling technique in which
the Schrédinger equation is solved for the product of the wave function and a guiding wave function which we take in
the Jastrow pair product form

N N

N
Yr(xy, - an; X1, Xy = HfBB(iL‘i*CL']‘)HHfBI(”ﬁi*Xj) (2)

i<j i=1j=1

The Jastrow terms are chosen in such a way that when two bosons (or a boson and an impurity particle) meet, the
delta-pseudopotential present in Hamiltonian (1) induces a kink in the wave function of a strength proportional to g
(or gig). This is done by using at short distances the two-body scattering solution fgg(z) = Apgp cos(kpp(x — Bgp)),
|z| < Rpp which satisfies the Bethe-Peierls boundary condition, ff(0)/fss(0) = —1/app where app is the s-
wave scattering length. At larger distances this solution is matched with the long-range asymptotic obtained from
hydrodynamic theory, fpp(x) = sinl/KBB(mL'/L) for Rpp < |z| < L/2. The parameters App, Bpp, Kpp are chosen
from the Bethe-Peierls boundary condition at zero distance, the continuity conditions for the function and its first
derivative at the matching distance Rpg, while the periodic boundary condition ff5(L/2) = 0 is automatically
satisfied. We consider a similar structure of the boson-impurity Jastrow terms fpr(z). Here the parameters Rpp,
Rpr and Kp; are optimized in variational calculations by minimizing the variational energy. Kpp(z) has the meaning
of the Luttinger liquid parameter and its value is exactly known from Bethe ansatz.

The calculation of the effective impurity-impurity interaction potential is performed differently in the case of an
impurity of an infinite or finite mass:

infinite impurity mass — In this case the interaction potential is calculated from the ground-state energies of the
system with two impurities, Fs, at positions X; and X5; and with no impurities Ey according to

V(X2 — X1) = E2 — Ey. (3)

The actual dependence on the relative distance between the impurities is obtained by repeating the calculations
for different values of X5 — X;. Each separate energy, Fo and Fyp, corresponds to the ground-state energy of the
corresponding system and the DMC method allows exact calculation of such energies.

finite impurity mass — Here we calculate the impurity-impurity correlation function ¢;;(X;1 — X2) and interpret it
as the square of wave function of the two-impurity solution. By doing so we effectively integrate all degrees of freedom
associated with Bose particles. The ground-state wave function 1;;(X) = 1/g::(X) > 0 obtained in this way satisfies
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the two-impurity Schrédinger equation

~ e ) + VX)) = Bibu(X), ()
where p* is the reduced effective polaron mass. Note that we here assumed that the mediated impurity-impurity
interaction can be described as an effective interaction V(X)) of two well-defined quasi-particles. This is justified for
heavy impurities or weak coupling but ignores the possibility of an effective distance-dependent polaron mass. The
excellent agreement between analytic calculations of the bipolaron binding energies based on this assumption and
QMC data shows that this assumption is justified also for smaller mass ratios and in the strong interaction limit.
Here E;; = E5 — Ey is the bipolaron binding energy, and V(X) is the unknown effective interaction potential, which
can be obtained from Eq. (4) according to

1 (Vgu(X))"
21 \/gii(X)
That is, the bipolaron binding energy F;; provides a vertical offset in V(X) while the reduced effective mass p*

“stretches” the interaction potential vertically. The actual values of E;; and p* are not important for observing the
predicted non-monotonous behavior, so for simplicity we use the bare impurity mass pu* = M/2.

B. Single Bose polarons on a 1D ring

The physics of single polarons in infinite one-dimensional Bose gases has been studied in Ref. [1] by assuming small
quantum fluctuations on top of a deformed quasi condensate. We here illustrate the quantitative accuracy of this
theory by comparison with quantum Monte Carlo simulations and extend the discussion by considering effects from
the finite size of the 1D Bose gas.

Analytic solutions of the mean-field equations in the LLP frame were found and quantum fluctuations were taken
into account in the lowest order by solving the corresponding Bogoliubov-de Gennes equations in Ref. [1]. While the
agreement with QMC data for the polaron energy showed very good agreement, the predictions for the polaron mass
m* had a different asymptotic for n — oo as the QMC simulations. This discrepancy is a finite-size effect (QMC
calculations have been performed with N = 50 particles) which is much stronger in the polaron mass as compared to
the energy. Indeed, if a finite number of bosons is considered on a ring then the polaron mass is bounded from above
by the total mass of the bosons.

Notably, the finite-size corrections can be correctly predicted in the mean-field theory by fixing the total number
of particles rather than the condensate density far away from the impurity. In Fig. 1(a) we have shown a comparison
of the polaron energy for different system sizes and as a function of the impurity-boson coupling strength n obtained
from mean-field solutions and QMC simulations. One recognizes an excellent agreement. Increasing 7, more and more
bosons are expelled from the immediate surrounding of the impurity which leads to an enhancement of the boson
density ng in the regions far away from the impurity. This in turn increases their mean-field energy oc gna¢.

a)

N =10 v =0.125

4
¢« N=2€0 M =3m

N = N =40

v

Mol » N=100

102 10~ 10° 10! 102
n n

FIG. 1. Polaron (a) energy and (b) mass for a gas on a ring for different number of bosons. Symbols, QMC data; lines,
predictions of the analytic theory.
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As can be seen from Fig. 1(b) taking into account finite-size corrections also leads to a saturation of the effective
polaron mass in the infinite coupling limit in excellent agreement with the predictions of QMC simulations.

We note that contrary to the 3D geometry where the finite-size correction due to periodic boundary conditions is
an artifact, in 1D geometry periodic boundary conditions are physical and can be observed in cold gas experiments in
a ring-shaped trap. Here qualitative new effects can arise if the relevant length scales, e.g. the reduced healing length
&, become comparable to the system size L[2].

C. Details of the mean-field solution

Using a Born-Oppenheimer and a mean-field approximation, one can derive the non-linear Schrédinger equation
which determines the ground state of the Bose gas from the many body Hamiltonian (see Eq. (2) in the main text):

2

~ 2 4 glge(a) - u+gIB(a<w—r/2>+6(x+r/2>)}¢o(x>:o. (6)

2
This non-linear differential equation can be solved semi analytically using the Jacobi elliptic cd function [3].

+1
\/ 2 d<_L V) lz| < r/2
V—HC ’
§\/11—1u

tanh (%) |z| > r/2,

$o(x) = V/no (7)

where the upper (lower) sign corresponds to n = gig/g > 0 (n < 0). The chemical potential in mean-field approxima-
tion is given by u = gng, where ng is the particle density far away from both impurities. In the thermodynamic limit
one has ng = n = N/L. The parameter x, is chosen such that the wave function is continuous at x = 4r/2, while
v =v(r,n) is determined by the implicit relation in the main text and ensures the correct jump in the first derivative
of the wave function, enforced by the double delta potential in Eq. (6).

< —7 1.00 sy
)
= 3
0.75 =
g 70
~ —
04503 § 1
< Z
0.25 0
30
_20
0.00 n/no€
10
6 8
0 ¢ 2 4
/€
FIG. 2. Bipolaron density n(z) for different distances r ) L i )
between the impurities and fixed interaction strength n = FIG. 3. Effective potential including first-order correction
20noé. to Born-Oppenheimer for mass ratio M = 3m

The density is plotted for two strongly interacting impurities, n = 20no€, in Fig. 2. For two impurities that are far
away from each other, r > £ = 1/y/2gngm,, the density profile is well approximated by the wave functions of two
separated impurities [1]. If the distance decreases to about r ~ 7€ we find a sudden reduction of the boson density
in between the impurities and for a smaller distance all bosons are pushed out of this space. The distance r/€ ~ 7
at which this depletion takes place is only an approximation for finitely repulsive impurities, but is exact for infinite
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repulsion 17 — co. The parameter v is in this limit determined by

v ’ =0 forr<mwé
n—00
K(u)\/l—i-u’ =L for r > w¢, (8)
n—oo  2&

where K (v) is the complete elliptic integral of the first kind. Inserting this into the mean-field wave function, Eq. (7),
shows that the condensate density is totally depleted in between the two impurities for » < w€. In the next step the
Born-Oppenheimer potential can be calculated as the energy of the mean-field wave function Eq. (7).

g L/2
Vo) =gt~ 5 [ on(w)tde ~ Ealom = 0) )
—LJ2

where the extensive mean-field ground state energy Eo(gig = 0) of the Bose gas without impurities is subtracted. In
general this evaluates to Eq. (3) in the main text, but the expression can again be simplified for infinitely repulsive
impurities, especially the short-range potential in the limit n — oo reads

%\/ﬁé—}—%r for r < €
V(r =gni{ , - E —5 4 2v + 312 10

where F(v) is the complete elliptic integral of the second kind. The linear short-range potential is caused by the
bosons being expelled from the space in between the impurities. The bosons outside of this space therefore push the
impurities towards each other with a constant force, which is equivalent to the linear potential. The potential starts to
deviate from the linear slope as soon as the particle density in between the impurities increases. For a large distance
r > £ between the two impurities we find a exponentially decaying potential which is for repulsive interaction given

by
_ 22 — 2 Jon/E
V(r) _=2F; — 128v2 gng¢ = <,/1 + 02 /8n3€2 — 1) e Ve, (11)
n>0,r>& n

where Ej is the constant mean-field energy of a single polaron [1].
The first order Born-Oppenheimer correction

Wiy =57 [ delon(a)® (12)

accounts for the contribution of the condensate wave function, which depends on the impurity coordinate, when
calculating the kinetic energy of the relative motion of the impurities [4, 5]. Since the derivative of the wave function
¢o(x) (7) with respect to the distance r is analytically difficult, we do not give an explicit expression. A very prominent
effect of this correction is the emergence of a local maximum in the two-particle potential Fig. 3. It appears only
for strongly interacting impurities 7 > ng€, when the deformation of the quasi-condensate is substantial. For small
values of r, where the quasi-condensate in between the impurities is depleted, the correction is only a small constant.
For a distance r ~ 7€ the density in between becomes nonzero again, and grows rapidly when further increasing the
distance r, leading to a large correction. When the impurities are far apart, the contribution of the Bose gas to the
kinetic energy of impurities is small again, which results in a local maximum of W(r) at the intermediate distance.
Since the relative kinetic energy of the impurities scales inversely with the impurity mass M, the potential correction
also decreases with increasing value of M, which is shown in Fig.3a of the main part.

D. Bipolaron binding energy for attractive interactions

For repulsive impurity-boson interactions the two-particle potential approaches an asymptotic value with the linear
short-distance behavior given in Eq. (10), when n — oo. The bipolaron binding energy thus saturates as can be
seen in Fig. 4 of the main text. This is different in the attractive case, n < 0, since more and more bosons can be
pulled towards the impurities. Thus the bipolaron binding energy grows unlimited for |n| — oo. This can be seen
in Fig. 4, where we have plotted the theoretical predictions resulting from the effective potential with and without
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BO corrections and compared them to QMC simulations. As one can see, the results are in a perfect quantitative
agreement. Note that the discrepancy between Np = 20 and Np = 100 bosons is a finite size effect which becomes
sizable for strong interactions, |n| > 10. It has a direct physical relevance in a one dimensional system, since periodic
boundary conditions can be realized in experiments using a system on a ring trap. The QMC data for Ny = 5 impurities
illustrate that a multi-impurity bound state can form in the case of an attractive impurity-boson interaction with a
rapidly increasing binding energy.
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—400
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FIG. 4. QMC ground state energy of a system containing Ny bosons and N7 impurities interacting attractively with each other.
The solid (dashed) line is the MF prediction of the bipolaron energy including (excluding) the first order BO correction in the
thermodynamic limit.

E. Effect of strong boson-boson interactions

The semi-analytic theory presented in the main text is valid for arbitrarily large impurity couplings but is limited
to weak boson-boson interactions, corresponding to small Lieb Liniger parameter v. In Fig. 5 we have plotted the
bipolaron binding energies for strong boson-boson interactions (y = 1) for different impurity-boson mass ratios as
function of the impurity coupling. While there are increasing deviations from exact numerical QMC values, the
agreement is still rather good for n S 1.
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FIG. 5. Comparison of ground state energy of bound bipolaron and QMC for different mass ratios m/M and strong boson-boson
coupling v = 1. Solid (dashed) lines correspond to theoretical predictions with (without) BO corrections and the dots denote
numerical values obtained from QMC simulations.
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4 Controlling superfluid flows using dissipative
impurities

Martin Will, Jamir Marino, Herwig Ott, and Michael Fleischhauer,
SciPost Phys. 14, 064 (2023).

In contrast to Chapters [2|and |3| [P1, [P2|, which focused on a constant and coherent impurity-
boson interaction, this part discusses the impact of a temporally fluctuating coupling constant.
It demonstrates how a noisy point contact can be used to control currents within the Bose gas.
The impurity-boson coupling is modeled using a Markov Gaussian white noise process 7(t)
with mean 7)(t) = 0 and variance 7(t)n(t') = §(t — t’). This noise term is multiplied by a local
potential V(z) o /o, where o characterizes the strength of the noise. Consequently, the
Equation is generalized to

2

(1) = [~ 22— ivd + gl6(e, 0P ola, 1) di + V() dla, o dW.  (41)

It is a Stratonovich stochastic partial differential equation , where dW = n(t)dt is an
infinitesimal Wiener process [106]. For a finite impurity mass M, the noise causes a heating
of the impurity, resulting in instabilities in the system. Hence, this chapter focuses on the
case of an infinitely heavy impurity M — oo at a fixed velocity v, or equivalently, a stationary
impurity subject to an externally driven current.

The noisy impurity scatters particles from the condensate into highly excited modes, leading
to an incoherent current of particles flowing away from the noise contact. The effect on the
condensate is, therefore, similar to a localized particle loss, which was studied in Refs. |79}
82]. A coherent particle current towards the noise source emerges to counteract this effective
particle loss. The strength of the induced coherent current is depicted in Figure ) as a
function of the impurity velocity v and the strength of the noise 0. We identify three dynamical
regimes, depending on whether the current increases or decreases as the noise strength varies.
In the linear response regime (I), the current increases monotonically with the dissipation
strength 0. However, because the local speed of sound bounds the velocity of a coherent
current, the system transitions into the Zeno regime (II) at a critical noise strength. In this
regime, a grey soliton (a local density depletion) forms at the noise contact, reducing the
scattering rate and the strength of the induced current. The critical noise strength is lowered
when an externally driven current is present. This effect is modeled analytically in Appendix[C]
of this publication [P3]. At a finite velocity v, another regime (III) exists, where the impurity
periodically emits solitons. In the case of a strong dissipation, the particle density at the
impurity would drop to zero, obstructing any particle current. However, the externally driven
current forces particles to pass the impurity. These effects compete, leading to instabilities
and the continuous emission of solitons. As a result, the average scattering rate and particle
current increase again.

In the second part, the theory is extended to a pair of point contacts at rest, following the
approach of Chapter |3| [P2]. Both contacts induce currents in the condensate that influence
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Figure 4.1: a) Phase diagram of a noisy point contact of strength o in an externally driven
current at velocity v. Plotted is the strength of the current induced by the noisy impurity. It
is averaged over an interval in space and time, see the publication for details. The red
line marks the analytically estimated transition between linear response I and Zeno regime II.
The white line is the numerically determined transition between Zeno II and soliton regime
ITII. b) Coherent current between two point contact of strength o, and o;. The inset shows
the current as a function of the difference o_ and sum o, /gn¢ (different colors) of the two
noise strengths. It is rescaled to the density ng and healing length &, = 1/1/2gngm of the gas
between the contacts. The black line is the current induced by a single contact.

each other. As a result, the same three dynamical regimes are identified as in the case of a
single contact in an externally driven current. The coherent current between the two contacts
is displayed in Figure ), as a function of the individual noise strengths of the two contacts
o, and o;. It is anti-symmetric since exchanging the two noise strengths leads to an inversion
of the current. When the sum o, = o, + 07 is small compared to gn&, where { = 1/,/gnm is
the healing length, both contacts are in the linear response regime. Consequently, the coherent
current between the contacts equals the sum of the currents induced by the two independent
contacts. This behavior is illustrated in the inset of Figure ), where the current depends
only on the difference o_ = o, — g7 for a small sum o, and is equal to the current created by
a single contact. However, when o is larger, at least one of the contacts is in the soliton or
Zeno regime. This results in a different slope and a non-monotonous dependency of o_.
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Abstract

We propose and analyze a protocol to create and control the superfluid flow in a one
dimensional, weakly interacting Bose gas by noisy point contacts. Considering first a
single contact in a static or moving condensate, we identify three different dynamical
regimes: I. a linear response regime, where the noise induces a coherent flow in pro-
portion to the strength of the noise, II. a Zeno regime with suppressed currents, and III.
a regime of continuous soliton emission. Generalizing to two point contacts in a con-
densate at rest we show that noise tuning can be employed to control or stabilize the
superfluid transport of particles along the segment which connects them.
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1 Introduction

Quantum interference plays a key role in mesoscopic transport phenomena where impurities
or dots are employed as ‘shunts’ for transferring particles, energy and information without
degrading phase coherence in the process [1-3]. In recent years a novel route to investigate
this field of quantum transport emerged by employing ultracold atoms confined by optical or
magnetic potentials [4]. The ability to control and manipulate the effective dimensionality
and geometry of the systems, the possibility to tune the inter-particle interaction strength, to
add or eliminate disorder and to choose between fermionic or bosonic quantum particles made
ultracold atoms an ideal testing ground for quantum transport phenomena [5,6]. In these sys-
tems effects are accessible which were out of reach or very challenging to investigate in solid
state. E.g. the periodic velocity change of a quantum particle moving in a lattice under the ac-
tion of a constant driving force, known as Bloch oscillation, is difficult to observe in condensed
matter systems due to impurity scattering but has beautifully been demonstrated with ultra-
cold atoms in optical lattices [7,8]. Transport experiments of ultra-cold Fermi atoms through
point contacts [9-11] verified the quantization of conductance predicted by the Landauer the-
ory of transport, which has previously been observed only in electronic systems. Both bosonic
and fermionic superfluids can be created using ultra-cold atoms and frictionless flow has been
observed [12,13]. Persistent currents in ring geometries have been realized in atomic super-
fluids [14,15] and cold-atom analogues of Josephson junctions have been constructed [16,17]
with the potential for an atomtronic analogue of a SQUID. Finally the coupling between par-
ticle and heat transport has been observed in fermionic cold atoms providing a cold-atom
analogue of the thermoelectric effect [18]. However, despite of all experimental advances in
the field, the creation and precise control of superfluid currents remains a challenge in atom-
tronics. Besides moving potential barriers or time-dependent artificial gauge fields, currents
are typically generated by a difference of chemical potentials between the ends of a channel,
i.e by fixing “voltage” rather than “current”.

In the present work we suggest and analyze a different method to create and manipulate
the superfluid flow in a one-dimensional quasi-condensate of Bose atoms, see Fig. 1. Impor-
tantly here we control the superfluid current directly rather than fixing chemical potentials. In
particular we make use of the interaction of the condensate with quantum impurities that are
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Figure 1: Scheme for controlling superfluid flow in a one dimensional interacting
Bose gas using one a) or two b) noisy impurities, with or without an external current
atvelocity v. ¢) Induced superfluid current at a noisy point contact of noise strength o
in a moving condensate at velocity v. For weak noise the current grows monotonically
with o, but for stronger noise the system enters a Zeno regime, where the current
decreases. For the two largest velocities the system enters a regime of dynamical
instabilities beyond a certain value of o, where the current is no longer stationary
and thus not shown.
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coupled to the Boson’s density with a fluctuating, i.e. noisy strength. Analyzing the system we
identify different dynamical regimes, including a linear response regime, a Zeno-regime [19]
with negative differential current to noise-strength characteristics, and a regime with dynami-
cal instabilities characterized by continuous soliton emission. Impurities in interacting systems
have been instrumental to develop our understanding of the extended pattern of correlations in
quantum many particle systems, by employing them as probes [ 20-22], tunable perturbations,
or even seeds for entanglement [23]. In unitary quantum dynamics, examples range from the
‘catastrophic’ effect of a scattering potential intruding in a Fermi sea [24, 25], to strongly en-
tangled magnetic impurities coupled to fermionic or bosonic reservoirs, or the dressing of
static and moving particles in Fermi gases or Bose-Einstein condensates as it occurs in polaron
formation [26-34]. The last decade has also witnessed a growth of attention towards the dis-
sipative counterpart of the problem of quantum impurities embedded in interacting extended
quantum systems [11,35-53]. Pioneering results of one decade ago illustrates e.g. the action
of a localized dissipative potential on a macroscopic matter wave by shining an electron beam
on an atomic BEC [54,55]. Atomic losses induced by local dissipation were monitored as a
function of noise strength, providing a proxy for a many-body version of the Zeno effect. The
stabilisation of dark solitons by engineered losses has been studied in [56]. Fluctuations in
the condensate can build up strong correlations with localized dissipation, resulting in a sup-
pression of transport at large noise strength which can be regarded as non-equilibrium phase
transition [57,58].

In this work, we illustrate how density rearrangements provoked by local dephasing can
be utilized to control coherent superflows in a one-dimensional Bose condensate. Specifically,
we consider a static or uniformly moving condensate coupled to a noisy local impurity. The
noisy point contact acts as a source of incoherent, i.e. non-condensed atoms, which due to
total particle-number conservation creates a superfluid flow towards the impurity. The super-
fluid flow increases monotonically with growing noise up to some critical value at which the
system becomes dominated by the quantum Zeno effect which leads to a reduction of trans-
port corresponding to a negative differential current - noise characteristics. We furthermore
demonstrate that the archetypal effect of transport suppression due to Zeno effect is drastically
altered in a moving rather than a static condensate. In particular, we observe a lowering of the
critical threshold of noise strength for entering the Zeno regime when the background speed
of the condensate is increased. This is shown in Fig. 1c where the onset of the Zeno regime
drifts towards smaller values of dissipation strength. As outreach, we demonstrate complete
tunability of a supercurrent in a static condensate by a pair of noise point contacts.

