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Abstract

The experimental realization of ultra-cold atoms in optical lattices and other confining
optical potentials has led to a new and versatile quantum optical approach to many-body
physics. Experimental techniques now exist for cooling and trapping atomic gases in various
potentials including effectively one-dimensional geometries. In contrast to typical solid state
systems, cold atoms stand out due to tunability of interactions, the absence of impurities
and the much larger length scales that permit single site addressability. It is possible to
implement models in an almost perfect way, which have been developed in theoretical solid
state physics only as an idealization, such as the Hubbard and Bose-Hubbard models, the
Lieb-Liniger model of a 1D interacting Bose gas, and several spin-lattice models. In a
certain sense, ultra cold gases form a versatile quantum simulator. In particular they offer
the possibility to study non-equilibrium physics and dynamical evolution.

The present thesis contributes to the theoretical understanding of strongly interacting
ultra-cold gases. The focus is on one-dimensional systems because quantum effects are most
pronounced in 1D and there are some exactly solvable models. The dynamical behavior,
as well as the ground state properties of interacting many particle systems is investigated
using numerical techniques based on matrix-product state approaches.

We develop a discretization method for one-dimensional Bose- and Fermi-gases with con-
tact interactions, which is necessary for the numerical treatment of the continuous problem.
The ground state of those bosons and fermions is calculated for a harmonic confinement,
for the whole range between the weakly and the strongly interacting limit. The resulting
density and momentum profiles, as well as the two-particle correlation functions should
be observable in present experiments. For the problem of Rydberg-polaritons which are
subject to van der Waals-interaction interactions, we present the first calculation of the
Luttinger-parameter, confirming that the correlations become much stronger than for any
local interaction, and significantly improving previous approximate approaches. For a gas
with van der Waals-interaction on the lattice, we give the first non-perturbative phase
diagram, which features a fractal structure of Mott-insulating regions.

A subject of current interest is the relaxation dynamics in closed quantum systems and
the influence of integrability on the ensemble describing a possible thermal final state. Here,
the relaxation after a quench from the free boson ground state to repulsive interaction is
investigated, showing that local correlations equilibrate on a certain, short timescale, to a
value reminiscent of a thermal Gibbs state. Due to numerical limitations and finite size
effects, it can not be decided here whether the small discrepancy from the grand-canonical
value can be attributed to integrability. The propagation of non-local correlations shows
a finite speed, leading to an effective light cone. In the case of attractive interactions,
metastable exited states (Super Tonks gas) form, as recently shown in experiments. Here a
quench from the Tonks gas to strong attractive interactions is simulated, and the signature
of this metastable state and of the strongly bound pair states becomes apparent in the
oscillations of the two-body correlations, which do not relax on the timescale accessible.
We can ascribe this lack of thermalization to the proximity of the quenched system to
a many-body eigenstate, and the small number of different states that contribute to the
correlation amplitude, which renders dephasing ineffective.

An experimental method to probe cold gases with unmatched spatial and temporal
resolution using scanning electron microscopy has been developed in the group of H. Ott.
The quasi one-dimensional regime can be reached where the Rubidium atoms are well



described by the Lieb-Liniger model in the intermediate interaction range. As part of
a joint experimental-theoretical project, we present the first numerical calculation of the
normal ordered two-particle correlation function between two different times for the ground
state, which is in spite of formal similarity different from the dynamical structure factor
available from the exact Bethe ansatz solution. The time dependent correlation function
measured in the experiment is in good agreement with the calculations, showing appreciable
antibunching at short intervals due to the repulsive interactions.

Recent progress in single-site addressability and manipulation in lattice systems, moti-
vates the investigation of relaxation dynamics in the Bose-Hubbard model in the strongly
interacting regime. A method to prepare exceptionally pure Mott insulators is introduced.
Single defects are removed from a finite size Mott insulator formed by repulsively bound
dimers, by evaporating through the boundaries. The scattering between different defect
types mediates the redistribution of momenta, which is required to bring all defects into
the momentum range where the cluster boundaries are penetrable. This proposal works
for essentially any initial configuration with an unbiased initial momentum distribution,
confirmed numerically using an effective theory, where only the position of the defects are
dynamical variables, and the dimers only contribute a static background.

The full quantum-dynamical simulations of many body systems, which are globally
out of equilibrium, e.g., after a quench, are limited by the linear growth of entanglement
entropy with time, making classical simulation exponentially hard. Going to the Heisenberg
picture, instead of evolving the complicated many body state, only a simple operator of
interest is evolved. We show that then logarithmic scaling of the entropy is observed, if
only the operator itself is a conserved density. Integrability, as conjectured in the literature,
is not necessary. This result is hopefully useful in extending the numerical method to
longer timescales. Finally different methods of exploiting particle number conservation
in matrix product operators, found, e.g., in the Heisenberg picture formulation of the
numerical algorithm, are discussed. While conservation laws are implemented routinely
to increase the efficiency matrix product state calculations, in the case of matrix product
operators, we show that this can be done on two different levels, and a careful choice has
to be made depending on the problem. The reduction of the number of parameters by
the symmetry constrained is under certain circumstances, i.e. a large filling fraction in
the case of particle number conservation, overcompensated by the additional entanglement
introduced.



Zusammenfassung

Die experimentelle Realisierung ultrakalter Atome in optischen Gittern hat einen neuen
und vielseitigen Zugang zur Vielteilchenphysik eröffnet. Es existieren experimentelle Me-
thoden zum Kühlen und Fangen atomarer Gase in verschiedenen Potentialen, einschließ-
lich effektiv eindimensionaler Geometrien. Kalte Atome zeichnen sich gegenüber typischen
Festkörpersystemen dadurch aus, dass sie veränderbaren Wechselwirkungen unterliegen,
frei von Störstellen sind und Zugriff auf einzelne Gitterplätze zulassen. Es ist möglich
Modelle in fast perfekter Weise zu implementieren, so etwa das Hubbard- und das Bose-
Hubbard-Model, das Lieb-Liniger-Model eines 1D wechselwirkenden Bose-Gases und ver-
schiedene Spin-Gitter-Systeme. In gewissem Sinne stellen ultrakalte Quantengase einen
vielseitigen Quantensimulator dar. Speziell bieten sie die Möglichkeit zum Studium von
Nicht-Gleichgewichts-Physik und Zeitevolution.

Die vorliegende Dissertation trägt zum theoretischen Verständnis stark wechselwirken-
der ultrakalter Gase bei. Der Schwerpunkt liegt auf 1D Systemen, weil Quanteneffekte
dort am stärksten zu Tage treten und außerdem exakt lösbare Vielteilchenmodelle existie-
ren. Das dynamische Verhalten, sowie die Grundzustandseigenschaften wechselwirkender
Vielteilchensysteme werden mit numerischen Methoden, welche auf dem Matrix-Produkt-
Ansatz aufbauen, untersucht.

Es wird eine Diskretisierungsmethode für eindimensionale Bose- und Fermi-Gase mit
Kontaktwechselwirkung entwickelt, welche notwendig ist für die numerische Behandlung
kontinuierlicher Probleme. Der Grundzustand wird für einen harmonischen Einschluss be-
rechnet, vom schwach bis zum stark wechselwirkenden Grenzfall. Die resultierenden Dichte
und Impulsverteilungen, sowie die Zwei-Teilchen-Korrelationsfunktionen sollten in aktuellen
Experimenten beobachtbar sein. Für das Problem wechselwirkender Rydberg-Polaritonen
mit van der Waals-Wechselwirkungen, wird die erste Berechnung des Luttinger-Parameters
vorgestellt, welche zum einen bestätigt, dass sich Korrelationen ausprägen, die stärker
sind als für jede lokale Wechselwirkung, und zum anderen eine deutliche Verbesserung ge-
genüber existierenden approximativen Ansätzen darstellt. Für ein Gas mit van der Waals-
Wechselwirkungen im Gitter, wird das erste nicht-störungstheoretische Phasendiagramm
gezeigt, welches eine fraktale Struktur Mott-isolierender Bereiche aufweist.

Ein Thema dem momentan viel Aufmerksamkeit zuteil wird, ist der Vorgang der Re-
laxation in geschlossenen Quantensystemen und der Einfluss der Integrabilität auf einen
möglichen thermischen Endzustand. Wir untersuchen hier die Relaxation nach einem Quench
vom Grundzustand freier Bosonen hin zu repulsiver Wechselwirkung, wobei gezeigt wird,
dass lokale Korrelationen auf einer bestimmten, kurzen Zeitskala einem stationären Wert zu-
streben, der im Wesentlichen dem eines thermischen Gibbs-Zustandes entspricht. Aufgrund
numerischer Limitierungen und Effekten durch die endliche Systemgröße, kann hier nicht
abschließend geklärt werden, ob auftretende kleine Abweichungen vom großkanonischen
Wert auf die Integrabilität des Modells zurückgeführt werden können. Die Ausbreitung
nicht-lokaler Korrelationen weist eine endliche Geschwindigkeit auf, die zu einem effektiven
Lichtkegel führt. Im Falle attraktiver Wechselwirkung bilden sich metastabile, angeregte
Zustände (das Super-Tonks-Gas), wie kürzlich in Experimenten gezeigt wurde. Hier wird
ein Quench vom Tonks-Gas hin zu stark attraktiven Wechselwirkungen simuliert. Die Si-
gnatur dieses metastabilen Zustandes und der stark gebundenen Paare wird deutlich in der
Oszillation der zwei-Teilchen Korrelationen, welche auf den Zeitskalen die hier zugänglich
sind nicht relaxieren. Dieses Fehlen von Thermalisierung können wir der Nähe des Zustandes



zu einem Vielteilchen-Eigenzustand zuschreiben, sowie der geringen Anzahl an verschiede-
nen Zuständen, welche zur Korrelationsamplitude beitragen, wodurch eine Dephasierung
ineffektiv wird.

Eine experimentelle Methode zur Untersuchung kalter Gase mit unerreichter Orts- und
Zeitauflösung mittels Rasterelektronenmikroskopie wurde in der Gruppe von H. Ott entwi-
ckelt. Das quasi eindimensionale Regime, in dem die Rubidiumatome gut durch das Lieb-
Liniger Modell im Bereich mittlerer Wechselwirkungen beschrieben werden, kann erreicht
werden. In einem gemeinsamen Projekt liefern wir die erste Berechung der normal- und zeit-
geordneten zwei-Teilchen Korrelationsfunktion im Grundzustand, welche sich trotz formaler
Ähnlichkeit vom dynamischen Strukturfaktor unterscheidet, welcher aus der exakten Bethe-
Ansatz-Lösung bekannt ist. Die im Experiment gemessene Korrelationsfunktion befindet
sich in guter Übereinstimmung mit der Berechnung, wobei sie deutliches Antibunching bei
kleinen Zeitabständen aufgrund der Abstoßung zeigt.

Der aktuelle Fortschritt in der gitterplatzgenauen Auflösung und Manipulation hat
die Untersuchen der Relaxationsdynamik im Bose-Hubbard-Model im stark wechselwir-
kenden Regime motiviert. Eine Methode zur Präparation eines außergewöhnlich reinen
Mott-Isolators wird vorgestellt. Einzelne Defekte werden aus einem Mott-Isolator endlicher
Größe, welcher aus repulsiv gebundenen Paaren besteht, entfernt, in dem sie durch den
Rand evaporieren. Die Streuung zwischen verschiedenen Typen von Defekten vermittelt die
Umverteilung von Impulsen, welche notwendig ist, um alle Defekte in den Impulsbereich
zu bringen, wo die Ränder durchdrungen werden können. Der Ansatz wird bestätigt durch
numerische Simulationen mit einer effektiven Theorie, in der nur die Position der Defekte
als dynamische Variablen auftreten, während die Dimere nur einen statischen Hintergrund
bilden.

Die volle quantenmechanische Simulation von Vielteilchensystemen wird limitiert durch
das lineare Anwachsen der Verschränkungsentropie mit der Zeit, wodurch klassische Simu-
lationen exponentiell aufwendig werden. Beim Übergang ins Heisenberg-Bild wird anstelle
eines komplizierten Vielteilchenzustandes nur ein einfacher Operator an dem man interes-
siert ist evolviert. Hier wir gezeigt, dass man in diesem Fall logarithmisches Anwachsen der
Entropie beobachtet, falls der Operator selbst eine erhaltene Dichte darstellt. Integrabilität,
wie in der Literatur vermutet, ist nicht notwendig. Es ist zu hoffen, dass dieses Ergebnis
dazu beiträgt, die numerische Methode auf längere Zeitskalen auszuweiten. Zuletzt wer-
den Methoden besprochen, die Teilchenzahlerhaltung in Matrix-Produkt-Operatoren, wie
sie etwa in der Heisenberg-Bild-Formulierung des numerischen Algorithmus auftreten, zu
berücksichtigen. Während Erhaltungssätze routinemäßig implementiert werden um die Ef-
fizienz von Rechnungen mit Matrix-Produkt-Zuständen zu erhöhen, zeigen wir im Fall von
Matrix-Produkt-Operatoren, dass dies auf zwei verschiedene Ebenen geschehen kann, und
eine sorgfältige Wahl in Abhängigkeit vom gegebene Problem getroffen werden muss. Die
Reduktion in der Zahl der Parameter durch die Symmetrieeinschränkung wird unter be-
stimmten Voraussetzungen, speziell bei einer hohen Anzahl an Teilchen je Gitterplatz im
Falle der Teilchenzahlerhaltung, überkompensiert durch die Erzeugung zusätzlicher Ver-
schränkung.
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10 1 Ultracold atoms in optical lattices

1 Ultracold atoms in optical lattices

Advanced cooling techniques for atomic or molecular gases are giving us access to

physical phenomena which were not observable directly before. Most prominently,

many body phenomena known from solid state physics can be observed in very clean

systems, undisturbed by other effects, with tunable parameters and high resolution.

The first milestone on that way was the observation of Bose-Einstein condensation in

cold atomic gases [AEM+95, BSTH95, DMA+95], made possible by the development

of advanced cooling techniques, most importantly optical Doppler cooling and evap-

orative cooling of trapped atoms. By bringing additional standingwave laser fields

into the gas, it became possible to resemble the periodic structure that is the basis

of many effects in solid state physics. A well known example is the observation of a

strongly correlated Mott-insulating phase in such an optical lattice, first reported by

Greiner et al. [GME+02].

Triggered by the recent successes in the experimental realization of strongly inter-

acting atomic quantum gases in one spatial dimensional (1D) [KWW04, PWM+04,

GSM+05, HLF+07, HGM+09] there is an increasing interest in the theoretical de-

scription of these systems beyond the mean field level, taking into account strong

correlation and taking into account the specifics of trapped, finite size, quantum

gases.

If an atomic gas is sufficiently cooled, all electronic degrees of freedom are frozen

out, such that the atoms will all be in an electronic eigenstate. In the experiment the

atoms have to be optically pumped into a specific hyper-fine state. In this case, the

atoms can then be treated as identical particles. For neutral atoms, the only relevant

interaction is then the collision of two particles. For bosons, low energy collisions are

dominated by s-wave scattering, such that the only parameter in the interaction is

the s-wave scattering length a3D. The Hamiltonian then reads

Ĥ =

∫
d3~x

{
Ψ̂†(~x)

[
− ~2

2m

(
∂2
x + ∂2

y + ∂2
z

)
+ Vexternal(~x)

]
Ψ̂(~x) +

+
g3D

2
Ψ̂†(~x)Ψ̂†(~x)Ψ̂(~x)Ψ̂(~x)

}
, (1)

with Ψ̂†(~x) creating a bosonic atom at position ~x. Here and throughout this thesis

we set ~ and the mass m of the atoms equal to 1. The operators fulfill the usual

bosonic commutation relations[
Ψ̂(~x), Ψ̂†(~x′)

]
= δ(~x− ~x′),

[
Ψ̂(~x), Ψ̂(~x′)

]
=
[
Ψ̂†(~x), Ψ̂†(~x′)

]
= 0. (2)
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The bare interaction strength is g3D = 4πa3D, and the external potential Vexternal(~x)

accounts for an overall trap.

The scattering length can be varied by using Feshbach resonances [KGJ06]: Its

amplitude can become very large, if the energy of the two colliding atoms is close

to resonance with a state of a molecule consisting of these atoms. Although the

formation of a molecule is strictly forbidden in the absence of a third particle or some

other means of energy dissipation, virtual transitions lead to a large phase shift and

therefore scattering length. The atomic and molecular levels can be adjusted by an

external static magnetic field, such that a3D can be tuned to very large or small,

positive or negative values. Longer range interactions can also be realized using ions

which are subject to coulomb interaction, polar molecules which interact via dipole-

dipole interaction, or atoms in Rydberg states which typically experience van der

Waals interactions.

Quantum particles in lattice potentials, e.g. electrons in crystals, have been stud-

ied since the early days of quantum theory [AM76, FW71]. With the development of

artificial (optical) lattice potentials for cold neutral atoms [BDZ08], bosonic lattice

models are recently attracting increased interest [LSA+07]. If a standing wave laser

field is imposed on the atoms, the atoms experience a spatially varying single particle

potential

Ĥlattice =

∫
d3~x Vlattice(~x) Ψ̂†(~x)Ψ̂(~x). (3)

It is the AC-Stark effect which is responsible for this potential and its strength Vlattice

is directly proportional to the light intensity. For two counter-propagating laser beams

in x-direction it is proportional to sin2(2πx/λ). The wavelength λ of the laser is thus

twice the lattice constant. Larger lattice constants can be achieved by taking an angle

smaller than π between the beams. A three-dimensional lattice can be created by

using three pairs of counter-propagating lasers. The atoms seek intensity minima in

blue detuned optical lattices, which have therefore the advantage of minimizing the

inelastic scattering of light from the atoms. On the other hand atoms are attracted

to the intensity maxima in red detuned lattices. This has the advantage of giving

rise to an additional overall trapping potential, because the atoms avoid the outer

regions, where the laser is not focused as strongly as in the center.

Instead of the Bloch basis, commonly used for the treatment of periodic potentials,

one can use the Wannier basis, which provides localized basis functions

w(ν)(~x− ~n) =

∫
d3~k ei

~k~n b
(ν)
~k

(~x), (4)

where b
(ν)
~k

(~x) is the Bloch wave function in the νth band, and ~n is a real lattice vector.

http://en.wikipedia.org/wiki/Overall
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It is a reasonable assumption, that all atoms are in the lowest Bloch band ν = 1, if

the temperature is small compared to the recoil energy

Er =
~2(2π)2

2mλ2
, (5)

which gives the order of magnitude for the distance between the lowest and the first

excited band. We introduce creators and annihilators on the lattice in the lowest

Bloch band by

b̂†~n =

∫
d3~x w(1)(~x− ~n)Ψ̂†(~x). (6)

They fulfill the usual bosonic (or equivalently harmonic oscillator) commutation re-

lations [
b̂~j, b̂

†
~j′

]
= δ~j,~j′ ,

[
b̂~j, b̂~j′

]
=
[
b̂†~j, b̂

†
~j′

]
= 0 (7)

Neglecting all other bands, the field operator can in good approximation be ex-

pressed by

Ψ̂†(~x) =
∑
~n

b̂†~nw
(1)(~x− ~n). (8)

Inserting this into (1) yields

Ĥ =
∑
~i,~i′

−J~i,~i′ b̂†~i b̂~i′ +∑
~j,~j′

U~i,~i′,~j,~j′ b̂
†
~j
b̂†~i b̂~i′ b̂~j′

 . (9)

The single particle matrix reads

J~i,~i′ = −
∫

d3~x w(1) ∗ (~x−~i)
[
−1

2

(
∂2
x + ∂2

y + ∂2
z

)
+ V (~x) + Vlattice(~x)

]
w(1)(~x−~i′),

(10)

and the two particle matrix is given by

U~i,~i′,~j,~j′ = g3D

∫
d3~x w(1) ∗ (~x−~i) w(1) ∗ (~x−~j)w(1)(~x−~j′)w(1)(~x−~i′). (11)

1.1 Bose-Hubbard model

1.1.1 Grandcanonical phase diagram

If the lattice potential is several recoil energies deep, the Wannier functions will

be strongly localized. In this limit, it is a good approximation to keep only up

to nearest neighbor terms in the single particle Hamiltonian, and only local terms

in the interaction [JBC+98]. The result is named the Bose-Hubbard model. It’s
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Figure 1: Illustration of the Bose-Hubbard model in one dimension, Eq. (13).