2 Model

We consider a homogeneous one-dimensional Bose gas with weak repulsive interactions
(g > 0) and boson mass m. We study the effect of a noisy point contact in a Bose gas mov-
ing relative to the impurity with fixed velocity v. The impurity-BEC coupling is modeled by a
Gaussian white noise process 1(t), with mean 7(t) = 0 and variance n(t)n(t’) = 6(t — t’),
multiplied by a local potential V(x+vt), whose profile will be specified subsequently. Since we
consider a weakly interacting condensate [59], quantified by a small Lieb-Liniger parameter
y = gm/n < 1, where n is the average boson density in the 1D gas, we apply a phase-space
description of the quantum Bose field using the Glauber-P distribution [60]. Due to the action
of the noisy point contact, we cannot ignore fluctuations even in the limit of a highly occu-
pied condensate mode at very low temperatures. Within the phase space approach normal-
ordered correlations of the Bose field operator v)(x, t) are given by stochastic averages of a
c-number field 1(x, t). The time evolution of 1 (x,t) in the rest frame of the moving Bose
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gas is then determined by a Gross-Pitaevskii-type equation with an additional stochastic term
(SGPE) [61,62]

2
idy(x,0)=] - j—xm +glyp(x, O [y (x, ) de + V(x +ve)p(x, £) odW . M

Here dW = n(t)dt is a infinitesimal Wiener process [60]. The delta-correlated white noise
1(t) results in physical systems from colored noise in the limit of small correlation times.
As has been shown in [60] the SGPE Eq. (1) becomes in this limit a Stratonovich stochastic
differential equation, which is denoted by the symbol “o”. In order to gauge away the explicit
time dependence of the potential V(x+vt), we apply a Galilean transformation to the reference
frame where the point contact is at rest. This results into a SGPE with static potential and with
a spatial gradient term proportional to v:

2

ide(x,0)=] - za—xm —iv 3, +glp(x, O] p(x, D dE + V() p(x, 1) 0dW . (2)

¢ (x, t) describes the average Bose field in the rest-frame of the impurity, which includes both
a quantum mechanical average and one over classical fluctuations induced by the noisy point
contact. We refer to ¢ as the coherent amplitude of the Bose field.

It should be emphasised that the noise in Egs. (1) and (2) is generated externally, e.g. by a
fluctuating laser field, which is different to the SGPE derived e.g. in [63], where the noise is
induced by the interaction of a thermal cloud with the condensate at finite temperature.

3 Noisy point contact in a static BEC

We start our analysis by reviewing the physics of a single point contact placed at x = 0 in a
static BEC (v = 0). The effect of the noisy impurity on the Bose gas shares at a first sight some
similarities with the physics of local losses in Bose wires [54, 55, 64, 65]: they both scatter
particles out of the macroscopically populated ground state ¢ (x, t). However, the dissipative
impurity considered here conserves the total number of particles, which is crucial for potential
applications in atomtronic devices. In order to compare with the dynamics resulting from local
losses, we first analyse the coherent amplitude 5 Therefore we consider the noise average of
the SGPE Eq. (2)

b I & S Y PR 3)
i =—22¢ +glpPe — SV(x)*¢.

While the fluctuating potential vanishes on average it does have an effect on the average
field ¢. This is because it is a multiplicative noise and the field ¢(t) at a given time depends
on the noise such that ¢(x,t)dW # 0 (Stratonovich calculus [60]). As a result of this, the
average field experiences an effective loss, which physically describes nothing else than the
scattering of particles out of the condensate into excited modes of the Bose gas, for more
details see Appendix A.

Eq. (3) matches the evolution of the noise-averaged amplitude subject to local particle loss
(cf. [54,55,64,65]) with the identification V(x)? = 205(x). We consider this potential as the
limit of a Gaussian potential V;(x)? = 20/ V2 exp(—x?/1?), with the length [ acting as a
regulator, such that V(x) itself is well defined. If [ is chosen smaller than the healing length
of the Bose gas & = 1/4/2gnm > [ the internal structure of the impurity potential becomes
irrelevant.
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As shown in [54, 55, 64, 65] the effective local loss in Eq. (3) will induce currents. This
can be seen most easily from the continuity equation of the modulus of the average field |¢|?,
which contains the coherent current

1 o
Jeoh = —Im(¢*3x¢) @)
m

Note that here the noise is averaged over the individual fields first and then bilinear combi-
nations are formed. j., is in general not equal to the average total particle current, which
is defined by deriving the continuity equation for ¢*¢ from the original SGPE, Eq. (2), and
performing the noise average afterwards. The total current reads

11—
Jrot = —Im(¢*0, ¢). (5)
m

We analyze both currents as well as their difference, which we refer to as the incoherent
current. It describes the flow of particles in excited modes of the Bose field created by the
local noise. To evaluate analytically the dynamics of Eq. (3) we assume that the nonlinear
term factorizes under average |¢ (x, t)|2¢ (x, t) =~ |¢p(x, t)|>¢(x, t); this approximation turns
out to be in excellent agreement with numerics provided the coherent state ¢ (x, t) describing
the mean-field dynamics of the Bose gas is macroscopically populated. We show the adequacy
of this approximation by solving the full SGPE Eq. (2) and evaluating the coherent |¢ (x, t)|?
and total density |¢(x, t)|2 (cf. with Fig. 2).

For weak dissipation the system is in a linear-response phase and the analytic solution of
Eq. (3) reads

¢(x,t) = /ng exp(—imo|x| —iut), (6)

(cf. also [64]). After switching on the local noise the system will assume this quasi-stationary
state within a spatial region which grows in time with the local speed of sound ¢y = 4/ gng/m.
The density of the condensate in this area is reduced to ny < n and the constant phase gradient
describes a coherent current

jCOh =—Nngo Sgn(x) > for o< O¢, (7)

flowing towards the point contact. As j.,}, is proportional to the noise strength o, the regime
is called “linear-response regime”. Here the chemical potential is u = gno + mo?/2.
Above a critical noise strength [64]
o, = gc = gﬁgn{, (8
3 3

the system crosses over into a Zeno phase [19], where the current ceases to further increase
with the strength of the dissipation. The critical point is reached when the velocity of the
coherent flow uy = j.n/no attains the local speed of sound. For o > o, a grey soliton (a
local density depletion of the size of the healing length [59]) forms at the position of the
point contact, cf. with Fig. 2b. The density reduction associated with the formation of the
grey soliton decreases the scattering rate at the point contact, which results in a reduction of
the coherent current, which in turn determines self-consistently the depth of the grey soliton.
As a consequence the functional dependence of the coherent current from the noise strenth
changes from a linear increase o to an inverse scaling:

2
Jeoh = —nogo sgn(x),  for o>o,. )

This is characteristic of the Zeno phase in extended systems [19]: at strong enough dissipation
transport across the dissipative impurity is impeded as a result of the frequent measurement of
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Figure 2: Snapshots of density close to a static noisy point contact in a) the linear-
response phase o = 0.2gn& and b) in the Zeno phase o = 8gné&. Solid lines are total
densities |¢ (x, t)|> while dashed lines are the coherent ones |¢(x, t)|?. The density
of incoherent particles is low. The insets show the coherent (dashed) and total (solid)
particle current. The point contact scatters particles out of the coherent state, leading
to a coherent current towards the noise contact and an incoherent counterflow, which
exactly balances the coherent flow. The dotted vertical lines mark the size of the
‘sound’ cone, moving at the average speed of sound ¢ = 4/gn/m. Colors match the
ones of the related density profiles evaluated at the same time.

the observable to which the noise couples at x = 0. Outside the depleted area (which travels
at the sound speed) the density ny < n remains constant.

In contrast to the case of local loss, the noisy potential conserves the total particle num-
ber, which at first glance seems at odds with a current of particles flowing towards the point
contact, while the particle density remains constant over time. Simulating the dynamics of the
total SGPE Eq. (2) one finds, however, that the total current vanishes in the area of constant
density, see insets of Fig. 2. This shows that the noisy point contact scatters particles out of the
condensate state, causing a coherent inward flow. At the same time it is a source of particles in
excited modes of the Bose field leading to an incoherent outward flow of particles. Since these
particles are removed from the coherent state, the noise affects the coherent amplitude of the
Bose gas similarly to a local loss. This means that a local non-unitary rearrangement of the
system generates a coherent superfluid flow. In the next Sections, we harness this mechanism
to engineer the coherent transport properties of the Bose gas by using purely incoherent point
contacts.

4 Noisy point contact in a moving BEC

In this section we generalize our results to a noisy point contact in an externally imposed
coherent current or equivalently to a noisy impurity moving at a constant velocity v relative to
the condensate. An important difference with respect to a static point contact is the emergence
of a third dynamical phase (which we label ‘phase IIT’ in the following), that is characterized
by the absence of stationary particle flows at the point contact. This phase occurs in addition
to the linear-response I and Zeno phases II. We characterize the phases by evaluating the
coherent current on the left and on the right of the noisy point contact; their difference is
equal to the change in the number of particles of the coherent fraction of the field and therefore
proportional to the scattering rate of particles off the dissipative impurity, cf. Appendix B Since
we work in the frame in which the point contact is stationary there appears an additional term
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Figure 3: a) Phase diagram of a noisy point contact of strength ¢ in a BEC moving
with velocity v. We plot the total coherent current flowing towards the impurity on
the left and on the right of the point contact, which equals the scattering rate of the
dissipative impurity. We average in space over the interval x € £[2,5]& and in time
over t € [10,20]/gn, where the intervals are chosen to be within the ‘sound’ cone,
but large enough to average over multiple oscillations in the dynamically unstable
phase III. The red line marks the estimated transition between linear response and
Zeno regime which agrees well with the local maximum for fixed v, see Appendix C
for details. The white dashed line marks the transition form the Zeno to the soliton
regime. The analytical result o, = 2¢/3 of the transition form normal to Zeno phase
at v = 0 [64] is shown by the black circle. b)-d) Density close to the noisy point
contact at different times. Shown are in b) the normal phase I for o = 0.2gn§ and
v =0.2c, in ¢) the Zeno phase II for 0 = 0.7gn& and v = 0.2¢; and in d) the soliton
phase III for 0 = 2gn& and v = 0.8¢c. The times marked in color are the same in all
three plots. Solid, dashed and dotted lines are chosen as in Fig. 3. The red dotted
line in d) is the profile of a grey soliton fitted to the simulated density.

in the expression of j..y

; 1 Can T o7
Jeoh = —1m($*0ch) +v §* . (10)
The scattering rate of particles out of the condensate and thus the total coherent current flow-
ing towards the impurity depends both on the velocity v of the point contact and on the noise
strength o as shown in Fig. 3a. We distinguish the three phases, depending on whether this
current increases or decreases as the noise strength changes.

4.1 Linear-response regime

Phase I, cf. with Fig. 3b, is akin to the linear-response phase of a static noisy point contact,
since the scattering rate increases with increasing dissipation strength, inducing an increasing
coherent current flowing towards the noise source. Due to the motion of the condensate
relative to the contact, the coherent currents on the left and on the right side are unequal in
magnitude. This results also in a different density on the left n; and on the right n, of the
point contact. Our numerical simulations show that, like in the static case, a quasi-stationary
state is established in an area growing over time, but with different velocities (¢;—v) for x < 0
and (c, + v) for x > 0. The two halves of the system are characterized by different velocities
for two distinct reasons: the speed of sound ¢; , = 4/gn; ,/m is different as a result of density
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differences on the two sides of the dissipative impurity, and the velocity v breaks the directional
symmetry in the 1D gas.

4.2 Zeno regime

Upon increasing the dissipation strength, the system undergoes a transition into the Zeno
phase II (Fig. 3c), however this occurs at a smaller critical value as in the static case. An
estimate for the crossover point can be obtained as follows: The transition to the Zeno regime
occurs when the local speed of sound c(x) and the velocity of the coherent current u become

equal
c(x) =\ L(X)=U(X)EM’ a1
m n(x)

at any point in the system. The reduction of the critical noise strength in a moving condensate
can then be traced back to two effects. First the coherent current is modified by to the back-
ground flow at velocity v. Second the local speed of sound is smaller on one side of the contact
when compared to the stationary case, because of the reduced density. The overall coherent
current in the system can therefore become supersonic already at a smaller critical dissipation
strength. As explained in detail in Appendix C one can derive an approximate expression for
the transition point by utilizing Eq. (11). The result is marked by the red line in Fig. 3a and
agrees very well with the observed local maximum of the current. As in the static case a grey
soliton forms in the Zeno phase II at the position of the point contact and the smaller density
leads to a decrease of the scattering rate with increasing dissipation strength. However, due
to the motion of the condensate relative to the point contact the coherent current cannot go
to zero but must always stays finite, allowing for the onset of a new phase III.

4.3 Soliton-emission regime

The minimum density of the grey soliton close to the point contact would drop to zero for
strong dissipation o > gn& obstructing any particle current at x = 0. However, the external
flow forces particles to pass the noise contact, which can no longer be facilitated by a grey
solition solution if o increases. This then leads to instabilities and a continuous train of solitons
is formed moving in the direction of the external current, see Fig. 3d. The system becomes
dynamically unstable, when the external current becomes so large that the condition for the
self-consistent formation of a grey soliton can not be fulfilled any more. The minimum density
in a stable grey soliton is related to the velocity u of the total coherent current passing it by
Nin/ Mo = U2/ cg [59]. A similar effect of a continuous creation of solitons also occurs in the
case of a constant repulsive potential in a moving condensate [66]. It happens when the Bose
gas density is locally reduced to an extent that a constant coherent current (superfluid flow)
cannot be sustained anymore. To verify that the moving density oscillations are indeed soliton
trains, we fit the analytic expression for a grey soliton wave function [59] to it, which agrees
well with the observed density, see red dotted line in Fig. 3d.

In summary, a moving Bose gas responds to a local noisy impurity like a stationary Bose
gas, resulting in a linear response I and a Zeno phase II with renormalized transition points
between the phases. The key difference is the formation of a soliton phase III, which only exists
in the presence of an external current, preventing the formation of a quasi stationary state close
the impurity and a constant current flow. Different from the Zeno regime the “shooting” of
solitons leads again to an increase in the time-averaged number of scattered particles with
growing dissipation strength.
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Figure 4: Phase diagram of a configuration of two noisy point contacts. a) Scat-
tering rate out of the condensate at the right point contact for impurity separation
r = 10&, plotted for different noise strengths o; and o,. The current is averaged over
time t € [25—35]/gn and space x € [—4.5,4.5]&; intervals are chosen as in Fig. 3a.
The dashed lines mark the border between different phases as in Fig. 3, calculated
by assuming a single contact in motion, see main text. b)-d) Density in the vicin-
ity of two dissipative point contacts at distance r = 10 at equal dissipation strength
0, = 0; = 0. Their positions are marked with the red dotted lines. Parameters are
chosen for both contacts to be in b) the normal phase o = 0.2gné&, c) the Zeno phase
o =.5gn¢& and d) the soliton phase o = 2.2gn&. Solid and dashed lines are chosen
as in Fig. 3.

5 Controlling superfluid flow with two noisy contacts

In this section we show how superfluid flow can be controlled using a pair of noisy point con-
tacts. Each contact creates a coherent current of particles flowing towards it, which is balanced
out by an incoherent one. After a time t = r/c, where r is the distance between the contacts,
the coherent current created by one reaches the other contact. Each of the two dissipative
impurities thus experiences an effective coherent flow generated by the other impurity, and
thus can sustain one of the three previously discussed phases. In the following we determine
the phase diagram of the wire depending on the noise strength of the left (o;) and right (o)
noisy contacts. Evaluating the resulting currents in between the contacts we will demonstrate
that a segment with two noisy defects at its edges, can act as a current shunt.

We assume the noises dW, and dW,; acting on the left and right impurity to be uncorrelated
dW,. dW; =0, such that the time evolution is determined by the SGPE

52
de(x, 1) =—i[—ﬁ + gl (e, D | p(x, )de —i /207 8(x +7/2) p(x, 1) 0 dW,
—i4/20,6(x—r/2) p(x,t) odW,.

We consider, in the following, a separation of the contacts larger than the healing length r > &;
the latter is, in fact, the minimum length over which a coherent current can be established [59],
and therefore a necessary requirement to apply the tools developed in the previous Sections.
The scattering out of the condensate at the right noisy contact is plotted in Fig. 4a for different
noise strengths. For a fixed noise strength of the left contact (o), the number of scattered par-
ticles at the right impurity grows upon increasing the noise strength o, in the linear-response
phase Fig. 4b, and then it shows Zeno physics above a critical value of o, see Fig. 4c. Upon

(12)
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further increasing the noise strength on the right point contact, the effect of solitons ‘shooting’
discussed in the previous Section sets in, leading again to an increase of scattered particles
when averaged over time; solitons move downstream towards the other point contact result-
ing in an oscillatory density patter in space and time between them (cf. Fig. 4d). We now show
that the critical thresholds for the dissipation strength of two contacts can be approximated
using the results for a single moving defect. Let us assume that the left contact is placed into
a initially static gas. This then leads to an onset of a coherent current, as discussed in Sec. 3.
We determine the velocity of this current by interpolating the results in Fig. 3a at zero velocity
(v = 0). The right contact is then placed into this background current; we further assume that
its presence will not affect the scattering rate at the left impurity and that the system near the
right impurity is determined by its own dissipation strength o, and the velocity of the coherent
background current. Under these assumption we can determine the system response following
the lines of Sec 4, and estimate the crossovers in the setup of a pair of noise contacts. These
crossover points are marked with the white dashed lines in Fig. 4a and we recognize that they
agree well with the observed extrema especially for small values of o;/gné&. This shows that
only the coherent current is relevant for characterizing the steady state of the system under
the noisy drive of the two impurities. For larger values of o; the assumption of a constant co-
herent background current created by the left impurity no longer holds and the scattering rate
out of the condensate at the left contact depends also on the noise strength of the right one.
This explains the poorer agreement of the numerical results with the above physical picture
for larger values of 0.

A possible application of the system of two noise contacts is the creation of a coherent
current in the space between them. We note that in the proposed scheme the current is con-
trolled directly and not via differences in chemical potentials. In Fig. 5 the coherent current
between the contacts, averaged over space and a finite time interval, is plotted as function
of the two noise strengths. Note that it is anti-symmetric since the exchange of the two in-
teraction strengths leads to a reversal of the current. For a small sum o, = 0, + 0; <€ gn&
both contacts are in the normal phase and the scattering rate of each contact is independent
from the noise strength of the other. The coherent current in between the contacts is therefore
the sum of two independent contacts. This is shown in the inset of Fig. 5, were the coherent
current is normalized to gn(z)i 0, With ny being the average density between the contacts, de-
pending weakly on o, and &, = 1/4/2gmn, is the corresponding healing length. For small
0, = 07+ 0, the normalized current depends only on the difference o_ = o, — o} and it is
equal to the current created by a single contact at dissipation strength o_. For larger o at
least one of the two contacts is not in the linear response phase, which results in a different
slope and a non monotonous dependency on o_.

6 Experimental implementation and perspectives

In this work we have revisited the Zeno crossover for particle currents traversing a moving
noisy defect. We have shown that the speed of the impurity can be used as a knob to boost
transport suppression. As a possible experimental implementation we envisage the use of noisy
in-situ potentials, to control superfluid flows. Such potentials can be realized with two-color
time-dependent optical potentials and tailored conservative potentials. We first note that it is
crucial to have a vanishing mean of V (x) for all positions x (see section 2. This is important in
order to avoid residual repulsive or attractive potentials, which interfere with the effect of the
dephasing. This condition can be fulfilled by using two laser beams, which are red- and blue-
detuned with respect to an atomic transition [67]. Both beams have to share the same spatial
mode, which can be ensured by guiding them through the same optical fiber. For the defect
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Figure 5: Coherent current between two noisy impurities as a function of the indi-
vidual noise strengths o, and ;. The current is averaged over time t € [25—35]/gn
and space x € [—4.5,4.5]&. The inset shows the coherent current as a function of
the difference o_ and sum o, /gné (different colors) of the two noise strengths. The
current is rescaled to the density n, and the healing £, = 1/4/2gnym of the Bose
gas inbetween the two contacts. The plot shows that the current does not depend
on o, for small o, < gn&. The black dashed line is the coherent current created
by a single stationary point contact at noise strength o_, which agrees well with the
two-contacts result at small o .

considered in this work, it is sufficient to use Gaussian beams, which are focues onto the atoms
with a high numerical aperture objective. To achieve a defect size, which is smaller than the
healing length (as assumed in this work), one has to find a proper combination of numerical
aperture (NA=0.4 or higher is necessary for most parameter settings), a short wavelength
(higher energy atomic transitions are the better choice as not much optical power is needed to
create the necessary potential height) and atomic density and interaction in order to enlarge
the healing length. In 1D (as considered here) or 2D configurations, the Rayleigh length should
be larger than the thickness of the sample in order to treat the impurity as independent of the
perpendicular direction.

Regarding the time dependence of the optical potential, a large bandwidth of the modu-
lation is another necessity. Modulating the intensity with acousto-optical modulators typically
results in a bandwidth of more than 1 MHz. This is much faster than any intrinsic timescale
(interaction energy, kinetic energy, potential energy, transverse confinement) of a typical ex-
perimental setting. The corresponding correlation time of less than 1us is therefore short
enough to provide an effective 6-correlated noise potential. In order to provide white or
colored noise in the defect, both laser beams have to be driven with an arbitrary waveform
generator, whose temporal signals are either inherently provided by the function generator or
are computer generated, providing the required correlation functions. We note that experi-
mentally, it is straightforward to generate much more complex correlation functions for the
defect potential, thus bridging noisy defects and Floquet driven defects.

Measurements of the superfluid density in a quantum gas experiment are always challeng-
ing since in most schemes it is the total atomic density which is imaged. In the case of 1D
systems, heterodyning with a twin system is the method of choice in order to access the mo-
tion of the superfluid as well as its amplitude [68]. To this end, one has to prepare a twin
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1D system aside with the system under investigation. Upon measuring, one lets both systems
interfere with each other and the fringe distance encodes the local velocity of the atoms, while
the fringe contrast encodes the amplitude of the superfluid density.

From the theory side, it would be interesting to extend the control of transport properties
through the segment in systems without a macroscopic condensate occupation. For instance,
studying the effect of two Markovian time-dependent noisy fields coupled to local densities
in an interacting fermionic wire. The non-interacting case could be solved exactly as for the
single impurity [69], while the RG-scattering theory of Refs. [70] could be used to assess
the role of strong quantum fluctuations in enhancing or eradicating the semi-classical effect
discussed in this paper. We expect that studying real time dynamics of the problem with
bosonization could serve equally well for this purpose. For what concerns the results disussed
in our work, we expect that adding quantum fluctuations on top of the macroscopic occupation
of the Bose gas, would not significantly alter the dynamics discussed in the paper. On one
hand, quantum effects would become sizeable only on times that are parametrically large in
the condensate occupation. On the other hand, the region traversed by the density waves
produced by the impurity can be regarded effectively as a driven-open systems and therefore
subject to decoherence: the energy is pumped into the system via the noisy contact (which
is held at infinite temperature) and dissipated by the ‘bath’ given by the rest of the system
which stays at zero temperature, till the heat front will reach it. The dynamics within the
‘sound’ cone will therefore wash out quantum fluctuations through decoherence as any other
open quantum system would. In a semi-classical quantum trajectory description it is in fact
impossible to distinguish the noise averaging used to derive the dynamics in our work, from
sampling over a probability distribution function given by the quantum fluctuations inherent
in the initial state: the trajectories sampled from the classical noise imprinted by the impurity
would quickly dephase those arising from quantum fluctuations.

Another interesting direction would consist in generalizing the setup of our work to inter-
acting quantum spin chains in view of applications to spintronics.
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A Derivation of the noise averaged SGPE

In the following we derive the noise average of the SGPE Eq. (12), which can be written as
do(x,t)=Al¢,¢*]dt +B[Pp]odW, (13)

where )

o
AL, ¢*) =i =5 —iva + glb (e, P [, 1), an
B[$]=—iV(x)$(x,0).

This equation is a Stratonovich stochastic differential equation, where the noise is corre-
lated with ¢ (x,t), so that B[¢]odW # 0. To evaluate the noise average we transform the
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Stratonovich into an Ito equation, where the noise and field are not correlated B[ ¢ ]JdW = 0,
see [60]. The Ito equation is then given by

o1 5
do(x,t) = {Alp, ¢*1+ EB[MWB[M}dHB[dJ]dW- (15)

The noise average results in the Gross-Pitaevskii equation for the coherent state ¢ (x, t)

d— 92 i _

—¢p=—i| — == —ivd,— =V(x)?*|p —i 2¢. 16

2 ® =i~ oh v~ V)PP —igéPd (16)
The complex potential shows that the local noise scatters particles out of the coherent state 5,
resulting in the incoherent current flowing away form the noise source.

B Coherent particle number

In this section we show that the jump in the coherent current between the left and right sides
of a noise contact is equal to the change in the number of particles of the coherent fraction
of the field. We start by deriving a continuity equation for the modulus of the average field
Neon(x, t) = $*$ from the noise averaged mean-field equation Eq. (16)

O Neon (36, £) + 0 Jeon(, £) = =206 (x) negp(x, t). a7

L/2 .
_2/2 dx nggp(x, t) is not
conserved. The local noise scatters particles out of the coherent state. This is follows from

integrating Eq. (17) over the whole system

Note that since the left hand side of this equation is nonzero N, =

L/2
Ncoh = J dx &, ncoh(x’ t)y=—o ncoh(O: t), (18)
—1/2

where the current term vanishes because we use periodic boundary conditions. Integrating
Eq. (17) again, but over a small interval around the impurity shows

€
Ajeoh = J dx axjcoh =—20 ncoh(o: t), 19

—€
where we used that n.,,(x, t) is constant close to the impurity in the long time limit, which
we showed by simulating the dynamics of the total SGPE Eq. (2). This yields

Neoh = Ajcoh - (20)

C Estimate of the transition point between linear response and
Zeno regimes

In the following we estimate the linear response to Zeno transition of a noisy point contact in
an external driven current of velocity v. We do so by deriving four equations containing the
local speeds of sound ¢; = 4/gn;/m and current velocities u; = j.op;/n; at the left (i =) and
right side (i = r) of the noise contact, which determine the crossover point.

The system undergoes a transition, once the current velocity is equal to the speed of sound
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Figure 6: a) Qualitative sketch of the density profile (i.e. local speed of sound) at
a dissipative point contact in a constant background current vn, within the linear
response regime. The size of the blue arrows indicates the strength of the current at
their position. b) Simulation of the coherent current in the linear response regime
(o0 =0.2gn&, v =0.2c and t = 20/gn). The two lines agree close to the contact,
since it induces equally strong currents on both sides.

¢; = |u;| on either of the two sides of the contact. For v > 0 the simulation show ¢; < ¢, and
|u;| > |u,|, see Fig. 6, causing the critical condition to be fulfilled first on the left side

c =u, 2D

which is the first equation we use. We determine the other three by analyzing the system in
the linear response regime and assuming that the conditions are still valid at the critical point.
Since the state in the depleted area is quasi stationary, the chemical potential

1 1
u=gn; + Emuiz—imvz, (22)
on both sides of the contact must be equal, from which the second equation is derived
1 1
2 _ 2
¢+ Eul c + zur (23)

For the third equation we utilize the numerical evidence, that the contact induces equally
strong currents on both sides, which is either added to or subtracted form the background
current vn, see Fig. 6b. This symmetry can be written as

Jeoh,r + Jeon =2vn = clzul + cfur =2vc?. (24)
At last we derive an equation for the difference of the currents, which is equal to the change in
the number of particles of the coherent fraction of the field N, see Eq. (20). We assume that
these particles are only removed from the ”transition area” in between the quasi stationary
state at density n; and the unperturbed area at density n. To estimate it we approximate the
density profile as being linear, as illustrated in Fig. 6a. This results in

. 1 1
Neh = — E(n —n)(qg+c—2v) — 3 (n—n)(c, +c+2v). (25)
The fourth equation is then given by
2c12u1 — 2c3ur = (c*— clz)(cl +c—2v)+ (- crz)(cr +c+2v). (26)

To determine the critical values we solve Egs. (21), (23), (24) and (26) numerically and
in order to calculate the corresponding critical noise strength o. we use Eq. (19), with the
approximation n.q,(0, t) = (n, +n;)/2. This eventually yields

clzul - cf‘ur

o.=—. 27
¢ c12+c3
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The critical dissipation strength derived in this way agrees very well with the local maximum
in the coherent current, which we calculated numerically, see Fig. 3a. In the stationary case
(v =0) we get 0. = 0.74c, which is only slightly larger as the exact value o, = 2¢/3 [64].
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5 Dynamics of polaron formation in 1D Bose
gases in the strong-coupling regime

Martin Will and Michael Fleischhauer
New J. Phys. 25, 083043 (2023).

In this publication, we extended the methodology used to investigate the ground state polaron
properties in Chapter 2| [P1] to explore the system’s dynamical properties. This is accomplished
through simulations of the generalized (1.24).

Before doing this, we extend the analytical expression for the stationary polaron state to
encompass an arbitrary total momentum p. The system is stable only if the polaron velocity
v is below a critical value, which depends on the impurity-Bose coupling constant. In the
case of a weak coupling gig < gné, the critical velocity agrees with the Landau criterion and
equals the speed of sound é = \/gn/m. Here, £ = 1/1/2gnim is the rescaled healing length,
and m is the reduced mass. Nevertheless, when the impurity interacts strongly with the Bose
gas, it induces significant deformations in the condensate, resulting in a monotonic decrease
in the critical velocity with gig. Furthermore, we demonstrate that the polaron’s energy and
velocity v exhibit periodic dependencies on the momentum p, with a period length of 27n.
This includes regions where the signs of v and p differ.

Next, we investigate the time evolution following either an adiabatic turn-on or a sudden
quench of the impurity-boson coupling constant. We observe that the impurity is decelerated
until its velocity is at least below the critical value, illustrated in Figure Yet the specific
mechanism governing this deceleration varies, giving rise to various dynamical regimes. In
the scenario of a quasi-adiabatic increase in the coupling constant, impurities with velocities
exceeding the critical value undergo a non-reversible slowdown due to the emission of density
waves. Otherwise, impurities with velocities below this threshold experience reversible decel-
eration due to the increasing effective mass during the polaron formation. This is depicted
in Figure ), where the coupling constant is gradually ramped up and then down again.
Initially, the impurity slows down as the coupling increases and subsequently accelerates as
the coupling is reduced. However, the impurity can only return to its initial velocity if it is
always sub-critical. In the case of a sudden quench of the coupling constant, as depicted in
Figure ), we observe a rather unusual motion of the impurity for heavy impurity masses.
This includes oscillations of its velocity and even instances of backscattering before stabilizing
at a finite velocity. These peculiar effects cannot be solely attributed to the frictional force
resulting from density waves or the increase in the polaron mass. Instead, we find this to result
from the emission of solitons.

The dynamical polaron properties were also studied using the Frohlich model [35-44]. It
includes the deceleration caused by the increase in polaron mass as a dressing of the impurity
by Bogoliubov phonons. The friction force, generated in the model by density waves,
arises in the Frohlich model from the emission of Cherenkov radiation of phonons. It is worth
noting that the deformed model minimizes the emission of (deformed) phonons, so unlike
the Frohlich model, it is a good approximation to neglect them in our model. Because of the
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Figure 5.1: a) Time evolution of the impurity velocity when the impurity coupling constant
is quasi-adiabatically switched on and off again for different initial velocities. The mass ratio
M = 3m and Tonks parameter v = 0.1 are constant, but the impurity-boson coupling strength
is time dependent gig(t) = 10gné sin?(rt gn/1600). The black dashed line marks the instan-
taneous critical velocity, and the dotted lines mark the initial velocities. b) Impurity velocity
after a quench of the coupling constant to gig = gné for different mass ratios and with the
Tonks parameter v = 0.1. The absolute value of the final velocity is always subcritical (dashed
lines represent + of the critical velocity).

higher phonon density, the Frohlich model leads to incorrect results when the condensate is
substantially deformed. Especially the effects arising from the emission of solitons are beyond
the scope of the Frohlich model.

Lastly, we investigate the impact of quantum fluctuations on the motion of the impurity
to assess the validity of the approximation using a Truncated Wigner simulation [108-
110]. This approach fully accounts for the influence of (deformed) Bogoliubov phonons in the
condensate, similar to the model used in Chapter [2[[P1]. However, the absence of a true in
homogenous 1D systems, as stated by the Mermin-Wagner-Hohenberg theorem [92, 93], leads
to infrared divergences in the lowest-order quantum fluctuations. We consider a gas trapped
within a harmonic potential to avoid these divergences. This adds complexity to the theory, as
the [LLP|transformation no longer decouples the center-of-mass motion. Nevertheless, when the
impurity is also trapped, the center-of-mass momentum follows a simple equation of motion.

Author contributions

In this study, I analytically extended the stationary solutions from Chapter [2] to arbitrarily
large total momenta. Additionally, I conducted numerical simulations to explore the system’s
dynamical properties using a similar approach as described in Chapter 4| [P3]. The detailed
methodology for these simulations can be found in Appendix [Bl Furthermore, I extended the
approximation within the frame, initially discussed for a homogeneous system in
Section to encompass a harmonically trapped gas incorporating quantum fluctuations.
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Abstract

We discuss the dynamics of the formation of a Bose polaron when an impurity is injected into a
weakly interacting one-dimensional Bose condensate. While for small impurity-boson couplings
this process can be described within the Froehlich model as generation, emission and binding of
Bogoliubov phonons, this is no longer adequate if the coupling becomes strong. To treat this
regime we consider a mean-field approach beyond the Froehlich model which accounts for the
backaction to the condensate, complemented with Truncated Wigner simulations to include
quantum fluctuation. For the stationary polaron we find a periodic energy-momentum relation
and non-monotonous relation between impurity velocity and polaron momentum including
regions of negative impurity velocity. Studying the polaron formation after turning on the
impurity-boson coupling quasi-adiabatically and in a sudden quench, we find a very rich scenario
of dynamical regimes. Due to the build-up of an effective mass, the impurity is slowed down even if
its initial velocity is below the Landau critical value. For larger initial velocities we find deceleration
and even backscattering caused by emission of density waves or grey solitons and subsequent
formation of stationary polaron states in different momentum sectors. In order to analyze the
effect of quantum fluctuations we consider a trapped condensate to avoid 1D infrared divergencies.
Using Truncated Wigner simulations in this case we show under what conditions the influence of
quantum fluctuations is small.

1. Introduction

The dynamics of a quantum impurity coupled to an interacting many-body environment is one of the most
fundamental problems of many-body physics. Of particular interest is the dressing of the impurity with
elementary excitations of the host systems leading to the formation of a quasiparticle. A paradigmatic model
of such a quasiparticle in condensed matter physics is the polaron, introduced by Landau and Pekar [1, 2] to
describe the interaction of an electron with lattice vibrations in a solid, and which is key for understanding
transport, response and induced interactions in many systems. In recent years ultra-cold quantum gases have
become a versatile experimental testing ground for studying polaron physics with high precision and in novel
regimes. For example, employing Feshbach resonances [3] for neutral atoms, the impurity-bath interaction
can be tuned from weak to strong coupling. Furthermore many-body environments of different quantum
statistics and with different interactions can be considered. While impurities in a degenerate Fermi gas, called
Fermi-polarons, have been studied in a number of experiments only a small number of experiments exist on
Bose polarons [4-7]. Here due to the large compressibility of the Bose gas a larger amount of excitations can
be created by the impurity and interactions among the environment particles become increasingly
important.

While much theoretical work exists addressing the ground state properties of Bose polarons [8—16] there
is still little understanding of finite temperature properties [7, 17-19] and even more so of its
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Figure 1. Formation of a polaron when an impurity is injected into a weakly interacting Bose gas (a). (b)—(d) Evolution of the
Bose gas density n(x, t) for different total momenta (p/Mc = 0.3,1.0, 1.6), where M is the impurity mass, 1 the average boson
density, ¢ the speed of sound and £ the healing length (see text). The impurity emits density waves before converging into on of
two stationary states, marked in red and blue. For large momenta (d) also solitons are created which can lead to a change in the
direction of motion of the impurity. The evolution is shown for an impurity-Bose mass ratio M = 10 m, Tonks parameter v = 0.1
and impurity-Bose coupling constant gig = gné.

non-equilibrium dynamics [4, 20-23]. What happens when an impurity is injected into a weakly interacting
Bose condensate? What is the dynamics of the formation of a polaron and under what conditions and on
what time scales can a stable quasiparticle form at all? We will address these questions in the present paper
considering a point impurity interacting with a weakly interacting, one-dimensional Bose condensate in the
full range of impurity-boson coupling strength, see figure 1. The limit of weak impurity-boson interaction
can be well described by the generation and subsequent binding or emission of Bogoliubov phonons from
the impurity [24] in terms of a Hamiltonian similar to that of the Froehlich model used in solid state systems
[25]. Most existing studies of the non-equilibrium dynamics of Bose polarons is based on this model [8,
26-31]. It is however no longer well suited in the limit of strong impurity-boson coupling and thus we here
follow a different approach. Starting from a full quantum description of the interaction of a mobile impurity
with the condensate we employ a mean-field approach that takes the backaction of the impurity onto the
condensate into account as in [32-34], but keeps the entanglement between impurity and BEC by working in
a co-moving frame. This approach was shown to be very accurate for the prediction of ground state
properties of Bose-polarons [35] and bi-polarons [36] even for very strong impurity-boson couplings as long
as the Bose—Bose interaction is weak. Quantum effects are then taken into account by considering
Bogoliubov excitations on top of the deformed condensate, which are here treated within a Truncated
Wigner approximation [37-39]. The advantage of this approach as compared to the Froelich model and its
extensions [12, 14, 28] is the substantially reduced number of deformed Bogoliubov phonons created by the
impurity in such a description. As we will show the effect of these modified phonons can be neglected even
in the non-equilibrium dynamics in many situations allowing for a comprehensive study of the polaron
dynamics in terms of non-linear c-number differential equations.

2. Energy-momentum relation in a homogeneous 1D Bose gas

Before considering the time evolution of an impurity injected into a 1D Bose gas of neutral atoms, let us
discuss the stationary properties of a polaron at finite momentum relative to the Bose gas. A widely used
approach to describe Bose-polarons for weak boson-boson and impurity-boson couplings is to consider the
interaction of the impurity with Bogoliubov excitations of the unperturbed condensate. The resulting model
is reminiscent of the Froehlich model in condensed matter physics. Due to the large compressibility of the
Bose condensate, this model is however no longer adequate if the impurity-boson coupling becomes large. In
the latter case a growing number of phonons is generated at the location of the impurity and boson-boson
interactions become relevant. For this reason we here start from the full quantum model and apply a
different approximation scheme.
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2.1. Model and modified mean-field approach
A single mobile impurity coupled to a Bose gas in a homogeneous one-dimensional system is described by
the Hamiltonian

R R 9 N .
= [t @) |55+ 20 130+ gnite )| 669 m

for i = 1. Here m (M) is the boson (impurity) mass, g (g) the impurity-Bose (Bose—Bose) interaction
constant, (ﬁ(x) the bosonic field operator and 7 (p) the impurity position (momentum) operator. In the
following we consider the case of repulsive coupling between all particles, i.e. g, gz > 0.

Since the system is homogeneous, its total momentum p + Py is conserved, where
Pp=—if dx! (x)9,¢(x) is the momentum of the Bose gas. The infinite homogeneous system is treated here
as the limit of a finite system of length L with periodic boundary conditions with L — oco. In order to exploit
the translational invariance we apply the Lee—Low—Pines (LLP) transformation [40] Upip = exp(—i?PB),
leading to the transformed Hamiltonian

HLLP = U]J[LPH ULLP
1 R . 2,2 WU 2 (2)
= P P) / dxgf (x) {fﬁ + 580 (X)(x) + gd(x) | ().

Due to translation invariance, Hi1p no longer depends on #, and p = UILP@ + 133) Urrp is the conserved
total momentum in this frame and can be replaced by a c-number p. We note that due to the LLP
transformation, ¢(*) (x) describes the creation/annihilation of a boson in a frame co-moving with the
impurity, such that n(x) = (¢'(x)¢(x)) is the Bose gas density relative to the position of the impurity, or
rather the relative impurity-boson density-density correlation function, to which we refer from now on for
simplicity as the Bose gas density.

Since Hyyp is an interacting many-body Hamiltonian, a complete solution of the dynamics is difficult
without further approximations. In [35, 36] we have shown that for a weak boson-boson interaction,
indicated by a small Tonks parameter v = gm/n, the ground state properties of a single or a pair of Bose
polarons at rest is very well captured by a mean-field approximation that takes the backacktion of the
impurity to the condensate into account and goes beyond the standard Froehlich model, which fails if
g > gné. Here £ = 1/+/2gnim is the rescaled healing length with the reduced mass i = (1/m +1/M)~".
This motivates us to use this mean-field approximation also for the case of a moving impurity. We will test its
validity by taking into account quantum fluctuations within a Truncated Wigner approach in section 4. The
mean-field approximation amounts to replacing the field operator ¢(x) by a complex order parameter ¢(x),
whose time evolution is determined by the non-linear Schrédinger equation [32]

2
i0,9(5,1) = [~ 2%+ iv(1) 0+ los O+ ()| 00,0 G

Here v(t) = (p — Ps(t)) /M is the impurity velocity.

Since we are interested in the formation dynamics of polarons either after a sudden quench or an
adiabatic turn-on of the impurity-Bose coupling constant gy, the Bose gas is assumed to be initially in its
ground state ¢(x, = 0) = y/n at t =0, where n is the average density of bosons. As the Bose gas carries no
initial momentum, the conserved total momentum is equal to the initial impurity momentum
p = Mv(t = 0). We simulate the time evolution with periodic boundary conditions numerically using a
Fourier split-step method [41]. If not stated otherwise we choose the system size L large enough such that
signals are not able to reach the boundary for all times ¢ considered, i.e. L >> ¢t, where ¢ = \/gn/m is the
rescaled speed of sound.

2.2. Stationary state and energy-momentum relation
We proceed by discussing the stationary properties of a polaron moving with non-zero total momentum p by
characterizing the steady-state solutions of equation (3) [23]. Since the solution has a simpler form if the
impurity velocity v is used as a parameter, rather than the conserved momentum p, it is useful to derive the
stationary state as a function of v as in [32], and then calculate the corresponding momentum by
p = Mv+ Pg[¢]. This is possible since v(¢) = v is constant in the stationary state. The analytical expression of
the state for a fixed v was derived in [16, 32, 35, 42], see appendix A. for technical details and analytical
expressions.