Hamiltonian has the form

Ĥ = −J
∑
〈~j,~j′〉

b̂†~j b̂~j′ +
U

2

∑
~j

b̂†~j b̂
†
~j
b̂~j b̂~j +

∑
~j

V (~j)b̂†~j b̂~j, (12)

where J is the particle hopping rate between adjacent lattice sites (here assumed to

be isotropic), the first sum being over all pairs of nearest neighbors, U is the contact

interaction between the particles on the same lattice site, and V (~j) accounts for a

possibly present slowly varying external potential. In one dimension, Eq. (12) is

usually written in the form

Ĥ = −J
∑
j

(b̂†j b̂j+1 + H.a.) +
U

2

∑
j

b̂†j b̂
†
j b̂j b̂j +

∑
j

V (j)b̂†j b̂j. (13)

See Fig. 1 for an illustration.

The Bose-Hubbard model (BHM) [FWGF89] is an important example for a lattice

model, because it is the most simple interacting lattice model for bosons, which

features a quantum phase transition from a superfluid regime, to the Mott-insulating

regions that exist for integer fillings of n particles per lattice site. The relevant

parameter in the model is the ratio J/U . U can be changed in comparison to J

either by tuning the bare interaction strength using Feshbach resonances [KGJ06],

or by changing the lattice depth, because a deeper lattice results in more localized

Wannier functions and smaller J/U (10), (11). At fixed integer filling, for J = 0

the ground state will have exactly n particles per lattice site, which minimizes the

interaction energy. For small J/U , the hopping term is also not relevant. It leads to

small quantum fluctuations, where a single particle moves, thus breaking up the filling

with exactly n particles and creating particle and hole defects. Those are however

exponentially suppressed. But if J becomes comparable to U it can become favorable

to have free defects, as they can absorb a kinetic energy of the order of 2JnD, where

D is the dimension, by delocalizing. As the particle hole gap is vanishing, there

is a phase transition from the Mott-insulator to a compressible phase. For finite

temperature this phase is expected to be a Bose glass phase [FWGF89], while at

T = 0 the transition is directly to a superfluid phase. At incommensurate filling, the

system is always in a compressible phase. The behavior of the system becomes most
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Figure 2: Phase diagram of the Bose Hubbard model in one dimension at zero
temperature, calculated using different methods. Shown are the two Mott lobes
with filling n = 1 and n = 2 only. Mean field data are taken from [vOvdSS01].
The first order strong coupling (perturbation theory in J/U) curves are given by
µ+
n (J) = nU − 2(n+ 1)J , µ−n (J) = (n− 1)U + 2nJ . The third order strong coupling

expansion can be found in [FM96]. Details on the numerically exact (DMRG) data
can be found in [Mut08]. – Figure taken from [Mut08].

apparent in the grand canonical phase diagram, introducing the chemical potential

as a parameter

µ =

(
∂〈Ĥ〉
∂ρ

)
S

, (14)

with ρ = 〈b̂†j b̂j〉 beeing the density, which is the same for every site j, and S the

entropy, which vanishes at zero temperature. At J = 0, the density takes only

integer values, except at integer values n of µ, where we have n < ρ < n + 1. For

finite J/U the particle hole gap of the Mott insulator at filling n, i.e., µ+
n − µ−n

with µ±n = limρ→n± {µ(ρ)} becomes smaller and finite regions with a phase of finite

compressibility open between the commensurable regions. For increasing J/U the

Mott lobes decrease in µ direction, until the gap vanishes and the above described

phase transition at commensurate filling takes place. The exact shape of the phase

diagram can be found only numerically, see Fig. 2 for T = 0 and D = 1. Using

cold atoms, the Mott-superfluid transition has been first observed by Greiner et al.

[GME+02].
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1.1.2 Repulsively bound pairs

A remarkable phenomenon in the BHM is that pairs of strongly interacting bosons,

i. e., in the case |U | � J can form tightly bound “dimers” both for attractive

and repulsive interactions [WTL+06, PM07, VP08, PSAF07]. In free space, or in

the presence of some means of energy dissipation, the repulsive interaction inevitably

leads to pair dissociation. In a deep lattice however, the kinetic energy of each particle

is restricted to the width of a given Bloch band, usually the lowest. Consequently,

two co-localized particles in a dissipation-free lattice remain tightly bound together

as a dimer when their interaction energy U exceeds the kinetic energy of free particles

∼ J within the Bloch band.

Considering a lattice that contains only dimers, created by the creation operator

ĉ†j = â†j â
†
j when applied to the vacuum, a simple effective Hamiltonian can be con-

structed. We therefore start from a lattice that contains only zero particles (empty)

or two particles (a pair) on each site. Adiabatically eliminating all states with odd

number of particles per site in second order, then leads to an effective Hamiltonian

for the dimers [PSAF07] that contains only terms with energies on the characteristic

scale of J2/U � J :

Ĥ = −J̃
∑
j

(ĉ†j ĉj+1 + H.a.) + B̃
∑
j

ĉ†j ĉ
†
j+1ĉj+1ĉj. (15)

J̃ = −2J2/U is the effective dimer hopping rate, associated with a second order

process where one single particle of a given pair virtually hops to a neighboring site

(the coupling is
√

2J due to bosonic statistics, and the intermediate state is off-

resonant by −U), and then the other constituent particle of the same pair follows.

B̃ = −16J2/U is:

� the effective nearest neighbor interaction, generated by the process of one part-

ner in either pair hopping onto the neighboring pair (with a coupling by the

hopping of
√

6J , creating a trimer with energy U higher than for the single

dimers), −12J2/U ,

� subtracting the self energy of the two neighborless dimers, generated by a

constituent particle hopping to the free neighboring site (again with coupling

strength
√

2J to the intermediate state with energy lower by U), 4J2/U .

Because more than a single dimer on a given site shall be forbidden, the dimer creation
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and annihilation operators satisfy the hard-core boson commutation relations

i 6= j : [ĉi, ĉj] = [ĉi, ĉ
†
j] = 0, (16a)

i = j : {ĉj, ĉj} = 0, {ĉj, ĉ†j} = 1. (16b)

We see that eliminating unpaired particles, we have transformed bosons with strong

(of order U) local repulsion to hard core bosons with nearest neighbor attraction

of order J2/U , which is however stronger than the hopping term by a factor of 8.

This pairs form stable clusters, and we will show in section 8 how this feature can

be used to dynamically create pure clusters of dimers. Note that for attractively

bound pairs one arrives at nearest neighbor repulsion for the pairs along the same

lines [SBE+09]. Since hard core bosons on a lattice are equivalent to a spin-1/2 chain

in one dimension, see section 3.4, this makes the creation of antiferromagnetic order

possible, if the gas can be cooled below J2/U .

1.2 Lieb-Liniger model

An optical lattice can be applied in two directions only. The atoms experience a

strong lattice potential in y and z direction, while in x direction there will be only

the shallow potential of the external trap. Thus the optical lattice divides the gas

into many long and parallel, cigar shaped subsystems or “tubes”. A similar geometry

can be created using a magnetic micro trap on an atom chip [HLF+07], which has

the advantage of having only a single, isolated tube or only small number (usually

two) of tubes such that coupling between them can be studied with better control.

At low temperatures the transverse motion of the atoms in the tube is frozen out:

only the transverse ground state is occupied. The remaining longitudinal degree of

freedom constitutes an effective one-dimensional system.

A Bose gas in one spatial dimension is described by the Hamiltonian

Ĥ =

∫
dx

[
Ψ̂†(x)

(
−1

2
∂2
x

)
Ψ̂(x) +

g

2
Ψ̂†

2
(x)Ψ̂2(x) + Ψ̂†(x)V (x)Ψ̂(x)

]
. (17)

Here Ψ̂(x) is again the field operator of the Bose gas in second quantization, V (x)

some possible trap potential, and g the strength of the local particle-particle inter-

action. For small interactions, g is directly proportional to the underlying three-

dimensional interaction strength g3D and the strength of the transverse confinement

(measured by the corresponding harmonic oscillator length a⊥). If however a1D be-

comes comparable to a⊥, there is a confinement induced resonance [Ols98], at which
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the effective one-dimensional local interaction strength diverges

g = − 2

a1D

=
g3D

πa2
⊥

(
1− Ca3D

a⊥

)−1

. (18)

In the homogeneous case, the physics of (17) is given by only one parameter, which

is the ratio between the interaction strength and the particle density ρ = 〈Ψ̂†(x)Ψ̂(x)〉,
called the Tonks parameter

γ = g/ρ. (19)

It gives also a measure for the ratio between the average interaction energy, which is

∼ gρ2, and the average kinetic energy, which scales as ρ3/d = ρ3 in d = 1 dimension.

This shows that in the one-dimensional case, the effects of a zero-range interaction

are more relevant at low densities, in contrast to the higher dimensional case.

1.2.1 Tonks-Girardeau gas

An interesting feature of the Lieb-Liniger model is that it is an interacting many body

model but still exactly solvable in the homogeneous case. This is a very rare case.

Before we discuss the nature of the full solution for finite γ in the next section, let us

take a look at the limit of impenetrable or hard core bosons, γ →∞, called the Tonks-

Girardeau gas [KWW04, PWM+04]. Girardeau [Gir60] showed, that this problem is

equivalent to that of free fermions. To see this, we construct the eigenfunctions of the

Hamiltonian in first quantization. Given N particles, the wave function φ(x1, . . . , xN)

must vanish whenever xi = xj if i 6= j. Everywhere else, the wave function must fulfill

the equation of free particles(
N∑
j=1

∂2
j

)
φ(x1, . . . , xN) = Eφ(x1, . . . , xN). (20)

Both conditions can be trivially solved using a Slater determinant of single particle

eigenstates. We get all eigenvalues by using all combinations of mutually different

single particle eigenstates. However the resulting wave function will be totally anti-

symmetric (fermionic), such that we have to symmetrize it. The complete information

about a state is in fact contained in the principal sector R1 : x1 < x2 < · · · < xN . The

wave function in all other sectors is simply given by sorting the particle positions. In

second quantization, the symmetrization of the Slater determinant can be elegantly

accounted for by introducing fermionic field operators

Υ̂(x) = exp

(
iπ

∫ x

−∞
dyρ̂(y)

)
Ψ̂(x), (21)
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{
Υ̂(x), Υ̂†(x′)

}
= δ(x− x′),

{
Υ̂(x), Υ̂(x′)

}
=
{

Υ̂†(x), Υ̂†(x′)
}

= 0. (22)

ρ̂(x) = Υ̂†(x)Υ̂(x) = Ψ̂†(x)Ψ̂(x) is the density operator. Any eigenstate of the Tonks

gas can then be written

|k1, . . . , kN〉 = Υ̂†k1 · · · Υ̂
†
kN
|0〉, (23)

where the set of quantum numbers {k1, . . . , kN} is mutually different and

Υ̂†k =

∫
dxφ∗k(x)Υ̂†(x) (24)

creates a (fermionic) particle in the single particle eigenstate k described by the

wave function φk(x) (e.g. plain waves for periodic boundary conditions or harmonic

oscillator eigenfunctions for a harmonic longitudinal confinement).

We see now, that hard core bosons and free fermions have exactly the same

spectrum. Some properties of the eigenstates are also the same, e.g. the local density

ρ̂(x) and therefore all density-density correlators, even at different times. However

other observables behave totally different. The simplest examples are non local single

particle correlations:

Ψ̂†(x)Ψ̂(y) 6= Υ̂†(x)Υ̂(y), (25)

because the phase factors in (21) do not cancel if x 6= y. The same is true for non

equal time single particle correlations:

Ψ̂†(x, t)Ψ̂(x, t′) 6= Υ̂†(x, t)Υ̂(x, t′) for t 6= t′, (26)

because the phase factor in (21) is not a conserved quantity. The particle number in

arbitrary single particle basis states is also sensitive to the statistics: The density in

momentum space

ρ̂F
k = Υ̂†kΥ̂k 6= Ψ̂†kΨ̂k = ρ̂B

k , (27)

where Ψ̂†k =
∫

dxφ∗k(x)Ψ̂†(x) creates a Boson in state |k〉, is a well known example

and shown in Fig. 3. The number of bosons in the single particle ground state is

much larger than one, because there is no Pauli principle for the bosons. We will

come back to this Bose-Fermi mapping in section 1.3.

1.2.2 Bethe ansatz

The interacting case (finite γ > 0) can also be solved exactly. This was first done

by Lieb and Liniger [LL63] using an idea first utilized by Bethe [Bet31] long before.

Bethe diagonalized what is called in modern literature the spin-1/2 XXZ chain. Spin
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Figure 3: Momentum distribution for a system of hard core bosons at zero tempera-
ture in the thermodynamic limit. Corresponding distribution for an ideal Fermi gas
is shown for comparison. The Fermi momentum in one dimension is kFermi = πρ. –
Taken from [Ols98].

chains are typical systems where exactly solvable models can be constructed, using

the more general algebraic Bethe ansatz [KBI93, Mos08]. The spin-1/2 XXZ chain

will turn out to be the discretized version of the Bose-Fermi mapped (21) Lieb-

Liniger gas, see section 3. The one-dimensional nature of the problem is critical to

the complete solvability. Because any eigenfunction of the Lieb-Liniger model must

be totally symmetric (bosonic), it is always sufficient to work in the principal sector

R1. The δ-interaction leads to N − 1 boundary conditions

(∂j − ∂j+1) φ(x1, . . . , xN)|xj=xj+1
= g φ(x1, . . . , xN)|xj=xj+1

. (28)

A last boundary condition is imposed by the physical boundary condition, which we

will assume to be periodic of length L. Then

∂x φ(x, x2, . . . , xN)|x=0 = ∂x φ(x2, . . . , xN , x)|x=L . (29)

Inside R1 we still have the free equation (20), which is trivially fulfilled if we make a

generalized plain wave ansatz, requiring k1 < k2 < · · · < kN for uniqueness,

φ(x1, . . . , xN) =
∑
P

a(P )P exp

(
i
∑
j

kjxj

)
. (30)

The outer sum is over all permutations P of the rapidities {k1, . . . , kN}. Outside R1

the wave function is fixed by symmetry, not by (30). Because we are in one dimension,

we now have the same number N of boundary conditions as we have independent
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variables. Lieb and Liniger [LL63] showed, that the contact conditions (28) require

a(Q) = −a(P ) exp(iθij) (31)

whenever P−1Q exchanges only ki with kj, and

θij = −2 tan−1

(
ki − kj
g

)
. (32)

The periodic boundary condition then fixes the allowed sets of ks via

(−1)N−1e−ikjL = ei
∑1
s=1Nθsj . (33)

Division of successive equations results in the set of N − 1 Bethe equations for the

differences

δj :=
kj+1 − kj

L
=

N∑
s=1

(θsj − θsj+1) + 2πnj. (34)

The solution of this system defines all θij and thus k1. Note that k1 is only defined up

to a multiple of 2π
L

, because giving all particles an additional momentum of m2π
L

for

an integer m trivially results again in a solution. The quantum numbers nj and m

completely define the eigenstate of a system. We must have nj ≥ 1 in order to have

δj > 0. The ground state has nj = 1 for all j and m such that the total momentum

|P | =
∣∣∣∑j kk

∣∣∣ ≤ 2πL
N

.

We can get a feeling for the solution by looking at the limit g →∞. Then θ = 0

and δj = 2πnj and (31) is solved by a(P ) = (−1)P resulting in the usual Slater

determinant for free fermions in R1. The ground state is just the filled Fermi sea.

For finite interactions, the nj still define the occupation inside a Fermi sea, but the

resulting momenta kj are no longer equally spaced. Elementary excitations are still

characterized as holes in the Fermi sea (nj = 2 for 1 < j < n− 1) or particles outside

(n1 > 1 or nN−1 > 1).

We remark, that although the Bethe equations can be solved for large particle

numbers N , the resulting wave function is still hard to evaluate. Nonlocal correlation

functions can only be extracted with considerable numerical efforts [CC06].

In contrast to this, thermodynamic properties and certain local correlations are

easily accessible directly in the thermodynamic limit

N,L → ∞, ρ =
N

L
= const. (35)

At T = 0 this can be done [LL63] by Taylor expanding θsj − θsj+1 (because kj will
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approach kj+1 in the thermodynamic limit) in (34). All kj will lie between −K = k1

and K = kN . Defining the density of rapidities as

g(x = kj/K) = ρ(kj) =
1

L(kj+1 − kj)
, (36)

(34) becomes the integral equation

2πg(y) = 1 + 2λ

∫ 1

−1

g(x)dx

λ2 + (x− y)2
, (37)

which can be solved numerically using iteration. The normalization condition∫ K

−K
ρ(k)dk = ρ (38)

can be used afterwards to get

λ :=
g

K
= γ

∫ 1

−1

g(x)dx (39)

as a function of γ. The total energy of the system is

E =
∑
j

k2
j = L

∫ 1

−1

g(x)(Kx)2Kdx = Nρ2e(γ) (40)

where e(γ) = γ3

λ3

∫ 1

−1
g(x)x2dx. The equation of state reads (T = 0 means that E is

also the free energy)

µ = ∂NE = g2 3e(γ)− γe′(γ)

γ2︸ ︷︷ ︸
=:f(γ)

. (41)

All the thermodynamics is contained within e(γ) (or f(γ)) [LL63, DLO01a], tabulated

in [DLO01b]. E.g., the density as a function of interaction and chemical potential

reads

ρ =
g

f−1
(
µ
g2

) . (42)

This equation is useful, e.g., to calculate density profiles for inhomogeneous systems

in local density approximation (LDA): Given an inhomogeneous system, where the

interaction strength g(x) or the local potential V (x) = −µ(x) are varying slowly

on the scale of the interparticle distance 1/ρ, it is true in good approximation, that

the local density distribution ρ(x) is still given by (42) everywhere, with the now x-
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dependent parameters. The reason for this is, that many particles around the point

x effectively experience the same parameter values, and in equilibrium the system is

locally close to a homogeneous system in the thermodynamic limit. The LDA works

for other short range interactions, higher order local or short range correlations and

finite temperatures as well, but it fails in the limit of free bosons, because every

particle can then be delocalized over a distance much larger then 1/ρ.