As shown in [32], below a critical impurity velocity v, the system has two stationary states for every given
value of v, see figure 2(b) for the corresponding density profiles. Above the critical value no stationary
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Figure 2. (a) The black line shows the critical impurity velocity v.. Only in the blue-shaded area, the system has two stationary
states for each velocity v and none otherwise. (b) Density profile of the stationary states for different parameters, marked by
crosses in (a). At the critical velocity (ii) the two states are equal.
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Figure 3. (a) Energy momentum relation of the Bose polaron for different coupling constants gz /gné = 0,0.1, 0.25, 0.5, 1,
2, 3, 5, 10, the direction of the arrow points from weak to strong coupling. The mass ratio is M = 3 m and Tonks parameter
~ =0.1. The phase/density of the Bose gas is shown in (b) and (c) for gis = gn¢ and different total momenta p, below p/n =7

indicated by the blue crosses in (a). Other parameters are as in (a) except a finite system size L = 30€. For vm < p/n < (v +1)7
and integer v the condensate picks up a constant phase gradient of v over its total length.

solution exists. Exactly at the critical velocity, the two states are equal two each other. v. depends on the
coupling constant and can be found from the solution of [16, 32]

géL\/1—20a§—8a§+(1+8a§)3/2, where a, =v./c. (4)
gné 24

It is plotted in figure 2(a). For small interaction giy < gné, it agrees with the prediction of the Froehlich
model v, = ¢ [24, 43]. However in the limit of strong interactions gis > gné the condensate is strongly
depleted at the impurity position, resulting in a vanishing critical velocity v. — 0.

The polaron energy is given by the difference in energy of the full system with and without the impurity
Epol = E(gi8,p) — E(gis = 0,p = 0), where E(gig, p) is the expectation value of the LLP Hamiltonian
equation (2) in a coherent state with amplitude ¢ (x, t). Ey,q| is shown as a function of the polaron momentum
in figure 3(a), where the two stationary states are distinguished by solid and dashed lines. It becomes clear
that the polaron state is unique for every momentum p and the two different states only refer to different
parts of the energy-momentum relation. For the lower momentum state the energy-momentum relation was
derived in [15].

From the existence of a critical velocity one might conclude that a Bose polaron exists only up to
maximum polaron momentum pp,,, depending on gig, and the energy momentum relation E,,(p) would
terminates at some value of momentum. This is not the case. Instead when increasing p further the solution
smoothly crosses over into the second steady state with smaller kinetic velocity and larger condensate
depletion. As can be seen from figure 3(c) the condensate depletion grows with increasing momentum. As a
consequence the kinetic mass of the polaron, defined as the ratio of polaron momentum and velocity
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Figure 4. (a) Kinetic polaron mass M* = p/v and (b) velocity v as a function of the momentum p/n and for increasing coupling
constants gip as in figure 3(a). The direction of the arrow indicates increasing gig in (a) and (b) for the different lines.

M* = p/v, increases with p as shown in figure 4(a). When crossing from the momentum regime of the first
solution of equation (3) to the second solution, the increase of the mass with momentum becomes larger
than linear. This leads to a non-monotonous relation between polaron velocity v and momentum p, plotted
in figure 4(b). Note that the polaron velocity always stays below the weak-coupling critical value v,.

When the momentum reaches the value p,,x = n7, the state of the condensate is exactly equal to a dark
soliton, such that the energy is E(pmax) = 3n¢ and the impurity velocity goes to zero v(pmax) = 0. In this case
the condensate phase winds by 7 over its entire length, which for periodic boundary conditions corresponds
to half a flux quantum piercing through the ring. Since the density is fully depleted the kinetic polaron mass
M* (prmax) diverges at this point.

We note that the relation between momentum, energy, and velocity of the polaron has already been
found for momenta |p| < nm [23]. A peculiar behavior of E(p) is however seen when the total momentum is
increased further. The energy starts to decrease with increasing momentum, corresponding to a negative
group velocity OE/9p and consequently a negative impurity velocity. In fact, as can be seen from figure 3(a),
E(p) is a periodic function of p/n with period 2. This is because the properties of the polaron are
determined by collective excitations of the Bose gas, whose energy-momentum relation in 1D is periodic
with period 27 n due to Luttingers theorem. Here it can be interpreted as follows: If the total momentum is
in the range (v — 1)7 < p/n < v7, with v being an integer, the condensate picks up an integer winding of its
phase over its whole length (period) in the stationary state. If v is even, the momentum picked up by the
background condensate exceeds the total momentum and the excess must be compensated by a relative
motion of the impurity against the condensate, corresponding to negative values of v.

We will see in the following that the periodic behavior of the energy-momentum relation can give rise to
negative asymptotic impurity velocities after injecting it into the condensate with large positive initial
velocity. We note that the reversal of the impurity velocity has already been seen in experiments with a
strongly interacting Bose gas (v > 1), where Bloch oscillations of an impurity subject to a constant force
have been observed [20].

3. Mean-field description of polaron formation

We now discuss the dynamics when an impurity is injected into a homogeneous condensate with finite initial
momentum. First we consider a quasi-adiabatic turn-on of the impurity-boson coupling and subsequently
discuss a sudden quench.

3.1. Quasi-adiabatic evolution
Let us first investigate the dynamical properties of the system when the impurity-boson coupling constant
gis(#) is turned on slowly compared to the other time scales of the system. We will show that even though the
energy spectrum of the full system is gapless in the thermodynamic limit, a local adiabatic following of the
polaron ground state is possible if the initial velocity of the impurity is subsonic.

In order to achieve a smooth turn-on protocol, we choose a time dependence of the coupling
according to:

gIB(t) =gB tanh(t/T). (5)

g is the final coupling constant and T the turn-on timescale, which we chose large compared to the inverse
chemical potential 1/gn. Since the critical velocity v,, below which stationary states exist, depends on gyp it is
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Figure 5. (a) Final impurity velocity v(t) after the turn-on with timescale T of the impurity-Bose coupling constant. The initial
velocity is v(0) = p/M = 0.1¢ and we choose a mass ratio of M = 3 m, Tonks parameter v = 0.1 and g;3 = gn€. The numerical
result (blue line) agrees very well with the exponential fit (black circle) of are= /T 4 a3, where ; are fitting parameters. The
simulation is performed up to #r = 600/gn. (b) Time evolution of the impurity velocity for Tgn = 10, 50,150, indicated by the
black arrow. Lines are simulated results and circles are analytically calculated from the instantaneous stationary state. (c) Final
impurity velocity v,q in the adiabatic limit 7 3> 1/gn for different total momenta p = Mv(0). Simulated result (blue solid) differ
only slightly from the analytical prediction (black dashed). The deviations are caused by the system not being gaped, see
appendix B.

also time-dependent and the time evolution differs qualitatively whether the impurity momentum is below
or above v, at any time. The time evolution of the condensate for the two cases is shown exemplarly in
figure 6, where the blue and red lines indicate the two stationary states corresponding to the final velocity of
the impurity.

First, we focus on the case of a slow impurity v(¢) < v.(t) for all ¢, such that equation (3) has a stationary
solution for all ¥(¢). The evolution of the impurity velocity is exemplary shown for different T in figure 5(b).
Even though the impurity is always subsonic it is decelerated to a finite value v(y) < ¥(0), which increases
monotonously with T, see figure 5(a). Notably also in the limit T — oo the impurity is still slowed down and
v(tr) does not converge to v(0). This is caused by the formation of the polaron. In the instantaneous ground
state, the total conserved momentum p is the polaron momentum and is related to the impurity velocity by
the effective mass m™* off the polaron

v(t) = . (6)

Since the effective mass increases monotonously with the coupling constant gz [35], the impurity must
decelerate when the impurity-Bose coupling constant is turned on. For finite turn-on times T, density waves
are created during the formation of the polaron leading to an additional friction force.

To quantify the quasi-adiabatic slow-down we fit an exponential e~/ 4 a3 to the simulated
impurity velocity (see figure 5(a)). From the fit the final impurity velocity in the adiabatic limit is determined
by vaa = a1 + a. It is shown as a function of the conserved total momentum p = Mv(0) in figure 5(c), where
it becomes apparent that the deceleration occurs for all p. Due to the gaplessness of the system to collective
excitations the simulated final velocity is always slightly below the quasi-adiabatic value, following from
equation (6) with m* replaced by the effective mass of the stationary solution, see figure 4. This is because the
adiabatic theorem [44] strictly does not hold. Assuming strict adiabatic following we can derive the relation
between v(t) and p as a function of the instantaneous coupling constant gz (#) in the polaron ground state
(see appendix A.). Figure 5(a) shows that the simulated time evolution follows the instantaneous ground
state reasonably well for large T except for the small difference shown in figure 5(c), see appendix B.

We now consider an impurity that is initially faster than the critical momentum v(0) > ¢. In that case,
equation (3) does not have a stationary solution in the initial phase, which leads to the creation of density
waves figure 6(b) and a friction force acting on the impurity. Figure 7(a) shows that the impurity is quickly
decelerated until its velocity is below the critical v.(gip). Afterward, the system again follows the
instantaneous ground state quasi-adiabatically, resulting in a slower deceleration.

An important difference between these two processes is, that the second slow deceleration, related to the
adiabatic formation of the polaron, is reversible, while the other one is not. This can be seen in figure 7(b),
where the impurity-Bose coupling constant is turned on and off again by gis () = gip sin* (17 /T). Here
impurities that are initially below the critical momentum are almost brought to a standstill when the
coupling constant is at a maximum but accelerate again to the initial velocity when gjp is turned off again. In
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Figure 6. Evolution of the Bose gas density close to the impurity for an (a) initially slow v(0) = 0.1¢ and (b) fast v(0) = 1.1¢
impurity. The impurity Bose coupling constant of strength gig = gn€ is turned with the timescale T = 10/gn. The mass ratio is
constant at M = 3 m and the Tonks parameter is ¥ = 0.1. The blue and red lines are the two analytically derived stationary states
evaluated at the final impurity velocity v(t). The system converges locally in either one of the two states, dissipating the energy as
density waves.
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Figure 7. (a) Time evolution of the impurity velocity (solid line) for a supersonic impurity v(0) = 1.1¢ and different turn-on
times T. The initial fast deceleration slows down as soon the impurity is below the critical velocity v.(gis(t)) (dashed lines). The
mass ratio is M = 3 m, the Tonks parameter - = 0.1, and the final impurity coupling is gis = gn. (b) Evolution of the impurity
velocity for different initial velocities. The coupling constant is switched on and off again by gz (t) = gis sin® (37 t/T), with

gip = 10gn€, T = 800 and otherwise parameters as in (a). The black dashed line is the instantaneous critical velocity and the
dotted lines mark the initial velocity. The deceleration of subsonic impurities is reversible, but not for supersonic ones.

contrast, impurities starting above criticality are not reaching their initial momentum again after the sweep.
The small deviation in the final velocity for sub-critical trajectories is again caused by the system not being
gaped in the thermodynamic limit.

3.2. Quench
Here we examine the evolution of the system when the coupling constant is abruptly quenched at t =0.

The time evolution of the impurity velocity after a sudden turn-on of the interaction with the condensate
is shown in figures 8(a) and (b) for different initial velocities and different ratios of bare impurity mass M to
boson mass m. The quench leads to radiation of density waves until the system reaches a steady state. For all
initial conditions and parameters, a friction force [23] is exerted on the impurity and slows it down until the
final velocity is reached smaller than the critical v.. This agrees again with the analytic prediction, that the
system has a stationary state only below v.. However, for a large initial momentum, the impurity velocity is
non-monotonic, which cannot be explained by a frictional force alone.

If the impurity is heavy a rather unexpected behavior is found for sufficiently large initial momentum,
see figure 8(Db). First, as expected the deceleration is slower in the case of heavier impurities. However for a
sufficiently large mass, the impurity is not only slowed down, but the velocity can change its direction before
converging to a constant velocity. In this case, the background condensate attains an additional momentum
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Figure 8. Polaron quench dynamic for (a) different initial impurity velocities and (b) different mass ratios. We choose a coupling

constant of gig = gn€ and = 0.1. The horizontal dashed grey lines are v,. The impurity velocity always converges to a value
[v(t)] < ve.
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Figure 9. (a) Final velocity vy after a quench of the impurity-Bose coupling constant to gip = gn§ for different total momenta

p = Mv(0). For the mass ratio we choose M = 10 m and the Tonks parameter -y =.1. The final velocity is always in an interval
[—Ve, vc], marked by grey vertical lines. The color code indicates the generalized contrast equation (7). The evolution of the Bose
gas densities at the marked positions is shown in figures 1(b)—(d). The colored dashed line shows the velocity-momentum
relation of the stationary state. It agrees well with the simulated result for sub-critical initial velocities ¥(0) < v.. For higher total
momenta emission of density waves or solitons leads to initial friction forces, causing the deviation.

by building up a finite phase gradient away from the impurity locally approaching a stationary polaron
solution with negative impurity velocity as discussed in the previous section.

This effect is examined in more detail in figure 9(a). It shows the final impurity velocity as a function of
the conserved momentum p = Mv(0) of a heavy impurity M = 10 m. Again the final velocity is for all initial
conditions in the interval [—v,, v,]. However, as mentioned in section 2.2 the system has two stationary states
for each velocity and we examine which of these states are populated. For this we first focus on
figures 1(b)—(d), showing the evolution of the Bose gas density for different total momenta. The red and blue
lines are the analytically calculated stationary states, where we used the final impurity velocity from the
simulation as a parameter, rather than the total momentum. Depending on the initial conditions the system
converges in either of these two states. In order to quantify the overlap of the final polaron state with either of
the two stationary states we determine the generalized contrast

[{(6(D)01)] — [(6(1)] 62)]

= 100 + 00162 — 2/ lda)]
12
lon) = [ e o) @)

Here |¢(1)) is the simulated state of the system and |¢;) the steady states, evaluated at the simulated final
velocity. The contrast is 1 if the system converges into the first state and —1 for the second. This definition
differs from the standard expression of contrast by the term (¢ |¢,) in the denominator, which we need since
the stationary states are not orthogonal. We evaluate the scalar products over an interval I which we choose
such that the time evolution is properly converged within it. The contrast is depicted in figure 9(a) by the
color code and it becomes apparent that the polaron changes its state when its velocity intersects with the
critical value v.. This is explained by the states being equal at the critical velocity.
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The explanation for the non-monotionic impurity velocity and the change in the movement direction at
larger total momenta can be seen in figure 1(d). At large momenta, the impurity carries enough energy that a
grey soliton is created besides density waves which carry additional momentum. This is visible as the local
depletion moving away from the impurity at a slower speed as the initially created density waves in
figure 1(d). Note, however, that this interpretation is based on numerical evidence only where a non-trivial
behaviour of the impurity velocity always coincided with soliton emission.

4. Truncated-Wigner approximation of a harmonically trapped polaron

The above mean-field analysis has neglected quantum fluctuations. Although it has been shown in [35, 36]
that the ground state properties of Bose polarons and bi-polarons are well described by the modified
mean-field approach even in the limit of strong boson-impurity coupling gis > gné, provided the Bose—Bose
interaction is weak, i.e. if ¥ < 1, it is not clear if this still holds in the non-equilibrium case. For this reason
we now consider the effect of small quantum fluctuations using a truncated Wigner approach [37-39]. This
approach fully captures the influence of (deformed) Bogoliubov phonons on top of the condensate in
quadratic (Bogoliubov) approximation. However, as stated by the Mermin—Wagner—Hohenberg theorem
[45, 46] there is no true Bose condensation in homogeneous 1D gases, which manifests itself by infrared
divergencies when considering lowest-order quantum fluctuations. The latter also holds for finite systems
with periodic boundary conditions. Thus in order to describe quantum fluctuations we can no longer
approximate the one-dimensional gas as being homogeneous and have to take into account the presence of a
harmonic trapping potential. (The different regimes of quantum degeneracy in trapped 1D Bose gases are
discussed e.g. in [47].) This complicates the theoretical description as the LLP transformation, conveniently
used in homogeneous systems, no longer leads to a decoupling of the total momentum of the polaron. We
will show however that the total momentum obeys a simple equation of motion if also the impurity is
trapped.

4.1. LLP Hamiltonian of a trapped 1D Bose gas

We start by adding a harmonic potential with frequency w for bosons and 2 for the impurity to the
Hamiltonian equation (1) to avoid infrared divergencies in the Bogoliubov theory of boson-boson
interactions. Since these potentials break the translation invariance of the system the total momentum of the
system is no longer conserved. Therefore, the transformation into a relative and a center of mass coordinate
by the LLP transformation does not eliminate the impurity operators. Nevertheless, it is useful to apply the
transformation, since p and 7 only appear up to quadratic order in the LLP Hamiltonian

~ 2 ~ ~ ~
Hyp = %4(}3 - fJB)Z + %MQZ?Z + /dquT(x) {—287’; + %mwz(x—i- )2+ %gcbWx)qﬁ(x) + gd(x) | P(x).
(8)

To simulate the time evolution of the system we derive the Heisenberg equation of motion 0, =i [HLLP , 0]
for p(t), #(t) and ¢(x, t). The advantage of the LLP transformation even in the case of harmonic trapping
becomes clear here since the equations for p(t) and 7(¢) are formally solvable and we get

1 Q2w [t .
p(t) = p(0) cos Ut + —p(0) sin Qt + /d"ﬂf’P’, 9
P =h(O)cosOt-+ 5p(0)sinOr-+ —o == | t'sin (9t~ 1)) Pu(t') )
o p(t) + Nmw? X (1)
i) =- MO?2 + Nmw? (10)

Here N is the particle number of bosons and Xp(#) = [ dxx &' (x,1) (x,1) /N their center of mass position.
In the case of equal trapping frequencies w = €2, the last term in the solution of the total momentum p(¢),
equation (9), vanishes, and its time evolution corresponds to that of an uncoupled harmonic oscillator

p(t) = p(0) cosQt + éﬁ(o) sinQ, for Q=w. (11)

The remaining equation for the bosonic field ¢(x, ) then reads:

2

10 (x,1) = {ff—’; +

i

1)~ Py(0]0c-+ 261 (05,1 + gwd(0) + S me? e+ (0] 2} dx1). (12)
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4.2. Truncated Wigner simulation of the boson field

We now solve the system of equations (9), (10) and (12) in a limit where quantum fluctuation of the
impurity position and momentum are negligible, but include fluctuation of the Bose field using a truncated
Wigner phase space approach (TWA). For reviews on the TWA methods see [38, 39]. To be able to apply a
TWA we have to first treat the quantum evolution of #(¢) and p(¢). For this we apply another approximation
and replace the total momentum and position operator of the Bose field in the dynamical equations of the
impurity by expectation values

pB — <j)B> := Pg, and XB — <XB> = X3. (13)

This approximation is reasonable since the number of bosons is large N > 1 such that fluctuations of their
center of mass coordinate are small. From equations (9) and (10) then follows, that the fluctuation of p and 7
do not grow in time. It is possible to prepare the impurity in a state where fluctuation are small as long as its
harmonic oscillator length scale I; = 1/+/QM is small when compared to all other length scales of the system,
especially the healing length of the condensate £ = 1/./2gnm, where # is the peak density of the ground state
of the trapped Bose gas without an impurity. The semiclassical treatment of impurity position and total

momentum is therefore justified only in the regime where §72 < 1. Under this condition the operators
t—=(r):=r, and p—(p):=p (14)

are replaceable by expectation values.

In order to calculate the time evolution of the Bose field in a Wigner phase space description, an
expression for the initial ground state of the Bose gas including quantum fluctuation is needed. Since we
consider a weakly interacting Bose gas, it suffices to do this by replacing the field operators ¢(x, t = 0) by the
mean-field ground state ¢ (x) of a trapped Bose gas and add quantum fluctuation within Bogoliubov—de
Gennes (BdG) approximation

P(x,1) = do(x+71) + Z [un(x—O— )b (1) + v (x + T)*Bi(t)} (15)

Here u,,(x) and v, (x) are the BdG coefficients of the trapped Bose gas and b the phonon operators of the
respective modes, see appendix C. for more details. The position r appears in this expression since the Bose
gas ground state is transformed into the LLP frame, corresponding to the shift by r. In the Wigner
phase-space description, the phonon operators are replaced by stochastic c-numbers ZAJS,T) (1) — 6,5*> (t) where
all stochasticity is in the initial state. Since this state is the phonon vacuum they are set to Gaussian random
variables with mean and variance given by (53,(0)) = 0 and (3,(0)3;,(0)) = 36, m, corresponding to a virtual
occupation of half a phonon per mode on average. By symmetric ordering of the Heisenberg equation (12)
and replacing the operators by c-numbers ¢ — ¢ we get the c-number equation of motion

10:005) = { = 25 4 2 900~ PaO] 0.+ gl F 260 o419 + g2
+%mw2 [x+r(t)]2}¢(x,t). (16)

Here n"(x) is the virtually occupied particle density due to the Wigner description and is given by

1 Nmax

w0 =3 3 )P~ ) (17)

n

Note that we have truncated the number of modes taken into account, which is necessary in TWA, since if all
BdG modes are included n"(x) would diverge n*(x) = 1§(0). The truncation of higher modes is commonly
used in TWA simulations of trapped gases [37, 38] and is physically justified as quantum fluctuations of high
frequency modes can be neglected. We simulate equation (16) multiple times for different initial conditions
and average about the different realization. In order to obtain expectation values all operators need to be

symmetrically ordered first, e.g. the Bose gas density is given by

n(x,t) = (|ox = (0,0 = n*(x)), (18)
where r(t) appears, such that the expression describes the density in the laboratory and not LLP frame.
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Figure 10. TWA simulation of a trapped system for different impurity-Bose coupling constants. Here trapping frequencies for
bosons and impurity are equal = w = 0.3gn, the Tonks parameter is -y = 0.1, the mass ratio is M/m = 10 and the initial
impurity momentum is p = 0.75Mc. The upper panels show the time evolution up to t = 25/gn = 7.5 /w, where the dashed line
marks the position of the impurity. The lower panels show the final density (blue) and compare it to the stationary state of the
homogeneous system (dashed) modulated by the initial mean-field density of the trapped gas. The TWA simulation is averaged
over 5000 noise realizations.

tgn tw

Figure 11. (a) Impurity velocity and (b) impurity position in a trapped system with equal trapping frequencies {2 = w. Solid lines
show the TWA simulation, dashed lines the classical mean-field approximation. The TWA simulation is averaged over 5000 noise
realizations.