Local two body correlations can easily be calculated [LL63] using the Hellmann-

Feynman theorem [Hel33, Fey39], which essentially states the easily proven fact that

〈Ψg|Ĥi.a.|Ψg〉 = ∂g

(
〈Ψg|Ĥfree + gĤi.a.|Ψg〉

)
= ∂gEg, (43)

Where |Ψg〉 is a certain eigenstate with energy Eg of the Hamiltonian Ĥfree + gĤi.a.,

depending on the interaction strength g. Using the ground state energy (40) and

Ĥi.a. =
∫

dx〈Ψ̂†(x)2Ψ̂(x)2〉 thus yields

g(2) =
〈Ψ̂†(x)2Ψ̂(x)2〉

ρ2
=

1

Lρ2
∂gE = e′(γ). (44)

Nonlocal [OD03] correlation functions can only be calculated perturbatively, or using

general numerical techniques, which don’t rely on integrability, as we will do [MF10,

MFS10, MSF10] in this thesis, sections 3, 5, and 6. The same is true for three

body correlations, but besides perturbative expansions [GS03], exact methods are

developing [CSZ06a, CSZ06b, KMT09, KCI12].

1.2.3 Finite temperature

Yang and Yang [YY69] found similar integral equations, that describe the thermody-

namics of the Lieb-Liniger model at nonzero temperature. This involves introducing

the density ρh(k) of (rapidity) holes (there are ν holes between the rapidities kj and

kj+1 for nj = 1 + ν) in addition to the density of rapidities ρ(k). Both densities are

no longer confined to a finite range of k values, and in addition to the equation for

the total energy

E =
∑
j

k2
j = L

∫ ∞
−∞

ρ(k)k2dk (45)

the entropy of the system is

S = L

∫ ∞
−∞

[(
ρ(k) + ρh(k)

)
ln
(
ρ(k) + ρh(k)

)
− ρh(k) ln ρh(k)− ρ(k) ln ρ(k)

]
dk. (46)
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The equilibrium condition, that the free energy F = E − TS is minimal, leads to

integral equations similar to (37). Once the free energy and the local density is found

numerically, we have again

F = Nρ2e
(
γ,

T

2g2

)
. (47)

The equation of state then reads

µ =

(
∂F

∂N

)
T

= g2f(γ,
T

2g2
), (48)

and (42) can be used in the same way, e.g., for calculating density profiles in lo-

cal density approximations for systems which are globally in thermal equilibrium.

Again the Hellmann-Feynman theorem can be used to calculate the local two-body

correlations [KGDS03].

1.2.4 Attractive interactions

So far we have considered the repulsive case g > 0. In the attractive case, the

problem can still be solved by the coordinate Bethe ansatz. However, there are

additional difficulties, which become apparent already when studying the N = 2

particle case [LL63, MF10]. Complex rapidities become admissible, and the δj can be

imaginary. In the two particle case, the ground state is the one where two particles

form a bound pair. This pair is strongly localized in the strongly interacting regime

|γ| � 1: The distance between the particles1 is of order 1/γ, and the binding energy

correspondingly ∼ γ2. The ground state of the many-particle system [McG64] has

energy ∼ N2 and is therefore thermodynamically unstable.

However there exist solutions with all real rapidities. These are the gas like states,

that do not contain any bound particles, i.e., their energy remains finite if adiabat-

ically taking the limit γ → −∞. The lowest lying such state is called the super

Tonks-Girardeau gas state [ABCG05, CGYH10]. For small |γ| it is adiabatically

connected to an excited state of the free bosonic system, and in the limit of large

|γ| it becomes identical to the Tonks-Girardeau state [TZS08]. For finite interaction

strength it shows some peculiarities, such as stronger correlations, see Fig. 22, and

lower compressibility [ABCG05] than the Tonks-Gas, i.e., than free fermions. Al-

though it is a highly excited state, the super Tonks-Girardeau gas can be prepared

in experiment [HGM+09] by a sudden quench from the attractive to the repulsive

regime, using a fast sweep through the confinement induced resonance (18). We will

investigate the dynamics of this process [MF10] in section 6.

1This expression can of course only be valid as long as 1/γ is still large compared too the range
r0 of the true inter-particle potential.
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1.3 Bose–Fermi mapping for 1D quantum gases with general

contact interactions

The Bose-Fermi mapping used in section 1.2.1 can also be used to map bosons to

fermions and vice versa which have finite strength local interactions [YG05]. We

consider bosonic or fermionic quantum gases, that are fully described by their two

particle Hamiltonian, i.e., the Hamiltonian is a sum of the form

H = −1

2

∑
j

∂2
xj

+
∑
i<j

W (xi − xj), (49)

and additionally require that the true interaction potential W (xi − xj) can be ap-

proximated by a local pseudo-potential, i.e. it vanishes for xi 6= xj. Since we are

in one dimension, this leads to the exact integrability of these models in the case of

translation invariance [LL63] using coordinate Bethe ansatz [Bet31, Gau83].

To see the connection between the bosonic and the fermionic case, it is sufficient

to consider the relative wave function φ(x = x1 − x2) of just two particles. The

Hamiltonian then reads

H = −∂2
x +W (x) (50)

where we have dropped the term corresponding to the freely evolving center of mass.

The continuous two-particle case has been analyzed by Cheon and Shigehara

[CS98, CS99]. The local pseudo-potential W is fully described by a boundary condi-

tion on φ at x = 0: Since φ fulfills the free Schrödinger equation away from 0, it must

have a discontinuity at the origin as an effect of the interaction. Thus we see that

∂2
xφ(x) =


φ′′(x) x 6= 0

δ(x) [φ′(0+)− φ′(0−)] +

+ δ′(x) [φ(0+)− φ(0−)] x = 0.

(51)

In the case of distinguishable or spinful [GO04] particles both singular terms con-

tribute. Otherwise, due to symmetry, the term proportional to the delta function

δ can only be nonzero for bosons, while the δ′ term exists only for fermions. That

means, we have for bosons

∂2
xφ(x) =

{
φ′′(x) x 6= 0

2δ(x)φ′(0) x = 0.
(52)

and for fermions

∂2
xφ(x) =

{
φ′′(x) x 6= 0

2δ′(x)φ(0) x = 0.
(53)
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In order to get proper eigenstates (i.e. without any singular contribution), the pseudo-

potential W acting on the wave-function must absorb the singular contributions from

the kinetic energy. Thus the only possible form of a local pseudo-potential for bosons

is WBφ = gBδ(x)φ(0), while that for fermions reads WFφ = −gFδ
′(x)φ′(0). Note

that φ (φ′) is continuous at 0 for bosons (fermions). These two possibilities represent

the well known cases, where the particle interact either by s-wave scattering only or

by p-wave scattering only, and the interaction strength corresponds to the scattering

length, respectively scattering volume, which are the only free parameters left.

Since all wave functions must have the respective symmetry, we can restrict our-

selves in the following to the primary sector R1, which means x > 0 in relative

coordinates. We will write φ(0) for limx→0+ φ(x) and φ′(0) for limx→0+ φ
′(x). The

above shows that W imposes a boundary condition on every proper wave function:

φ′(0) = gB
2
φ(0) bosons,

φ′(0) = − 2
gF
φ(0) fermions.

(54)

Eqs. (51) and (54) reveal a one-to-one mapping between the two cases, i.e., every

solution for the bosonic problem yields a solution for the fermionic problem with

gB = −4/gF (55)

by symmetrizing the wave function and vice versa. Any solution to the Lieb-Liniger

model (possibly extended by an external potential or inhomogeneous interaction

strength) is at the same time a solution of a fermionic model, obtained by the mapping

(21). The attractive interactions map to repulsive interactions, and weak interactions

map to strong interactions. The fermionic counterpart of the Tonks-Girardeau gas,

which is the bosonic system corresponding to free fermions, is named the fermionic

Tonks-Girardeau gas [Gir60, GM06, MG06]. It is the fermionic system corresponding

to free bosons, i.e., gF → −∞. It can be treated analytically, e.g., the momentum

distribution is known for arbitrary particle numbers [BEG05].

It should be remarked, that boundary conditions of the form (54) are the only ones

that are equivalent to a local potential [Seb86, CS98]. While boundary conditions

involving higher order derivatives can be taken into account to describe experimental

realizations using cold gases in quasi 1D traps [ILGG10], they necessarily require

finite range potentials and cannot be described fully by local pseudo-potentials.
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1.4 Luttinger liquid theory

The low energy physics of gap-less, one-dimensional many-body systems can be uni-

versally described [Gia03] by a so-called Luttinger liquid

Ĥ =
1

2π

∫
dx

{
uK

[
πΠ̂(x)

]2

+
u

K

[
∂xφ̂
]2
}
. (56)

Here φ̂ and Π̂ are conjugate fields[
φ̂(x), Π̂(y)

]
= iδ(x− y). (57)

Phenomenologically, ∂xφ̂ is the operator of density fluctuations, and Π̂ measures

phase fluctuations. u is the characteristic velocity of the system, and K is a number,

referred to as the Luttinger parameter.

An example where this Hamiltonian is exact can be constructed from the problem

of free fermions: The ground state at finite density is the state where all single particle

states are filled up to the Fermi energy. Around the Fermi energy, the dispersion

relation is to good approximation linear. Due to this linearity, there is a well defined

dispersion relation for low energy particle-hole excitations, which correspond to the

excitation of a fermion from k < kF to k′ > kF. Thus there are well defined elementary

excitations. Mathematical rigor additionally requires to regard left (ĉ†L) and right (ĉ†R)

moving fermions (around −kF and +kF respectively) as distinguishable particles, each

filling up an infinitely deep Fermi see, which does not change the physics at low

energies. The resulting model is the Tomonaga-Luttinger model. It can be expressed

in terms of it’s elementary excitations, which are bosonic, because they are quadratic

in the fermions:

b̂†k =

(
2π

L|k|

)[
θ(−k)ρ̂†L(k) + θ(k)ρ̂†R(k)

]
, (58)

with ρ̂†r(k) =
∑

k′ ĉ
†(k′ + k)ĉ(k′) and θ the Heaviside step function. This transfor-

mation is referred to bosonization. The Hamiltonian becomes exactly (56), with φ̂

and Π̂ linear expressions in the bosonic operators [Gia03]. Such a procedure can only

work in one dimension. In higher dimensions there is e.g., no well defined dispersion

relation for elementary excitations, because ~k′−~k does not have to be perpendicular

to the Fermi surface.

For the Tomonaga-Luttinger model we have u = πρ = vF, the Fermi velocity,

and K = 1. The most important observation is, that an interaction between the

particles does not introduce additional terms in the Hamiltonian (56). Interactions

only renormalize K and u, as long as there does not occur a phase transition. The
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Hamiltonian remains quadratic, and the interaction system is still described by the

physics of free bosons. Many properties of the system can be calculated with u and

K as parameters, e.g. the compressibility

1

χ
= ρ2∂µ

∂ρ
(59)

satisfies
K

u
= πρ2χ, (60)

a relation used in section 4. Using a high energy cutoff, α � 1/ρ, the two-point

density-density correlation at large distances,|r| � α, is given by [Gia03]

〈ρ̂(r)ρ̂(0)〉 =
1

2π2

[
K

y2
α − x2

(y2
α + x2)2)

+
1

α2
cos(2πρx)

(
α

|r|

)2K
]
, (61)

with the space-time point r = (x, uτ) and yα = uτ + αsign(τ). The correlation func-

tion shows a power law behavior. There is neither a typical correlation length, nor

true log range order, which would mean finite correlations in the limit of large dis-

tance. This shows, that the system is always in a critical state, at the verge of a phase

transition to an ordered state. This reflects the competition between the interactions

on one hand, which have such a strong effect in one dimension that perturbation

theory exhibits divergencies [Gia03], and the impossibility of true long range order in

one dimension due to quantum fluctuations on the other hand. The slower the diag-

onal correlations (61) decay, the faster does the off-diagonal pair correlation function

[Gia03]

lima→0

〈
Ψ̂†(r)Ψ̂†(r + a)Ψ̂(a)Ψ̂(0)

〉
∼ 1

(πα)2

(
α

|r|

)1/(2K)

. (62)

It also decays as a power law, such that true superfluid order is just as impossible as

true long range density-density order. Note that at K = 1/2 the exponents for both

types of order are the same, and there is a crossover between dominating diagonal

and dominating off-diagonal order.

Many one-dimensional systems are actually described by a Luttinger Liquid in the

low energy regime. Examples include the Lieb-Liniger model, the Hubbard and Bose-

Hubbard models away from the Mott-insulating phases, and also spin chain models.

In the cases with a spin degree of freedom (or with more than one species), there is

a pair of conjugate fields for both spin and charge, which enter the Hamiltonian in

general with different Luttinger parameters. Then there exist independent elementary

charge and spin excitations, a fact known as spin-charge separation, because they

usually separate due to their different velocity. This shows that any excitation of
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a bare particle, which carries both spin and charge, breaks up into more than one

collective type of excitation. This is another characteristic of one-dimensional physics.

A general problem is the determination of u and K from a given microscopic

Hamiltonian. To determine both requires two equations. One can, e.g., be the

compressibility relation (59). For Galileanly invariant models [Hal81], the second

equation required is

uK = πρ. (63)

For the Lieb-Liniger model, this is enough to determine u(γ) and K(γ) using Bethe

ansatz [Zvo10]. The Tonks gas (and free fermions) have K = 1, while K goes con-

tinuously to ∞ as the repulsion between the bosons goes to zero (or the fermions

become increasingly attracting). To reach stronger correlations in the sense of (61),

i.e. K < 1, requires to go to attractive interactions [Büc11] in the sense of the unsta-

ble super-Tonks Girardeau gas, or to use interactions that act over a nonzero distance.

The latter can be, e.g., dipolar interactions, discussed in section 4, or the hard rod

potential [ABCG05] which results in similar properties as the super Tonks-Girardeau

gas.

1.5 Thermalization dynamics in closed quantum systems

Quantum mechanics is known to go beyond the laws of classical physics, e.g., by

allowing for tunneling through barriers, by the uncertainty principle, by matterwave

interference, by creating nonclassical correlations through entanglement and more

recently also by seemingly allowing quantum computers to solve problems otherwise

believed to be effectively unsolvable. Although quantum mechanics is supposed to be

the more general theory and the old physics should be contained in it as the classical

limit, this connection usually requires detailed analysis. A specific problem, where

the quantum and the classical formalism work quite differently, is the relaxation

of a closed system, which is initially far from equilibrium. It has attracted much

attention recently, as first experiments on relaxation dynamics using cold atoms in

optical potentials have been reported [KWW06, HLF+07, CDEO08, CFM+08, MS09,

CWBD11, TCF+11]. They all consider an initial non-equilibrium state generated by

a quench, i.e., by a sudden change in a parameter of the system, e.g., in the external

confinement or the interaction strength.

In classical mechanics the thermalization of a system initially out of equilibrium

is attributed to its chaotic behavior resulting from nonlinear equations of motion. A

typical example is an interacting gas initially confined to some volume and released

into a larger volume. After the release, the atoms will move on the energy shell in

phase space ergodically, i.e., with no preference for any region. As a consequence,
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after averaging over a certain time interval, all observables attain the same values

as averaged over the energy shell, i.e., in the microcanonical ensemble. This generic

mechanism does however not work for integrable systems. The presence of a number

of conserved quantities equal to the number of degrees of freedom, confines the evo-

lution to an invariant torus, fixed by the initial conditions. The statistical approach

of describing the system by few macroscopic quantities fails, because the memory of

the initial conditions persists.

The concept of thermalization via classical chaos fails when the system is described

quantum mechanically. Quantum dynamics is always linear and there is always a

number of trivial conserved quantities as large as the dimension of the Hilbert space.

These are the projectors onto the eigenstates of the system. This is the case also for

systems which exhibit chaotic dynamics classically.

Thermalization in quantum mechanical systems can be ascribed to the eigenstate

thermalization hypothesis (ETH). It states that if Ô is an observable that acts only

on a small subsystem (such as the local density) then, if |ΨE〉 is an eigenstate with not

too small energy E, the expectation value 〈ΨE|Ô|ΨE〉 is independent of the precise

value of E. That means, all states with similar energy yield the same expectation

value, which must therefore be an almost smooth function of E. Therefore 〈ΨE|Ô|ΨE〉
takes the same value as in the microcanonical ensemble, and the details of the initial

state does not matter.

The ETH rules out a possible survival of the initial conditions in any Ô due to

the trivial conserved quantities. The initial state of the system can be expanded in

energy eigenstates,

|Ψ0〉 =
∑
n

cn|n〉, (64)

with complex amplitudes cn. The Projectors P̂n|n〉〈n| commute with the Hamiltonian

and the occupation numbers c∗ncn are constant in time. We have

〈Ψt|Ô|Ψt〉 =
∑
n,m

c∗mcn exp [(Em − En)t]Onm (65)

with Onm = 〈Ψn|Ô|Ψm〉 the matrix elements of the observable. Due to dephasing,

after a certain time the contribution of the off-diagonal part can be expected to cancel

out. The expectation value then approaches

〈Ô〉d = Tr
[
ρ̂dÔ

]
, (66)

with ρ̂d =
∑

n c
∗
ncnP̂n the density operator of the diagonal ensemble. After a quench,

such as the release of a gas into a larger container, the amplitudes cn are peaked
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around an average energy Ē = 〈Ĥ〉, i.e., cn vanishes unless En ≈ Ē. Due to the ETH,

the diagonal ensemble gives the same expectation values for Ô as the microcanonical

ensemble, independent of which eigenstates exactly are occupied. The fact, that there

are in generally many states with Em ≈ Ē but negligible cm does not matter.

This thermalization mechanism shows that the role of conserved quantities in

quantum mechanics is quite different. Although the diagonal ensemble contains a lot

of information about the initial state, the equilibrium expectation value of Ô are just

that of the microcanonical ensemble due to the ETH.

The results are quite different if the model in question is quantum integrable.

We call a quantum system integrable if it possesses an infinite number of conserved

quantities (not just the Hamiltonian or possibly a total particle number) which are the

integral over conserved local densities, i.e. operators defined on a subsystem of finite

extent. Well known examples of such conserved densities are the Hamiltonian density

and the particle density. For Bethe integrable systems, an infinite series of conserved

densities can be constructed [GM96, ZNP97, CSZ06b]. In essence, solutions via Bethe

ansatz yield a nontrivial transformation to a system of free particles [Gau83, KBI93,

BPG08]. In a prominent experiment [KWW06] it has been shown, that cold atoms, in

a regime that is well described by the integrable Lieb-Liniger model, do not thermalize

as expected from thermodynamics. This result has triggered much attention. Even

if an integrable system relaxes to a steady state, this steady state is in general not

well described by the microcanonical ensemble [RMO06, Caz06, RDYO07, RDO08].

It is however described by the diagonal ensemble, which can not count as a statistical

description,because it contains an exponentially large number of parameters.

Instead of using the conventional ensembles of statistical mechanics, it has been

proposed [RMO06], to describe integrable systems using as generalized Gibbs ensem-

ble (GGE). Such an ensemble fixes not only the usual thermodynamical parameters,

but also the nontrivial conserved quantities Îm:

ρ̂g = Z−1
g exp

(
−
∑
n

λmÎn

)
, Zg = Tr

[
exp

(
−
∑
n

λmÎn

)]
(67)

The Lagrange parameters λm are fixed by requiring that the expectation values of the

initial state match that of the GGE for all Îm: Tr
[
ρ̂dÎm

]
= Tr

[
ρ̂initÎm

]
. It has been

demonstrated for various models [RMO06, Caz06, RDYO07, KE08, RDO08, Rig09]

both analytically and numerically, that the GGE does in general describe the long

term asymptotics of an integrable system, while the microcanonical ensemble does

not2. As to why this is the case, is still an open question, especially because the

2Alternatively, a generalized microscopic ensemble [CCR11] also works.
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GGE is not uniquely defined [KE08]. For example is has been shown, that for hard

core bosons on a one-dimensional lattice [RDYO07] it is sufficient to take for Îm the

occupation numbers of the eigenstates of the corresponding Jordan-Wigner fermions,

which are conserved separately. This is an infinite number in the thermodynamic

limit, but scales only linearly in the particle number, not exponentially as the Hilbert

space dimension. Finite products of occupation numbers Îm1 Îm1 · · · Îmr , which are

trivially also conserved and independent, are not taken into account. It has been

demonstrated by Kollar et al. [KE08] that whether a GGE does agree with long time

dynamics does depend on the choice of Îm. (The diagonal ensemble is a special case

of a GGE, where the projectors on the eigenstates are chosen for the Îm.) Conse-

quently, the subject requires further investigation, and new inside can, e.g., be given

by numerical simulations.

Most studies of specific models have been done either for non-interacting particles

[CDEO08] or systems that can directly be mapped to free systems such as hard-core

bosons [RDYO07], the Luttinger model [Caz06], or the 1/r fermionic Hubbard model

[KE08]. Other models require numerical treatment. While exact diagonalization gives

accurate results for small systems [RDO08, Rou09], large system sizes are preferable,

in order to justify a possible statistical treatment in the first place and also to over-

come the artifacts that make different standard statistical ensembles different, al-

though they typically yield identical results in the thermodynamic limit. Simulations

on larger system sizes using exact numerical simulations [FCM+08, BPG+09, ES12]

usually suffer from the fact, that large enough times to determine the relaxed expecta-

tion values are hard to reach. However one DMRG study on the non-integrable tilted

Ising model [BCH11] has shown, that even without integrability, the final steady state

can be different from thermal predictions. In this thesis we will add two important

examples to the discussion. To this end we will numerically simulate an interaction

quench in the continuous Lieb-Liniger gas. Although it is integrable, the mapping to

free particles is not trivial and to our knowledge only a few conserved densities are

known explicitly. We have access to long enough time scales to observe local (but not

global) relaxation and compare to thermal descriptions in section 5. In a quench to

attractive interactions, we observe coherent dynamics only, and no relaxation at all,

which can be easily understood from the specific quench we implement, see section

6.
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2 Matrix product state algorithms

In the present section we give an introduction to the numerical methods used in

this thesis. Our goal is to describe quantum many-body systems exactly, including

those where there is no analytic solution available. What that means is, that we

want to use an algorithm, that generates results with arbitrary precision, given that

the system is small enough (or the time over which it is evolved is short enough

in the case of dynamical simulations) for the available computational resources, or

given that the resources are increased sufficiently for the given problem (the scal-

ing being exponentially in the worst case, as we will see). An algorithm known to

satisfy this requirement is exact diagonalization, which however scales unfavorably

with system size, because of the exponentially increasing dimension of the Hilbert

space. We therefore employ matrix product state (MPS) algorithms, which aim at

capturing the relevant part of the Hilbert space in terms of entanglement. They are

trivially equivalent to exact diagonalization3 if the dimension χ of the matrices used

approaches the full Hilbert space dimension. A different approach that also yields

potentially exact results are various quantum Monte Carlo methods, which where not

used here. While being able to give an insight into the physics of specific systems,

methods such as different variants of mean-field theory or finite order perturbation

theory usually do not give numerically exact results.

Variational MPS methods have been used for more than half a century [KW41] to

describe the transfer matrix of two-dimensional classical models in statistical mechan-

ics, which are equivalent to one-dimensional quantum systems. For references see,

e.g., the work of Baxter [Bax78] and references therein. Later on the density-matrix

renormalization group (DMRG) method [Whi92] has been developed independently

and proved very successful in describing low-energy eigenstates of one-dimensional

quantum lattice systems which are typically only moderately entangled. In the last

decade DMRG has been extended to real-time evolution [Vid03, Vid04, DKSV04,

WF04] (t-DMRG). These and various other extensions all rely on the MPS frame-

work to capture the relevant part of the Hilbert space in terms of the largest singular

values [McC07, Sch11].

3In fact we checked the validity of all our implementations against exact diagonalization for small
systems.



2.1 Matrix product states 33

2.1 Matrix product states

MPS are an efficient way of specifying the state

|Ψ〉 =
∑
~j

c~j|~j〉 (68)

(assumed here to be normalized) of a one-dimensional lattice system. Here ~j is a

vectors of occupation numbers (or whatever other quantities are required to uniquely

define the state of a single site) for every lattice site, thus corresponding to a Fock

state. The number of parameters c~j is exponentially large in the system size. An

MPS reduces this number by parametrizing the state in terms of finite size matrices

A, which we will assume here to be all square and of dimension χ× χ:

|Ψ〉 =
∑
~j

c~j|~j〉 =
∑
~j

Tr

[∏
m

A[m],jm

]
|~j〉 (69)

= Tr

[⊗
m

(∑
j

A[m],j|j〉m

)]
(70)

While the product
∏

in (69) denotes the usual matrix product,
⊗

in (70) denotes

matrix product between A matrices and at the same time the direct product of

the states of each lattice site. “Tr” here means taking the trace over the auxiliary

space, i.e., the one where the matrices A act, only. The trace is required only for

systems with periodic boundary conditions[VPC04, PWE10], while for finite systems

comprising L sites the matrices belonging to the first site (A[1],j) and those belonging

to the last site (A[L],j) can all be chosen to be row respectively column vectors instead

of matrices. Equation (70) shows that an MPS is a generalization of the notion of a

usual product state, to which it reduces if all A[m],j are complex numbers, i.e., χ = 1.

Obviously the matrices A are not uniquely defined by (69). If the system is not

subject to periodic boundary conditions, there is however a unique canonical[PGVWC07]

form of the MPS (In this context the word “canonical” refers to the orthogonality

and normalization properties which we do not find in an MPS in its general form (70)

and is not to be mixed up with canonical in the sense of working at a fixed particle

number, section 11.2.):

|Ψ〉 =
∑
~j

Γ[1]j1λ[1] · · ·λ[m−1]Γ[m]jmλ[m] · · ·λ[L−1]Γ[L]jL|~j〉 (71)

The λ[m] matrices are diagonal and contain the singular values from a Schmidt de-
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composition of a bi-partition of the system into the sub-chain A comprising sites

1 to m and the sub-chain B comprising sites m + 1 to L (in descending order for

uniqueness):

|Ψ〉 =

χ∑
α=1

λ[m]
α |α〉A ⊗ |α〉B (72)

{|α〉A} and {|α〉B} respectively form an orthonormal set, the reduced bases. Orthog-

onality for all possible bi-partitions means that the matrices are both left orthogonal∑
j

λ[m−1] † Γ[m]jm † Γ[m]jmλ[m−1] = 1, (73)

and right orthogonal ∑
j

Γ[m]jmλ[m] λ[m] † Γ[m]jm † = 1, (74)

From this representation the constraint of MPS becomes apparent: The maximum

number of nonzero singular values is χ. For a general state, this number can be the

smaller of Hilbert space dimensions of A and B. At the heart of DMRG lies the

discarding of all but the χ largest eigenvalues of the reduced density matrix of any of

the two subsystems, which is equivalent to approximating the state by an MPS with

dimension χ. Roughly speaking, this approximation is only good, if the entanglement

entropy

S[m] = −
χ∑
α=1

λ[m]
α

2
log2

(
λ[m]
α

2
)

(75)

between A and B is small. Rigorous results on the approximability in terms of

entanglement entropies can be found in [SWVC08b]. Low lying eigenstates of 1D

systems with short-range interaction can be approximated well [VC06], as S grows

only logarithmically with system size. In real-time evolution however, S grows in

general linear in time [CC05]. While t-DMRG is still a very useful method to calculate

the short time entanglement dynamics, as was done by us in [UMF10], this limits

the timescales accessible, at least in the Schrödinger picture. The situation may be

different in the Heisenberg picture, as we will see in section 10.

The matrix product ansatz presented here is naturally adapted to systems with

open boundary conditions, as the lattice sites are numbered by a single index and

nearest neighbors are coupled by the matrices λ[m]. MPSs can be used to represent

states of systems with different geometry, e.g., by covering a 2D plane with a chain

of tensors. However the Ansatz does not reflect the actual physical connectivity.

As a consequence the matrix dimension required to reach a given accuracy quickly

grows, e.g. for periodic boundary conditions [Whi93] as compared to open bound-
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ary conditions. There exist generalizations to other geometries: Periodic boundary

conditions can be tackled by coupling the first and the last site also via a λ tensor

[VPC04, PWE10]. Projected entangled pair states (PEPS) [VC04], tree tensor net-

works [SDV06], and the multi–scale entanglement renormalization ansatz (MERA)

[Vid07b, Vid10] are adaptions to higher dimensions, and will not be discussed in the

present thesis. These methods suffer from a much higher computational complexity

in using the ansatz in variational methods as compared to DMRG.

2.2 Imposing conservation laws

Conservation laws resulting from global symmetries can be taken into account explic-

itly in the construction of MPSs [Sch05, McC07, SZV10, BCOT11]. This reduces the

number of degrees of freedom such that approximations with higher matrix dimen-

sions can be calculated using the same amount of computation time and memory. In

addition arithmetical errors of the type that would lead out of the symmetry sector

of the initial state are impossible.

Implementing abelian symmetries is particularly easy [Sch05]. When calculating

low lying eigenstates with a given accuracy, the gain in CPU time and memory

is typically of an order of magnitude or more. In dynamical simulations, abelian

symmetries allow for calculations on longer timescales[DCJZ05].

If the state |Ψ〉 is an eigenstate of the total particle number in the whole system

with eigenvalue N , then the Schmidt vectors |α〉A and |α〉B also have to be eigenstates

of the total particle number in there respective subsystems, their eigenvalues NA(α)

and NB(α) adding up to N but maybe different for different values of α.

The Schmidt decomposition at two neighboring bonds reads

|Ψ〉 =

χ∑
α,β=1

∑
j

λ[m−1]
α Γ

[m]j
α,β λ

[m]
β |j〉m ⊗ |α〉A ⊗ |β〉B. (76)

Here A comprising sites 1 to m−1. If the state has a certain symmetry, this restricts

the number of allowed states |j〉m for given |α〉A and |β〉B. In the case of particle

number conservation we have j = N − NA(α) − NB(α). When implementing this

scheme, we can therefore leave out the physical dimension of the tensor Γ
[m]j
α,β com-

pletely (if there is no further local degree of freedom besides occupation number).

This is one point where the conservation law makes the algorithm more efficient in

terms of memory. The tensor Γ
[m]j
α,β is said to be symmetric. For a more mathemati-

cal description in terms of group theory see, e.g., [McC07, BCOT11] and references

therein. It should be noted at this point, that applying particle number conservation

in this way to MPS for infinite size systems [Vid07a] requires the average filling to
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be a multiple of one over the size of the unit cell[McC08], thus in general requiring

large unit cells to approximate generic filling.

The typical algorithms used with MPS, namely DMRG to find low lying eigen-

states and the time evolving block decimation (TEBD) to calculate the real or imag-

inary time evolution of a given state, conserve this structure of the MPS. In this way

we gain access to the canonical ensemble, while without using the symmetry, one

automatically allows for any particle number. This results in a much larger number

of free parameters. For calculating eigenstates, the average particle number has to be

fixed by setting the corresponding chemical potential, which is not known a priori. In

time evolution arithmetical errors can lead out of the symmetry sector of the initial

state.

A generalization to the case of more than one species, where the actual number

of particles in each class is separately conserved., is straight forward. We note that

the case of non abelian symmetries [MG02, SZV10, Sch11] is more involved and will

not be discussed here.

2.3 Density matrix renormalization group (DMRG)

The original idea of the numerical renormalization group (NRG) algorithm is to

calculate the lowest lying states of a small system that can be treated exactly and use

them as a basis for a system that is larger by some lattice sites. One has good reason

to assume that iterating this process yields the ground state in the thermodynamic

limit. However in practice, the algorithm suffers from the fact, that for the small

system artificial boundary conditions have to be introduced, which strongly decrease

the overlap of the lowest lying states with those of the larger system. This problem is

circumvented by DMRG. Instead of using the lowest energy eigenstates, one resorts to

the largest eigenvalues of the reduced density matrix, when the system is coupled to

an environment. The environment is typically a copy of the system. Then the system

can again be grown iteratively, keeping the largest eigenvalues in each step, which

is called the infinite size algorithm. The numerical precision can however largely be

improved by terminating at a given system size, and then sweeping the boundary

between system and environment from one end of the lattice to the other until the

ground state energy converges (finite size algorithm).

It can be shown, that keeping only the χ largest eigenvalues of the reduced density

matrix is equivalent to requiring the state to be representable by an MPS of matrix

dimension less than χ. In general on can expect the finite size algorithm to converge

to the best MPS approximation for the matrix dimension given. However there is

no guarantee, that DMRG does not get stuck in an excited state, or at least remain
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very close to one for many sweeps. Such behavior is naturally observed if the system

shows phase separation. In the following we will resort to the modern formulation of

DMRG in terms of MPS. The infinite size algorithm will not further be discussed,

because it is conceptually much easier, to start with finite size sweeps right away,

converging to the ground state independently of the initial state. At least for short

range interactions, the time evolving block decimation, section 2.4 gives also access

to quantities in the thermodynamic limit.

An MPS represents any state in terms of O(Nχ2) variables. We want to find the

MPS with lowest energy, which is a variational problem. However MPSs do not form a

vector space (the sum of two MPS requires an MPS of double matrix dimension to be

represented exactly), and thus we have a nonlinear optimization problem. The finite

size DMRG algorithm turns this into a series of linear optimization problems, which

can be solved efficiently. This is one of the key points, why DMRG is a successful

technique. In every step of a finite size sweep, one optimizes two adjacent sites,

|Ψ〉 =

χ∑
α,β,γ=1

d−1∑
i,j=0

λ[m−1]
α Γ

[m]i
α,β λ

[m]
β Γ

[m+1]j
β,γ λ[m+1]

γ |i〉m|j〉m+1 ⊗ |α〉A ⊗ |γ〉B. (77)

In this basis, the state corresponds to a χ2d2 dimensional vector with elements∑χ
β=1 λ

[m−1]
α Γ

[m]i
α,β λ

[m]
β Γ

[m+1]j
β,γ λ

[m+1]
γ . The Hamilton operator is then a matrix of dimen-

sion χ2d2×χ2d2. It’s extreme eigenvalues4 can be computed using iterative methods,

e.g. the Lanczos method, an implementation of which is available as part of the

ARPACK package [LSY98]. The size of the Hamiltonian matrix forbids explicit con-

struction due to memory limitations. Iterative eigenvalue solvers however require

only that the Hamiltonian can be applied to an arbitrary input state. Therefore we

observe that any operator that acts on the local sites m and m+1 only, or only either

in A or B, can be stored explicitly, eventually using sparse matrix representations.

Typical Hamiltonian terms, like a density density interaction â†rârâ
†
sâs can thus be

applied to any state, no matter if r respectively s are in A, [m,m+ 1], or B.

For an efficient implementation it is critical to group operators in the Hamiltonian

as much as possible. The Hamiltonian can always be decomposed as

Ĥ = ĤA + Ĥ•• + ĤB (78a)

+ ĤA•• + Ĥ••B + ĤAB + ĤA••B, (78b)

where ĤA acts on subsystem A only, Ĥ•• acts on sites [m,m+1] only, ĤA•• couples A

4In the periodic MPS ansatz [VPC04, PWE10] one has to solve a generalized eigenvalue problem,
because the orthogonality constraints (73) and (74) can not be fulfilled.
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with [m,m+ 1], etc. The first step is to always have those terms in the Hamiltonian

summed up in the basis (77) which form ĤA respectively ĤB. For local Hamiltonians,

where the terms in (78b) contain only a finite number of summands each, this results

in a complexity per step which is totally independent of the lattice size L5. For

long range couplings more grouping is necessary. For a long range density–density

interaction, as used in section 4, we group [Xia96]

ĤAB =
∑
i∈A

∑
j∈B

V (j − i)n̂in̂j =
∑
i∈A

n̂i ˆ̄n
B
i , (79)

where for i /∈ B we define ˆ̄nB
i =

∑
j∈B V (j − i)n̂j. Thus we have at most O(L)

summands in each term of (78b). Thus the complexity is reduced from the naive

O(L2) found on the right hand side of (79).6

After the ground state has been found, it is decomposed back into the form

(77) using a singular value decomposition. As only the χ largest singular values

can be kept, right orthogonality (74) is not fulfilled for site m + 1 and likewise left

orthogonality (73) is void for site m. This has however no further consequence if the

next optimization is carried out either using sites [m− 1,m] or [m+ 1,m+ 2], which

should therefore be the case in any implementation. When going one site to the right

(left) one has to update all operators that act on A and m (B and m+ 1) which will

together form the new A (B) and reload all operators acting on the new B (A) with

site m+ 2 (m− 1) removed which have not changed since the last right (left) sweep7.

2.4 Time evolving block decimation (TEBD)

Vidal [Vid03] observed, that it is a particularly easy operation to apply an operator Û

to an MPS that acts on two neighboring sites only. After applying such an operator

5Of course the number of steps per sweep is still of order L and the number of sweeps required
for convergence in general grows with L also.

6In the case of general two body interactions, which have to be tackled e.g. in momentum
space DMRG [Xia96, NJGN02] or in the form of Haldane’s pseudo potential in quantum Hall
physics [FRNDS08, ZSH11] similar grouping is required. The number of summands to represent∑

ijkl V (i, j, k, l)â†i â
†
j âkâl at a given step in the sweep can be reduced from the naive O(L4) to

O(L2).
7This can be done very elegantly if the Hamiltonian is given as a MPO (section 3 of [McC07])

[CDV08, Sch11]. Although that clarifies the algorithm and allows for a quite general implementation
(taking the Hamiltonian as an arbitrary input), it requires exponentially decaying interactions and
would therefore be of limited use in this work.
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(U ij
i′j′ = 0 if i+ j 6= i′ + j′),

Û |Ψ〉 =

χ∑
α,β=1

∑
i,j

∑
i′,j′

U ij
i′j′ · λ

[m−1]
α Γ

[m]i′

α,β λ
[m]
β Γ

[m]j′

β,γ λ[m]
γ ×

× |i〉m ⊗ |j〉m+1 ⊗ |α〉A ⊗ |γ〉B, (80)

here B comprising sites m+ 2 to L, the singular value decomposition of the tensor

T iαjγ =
∑
i′,j′,β

U ij
i′j′Γ

[m]i′

α,β λ
[m]
β Γ

[m]j′

β,γ (81)

has to be calculated, to bring the MPS back to it’s canonical form8. This allows e.g.

the application of arbitrary sequences of logical quantum gates (in the case when

the local degrees of freedom represent qubits), with the severe restriction that the

entanglement in the chain remains small.