The time evolution of the trapped system is illustrated in figure 10. A problem of this approach is that the
system is finite, so that density waves created by the impurity oscillate in the trap and return back to the
impurity. The system does therefore only reach locally a stationary state in very shallow traps with very small
trapping frequency w < gn. This however conflicts with the condition of a classical impurity 7 < 1 for
reasonably heavy impurities and equal trapping potential. However, although the system is not in a
stationary state the stationary solution described in section 2.2 agrees reasonably well with the observed
density distribution, see figure 10 when applying a local density approximation.

Next, in order to test the validity of the mean-field approach used in sections 2 and 3, we compare the
time evolution of the trapped system obtained from TWA calculations to a mean-field simulation. For the
latter, we set the initial virtual particle occupation to zero 3, = 0. The impurity velocity
v(t) = (p(t) — Pg(t)) /M and position r() obtained in that way are shown in figure 11. For a small coupling
constant gip < gné the evolution remains sinusoidal, however, at large coupling it deviates strongly from an
harmonic motion. The agreement between TWA and mean-field is reasonably well, given that we consider a
quite strongly interacting gas with v = 0.1. The impurity position figure 11(b) gets in some cases an overall
shift between TWA and mean-field, the motion is however qualitatively similar. Especially the deviation in
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the impurity velocity is small, see figure 11(a). From this, we conclude that the mean-field simulation is
sufficient to predict the time evolution at least qualitatively.

5. Summary

In the present paper we have discussed the dynamics of the formation of a Bose polaron when an impurity is
injected into a 1D weakly-interacting Bose gas by performing time-dependent simulations of mean-field
equations of the condensate amplitude complemented by truncated Wigner simulations to include quantum
fluctuations. In a homogeneous gas with periodic boundary conditions the total momentum p of the system
is conserved and can be used as independent parameter to characterize different dynamical regimes.
Analyzing steady state solutions of the mean-field equations first, we showed that stationary solutions exist
only for impurity velocities below a critical value, which in the limit of weak impurity-boson couplings gz
agrees with the Landau critical velocity, as predicted by the Froehlich model, but monotonously decreases
with increasing interaction and eventually approaches zero. This is because with growing values of gip the
condensate is more and more depleted in the vicinity of the impurity, which leads to a reduced local speed of
sound. While, as first shown in [32] for a given velocity of the impurity below the critical value, there are
always two stationary solutions of the condensate equations, the solution is unique when fixing the total
momentum. For momentum values with a convex energy-momentum relation, 9*E/9p* > 0, one of the two
solutions applies and in regions with 9>E/8p? < 0 the other solution holds. We showed moreover that the
stationary energy-momentum relation is periodic in p as the background condensate away from the impurity
can pick up additional quantized amounts of momentum corresponding to integer windings of the
condensate phase over its length. As a consequence the relation between impurity velocity v and polaron
momentum p is also periodic and includes regions of momentum where the impurity velocity is negative. In
these regions the Bose gas stabilizes only a steady state with momentum exceeding the total momentum
which must then be compensated by an opposite motion of the impurity. While a direct measurement of the
energy-momentum relation of the polaron is challenging, its non-monotonous form can have interesting
experimental consequences. E.g. injecting impurities with finite velocity into a small ring condensate can
induce a finite circular current corresponding to a finite number of enclosed flux quanta.

To study the formation of the polaron we considered two cases, a slow, quasi-adiabatic turning on of the
Bose-impurity coupling and a sudden quench. If in the quasi-adiabatic situation the initial velocity is chosen
small enough such that it stays below the critical value at all times, the impurity is decelerated only due to the
increase in its effective mass, associated with the formation of the polaron. As the system evolves
quasi-adiabatic this reduction in velocity is reversible. We find that the polaron quasiparticle is formed on
the timescale of the inverse chemical potential 1/gn (see figure 8), which for parameters of a recent
experiment in 1D gases [4] is on the order of 60 us. If in the quasi-adiabatic scheme the initial velocity is
above the critical value the impurity emits density waves irrespective how slowly the interaction is turned on
leading to irreversible friction. Switching on the impurity-boson interaction suddenly a rich scenario of
dynamical regimes is observed. Depending on the mass ratio of particles, the total momentum and the
impurity-boson coupling strength the impurity is slowed down by emission of density waves or grey solitons.
The latter happens for large momenta and large impurity masses and is specific for the regime of strong
impurity-boson coupling. In this case asymptotic states can form where the impurity velocity changes its
sign, i.e. backscattering occurs, which cannot occur in the weak coupling regime dominated by Cherenkov
radiation of phonons. While an in-situ measurement of the impurity motion is difficult in an experiment,
the emission of grey solitons can be directly observed by density measurements of the condensate. We here
considered impurities in one-dimensional condensates. The modified mean-field approach including the
backaction of the impurity to the condensate can however be applied also to higher dimensions. Theories
predicting the polaron dynamics based on the Froehlich model, using e.g. a coherent variational ansatzes
[28-30] or master equation [24, 31] are capable of capturing the evolution as long as the condensate
deformation is not substantial. From a straightforward dimensional analysis of the mean-field equation in D
dimension we estimate that the condensate deformation becomes significant for gig /g > né”. Some of the
predicted effects are expected to carry over from one to higher dimensions to these cases. E.g. the reversible
slowdown of a sub-sonic impurity due to the formation of a polaron and the friction forces experienced by a
super-sonic impurity due to emission of density waves will be very similar. The emission of grey solitons and
the dragging of the impurity towards the grey solitons, on the other hand, is an effect specific to
one-dimensional gases. In two dimensions a heavy, supersonic impurity might instead emit vortex
anti-vortex pairs.

To justify the validity of the mean-field approximation we performed truncated Wigner simulations of
the full quantum problem in a trapped gas. The TWA accounts for quantum fluctuations due to Bogoliubov
phonons on the deformed condensate background up to quadratic order. To avoid infrared divergencies
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related to the one-dimensional setup, enforced by the Mermin—Wagner—Hohenberg theorem, we considered
a harmonically trapped gas. Although the total momentum is no longer conserved it follows a simple
equation of motion, which we solve in semiclassical approximation. The TWA simulations show that the
mean-field description of the dynamics of polaron formation is well justified as long as the Tonks parameter
of the Bose gas is small, i.e. for a weakly interacting gas. The case of strong boson-boson interactions requires
different analytical and numerical tools and will be discussed elsewhere.

Data availability statements

The data that support the findings of this study are available upon reasonable request from the authors.
Acknowledgments

We would like to thank Artur Widera, Jonas Jager and Ryan Barnett for fruitful discussions. Financial
support by the DFG through SFB/TR 185, Project No. 277625399 is gratefully acknowledged. M W was
supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitit Mainz.
Appendix A. Stationary mean-field solution

In the following, we briefly summarize the stationary solution of the Gross—Pitaevskii equation (GPE)
equation (3), which are derived in more detail in [32, 35]. Since the equation explicitly depends on the

impurity velocity v and not the conserved momentum p, it is convenient to use v as a parameter and then
calculate the total momentum of the stationary state by

p= My+ Py :Mv—i/dxqb*(x, D0B(x, ). (19)

This is possible since v(¢) is a constant in the steady state. As shown in [32, 35] the stationary solution of
equation (3) is similar to a grey soliton, except at x = 0, and given by

; b
B(x, 1) = /nel (Pretesgn(x)—gn) {a— ibsgn(x tanh( ~|x +d)} , (20)
(<) entetanh (I

as long as the system size L is large compared to the rescaled healing length & = 1//2gnsm. Here a = v/,
b =+/1— a? and the parameters (; and ¢, are chosen such that the phase of the solution is continuous at
x =0 and fulfills periodic boundary condition. The parameter d shifts the grey soliton wave function such
that the boundary condition generated by the delta distribution in equation (3)

ot

Ox(x,1)

o = ngBﬁ’l qb(O, t) (21)

x=|

is fulfilled. From this, it can be deduced that tanh d must be the solution of a cubic equation

b tanhd (1 —tanh?d) = —52 (1 — 5 + b tanh?d). 2
( )= T ) (2)

The three solutions of the equation are shown in figure 12(b). The one which is real for all parameters is
always less than or equal —1, such that d is not a real number corresponding to a nonphysical state. The other
two solutions are real and between 0 and 1, if the impurity velocity v is below the critical velocity v, = a.¢, see
figure 12(a). Here a, can be determined by solving

giiéi\/1—20a3—8a§+(1+8a§)3/2, (23)
gné  2ac

which is equivalent to a cubic equation in a2. For a small coupling constant gy < gné the critical velocity is ¢
and agrees with the prediction of the Froehlich model [24, 43]. However for strong repulsion g5 >> gné the
critical velocity converges to zero. Substituting the two physical solutions of equation (22) into equation (20)
yields the two stationary states mentioned in the main part of this work. The two solutions are equal at the
critical momentum, explaining why the stationary states merge at criticality.
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Figure 12. (a) Critical impurity velocity v.. (b) Solutions of the cubic equation (22). The orange solution (lowest curve) is
tanhd < —1 for all v and therefore nonphysical. The red and blue solutions exist only below the critical velocity v, (dashed green),
yielding the two relevant states.

Next, since p and not v is conserved under time evolution it is important to derive an expression relating
the parameters for the stationary solutions. It follows from equations (19) and (20) and is given by

p=Mv—2nab (1 — tanhd) +2n [arctan <g) — arctan (% tanhd)} . (24)

In order to compare this analytic expression to the time-dependent simulation we solve it numerically for v.
The polaron energy is given by E,,; = E(gs,p) — E(giz = 0,v = 0), where E(gig, p) is the expectation
value of the LLP Hamiltonian equation (2)

Epol = ﬁgnzg[zb(l — tanh(d)) — %b3 (2—3tanh(d) + tanh(d)s)]
1 m - (25)
+ EMVZ [1 — 4\/51\—4115(1 — tanh(d))} .

In the approach described so far equation (24) results only in momentum values with —7mn < p < 7n. In
order to reach higher momenta the stationary solution equation (20) must be modified by an additional
phase gradient

b(x,t) = TV (x,t) withv € Z. (26)

Except for the additional phase gradient, the stationary solution, all parameters in equation (20), and the
energy equation (25) are not modified in the thermodynamic limit L > £. Only the total momentum

p=p+2rnv (27)

picks up an additional term, which explains why the observables in figures 3(a) and 4(b) are periodic in p,
with a period length of 27 .

Appendix B. Gapless adiabaticity

In section 3.1 we showed that the system evolves quasi-adiabatic if the impurity-Bose coupling constant is
turned on slowly compared to the other timescales. However, there always remains a small but finite
difference to the instantaneous stationary state in figure 5(c). In this section we show, that this difference
originates from the system not being energetically gaped in the thermodynamic limit. To this end, the time
evolution of a large system L >> ¢T is compared to a small one L < ¢T, with otherwise equal parameters. The
small system is gaped due to finite-size effects, such that the adiabatic theorem strictly holds. This is shown in
figures 13(a)—(c), where the impurity momentum as well as the density and phase of the Bose gas agree with
the instantaneous ground state. In contrast in the large system. Here in particular the phase disagrees at a
large distance from the impurity |x| > £, see figure 13(d), explaining the small discrepancy of the impurity
momentum figure 13(a). In the large system the stationary state is not reached globally, but only locally at
the position of the impurity. This is however sufficient for the system to evolve quasi-adiabatic.
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Figure 13. Comparison of the quasi-adiabatic (large system) to true-adiabatic (small system) evolution for v(0) = p/M = 0.1,
giB = gn&, ¥ =0.1 and M =3 m. (a) Evolution of the impurity velocity for two turn-on timescales T. Dashed lines represent the
instantaneous stationary state. (b)—(d) State at the end of the evolution at tgn = 2 - 10* for Tgn = 3 - 10°. For a small system
L = 100&, both phase (b) and density (c) agree with the instantaneous stationary state (dashed). For a large system L = 5 - 10*¢
the phase (d) disagrees at a large distance from the center.

Appendix C. Bogoliubov—de Gennes in a trap

In order to express the initial ground state of the trapped Bose gas, before the interaction with the impurity,
we diagonalize the Bose gas Hamiltonian

o= [ axd! (9= 2 + Jms + 3081 (9909 2, (28)

approximately using a BAG approach [48]. In the first step, the mean-field ground state is determined by the
GPE

(*iﬁ+lmw2xz+ |0 (x)]* — )¢>(x)—o (29)
om 2 81Po K| 9o =0,

which we solve numerically using imaginary time evolution. Here f is the mean-field chemical potential. In
case of a weakly interacting Bose gas, it is sufficient to only include small fluctuation on top of the mean-field
solution, which is done by expressing the bosonic field operators by

8x) = 00(x) + 3 (s ()b ()01, (30)

and only keep terms up to quadratic order in the operators b, Here u, (x) and v, (x) are the BAG
coefficients. This Ansatz diagonalizes the Hamiltonian equation (28) if the coefficients fulfill the BAG
equation

e A L G B

where €, are the eigenenergies of the corresponding BdG modes. To solve this equation, we expand it in a
finite number of eigenfunctions of the free harmonic oscillator and diagonalize the resulting matrix
numerically.
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This study presents an experiment involving a trapped three-dimensional gas of bosonic %Li,
Feshbach molecules, exposed to a spatiotemporal disorder potential. The disorder induces
heating within the cloud, leading to evaporative particle loss. Depending on the correlation
time of the disorder, the heating process is dominated either by the heating of background
thermal atoms or by direct excitations of the superfluid to the thermal cloud. The latter process
is theoretically estimated using particle-number conserving Bogoliubov theory [111]. The
measured particle loss rates are compared to a theoretical rate model. The study illuminates
the complex interplay between a superfluid gas and a time-dependent disorder. In the following,
I summarize the model, focusing on the direct excitation process from the superfluid phase to
thermal particles. The interplay between heating, evaporation, and cooling is described by a
set of rate equations of the total particle-number N and temperature T

N = Nlev + Nlzal (6.1)
T = T’ev + T|Nth + T|N0' (6'2)

They account for the evaporation of the thermal component by N lev and T lev. The molecular
relaxation rate N el is the loss rate of molecules, which is present in the experiment without
the speckle potential. Additionally, the rate equation includes the heating of the thermal
component T'|y,, and excitations from the superfluid fraction to the thermal gas T'|y,, both
induced by the speckle potential. More details and expressions for the rates can be found in
the |supplementary materiall of the publication [P5]. To calculate the number of particles in the
superfluid Ny, we assume that the system thermalizes rapidly compared to all other timescales.
Thus, Ny can be determined from the equilibrium expression of the superfluid fraction n.(7, N)
by Ng = N n.. In leading order, assuming a noninteracting harmonically trapped gas, the
superfluid fraction is n. = 1 — (T/T, C)3, where T, is the critical temperature. However,
we also include an interaction and finite-size corrections to n. [112].

To compute the excitation rate T] Ny, we adopt a local density approximation, treating the gas
as a homogeneous BEC|with Bogoliubov excitations. In order to quantify processes that change
the superfluid fraction, we maintain the number of condensed particles Ny as an operator by
employing total number conserving Bogoliubov theory [111]. To achieve this, we transform
the creation operators of a particle ay into operators creating Bogoliubov phonons l;k using

CAL(T)CAlk/\/N = ukl;k + ’U,ki)T_k, (63)

where uy and vy are the Bogoliubov coefficients |88 [111]. In this basis, the gas Hamiltonian
becomes approximately diagonal Hy = 2k£0 wkbLbk, where wy, is the Bogoliubov dispersion
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relation [88, [111]. The influence of the speckle potential is then given by the Hamiltonian

Hy = NoVo(t) + VN - Vie(t) (e + i) (B +07y.) + O(B). (6.4)
k40
In this expression, we keep terms up to linear order in the phonon operators. This approach
is similar to the Frohlich model for polarons discussed in Section in the limit of infinite
impurity mass. Here Vi () is the Fourier transformed speckle potential V' (r,¢). We assume that
the potential is a Gaussian random variable in space and time, with zero mean and variance
given by

V(r,0)V(0,0) = V% exp (—rQ /o2 —log(2) 2 /72) , (6.5)

where o and 7 are the correlation length and time and V the experimentally measured peak
strength of the speckle potential. The parameter 7 is introduced to describe the trapped system
using a theory designed for a homogeneous gas. We find a good agreement to the experiment
for n ~ 0.05. After solving the Heisenberg equation of motion for Ny and by we find that the

average condensed particle-number Ny = (N()) decreases linear at late times ¢t > 7
No(t) — No(0) = —NTt. (6.6)

The decay rate I' is given analytically in Equation of the supplementary material of the
publication [P5]. Since we assume that the gas thermalizes quickly, the change in the number
of condensed atoms can be directly related to a heating rate. We calculate it from the lowest
order noninteracting part of the superfluid fraction and find

e
372
Finally, we numerically solve the rate Equations and , incorporating the other loss
and heating rates. The Figures and 4| in the publication [P5] demonstrate that the
experimentally observed particle loss rates align closely with the predictions of the theoretical
model across all measured parameters.

T’No = I (6.7)
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We study experimentally the dissipative dynamics of ultracold bosonic gases in a dynamic disorder
potential with tunable correlation time. First, we measure the heating rate of thermal clouds exposed to the
dynamic potential and present a model of the heating process, revealing the microscopic origin of
dissipation from a thermal, trapped cloud of bosons. Second, for Bose-Einstein condensates, we measure
the particle loss rate induced by the dynamic environment. Depending on the correlation time, the losses are
either dominated by heating of residual thermal particles or the creation of excitations in the superfluid, a
notion we substantiate with a rate model. Our results illuminate the interplay between superfluidity and
time-dependent disorder and on more general grounds establish ultracold atoms as a platform for studying

spatiotemporal noise and time-dependent disorder.

DOI: 10.1103/PhysRevLett.128.233601

Disorder is ubiquitous, and its impact on physical
systems has been studied intensely in recent decades
[1,2]. Most investigations were focused on static disorder,
in which single-particle wave transport can be suppressed
due to Anderson localization [3-8], and thermalization is
absent in certain interacting systems [7—11]. Since phe-
nomena like Anderson localization are based on interfer-
ence, modulating disorder in time has dramatic effects.
Recent studies of dynamic disorder in classical and
quantum systems focusing on transport showed, in stark
contrast to the static case, that it can be supported [12,13]
and even accelerated beyond the ballistic regime [14,15].
However, the interplay between superfluidity and long-
range coherence with time-dependent disorder, and dis-
sipation induced by the dynamic environment, have not yet
been investigated in experiments. The impact of dynamic
disorder is of broad interest, for example, in the context of
energy transfer in biological systems [16,17], the electrical
conductivity of ionic polymers [18] and microemulsions
[19], chemical reactions [20], wave propagation in the sea
[21], superconductors [22], and quantum walks [23].
Theoretical works on spatiotemporal noise predict a non-
equilibrium phase transition [24,25] which is induced by
the random environment. For quantum systems, it seems
natural to pose the question if there is an extention of
preparing nonequilibrium states by spatiotemporal periodic
drive [26,27] to the case of general broadband spatiotem-
poral noise. This novel regime is particularly complicated
by the nonlinearity of interacting quantum systems as Bose-
Einstein condensates (BECs), giving rise to collective
phenomena such as superfluid flow. One potential chal-
lenge is the unfavorable heating of atomic systems due to
energy absorption from the dynamic environment [26]. The
role of dissipation is of general interest in the paradigm of
open quantum systems [28], which is realized by, e.g.,

0031-9007/22/128(23)/233601(6)
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quantum gases coupled to environments with spatiotem-
poral noise.

Here, we study the nonequilibrium dynamics of ultracold
molecular Li, gases in tunable dynamical disorder. We
employ a novel scheme to realize a time-dependent optical
speckle potential with variable correlation time, inspired by a
method for the decorrelation of light fields [29]. For ultra-
cold, thermal ensembles, we observe the microscopic onset
of dissipation for decreasing correlation time, which is well
described by a random-walk model in momentum space. For
BECs, the disorder additionally creates direct excitations in
the superfluid, depleting the superfluid fraction. We model
the dissipative dynamics of the quantum gas by an open-
system rate model, treating the superfluid excitations in two
complementary ways. Importantly, comparison with exper-
imental data suggests a window of correlation times having
negligible superfluid excitations, well suited for studies of
nonequilibrium dynamics of quantum fluids.

Experimentally, we prepare dilute gases of bosonic °Li,
Feshbach molecules in a cigar-shaped hybrid magnetic-
optical trap [Fig. 1(a)]; for details see Refs. [30,31]. The
magnetic field close to a magnetic Feshbach resonance at
832.2 G [32] sets the s-wave scattering length a between
the molecules and thus their binding energy. Typical
thermal (degenerate) samples contain > 10° molecules at
a temperature of 7 = 590 nK (50 nK). A repulsive optical
speckle potential [33] at a wavelength of 532 nm introduces
the disorder. The typical size of the anisotropic speckle
grains is 6> x 6, with ¢ = 750 nm and ¢, = 10.2 um the
correlation lengths along the x/y and z direction. We
characterize the strength of the disorder by the spatial
average V of the speckle potential at the cloud position.