This can be used to simulate time evolution [Vid04] with local Hamiltonians by

using a Suzuki-Trotter decomposition[Suz76]: We can write the Hamiltonian as a

sum

Ĥ =
∑
m

Ĥm, (82)

where Ĥm couples sites m and m+ 1 only. A second order Suzuki-Trotter decompo-

sition then reads(
e−

i
2
Ĥ1∆te−

i
2
Ĥ2∆t · · · e−

i
2
ĤL∆t

)(
e−

i
2
ĤL∆te−

i
2
ĤL−1∆t · · · e−

i
2
Ĥ1∆t

)
= e−iĤ∆t+O(∆t3)

(83)

With this formula one can evolve an initial state for a time t = n∆t given that ∆t is

chosen small enough, all intermediate states can be approximated well by MPSs and

the number n of steps is not too large such that arithmetical errors remain small. The

Hamiltonian can also be time dependent itself. The Suzuki-Trotter decomposition

approximates the full propagator by a series of local unitary operators Ûm = e−
i
2
Ĥm∆t.

Higher order decompositions, allowing for larger time steps ∆t can be constructed,

and tend to be rather lengthy. In practice a fourth order method (Z1
4 in [SS99]), which

reduces the error to O(∆t5) turned out to be a good choice and is used throughout

this work.

The only nontrivial (i.e., not conserving the MPS structure automatically) opera-

8If the total particle number is conserved, T will be composed of blocks, each having a fixed
value of NA(α) + i (and correspondingly j + NB(α) = N −NA(α)− i). Typically these blocks are
much smaller each then the size of T itself, and can moreover be decomposed in parallel, such that
the symmetry again gives a big advantage when operating on MPS.
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tion required to perform calculations, e.g. using the TEBD scheme, is acting with an

operator on two neighboring sites. After each such two-site operation of a Trotter step

the evolved state |Ψj〉 = Ûm,m+1(∆t)|Ψj−1〉 has to be projected to the new reduced

basis of dimension χ. The resulting truncated state |RG(Ψj)〉 (which is normalized

before the next unitary is applied) has norm νj =
√
〈RG(Ψj)|RG(Ψj)〉 which fulfills

0 ≤ 1−νj � 1. The accumulated cut-off error is defined as 1−
∏

j νj which is approx-

imately the sum of the single step cut-off errors, 1− νj, as long as it is much smaller

than unity. The accumulated cutoff error is a useful indicator for the accuracy of the

MPS approximation. If it becomes comparable to unity, the successive truncations

have degraded the state too much, and the evolution leads to wrong results.

The origin of the cut-off error is of course the entanglement generated, most ac-

curately measured be the distribution of the Schmidt coefficients λ[m]. However, the

exact distribution of those can in general not be calculated using a finite matrix

dimension. A DMRG calculation will only give an approximate result for this dis-

tribution, from which one can however estimate the fidelity of the result, i.e., the

overlap with the true ground state. For time evolution the cut-off error gives a more

direct measure for this fidelity, assuming that the initial state is exact.

The TEBD algorithm has be adapted to DMRG language [DKSV04, WF04],

providing mathematically equivalent methods. Those are usually termed “adaptive

time-dependent DMRG” (t-DMRG). This is to contrast them to earlier approaches

to include time-dependence in DMRG, which use a fixed basis as in (77), see e.g.

[CM02, LXW03, SW06], and are therefore much more restricted to short times. There

also exist other methods to calculate time dependence using MPSs and approximate

algorithms different from the Suzuki-Trotter decomposition[GR06, SW06], some of

which are also capable of treating non-local interactions. In the present work, TEBD

has however proved very reliable and can easily be adapted to different problems, as

long as the Hamiltonian involved is local.
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Part II

Ground state properties of

quantum gases
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3 Discretized vs. continuous models of 1D quan-

tum gases with local interactions9

As we have seen in the introduction, model Hamiltonians describing homogeneous

1D quantum gases with contact interaction are often integrable by means of Bethe

Ansatz [Bet31, LL63, KBI93, Gau83]. In practice, however, only a small number of

quantities can actually be obtained from Bethe Ansatz or explicit calculations are

restricted to a small number of particles, and only properties associated with low

energy or long wavelength excitations can be described by bosonization techniques

[Gia03]. For more general problems one has to rely on numerical techniques such as

DMRG or TEBD. Both work on lattice models and thus in order to apply them to

continuous systems requires a proper mapping between the true continuum model

and a lattice approximation. In fact any numerical technique describing a continuous

system relies on some sort of discretization. In the present section, we will give a

detailed derivation of a proper discretization of the one-dimensional Bose-gas with

contact interactions (s-wave scattering), and equally of the corresponding (see section

1.3) model of spin-polarized fermions with local interactions (p-wave scattering). The

problem is nontrivial, because the interaction potential W (x) has a singular support,

which has to be properly accounted for when mapped to the lattice, which has only

finite resolution. For longer range interaction, the solution is more straight forward,

see e.g. (109) in the next section.

We consider massive bosonic or fermionic particles with contact interactions. Only

two types of contact interaction potentials are allowed for identical, non relativistic

particles, representing either bosons with s-wave interactions or fermions with p-wave

interactions. Both systems are dual and can be mapped onto each other by the well-

known boson-fermion mapping, see section 1.3. A proper discretization of 1D bosons

with s-wave interaction is straight forward and has been used quite successfully to

calculate ground-state [SF07], finite temperature [SPF05], as well as dynamical prob-

lems, see section 5 for trapped 1D gases. For p-wave interacting fermions a similar,

straight forward discretization fails however, as can be seen when comparing numer-

ical results using such a model with those obtained from the bosonic Hamiltonian

after the boson-fermion mapping. Using a general approach to quantum gases in

1D with contact interaction [Sch09] we here derive a proper mapping between a

continuous model and a lattice approximation. We show in particular that p-wave

interacting fermions are mapped to the critical spin 1/2 XXZ model. By virtue

of the boson-fermion mapping the same can be done for s-wave interacting bosons,

thus maintaining integrability in the map between continuous and discretized mod-

9This section is based on the publication [MFS10].
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els. As an application we calculate the real-space and momentum-space densities of

the ground state of a p-wave interacting Fermi gas in a harmonic trap, as well as

local and non-local two particle correlations in real space. To prove the validity of

the discretized fermion model we compare the numerical results with those obtained

from the dual bosonic model as well as with Bethe ansatz solutions when available.

3.1 Discretization

The treatment of continuous gases in one dimension using numerical techniques re-

quires a proper discretization. That is we approximate the two-particle wave function

φ(x) ∈ L2(R) by a complex number φj ∈ `2(Z), where the integer index j describes

the discretized relative coordinate x = x1−x2. We interpret |φ2
j | as the probability to

find the two particles between (j− 1
2
)∆x and (j+ 1

2
)∆x. In order to apply numerical

methods such as DMRG or TEBD efficiently, it is favorable to have local or at most

nearest neighbor interactions in the lattice approximation of the continuous model.

It will turn out, that the above systems can all be discretized using such nearest

neighbor interactions only.

We start with the kinetic term, that can be approximated by

∂2
xφ 7→

φj−1 − 2φj + φj+1

∆x2
. (84)

In what follows, we will derive two distinct discretizations: first for the bosons, where

we allow for double occupied lattice sites and can therefore use on-site interactions

to reproduce the boundary conditions (54), and then for fermions, where double

occupation is forbidden by the Pauli principle and interactions between neighbors are

necessary in the lattice model. Note however, that both descriptions are equivalent

due to the Bose-Fermi mapping in the continuum limit.

3.2 Bosonic mapping

In the lattice approximation the kinetic-energy term, Eq. (51) reads

∂2
xφ(x) =

{
φj−1−2φj+φj+1

∆x2
j > 0

2(φ1−φ0)
∆x2

j = 0
(85)

Thus assuming a local contact interaction only, we find for the bosons

(Hφ)j =

{
−φj−1−2φj+φj+1

∆x2
j > 0

Uφ0 − 2φ1−2φ0
∆x2

j = 0
. (86)
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In order to determine the value of U , we assume, that it can be expressed as a series

in ∆x and evaluate the stationary Schrödinger equation (Hφ)j − Eφj = 0 at j = 0.

Reexpressing φ1 in terms of φ(0) by means of the discretized version of the contact

condition (54)

φ1 = φ(0) + ∆x φ′(0)︸︷︷︸
=
gB
2
φ(0)

+
∆x2

2
φ′′(0)︸ ︷︷ ︸

=−Eφ(0)

+ . . . , (87)

we arrive at

0 = (Hφ)j=0 − Eφj=0

= Uφ(0) +
2φ(0)

∆x2
− Eφ(0)− 2

∆x2
× (88)

×
(
φ(0) + ∆x

gB

2
φ(0)− 1

2
∆x2Eφ(0) +O(∆x3)

)
.

Equating orders gives

U =
gB

∆x
+O(∆x). (89)

The constant term vanishes, since −∂2
xφ = Eφ for any eigenstate. The higher orders

O(∆x) contain E and would thus not be independent on the eigenvalue. This is

perfectly consistent, since discretizations will only work as long as the lattice spacing

is much smaller than all relevant (wave) lengths in the system. Thus the lowest order

in (89) is already optimal. There are no higher order corrections possible for a general

state.

We can now easily write down the corresponding many particle Hamiltonian for

the case of indistinguishable bosons in absolute coordinates, represented by an integer

index i and in second quantization:

H =
∑
i

[
−J(a†iai+1 + h.a.) +

U

2
a†ia
†
iaiai + Via

†
iai

]
. (90)

Here ai is the bosonic annihilator at site i and Vi introduces an additional external

potential in the obvious way. So not surprisingly we have arrived at the Bose-Hubbard

Hamiltonian as a lattice approximation to 1D bosons with s-wave interaction. Since

∆x must be smaller than all relevant length scales, we are in the low-filling and

weak-interaction limits U � J = 1
2∆x2

10. This does of course not imply that the

corresponding Lieb-Liniger gas is in the weakly interacting regime. This result might

seem trivial, since we can also directly get it by substituting the field operator in

10In the case of ground state calculations as done in section 3.5 we actually achieve good results
even before J exceeds U . However for non equilibrium dynamics [MSF10] it can become crucial
that the bandwidth proportional to J is large compared to the pairing energy U .
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the continuous model: Ψ(j∆x) 7→ aj√
∆x

[SF07]. However, this simple and naive

discretization does not work in the fermionic case we are going to discuss now.

3.3 Fermionic mapping

For fermions the kinetic-energy term, Eq. (51) reads in lattice approximation

∂2
xφ(x) =


φj−1−2φj+φj+1

∆x2
j > 1

φ2−2φ1
∆x2

j = 1

0 j = 0

(91)

Due to the anti-symmetry of the wave-function φ0 must vanish, i.e. the simplest way

interactions come into the lattice model is for nearest neighbors. Thus we write for

the Hamiltonian

(Hφ)j =


−φj−1−2φj+φj+1

∆x2
j > 1

Bφ1 − φ2−2φ1
∆x2

j = 1

0 j = 0

(92)

To obtain the value of B we proceed as in the case of bosons. As will be seen later

on it is most convenient to expand B in a series in the following way:

1

B
= ∆x2

(
B(2) + ∆xB(3) +O(∆x2)

)
. (93)

Now the stationary Schrödinger equation for j = 1 yields

0 = 1− 2

gF

∆x− ∆x2

2
E +O(∆x3) + (94)

+
(
B(2) + ∆xB(3) + ∆x2B(4) +O(∆x2)

) [
1 +O(∆x3)

]
.

Equating orders results in

B(2) = −1, B(3) =
2

gF

, B(4) =
1

2
E. (95)

Note that his time the interaction appears only in the second lowest order, which can

not be described by a simple substitution formula. The next higher order contained

in O(∆x2) does not vanish, but depends again on the energy as expected. If we had

chosen a straightforward expansion of B instead of (93), the next order after the one

that introduces the interaction would have contained again the interaction parameter:

B = − 1

∆x2
− 2

gF∆x
− 4

g2
F

+
E

2
+O(∆x). (96)
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Neglecting this term would therefore introduce a larger error than in the chosen

expansion (93). In fact the low energy scattering properties would be reproduced

only to one order less. For the bosons this problem did not occur (89). From (93) we

read that the optimal result in the fermionic case is

B = − 1

∆x2

(
1

1− 2∆x
gF

)
. (97)

The corresponding many-body Hamiltonian for indistinguishable fermions reads

H =
∑
i

[
−J(c†ici+1 + h.a.) +Bc†icic

†
i+1ci+1 + Vic

†
ic
†
i

]
, (98)

where now ci is a fermionic annihilator at site i. Eq. (98) describes spin polarized

lattice fermions with hopping J and nearest-neighbor interaction B. In contrast to

the bosonic case, Eq. (95), where the correct discretized model could be obtained

from the continuum Hamiltonian just by setting Ψ(x) → ai/
√

∆x, we now see from

(98) and (97) that a similar naive and straight-forward discretization fails in the case

of p-wave interacting fermions.

3.4 Jordan-Wigner mapping

The failure of a naive discretization of the fermionic Hamiltonian becomes trans-

parent if we map this model to that of a spin lattice: Using the Jordan-Wigner

transformation

σ+
i = exp

{
iπ
∑
l<i

c†l cl

}
c†i , σzi = 2c†ici − 1 (99)

where σ±i = σxi ± iσ
y
i , (98) can be mapped to the spin-1/2 XXZ model in an external

magnetic field

H =
∑
i

{
− 1

4∆x2

(
σxi σ

x
i+1 + σyi σ

y
i+1 +

+ ∆(σzi + 1)(σzi+1 + 1)
)

+ Viσ
z
i

}
, (100)

where the anisotropy parameter defining the XXZ model is ∆ = −1/[1− 2∆x
gF

].

There is an easy way to see that these mappings are quite physical by considering

the ground states: The repulsive Bose gas (gB > 0) maps to the repulsive (U > 0)

Bose-Hubbard model in the super fluid, low filling regime, which has an obviously

gas like ground state. The same is true for the corresponding attractively interacting

(gF < 0) Fermi gas, which maps to the ferromagnetic XXZ model which, due to the
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Figure 4: Local density distribution of the interacting Fermi or Bose gas. The (or-
ange) dashed lines show results obtained by Bose-Fermi mapping and solving the
Bose Hubbard lattice model, the (blue) continuous lines correspond to the XXZ dis-
cretization. The interaction strength gF is −51.2,−12.8,−3.2,−0.8,−0.2,−0.05 from
the narrow to the broad distributions. The solid black lines show the limiting cases of
free fermions (broad, star-marked) and infinitely strong interacting fermions (narrow,
ellipse-marked, corresponds to free bosons). The calculations are done for ∆x = 1

64
.

One recognizes perfect agreement between the fermionic and bosonic discretization
approaches. Note that both fermions and bosons with corresponding interaction show
the same local density, since the quantity is invariant under the Bose-Fermi-mapping.

specific form of the interaction parameter in the discretized fermion model, Eq. (97),

is always in the critical regime close to the transition point (∆∆x→0−−−−→ − 1+). A naive

discretization would have lead to an anisotropy parameter that could cross the border

to the gapped phase, which is clearly unphysical.

In the attractive Bose gas, bound states emerge, that lead to a collapse of the

ground state as it is of course also true in the Bose Hubbard model for U < 0. On

the fermionic side, this collapse can be also observed, as for ∆ < −1 the XXZ model

has a ferromagnetically ordered ground state, which leads to phase separation in the

case of fixed magnetization.

Note that we call the Fermi gas repulsively interacting if gF > 0, although B is

negative in this case as well, and although there exist bound states, who’s binding

energy actually diverges as gF → 0+, as is immediately clear from the Bose Fermi

mapping in the continuous case.
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Figure 5: Momentum distribution of the interacting Fermi gas. Dashed (orange) lines
show results via the Bose Hubbard discretization, solid (blue) lines correspond to XXZ
discretization. The interaction strength gF is −51.2,−12.8,−3.2,−0.8,−0.2,−0.05
from the broad to the narrow distributions. Solid (black) lines show the limiting
cases of free fermions (narrow, star-marked) and infinitely strong interacting fermions
(broad, ellipse-marked, calculated from the formula given in [BEG05]). The calcula-
tions are done for ∆x = 1

64
. Again there is perfect agreement between bosonic and

fermionic discretization.

3.5 The interacting Fermi gas in a harmonic trap

We now apply our method to the interacting Fermi gas in a harmonic trap,

H = −1

2

N∑
i=1

∂2
xi
− gF

2

∑
j<i

δ′(xj − xi)
(
∂xj − ∂xi

)∣∣
xj=xi+

+
N∑
i=1

1

2
x2
i . (101)

We here choose the trap length to set the length scale. The choice of an harmonic

potential is arbitrary. We can include any other potential as well, the only crucial

thing is, that the potential should not have structures that remain unresolved within

the chosen discretization length ∆x. One can also consider a homogeneous but finite

system, which then corresponds to an infinite box potential. By (55) the Tonks

parameter in the corresponding Lieb-Liniger model is

γ =
4

−gFρ
, (102)

where the local density ρ can be read of the resulting ground state, Fig. 4.

For gF = −∞ we have the fermionic Tonks-Girardeau gas, section 1.3. Since it
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maps to free bosons under the Bose Fermi mapping, it can be treated analytically, e.g.,

the momentum distribution is known for arbitrary particle numbers [BEG05]. The

momentum distribution is of special experimental relevance, since it is equivalent

to the density distribution measured in a time-of-flight experiment. However for

intermediate interaction strength numerical calculations are required, which we are

now able to do.

First we note, that we have two options to discretize the model. Direct discretiza-

tion will yield the XXZ Hamiltonian, while a Bose Fermi mapping will result in the

Bose Hubbard Hamiltonian. Both methods of course have to produce exactly the

same results in the continuum limit.

Fig. 4 shows the spatial density distribution in the ground state for N = 25

particles, i.e.,

ρ(x) =

∫
dx2 . . . dxN |φ(x, x2, . . . , xN)|2 , (103)

which is approximated by the discretized system as the diagonal elements of 〈a†iaj〉.
The ground state of the discretized system is calculated using a TEBD code and an

imaginary time evolution, which has already been applied successfully to calculate

the phase diagram of a disordered Bose Hubbard model [MMF08]. The interaction

strength is varied all the way from the free fermion regime to the regime of the

fermionic Tonks-Girardeau gas. The density distribution changes accordingly from

the profile of the free fermions, showing characteristic Friedel oscillations, to a narrow

Gaussian peak for the fermionic Tonks-Girardeau gas. Note that the Bose Fermi map-

ping does not affect the local density, so the curves are the same for the corresponding

bosonic system. I.e. the density distribution in the fermionic Tonks-Girardeau regime

is identical to that of a condensate of non-interacting bosons. The curves obtained

from the bosonic and fermionic lattice models are virtually indistinguishable which

shows that both approaches are consistent.

The corresponding momentum distribution for the fermions,

ρk(k) =

∫
dk2 . . . dkN |φ(k, k2, . . . , kN)|2 , (104)

which is quite different from that of the bosons, is shown in Fig. 5. It was obtained

from the discretized wave function as the diagonal elements of the Fourier transform

of 〈a†iaj〉. Again perfect agreement between the bosonic and fermionic lattice approx-

imations can be seen. In accordance with physical intuition invoking the uncertainty

relation and Pauli principle, the momentum distribution broadens as the real space

distribution narrows. While for the free particles, real and momentum space descrip-

tion coincide for the harmonic oscillator trapping potential, the Friedel oscillations
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Figure 6: Single particle density matrix of the interacting Fermi gas calculated using
XXZ discretization. Light regions are positive, dark regions negative. The interaction
strength gF is −51.2,−12.8, and −3.2 (upper row) and −0.8,−0.2, and −0.05 (lower
row). Remember that the cloud size is independent of the particle number towards
the fermionic Tonks limit (because there is condensation in the bosonic picture) while
it grow as

√
N for free fermions.

are deformed gradually towards the result for the fermionic Tonks-Girardeau gas cal-

culated e.g. by Bender et al. [BEG05]. The oscillations that remain in this limit are

effects from the finite number of particles. They vanish as 1/N as can be seen from

a Taylor expansion in 1/N of the expressions given in [BEG05] for the Fermi-Tonks

case.

In Fig. 6 we have plotted the complete single particle density matrix

ρ(x, y) =

∫
dx2 . . . dxNφ

∗(x, x2, . . . )φ(y, x2, . . . ) (105)

for different interaction strength, starting from the Fermi-Tonks limit to the case of

free fermions. One clearly recognizes two small off-diagonal peaks for larger interac-

tion strength. The weight of these peaks, which are responsible for the oscillations

in the momentum distribution, Fig. 5, to the remaining part near the diagonal is 1
N

,

as can bee seen from analyzing the limiting case numerically, which can be done for

much larger N also. The sign of the peaks is positive only if N is odd and negative

for even N , so the momentum distributions in Fig. 5 would show a local minimum

at k = 0 for all interaction strength if N was chosen even instead of 25.

On first glance it may seem surprising that a mapping of a continuous, Bethe-
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Figure 7: momentum space distribution of the Fermi gas showing convergence of the
method with discretization for a) the Fermi Tonks limit, b) gF = −0.8, and c) the
free fermionic case. Again in a) and b) dashed (orange) lines show results via the
Bose Hubbard discretization, solid (blue) lines correspond to XXZ discretization. a)
Results are shown for ∆x = 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
. As the grid gets finer, both discretiza-

tion formulas converge to the exact result (black line, ellipse-marked). b) The same
discretizations are used as in a) and we again observe convergence of both formulas
towards a common limit, which is in this case not known analytically. The black
lines are those showing up in a) and c) respectively and are for orientation. c) Note
that in this case there is no sense in distinguishing the two formulas, since imple-
menting U =∞ always means excluding double occupation of sites by bosons which
is immediately equivalent to simulating free fermions. We here only show ∆x = 1

4

(circles), 1
8

(crosses), 1
128

(squares) to avoid confusion since the lines converge quite
quickly. Although the squares sit perfectly on top of the exact result (black line,
star-marked) they are not spaced densely enough to resolve the Friedel oscillations.
This would require a lattice that extends across a region in space much larger than
N oscillator length where we have chosen to restrict the calculation to 20 oscillator
length to speed it up.

Ansatz integrable Hamiltonian such as the Lieb-Liniger model to the non-integrable

Bose-Hubbard model should produce accurate results. However, since the Lieb Lin-

iger gas is dual to p-wave interacting fermions its lattice approximation is equivalent

to the spin 1/2 XXZ model, which is again Bethe-Ansatz integrable. Furthermore
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Figure 8: Density-density correlations of the interacting Fermi or Bose gas. The
(orange) dashed lines show results obtained by Bose-Fermi mapping and solving the
Bose Hubbard lattice model, the (blue) continuous lines correspond to the XXZ
discretization. The interaction strength gF is −51.2,−12.8,−3.2,−0.8,−0.2,−0.05
from the narrow to the broad distributions. The solid black lines show the limiting
cases of free fermions (broad) and infinitely strong interacting fermions (narrow,
corresponds to free bosons). The calculations are done for ∆x = 1

64
. One recognizes

perfect agreement between the fermionic and bosonic discretization approaches apart
from x = 0 (see text). Note that both fermions and bosons with corresponding
interaction show the same density-density correlations, since the quantity is invariant
under the Bose-Fermi-mapping.

full recovery of the properties of the continuous model can of course only be expected

in the limit ∆x → 0. In Fig. 7 we have shown the momentum distribution of p-

wave interacting fermions for decreasing discretization length ∆x for three different

values of the interaction strength. One clearly recognizes convergence of the results

as ∆x → 0. In the two analytically tractable cases of a free fermion gas and the

Fermi-Tonks gas the curves approach quickly the exact ones.

As a final application we calculate the real-space two-particle correlations in a

trap. The corresponding results are shown in Fig. 8. Again the (blue) solid lines

are obtained from the fermionic lattice model and the dashed (orange) lines from the

dual bosonic model. Due to Pauli exclusion g(2)(0) = 0 and there is a pronounced dip

in the g(2) near the origin for non interacting or weakly attractive fermions, while we

see again Friedel oscillations for larger inter particle distances. In the dual bosonic

case the dip is enforced by a strong repulsive interaction. As the fermionic attraction

is increased, the depth of this dip is decreased. There is a smooth transition to

the perfect Gaussian shape expected for free bosons when approaching the case of
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strongly interacting fermions.

Outside the point where the particle positions coincide both discretization for-

mulas give the same result. There is a discontinuity maintaining g(2)(0) = 0 for the

fermions, enforced by the symmetry of the wave functions. It should be noted that

this singular jump is not reproduced in the dual bosonic model. This is because the

duality mapping of the discretized models is only valid for two particles at different

lattice sites and the dual bosonic model can only be used to calculate multi-particle

correlations of fermions at pairwise different locations.

Both discretization formulas presented here have the nice property of approxi-

mating two-particle interactions in the continuum by two-particle interactions on a

lattice. Interestingly, only the fermionic lattice model preserves the property of being

integrable. However, it is known, that the q-Boson lattice model [BBP93, BIK98] also

has the Lieb-Liniger model as a continuum limit and is integrable. But when written

in terms of ordinary particles, the simple hopping of the nonlinear q-Bosons becomes

a non-polynomial expression, thus involving n-particle interactions for arbitrary n,

locally and on nearest neighbor sites. Nevertheless, simulations using DMRG schemes

should be possible and it might be interesting to compare the results to those given

here.

Finally we note that using the discretization formulas (89) and (95) one can

of course also calculate other many body properties like off diagonal order [Yan62,

MG06] using DMRG. The method was also used to calculate out-of equilibrium dy-

namics for bosonic gases in the repulsive [MSF10] as well as attractive regime [MF10],

as we will discuss in part III of this thesis. A generalization to higher dimensions is

not immediately evident and requires a separate discussion.

The method presented in this section is not limited to problems including only one

species of particles. We can as well describe fermions with spin-degrees of freedom,

mixtures of bosons and fermions or even a gas with Boltzmann statistics. Whenever

two distinguishable particles interact, both terms in (51) can contribute, i.e., one

ends up with a s-wave as well as a p-wave contribution to the interaction. Following

similar lines as in this section one can then easily derive a corresponding Hamiltonian

in second quantization.



54 4 DMRG for models with long range interactions

4 DMRG for models with long range interactions

As discussed in the introduction, we can only expect DMRG to give accurate results

for low lying states and at the same time be more efficient than brute force diago-

nalization, if we work with a one-dimensional system that features only short range

interactions. From the viewpoint of DMRG, two dimensional systems are a paradigm

for longer range interactions, because the lattice sites have to be ordered in some way,

necessarily introducing interactions over many sites, even if they are nearest neighbor

only if viewed as a two-dimensional system. In two dimensions, it is a well known

fact [LP94, CP00], that the truncation error decreases only very slowly with the

bond dimension if one uses straight forward DMRG, i.e., sorting the lattice sites in a

one-dimensional order. The same is true in the case of true long range interactions,

falling of only like the inverse inter-particle distance or slower, in one dimension. An

example here naturally generated by interacting particles in two dimensions which

are confined to the lowest Landau level. As a basis one naturally chooses the angular

momentum eigenstates in z-direction, such that the non-interacting case is solved

trivially. The basis has only one parameter and can be interpreted as belonging to a

one-dimensional system. The interactions (although local or short range in position

space) in this basis lead to a Haldane pseudo potential, a general two-particle inter-

action which falls of very slowly with the difference in the z-component of the angular

momentum. Calculating the low energy spectrum of this model is of great interest

to understand fractional quantum Hall physics. There has been slight progress using

DMRG for this problem and interacting fermions [FRNDS08, LH08, ZSH11], which

motivated us to apply DMRG to the same problem in the case of bosons. However

we have not been able to calculate ground states for systems significantly larger than

those treatable using exact diagonalization11. The reason for this is the strong en-

tanglement in the system, which manifests itself in a linear growth of entanglement

entropy with system size [LBH10].

We can however apply DMRG effectively to one-dimensional systems with mod-

erate long range interactions, i.e., with an interaction potential that decays faster

then 1/r. In this section, we will apply DMRG to the model of bosons in one di-

mension with interactions that decay according to such a power law. The low-energy

excitations of this system can be described by an effective Luttinger liquid model,

and specifically we will calculate the Luttinger parameter K, which is the key quan-

tity of this model, in the continuous system. The many-body ground state in the

one-dimensional case is correlated more strongly than it is possible for any local in-

11For details on the bosonic case and results from exact diagonalization see [Gruon] and references
therein.
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teraction, i.e., with a Luttinger parameter K � 1. For the system on a lattice,

we calculate the full phase diagram numerically. A fractal structure emerges with

Mott-insulating phases at any rational filling fraction, similar to the case of dipolar

interactions [BPCS09].

Specifically, we perform numerical calculations for van der Waals interactions.

Physically they are realized by an ensemble of Rydberg atoms which are optically

excited near resonance [WLPB08]. Starting from a fully quantized model of the op-

tical excitation one can show that Rydberg excitations always possess a finite kinetic

energy mediated by photon exchange even if the motion of the atoms can be disre-

garded. The kinetic energy competes with the repulsive van der Waals interaction

[Lau12, OLMFon].

4.1 Polynomially decaying interactions

We are interested in the ground state properties of a one-dimensional Bose gas with

power law density-density interactions:

Ĥ =

∫
dx Ψ̂†(x)

(
−1

2
∂2
x

)
Ψ̂(x)+

1

8π

∫
dxdx′ Ψ̂†(x)Ψ̂†(x′)

Cβ

|aB|β + |x− x′|β
Ψ̂(x′)Ψ̂(x).

(106)

Here β = 3 corresponds to dipolar interactions and β = 6 describes van der Waals

interactions. aB is a screening length, which is physically always present, because

the power law can not hold at arbitrary short inter-particle distances. With (106)

the potential becomes flat at x . aB. If aB is small compared to the inter-particle

distance, it is negligible and the only free parameter is a dimensionless interaction

strength defined by

Θ =
ρβ−2Cβ

2π
. (107)

It gives the interaction energy at the average inter-particle distance compared to the

Fermi energy

EF = π2ρ2/2. (108)

The generalization of the Fermi energy to the bosonic system is justified, because

given that both Θ and aB are not too large, the kinetic energy per particle approaches

that of free fermions (see below), which is of the order EF.

In order to make use of DMRG, we have to use a discretization of the continuous

model. In contrast to the contact interactions discussed in the introduction, this is
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straight forward for an interaction over a distance. We may simply replace

Ψ̂(j∆x) 7−→ âj√
∆x∫

dx 7−→ ∆x
∑
j

. (109)

This leads directly to a lattice Hamiltonian of the form (117), additionally accounting

for nonzero aB if required. The continuous model is well approximated given that

∆x is both smaller than the average inter-particle distance and the characteristic

length scale on which the structure of the interaction potential can be resolved. The

latter is anyway infinite for a power-law interaction potential. The parameters of the

discretized model satisfy

J/cβ = 2nβ−2/Θ (110)

with n = ρ∆x the average number of particles per lattice site (and J = 1/2∆x2 see

section 3).

4.2 Luttinger parameter

To determine the Luttinger parameters K and u, we make use of the fact [Gia03]

that their ratio
K

u
= πρ2χ (111)

is determined by the compressibility

1

χ
= ρ2∂µ

∂ρ
. (112)

The second equation required is

uK = πρ, (113)

which is true for any Galileanly invariant model [Hal81].

To test the numerical procedure, we first calculate the Luttinger parameter for

the repulsive Lieb-Liniger gas. For strong local interactions, the Luttinger parameter

can be found via the compressibility from Lieb and Linigers’ original solution in the

thermodynamic limit [LL63]. For strong interactions (large γ) it can be approximated

as [Zvo10]
1

K
= 1− 4

γ
+

12

γ2
+ · · · , (114)
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Figure 9: Inverse Luttinger parameter as a function of interaction strength for local
interactions. Dashed and dot-dashed lines show analytical approximations (114) and
(115) respectively. Squares show results from DMRG calculations using 10 particles
on 100 lattice sites with open boundary conditions and matrix dimension χ = 16.

while for weak interactions one has approximately [Lee71a, Lee71b, Zvo10]

1

K
≈ 1

π

√
γ − 1

2π
γ3/2. (115)

Each of this formulas is correct within 1% in 1/K for γ larger respectively smaller

than 10. A comparison to our DMRG results is shown in Fig. 9. The agreement

is astonishingly good, even for bond dimensions as small as 16. Differences when

doubling the system size are not visible, such that finite size effects are also negligible.

This confirms the validity of our numerical procedure, which we will now apply to

longer range interactions.

For the repulsive long range interactions (106), in the absence of screening i.e.

aB = 0, an approximate analytical interpolation formula for the Luttinger parameter

was given in [DPZ10]

K =
1√

1 + β(β+1)ζ(β)Θ
2π2

, (116)

where ζ is the Riemann zeta function. For small Θ, the Luttinger parameter is one,

because the interaction, no matter how small Cβ, has a singularity at zero inter-

particle distance, such that the wave function has to vanish there and the system
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becomes again equivalent to free fermions. For strong interactions, the correlations

become even stronger and K decreases as Θ−1/2.

Our DMRG calculations, Fig. 10, qualitatively reproduce this result. The asymp-

totics are also reproduced in the limit of strong and weak interaction. However the

quantitative difference increases in the intermediate regime for higher β and in the

van der Waals case is as large as 45% around Θ = 0.25. For comparison, we have also

used periodic boundary conditions, which reduce the finite size effect at the expense

of having to use a larger bond dimension χ.

Introducing a finite screening aB > 0 has the following effect: At large Θ, nothing

changes, because of the strong repulsive interactions, the particles do not come close

enough to be effected by the finite aB. For weaker interaction strength, the screen-

ing allows the particles to be at the same position. Consequently, for some Θ the

Luttinger parameter becomes larger than one and goes to infinity as the interaction

vanishes and the system becomes that of free bosons.

The increased correlations can also be seen in the density profile, if open boundary

conditions are used, Fig. 11. The upper panel shows, that in the unscreened case the

limit of free fermions is approached, which happens more quickly for dipolar than for

van der Waals interactions. If the interaction is screened, the Friedel oscillations are

strongly reduced as K � 1 [Caz04]. For strong interactions, the particles order into

fixed positions. Quantum fluctuations become more and more suppressed, such that

the compressibility can be calculated by assuming that the particles behave classically

and localize at their average inter-particle distance 1/ρ. Then a classical calculation

of the compressibility immediately gives the K ∼ Θ−1/2 behavior. For open boundary

conditions, the repulsion also forces the outermost particles to the boundary, because

they miss a neighbor. This has the effect, that actually the density and therefore

Θ is overestimated by assuming ρ = N/L. This finite size effect, which shifts the

curves for open boundary conditions slightly upwards for larger Θ in Fig. 10, can be

eliminated by using periodic boundary conditions, also shown in Fig. 10.

4.3 Phase diagram on the lattice12

The equivalent of (106) on a lattice reads

Ĥ =
∑
j

[
−J
(
â†j âj+1 + H.a.

)
+ cβ

∑
j′ 6=j

â†j âj â
†
j′ âj′

|j − j′|β

]
. (117)

12This section is part of the basis for a publication in preparation [LMFon].
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Figure 10: Luttinger parameter K as a function of interaction strength. a) Un-
screened long range interactions (106). The upper (lower) line shows the analytical
approximation (116) for β = 3 (β = 6). Squares (diamonds) show results from
DMRG calculations with open {red, using 20 particles on 200 lattice sites} and pe-
riodic {blue, using 10 particles on 100 lattice sites} boundary conditions and matrix
dimension χ = 16 respectively χ = 32. Quantum Monte Carlo results for the β = 3
case can be found in [COPC07, CDPO+08]. b) Screened long range interaction with
exponent β = 6. aB = 1/2ρ (triangles) and aB = 1/5ρ (circles), with numerical
parameters as in b. Continuous line shows (116) for comparison.



60 4 DMRG for models with long range interactions

a)

0 5 10 15 20
0

1/2

1

3/2

2

x⋅ρ

ρ
(x

)

 

 
free fermions, indistinguishable from β=3, Θ=π⋅2.4⋅10

−4
, a

B
=0

β=6, Θ=π⋅2.4⋅10
−4

, a
B
=0

β=6, Θ=π⋅2.4⋅10
−4

, a
B
=1/2ρ

b)

0 5 10 15 20
0

1

2

3

4

5

x⋅ρ

ρ
(x

)

 

 
free fermions, indistinguishable from β=3, Θ=π⋅2.4⋅10

−4
, a

B
=0

β = 6, Θ = π 2.4 10
−1

, a
B
 = 0

β = 6, Θ = π 2.4 10
1
, a

B
 = 0

Figure 11: Density profiles for open boundary conditions using 20 particles on 200
lattice sites and matrix dimension χ = 16. a) screened and unscreened weak van der
Waals interaction b) stronger van der Waals interaction. Free fermions are shown for
comparison.

Such a model can be realized by imposing an additional deep optical lattice onto the

gas that contains the Rydberg atoms [Lau12].

In the classical limit of strong interaction, J/cβ → 0, the ground state is well

known – in fact for arbitrary positive, convex interaction potential, that decay faster

than the Coulomb case [PU78, Hub78]: The inter-particle distance between nearest
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Figure 12: Removing (asterisk, middle row) or adding (star, lower row) single particles
in a fractionally filled insulating phase (upper row) creates multiple, fractionally
charged defects.

neighbors takes at most two values in this ground state, which differ only by one

lattice site. For any rational filling fraction ν, the interaction energy is minimized by

a regular distribution of the particles. This is illustrated in the upper rows in Fig. 12

for two different filling fractions. An incompressible state emerges for every rational

filling fraction, such that the equation of state, ρ(µ), becomes a devils staircase

[BB82]: The particle hole gap is of the order of cβ times the size of the unit cell

(in lattice sites) to the power of −β. The extension of each incompressible phase

for J = 0 is of the order of (q − 1)−β with ν = p/q the reduced filling fraction. At

J = 0 the lattice is completely filled (ν = 1), as soon as µ ≥ 2
∑∞

j=1
1
jβ

= 2ζ(β).