We create the rotated speckle pattern by transmitting a
laser beam through two glass plates with random surface
structures, i.e., diffusers, rotated against each other, and

© 2022 American Physical Society
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(a) Sketch of experimental realization. Cigar-shaped clouds of °Li, molecules with typical size L ~ 300 um are exposed to an

anisotropic speckle potential. (b) Creation of dynamic speckle. The dots with size o, represent the random surface of the diffusers, and
their colors indicate the magnitude of the phase shift they imprint on incident light. The transmitted light is focused on the cloud.
(c) Evolution of a dynamic speckle pattern. Maximum value of the cross-correlation function C,, of the speckle intensity. Error bars mark
the uncertainty of a fit that is used to extract the maximum value from C,,. Insets: a section of a simulated speckle pattern with max(C,),

as indicated by the arrows. Gray lines mark the positions of five distinct peaks in the initial speckle and simplify tracking the evolution of
the intensity distribution. The inset plot shows the calculated temporal power spectral density (PSD) of a dynamic speckle (blue, solid
line), where the inverse correlation time roughly coincides with the frequency at which PSD has dropped to 1/100 of its maximum value
at zero frequency. For comparison, we also show the PSD of a speckle whose mean potential is periodically modulated with frequency

1/7 (red, dashed).

focusing the light field onto the atoms [Fig. 1(b)]. Upon
rotation, the local phase imprints change significantly,
causing the height and position of the interference pattern’s
speckle grains to change. We quantify the resemblance to
the initial speckle intensity distribution /,_, by the
maximum value of the cross-correlation function [34],
max(C,), with

C,(xy) = / ddyT, (N xy ). (1)

I,(x,y) are two-dimensional intensity distributions in the
focal plane for rotation angle ¢ of the diffuser plate,
independently measured in a test setup. We define the
correlation angle ¢, at which max(C,,) has dropped to half
its initial value; see Fig. 1(c). For rotation at constant angular
velocity w, the correlation angle translates into a correlation
time 7 = ¢./w,. In the experimental setup, w, < 2100°s~!
and ¢, = 0.6°; hence r > 285 us. Importantly, in contrast to
a periodically driven potential, the temporal power-spectral
density of this dynamic speckle comprises a broad distribu-
tion of frequencies, where low-frequency contributions
dominate, and the inverse correlation time can be interpreted
as a bandwidth or cutoff frequency [see inset of Fig. 1(c)].

To study the response of thermal clouds to the dynamic
disorder, we prepare samples with 3.4 x 10°> molecules with
a = 1524 a, (ay is the Bohr radius) in a trap with harmonic
frequencies @, oy, @, = 27 x (498,22.1,340) Hz at a
temperature of 7' = 590 nK. Following the end of the
evaporation ramp, the cloud is allowed to relax for

500 ms to ensure thermal equilibrium. In order to minimize
excitations in the gas, we increase the potential of the
dynamic speckle during a 50 ms linear ramp to its final
value of V/kg = 30.5 nK < T, where kg is the Boltzmann
constant. After a variable hold time d; < 180 ms, the speckle
is extinguished during 50 ms, and we take an absorption
image of the trapped cloud. We extract the temperature by
fitting a Bose-enhanced Gaussian function [35] to the
integrated column-density distribution. We observe that
the cloud temperature 7" is proportional to the hold time
d, and the slope, i.e., the heating rate P = dT/dd;, grows
with increasing 1/7; see Fig. 2(a). The heating rate is
extracted by fitting a linear function to the data. We compare
these results to a numerical simulation of classical, non-
interacting point particles with thermal velocity distribution
in a dynamic, homogeneous speckle in two dimensions [36].
The dimensional reduction is facilitated by the anisotropic
speckle, which allows one to neglect the much weaker
potential gradients along the z axis as compared with the
xy plane. The heating rates from this simulation [Fig. 2(b)]
yield good agreement with the experimental data. We
conclude that the heating is intrinsically a single-particle
effect, not modified by the elastic molecule-molecule scat-
tering at a rate of 11 ms~! or inelastic collisions. Moreover,
we develop a microscopic heating model based on a random
walk in momentum space for the limiting case kzT > V,
which is realized in the experiment. Single particles travel on
almost straight trajectories, and experience “kicks” with
momentum change A p < p from the time-dependent poten-
tial. The resulting heating rate is given by
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FIG. 2. Heating of a thermal ensemble with initial tempera-
ture 7 =590 nK in dynamic speckle disorder with V =
30.5 nK x kg. (a) Cloud temperature 7" versus hold time d;
for various values of 1/z. (b) Heating rate P versus inverse
correlation time 1/z. Squares result from the numerical simu-
lation, solid line from the microscopic model. Error bars of
experimental data in (b) denote uncertainty of the fit, other errors
the standard deviation of 5 repetitions.
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where the constant y corrects for the dimensionality and the
trapping potential in each dataset independently [36]. The
model matches the measured heating rates for sufficiently
large inverse correlation times [Fig. 2(b)] [37].

In order to study quantum gases in dynamical disorder, we
cool samples with N = 4 x 10° molecules and scattering
length a = 2706 a, to T = 50 nK, far below the noninter-
acting critical temperature of condensation 7', = 245 nK.
Hence, we expect a condensate fraction > 0.8 and a BEC
with chemical potential g = 250 nK x kg = 5.2 kHz x A,
where £ is Planck’s constant. The corresponding timescale
h/u = 190 ps is smaller than the experimentally accessible
correlation times, and the healing length at the trap center
£ =380 nm [41] falls below the correlation lengths. Thus,
for these maximum values, the condensate can temporally
react to and spatially resolve all changes and details of the
speckle potential. The experimental sequence for the expo-
sure to the dynamic speckle is the same as for thermal clouds.
Instead of the temperature, we monitor the total molecule
number N of the sample, because the large condensed
fraction does not allow one to extract a temperature from
absorption images reliably. We find that the molecule number
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FIG. 3. Dissipation of a BEC in dynamic disorder. (a) Total

molecule number N versus hold time d, for various values of 1/7.
Error bars denote the standard deviation of 5 repetitions. Solid
lines are from the rate model. (b) Loss rates versus inverse
correlation time 1/7. Error bars of experimental data points (blue)
show the error estimation of the linear fit and are smaller than the
marker size for most data points. Lines indicate results from the
rate model, including thermal heating and phenomenologically
superfluid excitations in the inhomogeneous gas (solid), thermal
heating and microscopic particle loss from the homogeneous
condensate (dashed green), or only heating of the thermal cloud
(dotted). The shaded area represents a £20% variation of v;.
Inset: the processes included in the open-system rate model.

decreases linearly with d, and the loss rate —dN /dd grows
with 1/7 (see Fig. 3). We distinguish two main processes
contributing to the loss of molecules from the trap. On the one
hand, as described before, the dynamic speckle heats the
residual thermal component of the gas. The rising temper-
ature causes molecules to transfer from the BEC to the
thermal fraction, from which molecules with sufficient
energy can evaporate, which in turn cools the sample. On
the other hand, the motion of the dynamic speckle creates
excitations in the BEC, which again diminishes the con-
densate fraction because of Landau damping [42]. We model
the underlying dynamics by two approaches. The first takes
into account the trap but treats superfluid damping in a
phenomenological way, whereas the second provides ana-
lytic expressions for the particle loss from the condensate
fraction in a homogeneous superfluid.

Due to the BEC being superfluid, excitations are mainly
expected if the typical velocity v, of the speckle exceeds
the local Landau critical velocity v.(r) = \/gny(r)/m in
the condensate, where n is the condensate density dis-
tribution and ¢ the coupling constant [41]. These local
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FIG. 4. Loss rates of BECs in dynamic speckle for various values of the s-wave scattering length a. The allocation of colors and line
styles is the same as in Fig. 3(b). (a) a = 1524ay, y = 187 nK X ky = 3.9 kHZ x h; (b) a = 1310ay, ¢ = 173 nK x kz = 3.6 kHz x h;
(c) a = 982ay, p = 144 nK X kp = 3.0 kHz x h. The range of interaction strengths explored is limited for lower interactions by the
decreasing collisional lifetime of molecules and for higher interactions by the emergence of free atoms as the binding energy decreases.

quantities are well defined because, for our parameters, the
local-density approximation is valid [43]. We can estimate
the largest velocity scale of the speckle from the corre-

lation lengths and time to be v, = \/6%0;/7 < 6.3 mms~!,
which is below the maximum critical velocity v.(0) =
13.2 mms~! at the center of the condensate. However,
because of the Thomas-Fermi density profile [44], there are
always regions with v.(r) < v, where excitations are
possible. Additionally, inelastic collisions between mole-
cules cause losses, even in the absence of any speckle
potential [45]. We capture this interplay between heating,
evaporation, and cooling by a set of rate equations

N = N‘ev + N'rel (3)
T =Ty, + Tl + (Tly,) (4)

modeling the open quantum system (for details see the
Supplemental Material [36]), which includes the processes
evaporation from the thermal component (N|u.7].,),
molecular relaxation N|., and heating of the thermal
component by the dynamic speckle T| n, Lsee inset of
Fig. 3(b)]. We calculate the number of superfluid molecules
No=Nxn.(T/T.,N,a) using an expression for the
condensate fraction n., which incorporates the intermo-
lecular interaction and finite size of the system [36,46]. We
neglect effects of the relatively strong quantum depletion
[46], because the depleted density remains superfluid [47].
The number of thermal molecules is given by Ny, = N —
N, and we assume the system to be in thermal equilibrium
at all times. In order to include the effect of the speckle
potential onto the superfluid molecules, in a first approach,
we calculate the fraction f of the ones located in regions of
the condensate where v.(r) < v,. We assume that in
addition to thermally excited molecules Ny,, the condensed
particles in the former mentioned area f x N, are removed
from the system by evaporation. Numerically, we find that
f is close to zero below wv,/v.(0) = 0.3 [36], which
roughly coincides with 1/7~2 ms~!. This model phe-
nomenologically including superfluid excitations in the

inhomogeneous system is indicated as solid line in Figs. 3
and 4.

This approach obviously neglects the intricate dynamics,
interactions, and spectrum of superfluid excitations [48].
Therefore, in a second approach, we compute the rate of
particles transferred from the condensate to the thermal
fraction using number-conserving Bogoliubov theory in a
speckle with Gaussian-shaped spatiotemporal spectrum
[36,49], contributing another heating term T| No in Eq. (4).
For a homogeneous condensate, we find [36]

T| _ V2130’
No 6T*h?v 6/ 6 + 127>

= L3pa(u) + 1y s () = 1y ()] + Lja(u) ), (5)

e"{2ulls/4(u)

where [,(u) are an modified Bessel function of the first
kind [50], u is defined as u = (¢ + v272)?/16£%027%, and
7 = 7/4/log 2. In order to adopt the homogeneous theory to
the inhomogeneous experimental system, we use the
parameter 7, which we set to 7 = 0.05, effectively account-
ing for the experimental speckle anisotropy and effects of
the speckle’s inhomogeneity to roughly yield the exper-
imental particle loss rate [36], and evaluate Eq. (5) with the
mean superfluid density. This value of # has been obtained
by calculating the loss rates for all experimental parameter
sets and for several values of 7. We solve Egs. (3) and (4)
numerically to obtain the time dependence of the particle
number and compare the results to the experimental data in
Fig. 3, where this model microscopically including particle
loss in a homogeneous system is shown as a dashed line.
Both models reproduce the measured loss rates closely.
Molecular relaxation is included via the relaxation rate a
such that the loss rate in the static speckle matches the
measured one; we find agreement with previously reported
values [36,51,52]. For relatively long correlation times
1/t <2 ms™!, the losses due to superfluid excitations are
negligible, and the loss rates are well captured merely by
the heating of the thermal cloud [dotted line in Fig. 3(b)]. In
the case of 1/7>2 ms~!, both loss mechanisms contri-
bute significantly. Reducing the interaction strength, the
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phenomenological rate model systematically overestimates
the loss rate by assuming immediate depletion of con-
densate atoms in the region v.(7) < v, (see Fig. 4 and the
Supplemental Material [36]), while the model computing
the excitation rate from the condensate yields good agree-
ment for all interaction strengths with one common fit
parameter.

Our studies indicate a regime, where quantum fluids are
shielded from direct superfluid excitations even for a
broadband excitation, prevailing for a broad range of
interaction strengths. The tight control over correlation
times points toward future studies of transport in time-
dependent disorder both for classical and quantum systems
with strong interactions.
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Supplementary Material

In the following, details on the experimental procedure,
the theoretical models and additional data are given.

Experimental procedure

We prepare quantum gases in the BEC-BCS crossover
regime by forced evaporative cooling of fermionic ®Li
atoms in an equal mixture of the two lowest-lying Zeeman
substates of the electronic ground state 23, /2. Evapora-
tion takes place in a hybrid magnetic-optical trap at a
magnetic field of 763.6 G on the repulsive side of a Fesh-
bach resonance centered at 832.2 G [32], where atoms of
opposite spin form bosonic molecules that eventually con-
dense into a BEC. After evaporation, the sample is held
at constant trap depth for 300 ms to ensure thermal equi-
librium before the magnetic field is linearly ramped to
its final value during 200 ms. At this point, the dynamic
speckle is introduced by ramping the laser power linearly
during 50 ms to its final value (Fig. 5). The laser power is
held constant for a variable time ds and subsequently ex-
tinguished. After a waiting time of 30 ms, we employ res-
onant high-intensity absorption imaging [53] to extract
the column density distribution in the y-z-plane. For
thermal clouds, the temperature is determined by fitting
a Bose-enhanced Gaussian function to the density dis-
tribution. In the case of BECs, we estimate the sample
temperature to be 7' = 50 + 25 nK by ramping the mag-
netic field to 680 G prior to imaging and fitting a bimodal
density distribution [54].

The hybrid trap consists of an optical dipole trap and
a magnetic saddle potential, which provides weak (anti-)
confinement in (2-) - and y-direction, whereas the op-
tical trap strongly constrains the cloud along x and z.
Since the saddle potential is an accessory to the magnetic
field used to address the Feshbach resonance, its curva-
ture depends on the field magnitude. The trapping fre-

dy ds dr  dy
—>

time

FIG. 5. Experimental sequence. Following the end of the
evaporation ramp and a hold time of 500 ms, the dynamic
speckle is ramped up linearly during d. = 50 ms. After a vari-
able hold time ds < 180 ms, the speckle is slowly extinguished
and we take an in-situ absorption image (red line) of the cloud
after a waiting time dy, = 30 ms.

quencies and other relevant parameters for all presented
experimental data are listed in Tab. I.

The speckle potential is created by passing a laser
beam of wavelength 532 nm through two diffusive plates
(Edmund Optics 47-988 and 47-991) and focusing the
light, using an objective with numerical aperture 0.29,
onto the atoms. They experience a repulsive and spa-
tially random dipole potential V', which we characterize
by its spatial average V at the focal point of the objec-
tive. The typical grain size of the speckle is given by
the Gaussian-shaped autocorrelation function of the po-
tential with 1/e widths (correlation lengths) o = 750 nm
transversely to and o; = 10.2 1m along the beam prop-
agation direction. As the speckle beam has a Gaussian
envelope with waist 440 pm, the average potential is in-
homogeneous across the spatial extension of the cloud.
We use a motorized rotation stage (OWIS DRTM 65-
D35-HiDS) to rotate one of the circular diffusers around
its principal axis. As a consequence, the rotation speed
and hence the phase shift imprinted onto the light field
depends on the distance from the rotation axis. This ren-
ders the correlation time k-vector dependent. However,
the light-field distribution is imaged onto the plane of
the atoms, which is deep in the Fraunhofer limit. Thus
at every position of the atoms, all k-vectors contribute to
the interference, yielding a Gaussian correlation in space
and time with the correlation length and time as given
in the manuscript.

Dynamical Speckle Potential

The static speckle potential is created by transmitting
a laser beam through a glass plate with a random sur-
face structure, i.e., a diffuser. The diffuser imprints a
phase pattern whose spatial variation is characterized by
the correlation length o4 &~ 20 pm of the surface struc-
ture (Fig. 1 (b)). By focusing the beam, all partial waves
with random phases interfere and create a static speckle
pattern with correlation length o in the focal plane. The
speckle is rendered dynamic by adding a second, similar
diffuser directly after the first one, which is mounted in
a motorized rotation stage. Upon rotation of the sec-
ond diffuser, the details of the imprinted phase pattern
are altered significantly once the local displacement of

magnetic field (G)|700.0|720.0|730.0(763.6|

wy /27 (Hz) 21.7] 22.0] 22.1] 22.6
a (ao) 982| 1310| 1524 | 2706
N(0) (10%) 288| 325| 345| 406

a (107 ¥em®s™) | 29| 1.0| 1.2] 0.65
TABLE I. Overview of parameters for different magnetic
fields. Scattering lengths taken from [32]. N(0) is the ini-
tial molecule number used for the solution of Eqs. (A.34)
and (A.35). « is the molecular relaxation rate.
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the diffuser is comparable to 4. As a consequence, the
height and position of the speckle grains change until the
intensity distribution bears no resemblance to its initial
state before rotation, see Fig. 1 (c).

Numerical simulation of classical particles in
dynamic speckle

We simulate the motion of classical, noninteracting
point particles in a dynamic, homogeneous speckle po-
tential V' = V(z,y,t) in two spatial dimensions. To this
end, we numerically solve Newton’s equation of motion

ma = —-VYV, (A.6)

where a is the acceleration, using the explicit third-order
Runge-Kutta method [55]. For the spatial and tem-
poral discretization, we choose Az = Ay = 100nm and
At = 1ps, which are far below all other relevant length
and time scales. The simulation encompasses a rectan-
gular region with size 22.5 um x 22.5 pm that is confined
by hard walls. A typical simulation calculates the trajec-
tories of ~ 50000 particles which start at random posi-
tions with velocities drawn from a thermal distribution.
Our main observable is the growth rate of the ensemble-
averaged kinetic energy, from which we get the heating
rate.

We use a simple numerical approach to simulate a ho-
mogeneous two-dimensional speckle pattern. The scalar
electric field distribution of a speckle is readily obtained
from the discrete fast Fourier transform F(R) of a two-
dimensional square array R filled with random phase
factors [33]. Thus, each entry (k,l) of R is given by
Ry = exp (2miQ), where @ is a continuous random vari-
able being uniformly distributed in the interval [0,1).
R represents the electric field of the light after passing
through the diffusers. In order to increase the smooth-
ness of the output of F, R is zero-padded. Since we are
interested in the speckle intensity distribution S, we cal-
culate S = |F (R)|*.

Such a static speckle is rendered dynamic by the fol-
lowing procedure. We call R(t) and S(t) the random
phase array and corresponding intensity distribution at
time ¢. R(t) is propagated in time by adding a small
phase 2miQ+/Ats/T to each entry, where Aty < 7 is the
time step. This simulates the continuous phase evolution
on a time scale 7 that is caused by the rotating diffuser.
It is captured by the iteration formula

Ry i (t + Ats) = Ry 1 (t) X exp (27”‘@\/ A:S> . (A

In order to minimize computational effort, we choose
Ats = 7/10 > At and use pointwise linear interpolation
between S(t) and S(t + Ats) for intermediate times. It
is important to note that Eq. (A.7) does not produce a

98

P p+Ap
—_— —
Apz mAV

Ejin

Y av) < vI

FIG. 6. Schematic illustration of a particle traversing a single
grain of the dynamic speckle.

sequence of speckle patterns S(¢) with a correlation time
that is precisely given by 7. The exact value depends on
the size of R, the zero-padding of R, and the choice of
At and typically misses 7 by several 10%. Hence, we
extract the correlation time from each sequence S(t) by
evaluating the auto-correlation function [56] of S(t).

Derivation of Eq. (2)

To compute the heating rate in the thermal case, we
assume the limiting case kg7 > V, which is realized in
the experiment. Here, single particles in two dimen-
sions travel on almost straight trajectories through the
time-dependent potential. Each time a particle with
momentum p traverses a speckle grain, it experiences a
7kick”, changing its momentum by an amount Ap < p
that is proportional to the change in potential height dur-
ing flyby [36]. Due to the random spatial distribution
and height of the grains, the particle experiences a se-
ries of kicks in random directions, performing a random
walk [57].

Quantitatively, consider a particle with mass m and
momentum p traveling through the dynamic speckle po-
tential. We make two assumptions concerning the mag-
nitude of p.

1. The kinetic energy Eyi, = p?/(2m) of the particle
greatly exceeds the average disorder potential V.
This means that kg7 > V for a thermal ensemble.

2. The velocity v = p/m of the particle is much larger
than the largest velocity scale vs = o /7 of the dy-
namic speckle.

First, we investigate the particle traversing a single
speckle grain with potential height V' (Fig. 6). Since
the grain has the width o, it takes the time At =o/v
to traverse it. Due to the dynamics, the potential height



changes by a small amount AV. Because of assumption
2, we know that |[AV] « V. Hence, the particle gains or
loses the kinetic energy AEy;, = AV and the momentum
Ap. The connection between AFEy;, and Ap turns out to
be

(p+4Ap)° P> _ 2pAp+(Ap)°

AF in —
K 2m 2m 2m

(A8)
Since |AEyi| = |AV]| < V < Eyiy, and thus Ap < p, we
can neglect (Ap)® and write

mAV

Ap ~ ——.