Adding (removing) a single particle to (from) an incompressible state, generates q

defects. Those defects consist of an additional pair of neighboring atoms with the

smaller (larger) separation. In lowest order perturbation theory in J/cβ these particles

move freely with hopping amplitude J in-between the regular unit cells and carry

a fractional charge each, illustrated in the lower rows of Fig. 12. The quantum

fluctuations break up the insulator as soon as the kinetic energy of the q defects can

compensate the energy required to add or remove a particle from the system, i.e.

as soon as J/q becomes of the order (q − 1)−β. Because the gap becomes rapidly

smaller with increasing q, also does the extension of the incompressible phase in

J/cβ-direction. Adding a particle to a state with filling 1/q, we create q defects

(with inter-particle distance q − 1) raising the interaction energy by q/(q − 1)β13.

(These points are marked on the y-axis of the phase diagram for the van der Waals

interaction case shown in Fig. 13 and give a good rule of thumb for the position of

the phases with filling 1/ν.)

The phase diagram for dipolar interactions has been calculated approximatively

13Taking only interactions between neighboring atoms into account for the sake of simplicity.
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using strong coupling expansion, i.e. higher order perturbation theory in J/cβ, in

[BPCS09] and for the van der Waals case in [Lau12]. Here we consider the van der

Waals case using DMRG for long range interactions, which gives correct results also

for large J . The resulting phase diagram is shown in figure Fig. 13. It agrees well

with the strong coupling expansion for small J/cβ, and shows the pronounced tips

of the insulating lobes known from the Bose-Hubbard model, cf. Fig. 2. Because

of the large difference in size of the incompressible phases for different q, we use

logarithmical scaling respectively magnifications of selected regions to resolve them

visually. The phase boundaries are accurately calculated for unit-cell sizes up to

q = 7. This is rather demanding, given that an additional particle added to (removed

from) a system with filling fraction p/q adds q defects to the system, each of the size

p−q (p). Therefore the size L of the system must be large compared to q2 in order for

all those defects to separate and well approximate the situation in the thermodynamic

limit where the defects do not interact with each other at all. For q = 1, 2, 3, 4, and 5

a finite size extrapolation could be applied using the data available for the different

system sizes. Even then the critical point can not be accurately determined because

the gap closes too slowly. (The curves in Fig. 13 end at arbitrary points.)

In conclusion, we have successfully applied DMRG to bosons with van der Waals

interactions in one-dimension, describing systems of Rydberg excitations that receive

much attention because of the strong correlations implied by the van der Waals-

interaction potential. We carried out the first exact numerical calculation of the

Luttinger-parameter as a function of interaction strength and screening length in the

continuous system, confirming that the correlations become much stronger than for

any local interaction, and significantly improving previous approximate approaches.

Specifically, K decreases much below 1/2, such that a regime is entered where the

diagonal correlations (61) dominate over the off-diagonal ones (62). In the lattice

case, we give the first non-perturbative calculation of the full phase diagram at zero

temperature in the µ–J/cβ plain.
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Figure 13: Phase diagram of hard core bosons with van der Waals interactions on the
lattice. Colored lines are infinite size extrapolations from ≈ 24 (ν = 1/2 and ν = 1/3
only), ≈ 60, and≈ 120 sites DMRG calculations using open boundary conditions. For
ν = 1/6 (ν = 1/7, 3/7) data are shown from ≈ 120 (≈ 140) site calculations without
extrapolation, because these phases can not be resolved in smaller systems. Dashed
lines show the second order strong coupling expansion from [Lau12] for comparison.
a) Double logarithmic plot. The inset shows a closeup of the marked region (using
a linear µ axis). Additionally the finite size results are shown for the ν = 1/3 and
ν = 2/5 phases to illustrate the extrapolation. b) Linear plot with two closeups.
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5 Fermionization dynamics of a strongly interact-

ing 1D Bose gas after an interaction quench14

In the present section we analyze the dynamics of a 1D Bose gas with s-wave scatter-

ing interactions, described by the Lieb-Liniger (LL) model, after a sudden quench of

the interaction strength from zero to a finite value, covering the full range from weak

to strong interactions. Performing numerical simulations using TEBD, we show that

local quantities, in particular the local two-particle correlation g(2)(0, 0, t), attain a

steady state expectation value on a short time scale determined only by the Tonks

parameter γ and the particle density ρ. This shows that although non-local quantities

such as the momentum distribution do not approach a steady state over long times

[MS09], there is an equilibration in a local sense. Furthermore the asymptotic values

of g(2)(x, x) are very close to those obtained from a thermal Gibbs ensemble [YY69],

with temperature and chemical potential determined by the initial conditions and the

amplitude of the interaction quench. Thus it is possible to define local temperature

and chemical potential and the influence of constants of motion other than total en-

ergy and particle number is very small, if present at all. Non-local quantities such as

the density-density correlation approach a steady-state distribution on a larger time

scale by way of correlation waves propagating out of the sample.

Specifically we consider here a system initially prepared in the non-interacting

ground state of (17), where the interaction strength is zero. We study the dynamics

after an interaction quench to positive g numerically by means of the TEBD algo-

rithm. This requires the use of a discretized version of the Lieb-Liniger model. As seen

in section 3, one possible discretization leads to the (non-integrable) Bose-Hubbard

model (13), see also [SF07]. Then J = 1/(2∆x2) and U = g/∆x with ∆x being the

lattice constant of the discretization grid. The appropriateness of discretized lattice

models to describe continuous interacting Bose or Fermi gases in the limit ∆x → 0

has been discussed and verified in [SF07, MFS10], see section 3. Because the Lieb-

Liniger model can be mapped to the integrable spin 1/2 XXZ model, for some data

sets we used both models to verify that in the considered limit the non-integrability

of the Bose-Hubbard model has no influence on the results.

In the non-interacting ground state, all particles occupy the same single particle

state, i.e. they are in a coherent superposition. Such a state can be expressed in

terms of MPS, see appendix E, such that we can exactly put it as initial state into

the TEBD algorithm. The initial state is an eigenstate of the total particle number,

and as such any local density matrix (tracing out all sites but one) has only diagonal

elements. In the course of interactions non-diagonal elements are not created. Thus

14This section is based on the publication [MSF10].
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the reduced local density matrix is entirely determined by the number distribution.

Two quantities of interest are its first and second moments, i.e. the density % and

the local two-particle correlation g(2)(x, x, t), where

g(2)(x, y, t) =
〈Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)〉

ρ(x)ρ(y)
. (118)

We are here concerned with the dynamical evolution of the equal time two-particle

correlation at two possibly different positions. The time dependence enters via the

dynamical evolution of the state of the system. This has to be contrasted to the two-

particle time-ordered correlations for different times in a steady state, which we will

be the subject of section 7. In principle also moments of higher-order than g(2)(x, y, t)

are nonzero. They will, however, not be considered here.

It turns out, that for the simulation of dynamics the necessary grid sizes are much

smaller than for equilibrium simulations [SF07, MFS10], see section 3. Empirically

we found that in order to minimize lattice artifacts resulting into numerical errors,

the average number of particles per lattice site 〈n̂〉 = ρ ∆x should be small compared

to 1/γ, where γ = g/ρ(x = 0) is given with respect to the density at the center of the

cloud. We can explain this by the requirement that the interaction energy of a two-

particle collision in the lattice, i.e., g/∆x = U should be smaller than the bandwidth

of the lowest Bloch band, which is 2/∆x2 = 4J , in order not to see lattice artifacts.

To accommodate the requirement of a very small 〈n̂〉 at the center of the cloud we use

space dependent grid sizes such that the average boson number per site was constant

for the center part of the particle distribution. Nevertheless to approximate the

continuous model sufficiently well, very fine grids are needed leading to rather large

lattice sizes of up to L = 2880 sites, which requires appreciable numerical resources.

In order to illustrate the effects of discretization we have plotted in Fig. 14a the local

two-particle correlation (see following section) for γ = 200/9 and increasing lattice

sizes L, corresponding to finer grids. One clearly recognizes oscillation artifacts which

only slowly disappear with increasing L.

The convergence of the TEBD scheme was checked by varying the bond dimension

χ of the matrix product state (MPS) and calculating the truncation error in the

state norm accumulated during the time evolution. In Fig. 14b the accumulated

truncation error is plotted for γ = 200/9 and increasing values of χ from 25 to 200.

One recognizes that for the maximum value of χ = 200 which we were able to use, the

truncation error is below the level of 10−3 for the time scale of interest. This value is

larger then the accuracy typically reached in ground state calculations. However we

are not at the point where the cut-off explodes, which typically happens in dynamical

simulations at some point. Finally the matrix dimension required to achieve a given
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Figure 14: a) Time evolution of normalized local two-particle correlation g(2)(0, 0, t)
(see section 5.1) for N = 9 particles and γ = 200/9 for increasing lattice length,
corresponding to finer grid sizes. One clearly recognizes oscillations which are lattice
artifacts and which only disappear for the largest lattice sizes. b) Accumulated trun-
cation error of the norm of the MPS in the dynamical TEBD algorithm for γ = 200/9
and increasing bond dimension χ.

accuracy does not depend on the discretization length, i.e. the number of lattice

sites used. It is rather the number of particles which determines the entanglement

produced and therefore the complexity of the calculations. Thus the restriction to

a moderate particle number allows us to work on lattices large compared to other

applications of the algorithm.
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5.1 Local relaxation

In order to be able to perform numerical simulations with a fixed number of particles

(up to 18, which corresponds to the experiments in references [PWM+04, HGM+09])

we have to work with a finite size system, because the extension of TEBD to infinite

systems does not allow for the inclusion of a conservation law. Therefore we assumed

an initial weak harmonic trapping potential V (x) = 1
2
ω2x2. Initially the Bose gas

is in the canonical ground state (T = 0) of non-interacting bosons in the trap, for

which the matrix product representation is analytically known, since it is a product

of single particle states, see appendix E. At t = 0 we suddenly switch the interaction

strength from zero to a finite value g > 0. At the same time the trap, the only

purpose of which is the preparation of an appropriate initial state, is switched off.

On the time scales we are interested in, the density distribution does not change, so

that the presence of a trap would be of no relevance. This also allows to apply the

results of the present analysis to a homogeneous gas in the sense of a local density

approximation.

The initial state has a Gaussian density distribution ρ(x) = N
√

ω
π
e−ωx

2
with

losc = 1√
ω

being the oscillator length. Fig. 15 shows the time evolution of g(2)(0, 0, t)

with time normalized to the characteristic time scale tia, defined below, for different

values of γ. One recognizes after an initial phase a power-law decay with an exponent

that is monotonous in the interaction parameter. At times close to tia a steady state

value is attained indicating that a local equilibrium is reached. That means that

although globally a Lieb-Liniger gas does not thermalize [KWW06], local quantities

do. The time scale tia of the local dynamics can be estimated from the discrete

Hamiltonian. The repulsive interaction Un̂(n̂−1) causes particle number fluctuations

to be driven out of a given lattice site. This happens in the following way: Initially

all components of the state vector have the same phase and tunneling has no effect15.

However, due to the interaction, components with different particle number attain a

differential phase shift and are subsequently coupled to states in adjacent lattice sites

by tunneling with rate J . Since in the limit ∆x→ 0 we have J � U , the maximum

rate of this process is limited by the average interaction energy per particle U〈n̂〉.
Thus we have

tia =
1

U〈n̂〉
=

1

gρ
=

1

γρ2
. (119)

Note that already for moderate interaction strength this time is much shorter than

15That is because the initial state is an eigenstate of the tunneling alone, because it is the non-
interacting ground state.
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Figure 15: Time evolution of the normalized local two-particle correlation g(2)(0, 0, t)
after a sudden switch on of interactions at t = 0 obtained from a numerical TEBD sim-
ulation for 9 particles initially prepared in the non-interacting ground state of a har-
monic trap. An intermediate power-law decay with an exponent that is monotonous
in γ is apparent. The lattice size was up to L = 2880 for the strongest interactions
corresponding to a lattice spacing of ∆x/losc ≈ 6.15 · 10−4 at the trap center.

for example the oscillation time tosc in the trap:

tia =
πl2osc

γN2
= tosc

π

γN2
� tosc if γ � π

N2
. (120)

Accordingly, the density distribution does not change for times of the order tia as

seen in Fig. 16.

Note furthermore that although the characteristic time of the expansion of the

gas after switching off the trap becomes much shorter for larger interactions, it will

be large compared to tia. This is because energy transferred to the particles will be

of the order γρ2/2 and therefore, after it has been converted into kinetic energy, their

characteristic speed vc will be of the order
√
γ · ρ only. Requiring vc · tia � losc again

yields the same mild requirement γ � π/γN2. Accordingly we found numerically

that the density profile did not change on the timescale tia even for the largest values

of γ used. Whether or not the thermalized local correlation will adiabatically follow

the density evolution after longer times, i.e. when the expansion of the cloud sets

in, cannot be concluded from our simulations. We would however expect such a

behavior.
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Figure 16: Local density and two-particle correlation function for γ = 500/9. The
normalized local density distribution ρ(x)/N at t = tia (orange contniuous) has not
changed visibly from t = 0 (red dashed), while the normalized local two-particle
correlation g(2)(x, x, t) (shown for t = 0 [pale blue dotted], t = 10−2tia [bright blue
dashed], and t = tia [dark blue continuous]) relaxes. The data set is the same as
shown used Fig. 15

The fluctuations in the plots are artifacts of the discretization, which leads to an

oscillatory behavior of g(2) on top of the continuous-system time evolution. These

artifacts, which are most pronounced for larger interactions, could not be eliminated

completely even for the smallest grid sizes used. As a result the asymptotic values of

g(2)(0, 0, t) can only be given with a certain error.

In Fig. 17 we have plotted the exponents obtained from a fit to the curves in

Fig. 15 which, for intermediate times, follows a power law

g(2)(0, 0, t) ∼
(

t

tint

)α−1

. (121)

The exponent is a monotonous function of the interaction strength and slowly ap-

proaches the limit −1 for γ →∞, i.e., for a Tonks-Girardeau gas [CGM+08].

We now want to analyze the local state of the system after it has become sta-

tionary. In particular we will show that the local steady-state can be well described

by the usual finite-temperature Gibbs state for homogeneous systems. To this end

we calculate the expected asymptotic value g
(2)
YY(0, 0) from the thermodynamic Bethe

Ansatz, section 1.2.3. The system is initially prepared in its non-interacting ground

state, so we have g
(2)
init(0, 0) = 1 − 1/N , which in the thermodynamic limit N → ∞
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Figure 17: Exponents α−1 of the intermediate power-law decay of g2(0, 0, t) in Fig. 15
as function of γ. Error-bars indicate systematic fitting error.

approaches unity, as should be the case for free bosons. The energy of this state

with respect to the non-interacting Hamiltonian is 0. At time t = 0 the interaction

is switched to a finite strength g > 0 and the expectation value of the interaction

energy immediately after the quench is given by

Eia =

∫
dx

g

2
〈Ψ̂†

2
(x)Ψ̂2(x)〉 =

∫
dx

γ

2
g(2)(x, x)ρ3(x). (122)

Since in a homogeneous system there is no x-dependence the energy per particle is

E

N

∣∣∣∣
t=0+

=
Eia

N

∣∣∣∣
t=0+

= γTc. (123)

Here we have introduced the quantum degeneracy temperature Tc in one dimension

Tc = ρ2/2. (124)

One recognizes that the system is in a highly excited non-equilibrium state after

the quench if γ & 1. Using the energy per particle, the density ρ and the Tonks

parameter γ as input parameter, we can extract a temperature T of a corresponding

thermal Gibbs state by inverting the Yang-Yang equations of the thermodynamic

Bethe Ansatz as described in section 1.2.3. With the help of the Hellmann-Feynman

theorem we can then obtain the value g
(2)
YY(0, 0) corresponding to the Gibbs state
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at temperature T [KGDS03]. For γ � 1 we see that the energy per particle (123)

becomes large compared to Tc. We are thus in the high temperature regime where

E/N ≈ T/2 and therefore τ = T/Tc ≈ 2γ. In this limit 1� τ � γ2, one obtains the

asymptotic solution [KGDS03]

g
(2)
YY(0, 0) =

2τ

γ2
=

4

γ
. (125)

In Fig. 18 we have plotted the values of g
(2)
YY(0, 0) from the thermal Gibbs state in

the thermodynamic limit as function of the interaction strength γ (solid line). It

indeed approaches (125) for large γ. Also shown are the steady-state values obtained

from the numerical simulation in Fig. 15. The error bar indicates uncertainties which

are here due to discretization artifacts and error estimates obtained from comparing

simulations with MPS bond dimensions χ = 100 and 200. It is available only for one

parameter set, since the variation of the discretization length and the bond dimension

is numerically expensive. However we expect it to be of about the same relative size

for all data points. One recognizes that g(2)(0, 0, t) attains in the long-time limit

values which are close to that of the thermal Gibbs state. One should note that the

steady-state values for the largest values of γ (γ = 500/9 and 18 bosons as well as

γ = 1000/9 and 9 bosons) are slightly overestimated in the simulation due to the

remaining grid artifacts since here 〈n̂〉γ ≈ 0.73 is no longer small compared to unity.

Also shown is the asymptotic local temperature of the gas in units of the degeneracy

temperature. For large values of γ, T ≈ γTc � Tc, i.e., after relaxation the gas is in a

state with large local temperature. Specifically, in the steady state after the quench

g(2)(0, 0) scales as 1/γ in contrast to the 1/γ2 behavior at low temperatures [LL63].

In this sense the non-adiabaticity of the quench prevents the system from showing

complete fermionization, which is found at large γ in the ground state.

5.2 Non-local dynamics

We now discuss the dynamics of non-local quantities. Specifically we consider the

non-local two-particle correlation g(2)(0, x; t). In Fig. 19 we have plotted g(2)(0, x, t)

for different times after the interaction quench. One recognizes that while the local

correlations attain a steady-state value on a short time scale, the non-local evolution

happens much slower. Switching on the particle-particle repulsion leads to a fast

reduction of the probability to find two particles at the same position. Associated with

this is a correlation flow to larger distances leading to expanding correlation waves.