. (A.9)

Now, we have the change in particle momentum at a
single grain of the speckle potential. Since the speckle
is random, we have to calculate the disorder average of
the change in momentum or kinetic energy. Therefore,
we introduce the disorder average (-) and apply it to the
change in kinetic energy to get

(MBi) = o (odp) + {(Ap)*). (A10)
(A Exin) is the disorder-averaged change in kinetic energy
of a single particle passing by a single speckle grain. Be-
cause the two-dimensional disorder is isotropic, the same
holds for the direction of Ap. Hence, the first term in
Eq. (A.10) vanishes and we are left with

(AByin) = % <(Ap)2> . (A.11)
We plug in Ap from Eq. (A.9) to get
(ABign) = 2%2 ((av)y?). (A.12)

Now, we have to evaluate <(AV)2>. For a given grain
with height V', the change in height AV during At is

At
and Eq. (A.12) reduces to
mAt?
(AEyy,) = 2212 (V?). (A.14)

Due to the exponential potential probability distribution
of the speckle, we find (V?) = 9V”. This leads to

mAt? -, o2
2p272

<AEkin> = VQ. (A15)

T or204m
Now, we have the disorder-averaged change in kinetic en-
ergy at a single speckle grain. The particle passes grains
with a rate 1/(2A¢), hence

AT 1 dEyin _ (ABExn)  oV?

Pv) = — = ~ = .
R T T WAthy 27203 mkp
(A.16)

Here, we have made the assumption that two speckle
grains are separated by a typical distance o. As to get
the temperature dependence of P we integrate P(v)

P(T) = / P(o)p(v)dv. (A.17)
0

over the two-dimensional Maxwell-Boltzmann distribu-
tion p(v) = 2zvexp (—zv?), with = m/(2ksT). Un-
fortunately, the integrand diverges at v =0 because
P(v)p(v) x v=2. Due to assumption 2, we can cut off
the integral at vs without making too big a mistake. We
get

> exp (—va) 1 1 9
\/vs 72(1’[) = 5\/51_‘ (—i,l”l}s) 5

v

(A.18)

where 1“(5,(1)2]{10c t*~lexp(—t)dt is the incomplete
gamma function. From assumption 2 it follows that
2v? < 1 and we can approximate I'(s,q) ~ —¢°/s [58]
to find

1 1 1
“Val [ =z a0 ) = — Al
T (—poi?) ~ o (A.19)
Finally, we get
aV? * p(v) V2
P(T)= ——— —dv = . A.20
@ 2kpT2m /U v 2k3TT (420

Adaptions between experimental and theoretical
data

To ensure that the experimental and theoretical data
are comparable, we have to make two adaptions.

Inhomogeneous distribution of average speckle
potential Both the numerical simulation and micro-
scopic model assume a homogeneous speckle. In the ex-
periment, a Gaussian envelope with waist w =~ 440 pm
modulates the local average of the speckle poten-
tial. The cloud is located in the center of this en-
velope. The inhomogeneity is most pronounced along
the long (y-) axis of the cloud with density distribu-
tion n(y). Locally, the heating rate P is proportional to
Vz(y) =V (0) exp (—y?/w?). Hence, in the experiment,
P is reduced by a factor of

b= S )V (y)dy (A.21)

V(0) [ n(y)dy

as compared to the homogeneous case. Since v; depends
on the precise shape of the density distribution, which is
different for the individual data sets, it is computed for
each data set independently; it takes on values between
0.77 and 0.93.
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Dimensionality and degrees of freedom As the
numerical simulation and microscopic model employ two-
dimensional systems and do not include the harmonic
trapping potential, the number of degrees of freedom is
different from the experiment. In the theory calcula-
tions, we have dineo = 2 degrees of freedom, assuming
we can neglect the weak speckle potential. In the exper-
iment, however, there are dex, = 6, two for the harmonic
trapping potential and kinetic energy in each dimension.
Therefore the additional kinetic energy, as extracted from
the numerical simulation and microscopic model, must be
equally distributed across dexp, degrees of freedom. Since
the temperature of an ideal gas is T' = 2Fy;, /(kpd), the
heating rates of theory and experiment are connected by

ar\ _ (dT
dt exp dt theo

dth(,o _ 1/3

(A.22)

where 5 =

All plotted heating rates from the numerical simulation
are corrected by the factor v = y172.

Direct excitation of superfluid atoms

In the following we present a theoretical model, which
enables us to quantify a direct excitation rate from the
superfluid ground state into the thermal cloud due to
the speckle potential. We model the gas in local den-
sity approximation as a homogeneous ground state with
Bogoliubov excitations. Using total number conserving
Bogoliubov theory [46] enables us to keep the number of
condensed atoms ]\70 = dg&o as an operator, and therefore
quantify a process which changes the superfluid fraction.

To do so we transform the annihilation (creation) op-
(h

erator @~ of an atom with momentum k into operators

135:) describing the annihilation (creation) of a Bogoliubov
phonon, via

&g dk,/\/N = uki)k + ’U,ki)T_k, (A.23)
where u;, and vy are the Bogoliubov eigenvectors [46]
and N is the total number of atoms. The Hamiltonian
describing the gas is approximately diagonal in this bases
Hy = Zk;&o hwkb b, where wy = ckv/1+ k2£2/2 is the
Bogoliubov dispersion, with the healing length £ and the
speed of sound c. The influence of the speckle potential
is given by the term

H ka, k’ ak,ak
koK'
= NoVo(t) + VN Y VWi (b +51) + 0 (i2),
k£0

(A.24)
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where Wi = ug + vy is a structure factor and Vi (t) =
f L V(r,t) e’*" the Fourier transformed speckle poten-
tlal We assume that the potential is a Gaussian random
variable in space and time, with mean and variance

V(r,t)=0 (A.25)

2 2
V(r,t)V(0,0) = V2 exp (f% — %) ,  (A.26)
where 7 is a factor which we need to describe the
trapped system with a theory of a homogeneous gas and
7 = 7/+/log 2. Here, n rescales the relation between the
speckle potential and resulting correlations of the homo-
geneous disorder potential to account for the experimen-
tal speckle anisotropy and the effect of the speckles’ en-
velope. We chose a value of n ~ 0.05 yielding roughly
the same particle-loss rate compared to the experiment
in Figs. 3(b) and 4. The Heisenberg equation of motion
of by, and Ny are given by

ibk =—i (szsk + 1v,k(t)wkx/ﬁ) (A.27)

dt
d R
2N = VN S VWit (0 — b))
where terms which do not scale with v/N where ne-

k#£0
glected. These equations can be integrated out exactly
and we find for the averaged expectation value of con-

(A.28)

densed particle number Ny = (]\70>

No(t) = No(0)
=24 Re<z / dt’ / dt” (=)
k£0

: vk(tf)v,k(tff)) . (A.29)

This simplifies for late times ¢ > 7 to a linear excitation
rate of ground state atoms

No(t) — No(0) = =N T' ¢, (A.30)

where the transition rate is given by
B n2V? o
3h2v.€ \Jo? + v2T?
— I3/4(u) + L1 ya(u) — 171/4(71)] + 11/4(u)},
(A.31)

et {Qu [15 1a(u)

Here I, (u) are modified Bessel function of the first kind
[47] and u is defined as
(02 + v272)?



At this point we assume, that the gas thermalized quickly
via internal scattering, such that the decrease of con-
densed atoms directly leads to an increase in tempera-
ture. This results in an additional heating rate, which
we calculate from the leading order non interacting part
of the superfluid fraction No/N =1 — (T/T.)? and find

(A.33)

interaction corrections

11
Rate model for the dissipation of BECs

In the following we give a detailed description of the
rate model

N - N|ev +N|rel
T= T|Nth + T|eV:

(A.34)
(A.35)

for the total particle number N = Ny + Ny, and the tem-
perature 7. The number of particles in the superfluid
Ny = N X nc is given by the superfluid fraction n.. n. co-
incides with the condensate fraction, provided that quan-
tum depletion is negligible. Otherwise, n. exceeds the
condensate fraction. In order to account for the interac-
tion between particles and the finite size of the system,
we solve the transcendental equation

finite-size correction

B T\* ¢@) /T\* 3wal(2) [T\ . _
w=1=(z) G () ((cvommrn) ) - 52650 () v

to determine n, [43]. The first term of Eq. (A.36) is the
well-known result for a noninteracting gas in a harmonic
trap that only depends on 7" and the critical temperature

_hwg (N
Te= T («3)) ’

where £ is the reduced Planck constant, w, the geometric
mean of the trapping frequencies, and ¢ the Riemann zeta
function. The second term includes a first-order correc-
tion due to interactions, quantified by the dimensionless
parameter

(A.37)

_1 1/3 1/6 @ 2/
n= 5((3) 1I5N/° — (A.38)

Gho

with the oscillator length an, = y/h/(mwg), and the Lee-
Huang-Yang correction [59]. The third and last term is
the finite-size correction with w, the arithmetic mean of
the trapping frequencies. Disorder-induced depletion of
the condensate fraction is negligible in our system, be-
cause the healing length £ is roughly a factor two be-
low the smallest correlation length [60]. After solving
Eq. (A.36), n. is reduced by the fraction f of parti-
cles that are located in a region of the condensate den-
sity no(r) where the local critical velocity v.(r) is below
the largest velocity scale vs of the dynamic speckle (see
Fig. 7). Hence, n, — ne x (1 — f) with

1

f= —/ no(r)dr?, (A.39)
No Vs >ve(r)

(A.36)

where ng(r) is the Thomas-Fermi density distribution.
The heating of the thermal fraction is described by
T|n,, = P(t)y. We get the heating rate P(t) from the
numerical simulation and incorporate the time depen-
dence of V as shown in Fig. 5. Evaporation from the
thermal fraction is captured by

. N,
Nlew = — th (A.40)
Tev
. 1 /U
Plow = —— (22 1), AAl
o= = (%B ) (A.41)

where 1/7,, is the evaporation rate and
Uy =438nK x kg the trap depth. The evaporation
rate

1 1 Uy ( Uy )

— = exp | ———

Tev Teoll \/ikBT kBT
depends on the elastic scattering rate 1/7.on and the
probability of collision events which leave one of the par-

ticles in a state with energy > Up [38]. We calculate the
scattering rate

1

Teoll

from the average relative velocity Tye1 = v/2+/ 8kpT'/(mm)
of a thermal gas in three dimensions, the scatter-
ing cross section oeon = 8ma?/(1+ k3ga?) for indis-
tinguishable particles with the thermal de Broglie
wave vector kqg = /2mmkgT /h, and the peak densi-
ties of the BEC n{™ = u/g and the thermal cloud

(A.42)

= T}relo'coll (nbnax + nﬁl}ax) (A43)
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nlax = Ny, (77u.u§/(2kBT7r))3/2 [38]. At last, we include
molecular relaxation N |re1, which is a two-body process
and hence described by the differential equation

n = —an?, (A.44)

with the rate of molecular relaxation «. For simplicity,
we treat the density of the thermal and condensed clouds
separately by writing

(A.45)

n & ng + gy = fa(ng + n?h)

Integration of Eq. (A.45) over all space yields

N|rel = —« (?n{,“deo + deth) ) (A46)

1
where we have assumed a Gaussian density distribution
of the thermal molecules [38]. The determined loss rates
« are given in Tab. I.

Employing  Wolfram  Mathematica, = we solve
Egs. (A.34) and (A.35) numerically with initial
conditions T'(0) = 35nK for all measurement series and
N(0) as extracted from absorption images at ds =0
and 7 = oo for each respective measurement series (see
Tab. I). The initial temperature is adjusted such that
evaporation is negligible during the experimental se-
quence (Fig. 5) with no speckle potential present and
is well within the margin of error of the experimentally
determined temperature of 50 + 25 nK.

The failure of our phenomenological model to explain
the experimental data for reduced interaction strength
can be explained by the following argument. Exceeding
the superfluid critical velocity, elementary excitations are
created with energy E < p, which cannot remove parti-
cles from the trap. The decay of such excitations is pos-
sible only via interaction with other thermal or disorder-
induced excitations, leading to the formation of a higher-
energy excitation, which can eventually remove molecules
from the trap. The corresponding damping rate of such

1.0

0.8
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0.4 4

0.2 4

0.0 4

0.0 02 0.4 06 0.8 1.0
Vs/vc(0)

FIG. 7. Fraction f of particles located in regions of the con-
densate where vc(r) < vs versus vs/vc(0).
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excitations has been shown to scale with the interaction
parameter as (nga)!/? [61]. Thus, for large scattering
length, the damping is sufficiently fast to justify the as-
sumption of an immediate depletion of the superfluid
density. For weaker interaction, by contrast, the damp-
ing rate does not suffice to cause immediate particle loss,
and our model overestimates the loss rate. Furthermore,
as the local density approaches zero in the outer regions
of the condensate, the healing length grows, and the local
chemical potential is diminished, effectively shielding the
BEC against the disorder evolution on short time and
length scales [62].



7 Conclusion

7.1 Summary

Although the Bose polaron represents a fundamental problem in many-body physics, there
remain unanswered questions, especially concerning impurities that exhibit strong coupling
with the environment compared to other scales within the system. This thesis primarily focuses
on this limit and discusses the characteristics of the Bose polaron within a one-dimensional
system. Due to the strong coupling between the impurity and the Bose gas, the condensate
is significantly deformed. Nevertheless, a [MF| approximation of the deformed condensate can
accurately describe this phenomenon. To account for the correlations between the impurity
and its surrounding environment, the system is described in the reference frame co-moving
with the impurity by employing the transformation|49]. By utilizing this novel technique,
both equilibrium and non-equilibrium properties are examined.

In terms of the equilibrium properties, first, the stationary states of a single polaron are derived
analytically. Notably, since the total momentum operator commutes with the Hamiltonian
, the stationary states are distinguished by the total momentum p as a quantum number.
For small momenta, the polaron energy-momentum relation is quadratic in p. It is entirely
determined by the polaron energy and effective mass, as elaborated in Chapter [2| [P1] and
the supplemental material of Chapter [3| [P2]. Both of these quantities are derived in
approximation and exhibit excellent agreement with the results obtained from quasi-exact
[DMC] simulations. As the impurity-boson coupling gig approaches infinity, the Bose gas is
entirely pushed away from the impurity position. Consequently, the density profile and polaron
energy become identical to those of a dark soliton. In this limit, particles can not bypass the
impurity, which implies that the entire system must move along with the impurity once it is
in motion. Consequently, the polaron mass equals the total mass of the system.

Extending the stationary solution to an arbitrary total momentum, as detailed in Chapter
offers insight into the critical impurity velocity below which it moves without experiencing
friction within the condensate. For small coupling gig, the critical velocity agrees with the
Landau criterion and is equal to the speed of sound. It monotonically decreases for larger
coupling and eventually reaches zero. This can be understood as the Bose gas is increasingly
depleted for large gig, thereby reducing the effective speed of sound at the impurity, which is
proportional to y/n. While there is an upper bound on the impurity velocity above which no
stationary state exists, there is no such constraint on the total momentum. In fact, the energy-
momentum relation is a periodic function in the total momentum p, with a periodicity of 27wn,
since the Bose gas, away from the impurity, can acquire integer windings of the condensate
phase. Consequently, the impurity velocity v exhibits periodicity in the total momentum p,
including regions where p and v have opposite signs.

To investigate the interaction between impurities mediated by the many-body environment,
the approach is extended from a single to two impurities in Chapter |3| [P2]. In contrast to the
single impurity case, the [LLP] transformation is unable to remove both impurity degrees of
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freedom from the Hamiltonian. Therefore, a approximation is applied, which is reasonable
for heavy impurity masses. The interaction potential derived through this method agrees
excellently with results from [DMC] simulations. For strong repulsive polarons, the Bose gas
is pushed out entirely from the space between the impurities if their distance is smaller than
7€ = m/(1/m + 1/2M)/(2gn). Consequently, the impurities are pushed towards each other
by a constant force, resulting in a linear interaction potential. To consider the impact of a
finite impurity mass, the diagonal Born-Hunang correction to the BOJapproximation is derived,
which causes the onset of a repulsive peak in the interaction potential. The bound states of the
resulting interaction potential represent a bipolaron, and their corresponding binding energies
are calculated. Notably, these binding energies agree excellent with the results obtained from
simulations for mass ratios as low as 3.

The formation dynamics of a single polaron is studied in Chapter |5/ [P4]. The time evolution
is simulated following a sudden quench or a quasi-adiabatic turn-on of the impurity-boson
coupling constant. In the quasi-adiabatic situation, the impurity is decelerated even if the
initial velocity is below the critical velocity derived from the stationary state. This deceleration
arises due to the increase in the effective mass during polaron formation and is a reversible
process in any finite system. If the initial velocity exceeds the critical value, the impurity
emits density waves, leading to an irreversible frictional force. In the case of a sudden quench
of the coupling constant, a diverse range of dynamic regimes can be observed. Alongside
density waves, the impurity also emits solitons in specific parameter regimes. This results
in unconventional impurity motion, including velocity oscillations and backscattering. To
validate the accuracy of the treatment, quantum fluctuations are taken into account by a
truncated Wigner simulation. In order to avoid infrared divergences related to the 1D setup,
this simulation is conducted in a harmonically trapped system.

In addition to the coherent impurity-boson interaction, this thesis investigates the effects of
a temporally fluctuating interaction. Chapter 4| [P3] demonstrates that noise can be utilized
to control coherent currents within the Bose gas. The localized noise scatters particles from
the condensate into highly excited modes, affecting the condensate similar to local particle
loss. Consequently, it induces a coherent current directed towards the noise, counteracting
the effective particle loss. Depending on the strength of the noise and the velocity of the
impurity, three dynamical regimes are identified. First, a linear response regime where the
induced current increases with the strength of the noise. However, because the local speed of
sound limits the velocity of the coherent current, the system transitions into a Zeno regime
at a critical noise strength. In this regime, a stationary soliton forms at the noise source,
reducing the density and, consequently, the particle scattering rate and the strength of the
induced current. At finite impurity velocity, a third regime emerges. The interplay between
noise, finite impurity velocity, and the Bose-Bose interaction generates instabilities, resulting
in the periodic emission of solitons. Generalizing this to two noisy point contacts reveals how
noise tuning can be employed to control and stabilize the current in the segment between the
contacts.

Finally, this thesis studies the impact of not only temporal but also spatiotemporal fluctuating
noise on a cold Bose gas. This investigation was primarily conducted through an experiment
within the group of Artur Widera. It was mainly carried out by Benjamin Nagler, with my
involvement in the theoretical modeling of the experiment. The noise induces direct heating
of the thermal cloud and excitation of particles out of the condensate state. Both of these
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effects contribute to an evaporative loss of particles. This thesis contributes to this work by
estimating the excitation rate of superfluid atoms into the thermal cloud.

7.2 QOutlook

7.2.1 Generalization to higher dimensions

The main focus of this thesis is the description of the Bose polaron in one spatial dimension.
However, it is important to note that most experiments conducted thus far have dealt with
three-dimensional systems [17-19, [21]. This section discusses, therefore, the applicability of
the [MF] approach within the [LLP] frame to higher dimensions.

The derivation of the equation, as presented in Section for a one-dimensional system,
can be straightforwardly generalized to arbitrary spatial dimensions d. The equation is
given by

1
2m

00 0(78) = |5 =97 + 100 T+ glo(T ) + 0 ()| 67 1), (71)
Here, m = (1/m + 1/M)~! represents the reduced mass of the boson m and the impurity
mass M. The coupling constants are g for boson-boson interaction and grg for impurity-boson
interaction. The impurity velocity is given by

B(t) = % [ﬁ+ i / A (7, 6)* ¥ O(F, t)} . (7.2)

It depends on the conserved total momentum p. Similarly to the analysis performed in this
thesis, Equation can be used to study both equilibrium and non-equilibrium properties of
the d-dimensional Bose polaron. However, unlike the one-dimensional case, analytical solutions
are unavailable in higher dimensions, and numerical simulations are computationally more
demanding. Nevertheless, some studies have already been conducted, focusing on two- or
three-dimensional systems using this technique. For instance, in a three-dimensional system,
the ground state of the polaron was computed using a variational method in the study of Ref.
[56]. Additionally, in Ref. [54], numerical simulations were conducted to determine the ground
state in two and three dimensions. Furthermore, the method has been extended to study
bipolarons in a three-dimensional system [58], similar to the approach used in Chapter (3| [P2].
Until now, non-equilibrium simulations of Equation have only been conducted in one
spatial dimension. Nevertheless, extending such simulations to higher dimensions is feasible,
for example, by employing a time-splitting spectral method [107], as presented in Appendix

However, in cases where the impurity-boson coupling remains sufficiently weak, the Frohlich
model introduced in Section also provides an adequate description of the Bose polaron.
This model has been extensively explored in various publications, also in two and three dimen-
sions [27-32, 3544, |47]. In the following, a dimensional analysis of Equation ([7.1]) is performed
to estimate whether the condensate is substantially deformed in realistic experiments. Only if
this is the case, different results compared to the Fréhlich model can be expected from our the-
ory. For this purpose, all parameters in the Equation are expressed in dimensionless
quantities

T=tgn, p=7/E O77) =0 0)/Vn, (7.3)
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where n is the average particle density, gn the chemical potential and £ = 1/4/2gnm the
rescaled healing length. This results in the following equation

i0; (5. 7) = [—62 - ﬁ 9(r) -V +16(5.7) + g“% 0| dpr). (T4
From this representation, it is evident that the Bose gas experiences significant deformation
for gig/g > néd. Below, experimental values for the reduced gas parameter néd are presented,
allowing an assessment of whether the strongly interacting limit is achievable in current ex-
periments.
The experiment discussed in Ref. [16] implements a one-dimensional system whose parameters
are examined in detail in Section The experiment realizes a gas parameter of né = 1.9,
signifying that the strong impurity-boson coupling limit is indeed reachable within this 1D
system.
A three-dimensional realization is an experiment presented in Ref. |18]. The authors realize
both the and the impurity using 3°K atoms. The density is n = 2.3 x 10" cm ™3 and
the boson-boson scattering length ag = 9ag, where ag is the Bohr radius. The rescaled healing
length £ = vm/m € is directly proportional to the conventional healing length £ = 1//8mnag
[88]. This leads to a gas parameter of né&® = 142, indicating that reaching the strong coupling
limit is much more challenging compared to the 1D experiment [16].
Another implementation of a three-dimensional system is presented in Ref. [19]. In this study,
the authors employ *°K to create impurities within a[BEC]of 8"Rb atoms, with a reported BEC|
density of n = 1.8 x 10 cm™ and boson-boson scattering length ap = 100a. Consequently,
the gas parameter is n&* = 8.7, making the attainment of the strong coupling limit considerably
more feasible in this experiment.

In summary, extending this approach to higher dimensions is possible, and reaching the strong
coupling limit in experiments is realistic. Therefore, further investigating this method in two
and three spatial dimensions is worthwhile.

7.2.2 Beyond the mean-field approximation

The [MF] approximation employed in this thesis is suitable for a heavy impurity mass M > m
and weakly interacting Bose gases, characterized by a small Tonks parameter v = gm/n, as
discussed in Section The commonly used Fréhlich model, derived in Section shares
these limitations. The following section explores alternative approaches that can be used to
overcome these constraints.

One method that is applicable to arbitrary parameters is a simulation, which has been
used to determine ground-state properties of polarons and bipolarons [P2] 33, 34, [84]. Never-
theless, it is worth noting that this method cannot provide out-of-equilibrium properties and
is computationally intensive. In the specific case of a 1D system with equal masses M = m
and interaction constants gig = g, an exact analytical solution for the ground state is available
using a Bethe ansatz [61].

Particularly in one-dimensional systems, tensor network methods, such as the density matrix
renormalization group or time-evolving block decimation , are accessible for
calculating the properties of the quantum model over a wide range of parameters [113]. It
is important to note that these techniques apply to lattice systems. Hence, the continuous
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Figure 7.1: Polaron energy for different Tonks parameters v = gm/n derived using the
approach (lines) and (dots). The simulation was conducted by Dennis Breu.
Both theories are derived in a finite-size system of N=40 bosons within an infinite square well.
The impurity is chosen to be heavy M — oo and localized in the center of the square well.

Hamiltonian

(7.5)

needs to be discretized to a lattice with a small spacing Az. The continuous field operators
o(x) ((z)) for the bosons (impurity) are substituted with discrete operators, by

() — by )V Ax. (76)

After replacing derivatives with finite differences, 8§$(x) = [Gi41 + Gi—1 — 2a;]/Ax?, the re-
sulting lattice Hamiltonian is

H=Y" { (aL_lai +alaig — 2a;~[a,~> + alalaa;

— | 2m Az? 2 Az
: , (7.7)
b L opth) o IBptata f
A (BB + Blbiy1 — 26]6i) + Axbiaiazbl}.

Using techniques such as[DMRG|and [TEBD], it should be possible to extract both equilibrium
and non-equilibrium polaron properties from this Hamiltonian in parameter regimes that are
inaccessible via the approach.

At the time of writing, Dennis Breu is working on this approach as part of his master’s thesis
under the supervision of Michael Fleischhauer and supported by Julius Bohm and myself. A
preliminary result obtained through a[DMRG]|simulation is the polaron energy in the limit of a
heavy impurity M — oo and in a system confined in a box potential. This is compared to the
results from the [ME| treatment in Figure While the results agree for small 7, the DMRG|
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simulation can determine the energy in regimes where quantum fluctuations are no longer
negligible, thus extending beyond the limitations of the approach. Further extending
this approach, the effects of a small impurity mass M can also be investigated, which is not
accessible using the [MF] treatment.

However, a disadvantage of this treatment is its limitation to finite-size systems, and it is
difficult to implement efficiently [114]. This limitation is problematic because open
boundary conditions exhibit edge effects like Friedel oscillations. would simplify finite-
size scaling and provide direct access to a representation of finite momentum eigenstates [115-
117]. This capability would be particularly valuable for studying the steady-state properties
of polarons at finite momenta, such as the polaron energy-momentum relation or the critical
impurity velocity for superfluid transport.

Nonetheless, tensor networks are a powerful technique to study the polaron properties beyond
the limitation in the regime of a strong interacting Bose gas (v 2 1) or a light impurity
mass M < m.

7.2.3 Polaron Bloch oscillations

In certain quantum systems, particles subject to a constant external force undergo periodic
oscillations. A prominent example of this phenomenon is observed in systems where particles
are confined in periodic lattices, known as Bloch oscillations [118]. Here, the periodic motion
is a consequence of the periodic band structure of the quantum particles in the lattice. Similar
periodic motion phenomena have been observed in other systems, such as magnetic solitons
in one-dimensional ferromagnets [119] and dark-bright solitons in weakly interacting Bose-
Bose mixtures [120]. In the field of polaron physics, Bloch oscillations were experimentally
measured in the motion of an impurity within a strongly interacting one-dimensional Bose gas
(Tonks parameter v > 1) in Ref. [20]. In this study, the authors attribute the emergence
of oscillations to strong quantum correlations in the Tonks gas, leading to effective quasi-
crystalline structures. However, as discussed in Chapter [P4], the energy-momentum relation
of a polaron, shown in Figure exhibits periodicity in the total momentum even in the case
of a weakly interacting Bose gas (v < 1). This indicates that the impurity might still perform
Bloch oscillations when subjected to a constant force without the quasi-crystalline structures
of a Tonks gas.

To analyze the system under the influence of a constant force acting on the impurity, we modify
the Hamiltonian by adding a linear potential —F7, where F' represents the strength of
the constant force. The total Hamiltonian is then expressed as:

A= g [ qedt % | 194 (2)d 3z —7)|¢ 7.8
=g Pt ], ,d0d@] - gn + 199 @d0) T gmda D)o@ (78

Since this additional potential breaks the translational invariance of the system, the standard
LLP|transformation ULLP = exp(—iPBf) discussed in Section cannot separate the center
of mass coordinate from the other coordinates, as the total momentum is no longer conserved.
Nonetheless, we can achieve a similar result by generalizing the transformation to

A

U =exp i (Ft+Pg)7|. (7.9)

The explicit time dependency of this transformation must be taken into account when trans-
forming the Hamiltonian. The Heisenberg equations of motion d; ¢ = i[H, e] remain invariant
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7.2 Outlook

when defining the transformed Hamiltonian as

A

H=U'AU+iU",0U. (7.10)

The transformation rule for all other operators O is given by O = UtOU. In the new frame of
reference, the Hamiltonian is given by

A ~ L/2 R 52 N ~ .
H= ﬁ L (p—Ft—Pp)*: +/L/2 dz qST(x)[— o T 196t (x)(x) +gIBa(g;)}¢(g;), (7.11)

Here /m = (1/M + 1/m)~! is the reduced mass. Since the Hamiltonian no longer depends
on 7, the momentum p is conserved in this frame of reference and can again be replaced by
a c-number pg. The only difference of Equation compared to the Hamiltonian
without an external force (F' = 0), analyzed thoroughly in Chapters [2| and , is the
time-dependent term F't. This corresponds to a time-dependent total momentum

p(t) = po — F't. (7.12)

Numerical simulations, e.g., based on a approximation of the Hamiltonian , are essen-
tial to investigate whether and under which conditions Bloch oscillations occur. Nevertheless,
some initial insights can be gained from the study of the time evolution during a quasi-adiabatic
turn-on of the impurity-boson coupling constant gig, discussed in Chapter . In this con-
text, we show that the system is able to quasi-adiabatically follow the stationary state, even

o 49 giB g1B
2 '
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2 2
0 T T T —1 - T T T
0 17 2 0 17 27
p/n p/n

Figure 7.2: a) Energy and b) velocity of a polaron as a function of the total momentum
without an external force (F' = 0). Both quantities are periodic in p. They are plotted for
various impurity-boson coupling constants gIB/gng~ =0,0.1, 0.25, 0.5, 1, 2, 3, 5, 10. Here n is
the density of bosons, £ = 1/,/2gnin the rescaled healing length, and & = \/gn/m the speed of
sound. When an external force acts on the impurity, the total momentum p changes linearly
in time, given by Equation . If the system is able to adiabatically follow the stationary
state, this force leads to an oscillatory motion of the impurity. The figures are published in
Ref. under terms of the Creative Commons Attribution 4.0 International license (CC BY
4.0).
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7 Conclusion

though the system is not gaped in the thermodynamic limit. Accordingly, it can be expected
that the system is capable of following the stationary state when gig is constant, while the
momentum p(t) varies over time, at least for small forces F relative to other system scales.
Since the stationary state is periodic in p, as depicted in Figure this would imply the
occurrence of Bloch oscillations. For large forces F', we expect that the system is no longer
able to adiabatically follow the stationary state, resulting in a friction force and a motion
without oscillations. It is important to emphasize that these are preliminary speculations,
and a rigorous examination of these hypotheses requires thorough testing through appropriate
numerical simulations.

Furthermore, if Bloch oscillations are indeed observable within a [MF| approximation, it be-
comes essential to explore the influence of quantum fluctuations. Phonon scattering processes
could introduce effective dissipation mechanisms that might dampen or even entirely inhibit
Bloch oscillations in the full quantum system. Tensor network techniques, as discussed in
Section could be employed to conduct such an investigation.
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A Experimental measurement of the polaron mass

In this section, results obtained in this thesis are compared to one of the few experimental
realizations of the one-dimensional Bose polaron [16]. The experimental parameters of this
study are provided in the main part of this thesis in Section The main objective of
the experiment is the measurement of the polaron mass from weak to strong impurity-boson
coupling. In the following, their experimental procedure is briefly summarized.

The process begins by trapping and cooling a three-dimensional gas mixture of 8’Rb (bath)
and YK (impurity) to the ultra-cold regime. After some further preparation steps, they
realized the 1D limit by switching on a tight 2D optical lattice. Thus, an array of 1D tubes
is created, each containing, on average, 180 Rb and 1.4 K atoms, such that the treatment
as impurities is justified. Subsequently, the impurity atoms are centered in the cloud by a
species-selective dipole potential. After switching this potential off again, they measure the
axial size o(t) of the impurity trough in situ absorption imaging and derive the effective mass
by using o(t) oc 1/yv/m*. It is shown as a function of the impurity-Bose coupling constant gig
in Figure The experimental result is compared to a quasi-exact simulation from
Ref. [33] for a finite system size of N = 50 bosons and to the value from this thesis
for both finite system size [P2] and the thermodynamic limit [P1]. The theoretical results are
obtained in a homogenous 1D system with[PBC| It is noticeable that the theory results deviate
from the experimental values for a coupling constant with gig = gné. Here £ =1 /v/2mgn is
the rescaled healing length with respect to the reduced mass m = (1/M + 1/m)~!, where m
(M) is the boson (impurity) mass. As demonstrated in Chapters and [p[P1], P2, [P4], the
condensate deformation becomes significant at this particular value of the coupling constant.
For large coupling, the [DMC] simulation saturates at a finite value since the polaron mass
is bounded by the total mass of the system N m + M, which is captured well by the
treatment |P2]. The deviations between and are explained by the quite strongly

1.0 1% ._.._.i
0.8
S
g 0.6 A
— MF: N — o
0.4 7 MF: N = 50
e DMC: N=50
0.2 1
M+ experiment
OO LA R A L R | LR R | T T T
101 109 10t 102
giB/gné

Figure A.1: Ratio of the bare impurity M to polaron mass m* for different impurity-boson
coupling constants grg. Shown is the experimental measurement of Ref. [16], the exact
simulation of Ref. [33] for N = 50 bosons and the [MF|results from this thesis for infinite system
size [P1] and N = 50 bosons [P2]. The theoretical results are derived using the experimental
parameters, see Section
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interacting gas v = 0.44 and light impurity mass M = 0.47m, which are both not favorable
for the treatment [P1]. The experimental value saturates, however, already at a much
lower effective mass. The reason for this deviation is still unclear, but some possibilities are
mentioned below.

Breaking of the 1D confinement

One possibility is that the transverse confinement in the experiment is not sufficiently tight,
preventing the system from being treated strictly in the 1D limit. This becomes particularly
significant when the impurity coupling is large since it would enable bosons in the experiment
to bypass the impurity by moving around it rather than tunneling through it. To assess
the potential impact of this effect, it is necessary to compare the length and energy scales
of the polaron with the transverse confinement potential. In the case of a strong repulsive
impurity, the polaron energy is equal to the energy of a dark soliton [P1|, given by
Epol = %nc = 32kHz. The typical length scale of the polaron is the healing length £ = 150 nm.
In comparison, the transversal trapping frequency w; = 210(280) kHz for Rb (K) is large, and
the harmonic oscillator length of \/h/mw; = 58(74) nm is small, which is favorable for the 1D
regime. Nevertheless, the difference in length scales is only a factor of 2-3. This implies that
the potential influence of higher dimensions cannot be definitively dismissed.

Inhomogeneity of the cloud

As discussed in the supplement material of Chapter [P2], finite-size effects significantly impact
the polaron mass at high impurity-boson coupling, as it remains bounded by the total mass
of the system. In the experiment, this upper bound is given by m* = 180m + M, thus
VM /m* = 0.05. The measured polaron mass saturates at a significantly lower value, indicating
that finite-size effects alone cannot account for the observed discrepancy. It is important to
note that this upper bound is derived in a homogeneous system on a ring, utilizing In
contrast, the experimental setup involves a harmonic trapped system with a residual trapping
frequency of w = 390(550) Hz for Rb(K). The common argument that both systems should be
comparable is that the impurity is localized and interacts only on a finite range with the bath
so that the gas can be treated in local density approximation. However, since the total mass
of the system, which is not a local quantity, is relevant for the polaron mass in a homogeneous
system, it can not be ruled out that the small trapping potential also influences the polaron
mass. Given that the theoretical prediction is based on a homogeneous system, this could
explain the observed discrepancy.

Thermal effects

The third discrepancy between theory and experiment arises from the fact that both theoretical
models are formulated in the zero-temperature limit. In contrast, the experiment is carried
out at a finite temperature of 7' = 350nK. This temperature is related to the frequency
kpT/h = 46 kHz, and is comparable to the polaron energy. This suggests that thermal effects
might play a role and influence the measured polaron mass.
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B Numerical simulation: the time-splitting spectral method

The following section presents the numerical method used in this thesis to predict the non-
equilibrium polaron properties by simulating a generalized Gross—Pitaevskii equation (GPE].
The method is used in Chapter 5| [P4] to solve the deterministic equation describing the polaron
formation and in Chapter 4| [P3] generalized to stochastic equations to predict the effect of a
noisy impurity. There are several methods known for simulating [107]; the one used in
this work is a time-splitting spectral method, relying on the fast Fourier transformation [121].
There are different reasons why this algorithm is chosen:

o It is computationally fast compared to other methods [107].

o The algorithm naturally incorporates which are essential as described in Sec-
tion [I.3l

e The total particleenumber is conserved exactly, besides floating-point errors.

o The unusual nonlinear and nonlocal coupling term in Equation (1.24)) caused by the
transformation can be included very efficiently in this method.

In the following, the algorithm is first presented for solving a partial differential equation
(PDE]) and then generalized to a stochastic partial differential equation (SPDE]).

Deterministic partial differential equations

This section outlines the algorithm employed to predict the time evolution of a single impurity
interacting coherently with the surrounding Bose gas, as used in Chapter [5| [P4]. We solve the
generalized as derived in Section [1.3| to achieve this. It is given by

i106(x,t) = [T+ V] ¢, 1), (B.1)

where T and V represent nonlinear operators

A 0?2 i L2
T==on " u [p“/L Ay 6(u.1)" 9, ¢<y,t>] o, (B.2)
V = glo(x, ) + gmd(x). (B3

For a heavy impurityAM — 00, Equation is a standard However, for finite M,
the kinetic operator 7' incorporates an unconventional nonlocal nonlinearity, which requires
special attention in the simulations.

A conceptually simple algorithm for simulating this equation involves an iterative application
of the exponential operator:

oz, t + dt) = e~ ST g 1), (B.4)

This approximation remains valid for small time steps d¢, although TandV represent nonlinear
operators. The nonlinear effects are incorporated by reevaluating T and V at each time step
t, using the current value of ¢(z,t). An option to numerically evaluate the exponential is to
discretize both operators to a finite grid in real space and evaluate the exponential of the finite-
dimensional matrix. However, this approach necessitates recalculating the matrix exponential

114



B Numerical simulation: the time-splitting spectral method

at each time step. Given that T and V do not commute, this numerical procedure becomes
computationally costly.

To overcome this challenge, a time-splitting method is applied, which is equivalent to a Trotter-
Suzuki decomposition 122, 123] of Equation (B.4)

oz, t +dt) = e 5tV it 7 _2dtvgb(x,t). (B.5)

This represents a practlcable algorithm for solving usual (GPEs| m [107], which do not include the
nonlocal coupling term in 7' (M — co). In that case, T represents a linear operator and is
constant in time. Consequently, its numerical complex matrix exponential must be computed
only once, not in every time step. While V remains nonlinear, its diagonal form in the position
basis allows for an efficient reevaluation of its matrix exponential in every time step.

In the case of finite M, so including the nonlocal coupling in T, the previous method is no
longer applicable due to the nonlinearity in T, see Equation . To address this challenge,
a Fourier transformation to the momentum basis is applied

a(t) = /_ LL/;(E”&%@,@, and  (z, 1) Ze . (B.6)

The kinetic operator T is much simpler in momentum space, as it does not involve any deriva-
tives, although it is still not diagonal:

]{72

P=r 4 L [p— ) qraqu)ﬂ . (B.7)

In this form, the time-evolution operator for a small step dt with respect to T can be efficiently
evaluated. The process involves first calculating the expectation value of the total Bose gas
momentum », ¢ lag(t)[2. Subsequently, the time step generated by the kinetic energy term
ap(t + dt) = exp(—idtT) ag(t), is separately evaluated for every k mode. A complete time
step can then be efficiently simulated using the following formula:

Blat+dt) = 2V FH T F o5V (1)), (B.8)

Here .71 represents the (inverse) Fourier transformation. To simulate the time evolution
over arbitrary large time steps, Equation is applied iteratively to the initial condition.
For the efficient computation of the Fourier transformation, the fast Fourier transformation
algorithm is employed [121].

Lastly, it is important to mention that the system needs to be discretized in space for numerical
implementation. Mainly, treating the delta function in 1% (see Equation ) requires special
attention. This is addressed in this thesis by substituting the delta function with a Gaussian
potential

1
5(z) ~ ——e "/, (B.9)
2

where the length [ is chosen to be small compared to the other length scales of the system,
particularly the healing length.
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Stochastic partial differential equations

The subsequent section presents the generalization of the time-splitting spectral method to
accommodate a stochastic impurity-boson interaction. As demonstrated in Chapter [P3|, this
involves generalizing the to an It is important to note that this section will
offer an overview of the numerical implementation rather than delving into the comprehensive
foundations of stochastic equations. Readers should be familiar with the concept of Ito and
Stratonovich calculus, which is elaborated, for example, in the book [106].

In order to simulate the impact of stochastic impurity coupling, we solve Equation in
Chapter {4][P3]. It is expressed as

idg(x,t) = [T+ V] é(,t) dt + Ug(, 1) o AW, (B.10)

where T, V and U are given by

N 0?2 k2
T=-—"% ] =
om + w0, o + vk
7 = gl b2 (B.11)
U =/200(z)

Here v is the velocity of an external driven current and o the strength of the noise. Equa-
tion is a Stratonovich denoted by the symbol o and dW = n(t)dt is a infinitesimal
Wiener process [106]. The term n(t) represents a delta-correlated white noise, characterized
by its mean value 7(t) = 0 and variance n(t)n(t') = 6(t — t').

Since besides V also U is diagonal in the position basis, a generalization of the time-splitting
spectral method, as depicted in Equation , to this is possible. However, the Wiener
process needs to be treated with special care. As the algorithm computes the subsequent time
step t + dt using the preceding one t, it becomes necessary to convert Equation into the
Ito calculus:

idg(w,t) = [T+ V = 50%] ¢, 1) dt + Ug(w, 1) dW. (B.12)

It deviates from the Stratonovich form solely by the term proportional to U2. In this represen-
tation, the algorithm outlined in Equation can be applied to derive the time evolution.
However, as terms proportional to dIW? = dt cannot be neglected in the Ito formalism, special
care must be taken when dealing with the exponential functions, as

exp [—z‘UdW} — 1 —iUdW — L02aw?
=1—iUdw — 104t (B.13)

It is straightforward to show that the terms which are proportional to U2 in Equations (B.12)
and (B.13)) cancel each other out, so that no such term appears in the final expression of the
utilized algorithm, given by

¢($,t+ dt) _ e—%[th-‘rUdW} <g-—l{e—idt’f g{e—%[\}dt-FUdW} gb(a:,t)]} (B14)
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B Numerical simulation: the time-splitting spectral method

Finally, in the numerical simulation, the infinitesimal d¢ must be discretized by a finite but
small A¢. This is particularly intricate for the noise term dW = n(t)dt, since it also involves
discretizing the delta-correlated n(t), leading to

ntn(t) =6t —t') = nlt)n(tz) = d12/At. (B.15)

Simulating Equation necessitates redrawing 7(t) in every time step form this Gaussian
distribution. The time evolution must be computed from the same initial condition for multiple
noise realizations to obtain any observables. Quantities, such as the boson density n(z,t) =
|¢(x,t)|?, are then calculated by averaging over these distinct realizations.
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