For very short times the propagation velocity of correlation waves is faster than the

Fermi velocity vF = πρ. But at the largest time shown in Fig. 19 corresponding
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Figure 18: Steady-state values of g(2)(0, 0) (left scale) for different values of the in-
teraction parameter γ after the interaction quench obtained from TEBD simulations
using 9 (red circles, corresponding to Fig. 15) and 18 (green triangles) bosons. Solid
line: value from thermal Gibbs state in the thermodynamic limit; dot dashed line:
temperature (right scale) corresponding to the given energy per particle in the ther-
modynamic limit. The error bar reflects discretization error estimated by comparing
steady-state values for L = 720 and L = 1440 lattice sites as well as error result-
ing from finite MPS matrix dimension obtained from comparing results for bond
dimension χ = 100 and 200.

to t = 0.01tosc, the maximum of the correlation wave has traveled a distance of

approximately ∆x = 0.12losc which is consistent with the speed of sound which for

large values of γ approaches

vs = vF

(
1− 4

γ

)
. (126)

The buildup of a maximum that behaves like a wave front can be understood as fol-

lows: In a homogeneous system the integral over space of g(2)(0, x, t) is a constant with

respect to time due to particle number conservation, because 〈Ψ̂†(x)Ψ̂†(0)Ψ̂(0)Ψ̂(x)〉
is proportional to the joint probability distribution to find a particle at position x

given that there is one particle at the origin.

Given that the quench can not change g(2)(0, x, t) significantly outside the light

cone given by the Fermi velocity, the reduction of the probability to find two particles

close together must be accompanied by an increase at finite distance.

Fig. 19 is also consistent with the assertion that the non-local correlation function

approaches at least for smaller distances in the large-time limit that of the thermal

Gibbs state with temperature and density given by the initial conditions and the
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Figure 19: Time evolution of non-local density-density correlations g(2)(0, x, t) for
γ = 200/9. x = 0 denotes the center of the cloud. One recognizes the formation of
expanding correlation waves. The dashed blue line shows the approximation (127)
to the non-local correlation in a thermal Gibbs state from [DSG+09] multiplied by
g(2)(0, 0, t = 0) = 8/9 to account for the final particle number (N = 9) used in the
simulation.

Tonks parameter γ. For comparison we have plotted an approximation to the finite-

temperature non-local g(2) from reference [DSG+09] which holds in the regime 1 �
τ � γ2

g
(2)
T (0, x) = 1−

[
1− 4

√
πτ

γ2

(
x

λT

)]
e−2π(x/λT )2 . (127)

Here λT =
√

4π/τρ2 is the thermal de Broglie wave length.

5.3 Experimental observation

In the following we discuss the possibility to test the local relaxation in an experiment.

For this we make use of the fact that by energy conservation the interaction energy

lost by the decrease of g(2)(0, 0) must be gained as kinetic energy

Ekin(t) = Eia(t = 0)− Eia(t) (128)

and the kinetic energy therefore directly gives the value of g(2)(0, 0, t) in the homo-

geneous case:

Ekin(t) =

∫
dx

g

2

(
1− g(2)(0, 0, t)

)
ρ2. (129)
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If the interaction is turned on at t = 0 and turned off abruptly at some time t = t1 > 0

only the kinetic energy remains in the system and can be used to measure g(2)(0, 0, t1):

g(2)(0, 0, t1) = 1− 2

γρ2

Efinal
kin

N
. (130)

The kinetic energy can be extracted from the momentum distribution which is rou-

tinely measured in time-of-flight experiments. In an experimental setup, the gas must

be confined e.g. by an harmonic trapping potential. So the initial non-interacting

state has a Gaussian density distribution. It is also a good assumption, that the

correlations decay locally as in the homogeneous system corresponding to the local

density provided the density ρ(x) remains constant over the time scale of interest.

This is indeed the case, if tint = 1/(γ%2)� losc/vs ≈ losc/π%(0). This means, that the

Tonks parameter must be large compared to π3/2

N
, which is of course the case we are

interested in. We note that the region in the wings of the density distribution which

does not fulfill this constraint gives a negligible contribution to the total interaction

energy. Of course measuring the kinetic energy in the trap gives only an average

of g(2)(x,x)
ρ2(x)

over the trap, but one can account for this by a weighted average over

different simulation parameters.

In summary, in this section we have numerically analyzed the dynamics of a 1D

Bose gas (LL-model), after an interaction quench from zero to a finite value. Although

globally the 1D Bose gas does not thermalize, we have shown that local quantities

attain a steady-state value on a time scale tia = (γρ2)−1. Within the achievable

accuracy these values are consistent with the assumption that local quantities relax

to a thermal Gibbs state with local temperature determined by the initial energy and

chemical potential. Non-local quantities such as the density-density correlation relax

on a much longer time scale set by the velocity of sound by means of correlation waves

propagating out of the sample. The observation that certain quantities like energy

density (which is connected to the local g(2)) relax to thermal values locally on much

shorter timescales than required for global equilibration is known as prethermalization

[BBW04] in the literature. The value of the local observables attained in the steady

state after tia might be only preliminary. Globally the steady state after tia can not

be the final one, which is reached after two-body (and all higher) correlations have

propagated throughout the system and a global equilibrium is reached. The role of

integrability for the expectation value of the local g(2) might be different between the

preliminary and the truly relaxed state.
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6 Dynamics of pair correlations in the attractive

Lieb-Liniger gas16

In dynamical setups, attractively and repulsively interacting gases are equally well

accessible. A recent milestone in this direction is the creation of the super Tonks-

Girardeau gas [ABCG05, CGYH10] by Haller et al. [HGM+09], realized by a rapid

sweep through a confinement induced resonance [Ols98] from the strongly repulsive to

the strongly attractive side. We here analyze the dynamics of this quench process by

numerical simulations employing the TEBD algorithm as applied to the Lieb-Liniger

gas in the repulsive regime (see previous section) and a number of lattice models

[GKSS05, SK05, FCM+08].

The dynamics of a 1D, trapped Bose gas with local interactions is governed by the

Lieb-Liniger Hamiltonian (17) introduced in section 1.2, with the additional potential

V (x) = m
2
ω2x2 here again describing a harmonic trap.

The spectrum of (17) is quite different depending on the sign of γ, however the

positive- and negative-γ spectra agree in the limits of weak as well as strong interac-

tions [TZS08]. This can be understood from the problem of two particles with V = 0

and periodic boundary conditions: The center panel of Fig. 20 shows the lowest lying

states with vanishing center-of-mass momentum. The non interacting ground state

(left and right outside of the figure at E = 0) has a constant relative wave function.

For finite interactions, the wave function must obey the contact conditions (28). It

develops a peak at zero inter particle distance when an attractive interaction (γ < 0)

is turned on and eventually forms a closely bound pair with binding energy ∼ γ2

(see below). On the repulsive side (γ > 0) a dip-like kink emerges with increasing

interaction, which eventually makes the wave function vanish at coinciding particle

positions – this is the famous fermionized Tonks-Girardeau gas. When approaching

the strong interaction regime from the attractive side, the first excited state adiabat-

ically connects to exactly the same fermionized state (also shown in Fig. 20) – the

super Tonks-Girardeau gas. This matching continues for higher excited states and

can be generalized to many particles, where the bound states can be classified by the

number of dimers, trimers, etc. [MS98].

Fig. 20 indicates, that a quench from the Tonks-Girardeau regime to the strongly

attractive regime will put the gas to good approximation in the super Tonks-Girardeau

state. Experiments have successfully demonstrated this, while the difference between

Tonks-Girardeau and super Tonks-Girardeau can be detected by their different com-

pressibility [ABCG05].

16This section is based on the publication [MF10].
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Figure 20: The spectrum of the Lieb-Liniger Hamiltonian for two particles with van-
ishing total momentum on a ring of length L as a function of inverse interaction
strength is shown in the center. The energy unit is E0 = 4π2~2/(L2m). One recog-
nizes equivalence of the spectra at vanishing (|γ| → 0) as well as for infinitely strong
interactions (|γ| → ∞). The outer panels illustrate the continuous change of the rel-
ative part of the two-particle wave functions as the interaction strength is tuned, for
simplicity in a harmonic trap (with the trap length set to 1). The free boson ground
state (red curve in lowest panels on both sides) approaches (brown curves: interme-
diate, black curves: strong interactions) the Tonks gas for repulsive, and a tightly
bound state for attractive interactions, as the interaction strength is increased, i.e.,
towards the center of the center panel. For higher states, the nth bosonic eigenstate
approaches adiabatically the nth respectively (n − 1)th fermionic eigenstate (blue
curves) up to normalization for repulsive respectively attractive interactions.

6.1 Numerical simulation of the full many-body case

We here consider a gas of N particles, confined by a harmonic trap, initially in the

ground state for γ = +∞, i.e. starting from the Tonks-Girardeau gas. At t = 0 the

interactions are switched to the strongly attractive side γ � −1. In simulations we

use values of γ between −6 and −145. The trap plays a minor role, since interactions

give the relevant time scale.
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Figure 21: left: Time evolution of the local two particle density density correlation
in a system of N = 18 particles calculated via TEBD (colored lines). gray line: two
particle case with periodic boundary conditions and γ = 0. right: Time evolution of
local three-particle correlation g(3) (red dashed) at the trap center and g(2) (black)
for comparison at γ = −145. (The artifacts for very short times are due to the finite
time steps used by the numerical algorithm.)

We simulate the full many-body dynamics using TEBD as in the preceding sec-

tion. Again the continuous model is discretized, resulting in the sparsely filled Bose-

Hubbard model. To prepare the initial state, we use imaginary time evolution, be-

cause the exact ground state can not be easily expressed as a matrix-product-state,

as was the case for the ground state of free bosons. The lattice is finite, but comprises

all of the gas (which does not change its density distribution on the time scale in ques-

tion, much the same as in section 5). The dynamics is simulated using a fourth order

trotter decomposition [SS99]. While time dependent simulations are generally limited

to short times due to the linear growth of entanglement entropy [BHV06, EO06], this

it not crucial here. Although we also observe such a linear growth, the increase is

slow and we can go much beyond the time scale of interactions, which was the limit

in section 5, for as much as N = 18 particles on a 1280 sites lattice using rather small

matrices of dimension 100 in the algorithm. This can be accounted to the fact, that

the initial state is actually very close to an eigenstate of the Hamiltonian after the

quench, as we will discuss in detail below.

Fig. 21a shows the local two-particle correlation g(2)(t) = g(2)(x1 = 0, x2 = 0, t),

where

g(2)(x1, x2, t) =
〈Ψ̂†(x2)Ψ̂†(x1)Ψ̂(x1)Ψ̂(x2)〉

ρ(x1)ρ(x2)
, (131)
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as a function of time for various values of the interaction strength. The correlation

function first grows as a power law ∼
(
t/t0

)α
. The time unit in the plots is t0 =

4m/(~ρ2) = 2π2~/EF. By a linear fit to the numerical data, we find α growing from

1 in the free case to a value of about 4/3 in the strongly attractive case. We see that

g(2) rises up to a finite value much smaller than 1 for reasonably strong interaction.

This reflects the fact, that most of the gas ends up in the fermionized super Tonks-

Girardeau state. For longer times and stronger interactions, we observe however

a rather peculiar oscillatory behavior with large modulation depth. The oscillation

frequency coincides with the binding energy of a pair of particles in the McGuire state

ω2 ' γ2~ρ2/4m = γ2/t0 [McG64]. Thus the dynamics seems to be strongly affected

by the contribution of bound pairs. Moreover, there is no sign of a relaxation, as

observed in the repulsive case above. In Fig. 21b the local three-particle correlation

g(3)(t) = g(3)(x1 = 0, x2 = 0, x3 = 0, t) is plotted, where

g(3)(x1, x2, x3, t) =
〈Ψ̂†(x3)Ψ̂†(x2)Ψ̂†(x1)Ψ̂(x1)Ψ̂(x2)Ψ̂(x3)〉

ρ(x1)ρ(x2)ρ(x3)
. (132)

One recognizes that g(3) remains extremely small, showing that higher-order cluster

states are not populated in the interaction quench. This agrees well with the finding

in [GA10] where the overlap of the Tonks-Girardeau wave function with the McGuire

cluster state was calculated.

Fig. 22 shows the dynamical evolution of the density-density correlations, where

we fix one position at the center of the cloud. The initial state shows the typical

feature of fermionization, i.e. g(2)(0, 0) is zero and g(2)(0, x) rises to one (no corre-

lation) on a length scale proportional to the average inter-particle distance. In the

limit γ → −∞ the correlations do not show much resolvable dynamics because the

initial Tonks-Girardeau gas is close to the super Tonks-Girardeau state. However for

moderate interaction strength, we see g(2)(0, x) rising sharply around zero distance.

This clearly shows transitions to states other than the super Tonks-Girardeau state.

One finds that the characteristic length scale of the peak at the origin is given by

a1D. This gives further indication of a finite admixture of the N = 2 cluster state.

Since
∫

dx〈Ψ̂†(x)Ψ̂†(0)Ψ̂(0)Ψ̂(x)〉 = ρ(0)(N−1), as discussed in the previous section,

the integral over g(2)(0, x) must be constant in time, as long as the density is homo-

geneous. The increase at x1 − x2 = 0 must therefore be accompanied by a decrease

at larger distances as seen in the correlation waves building up in Fig. 22.

The insert of Fig. 22 shows another interesting feature: Apart from small dis-

tances, where oscillations continue, the correlations become quickly stationary (at

least over several oscillation periods) and can be well approximated for intermedi-

ate distances by g(2) of a Tonks-Girardeau gas shifted by a1D and renormalized by a
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Figure 22: Time evolution of the non-local density-density correlation function for
interaction strength γ = −18.7931 calculated for N = 18 particles using TEBD.
Curves are shown for 0 (black), 1/4 (dotted), and 1/2 (red, maximum value at x = 0)
oscillation periods of the local correlation. insert: g(2) at times of 3.5 (black), 4
(dotted), and 4.5 (red) periods. The vertical dashed line indicates x = a1D. The blue
dashed line shows g(2) for a Tonks-Girardeau gas shifted by a1D and renormalized.

factor (1 − γ−1) (dashed, blue line). This can be explained as follows: As shown by

Girardeau and Astrakharchik [GA10] the wave function of the two-particle problem

with finite attractive interactions has a node at some distance x = a and for distances

not smaller than this coincides with the Tonks-Girardeau wave function apart from

normalization. For large |γ| one finds a ≈ a1D. Furthermore, the renormalized and

shifted Tonks-Girardeau correlation curve agrees very well with g(2)(0, x) for a sys-

tem of hard rods with excluded volume a ≈ a1D, which was recently calculated using

quantum Monte Carlo as well as bosonization techniques in [MABC08]. The fact

that the TEBD results show slightly more pronounced oscillations than the shifted

Tonks-Girardeau or hard-rod curve is due to the small excitation of higher gas like

states.

6.2 The two particle case

We will show now that the two-particle correlations in the trapped gas can be very

well reproduced by a system containing only N = 2 particles. This is due to the fact

that for strong interactions, eigenstates are expected to be well approximated by pair
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product states of the Jastrow-Bijl type [GA10]

Φ(x1, . . . , xN) =

[∏
i<j

φ(xi − xj)

]
N∏
j=1

exp

(
−

x2
j

2l2osc

)
, (133)

with l2osc = ~/(mω), and φ(xi − xj) is a two-particle wave-function. The two-particle

solution will provide insight into the nature and the size of the oscillations observed in

the numerical simulations. For the actual calculations we impose periodic boundary

conditions, which is reasonable for the comparison to the trapped gas, since the

trapped gas is homogeneous in good approximation over some inter-particle distances.

The periodic boundary conditions problem gives analytical expressions and allows to

extract the scaling with γ in the strongly interacting regime. This problem has been

solved for attractive interactions in the original paper by Lieb and Liniger [LL63].

We will use their solution in the following.

The Hamiltonian for the two particle problem reads in first quantization

Ĥ = − ~2

2m

(
∂2

1 + ∂2
2

)
+ gδ(x1 − x2). (134)

All eigenstates of the LL model can be constructed from coordinate Bethe ansatz

[YY69]. In the primary sector R1 (0 ≤ x1 ≤ x2 ≤ L), the solution is φ(y = x1−x2) =

2Aei
δ
4 cos

[
δ
2
( y
L
− 1

2
)
]
. A is a normalization constant, and δ is related to the scattering

phase shift Θ = −2 tan−1[(k2 − k1)L/2γ] via Θ = δ/2 − π. Note that ei
δ
4 is not a

simple phase factor as δ will be imaginary for the bound state.

We will now calculate asymptotic expressions for the bound state φb, where γ →
−∞, as well as Tonks-Girardeau and super Tonks-Girardeau states φ±, where γ →
±∞. For the bound state φb we need to find an imaginary solution of the Bethe

equations (34). Substituting δ = iδ̃ we find in the strongly interacting limit δ̃ =

(−2γ). With this we calculate the normalization of the wave function, yielding Ab →√
δ̃/2/L. Thus the wave function at coinciding particle positions reads

φb(x1 − x2 = 0) = 2Abe
− δ̃

4 cosh
δ̃

4

γ→−∞−−−−→ −
√
−γ
L

. (135)

Due to bosonic statistics the local two-particle correlation is given in terms of the

wave function as g(2)(0, 0) = 2|φ(0)|2/ρ(0)2. As the density ρ is 2/L everywhere, this

results in g
(2)
b (0, 0)→ δ̃/4 = −γ/2.

We denote the lowest lying gas like states φ± for γ → ±∞. From the Bethe

equation we see that a real solution δ will be close to 2π. Expanding the tangent

around its singularity at π/2 we get δ = 2π
(

1− 2
γ

)
. For the normalization this
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means A± → 1/L
√

2, such that the wave function at coinciding particle positions

becomes

φ±(x1 − x2 = 0) = 2A±e
iδ
4 cos

δ

4

γ→−∞−−−−→ i
√

2
π

γL
. (136)

The local two-particle correlation is in this case g
(2)
± (0, 0) = π2/γ2. The γ−2 scaling

is well known [KGDS03] and is the same as in the many particle case.

The overlap between the initial Tonks-Girardeau gas state φ0 = limγ→∞ φ+ and

the bound state for finite γ can easily be calculated. In the strongly interacting

regime one finds ε ≡ 〈φ0|φb〉 → −2
√

2πγ−3/2.

We now want to calculate the dynamics of the local correlation in the two particle

case. This can be done in different ways. Here we used again discretization combined

now with exact diagonalization to find the exact solution shown in Fig. 23 as a black

solid curve. From the above calculations we can derive simple approximations which

are very good in the strongly interacting regime. We can decompose the initial state

|φ0〉 according to

|φ0〉 = ε|φb〉+
(
|φ0〉 − ε|φb〉

)
= ε|φb〉+ |φ̄0〉. (137)

Note that for large |γ|, |φ̄0〉 is approximately normalized. Since the initial state is

the Tonks-Girardeau gas with φ0(x1 − x2 = 0) = 0 one finds from (137) and (135)

that for t = 0 the wave function at coinciding particle positions is given by

φ̄0(x1 − x2 = 0, t = 0)
γ→−∞−−−−→ i2

√
2
π

γL
. (138)

Note the factor of 2 as compared to Eq. (136) which is physically due to the very

small admixture of the bound state. φ̄0 is not an eigenstate, but is composed out

of low lying gas like states, that have an energy spread much smaller than the pair

binding energy. For small times one can ignore the energy differences and thus the

time dependence of φ̄0. This results in

g(2)(t)
γ→−∞−−−−→ 8

π2

γ2

[
1− cos(ω2t)

]
. (139)

This expression describes the initial increase of g(2) as observed in the many-particle

calculation (and in the exact solution of the N = 2 case) very well. It does predict,

however, oscillations with maximum modulation depth, which is not true for the

exact solution. The reason for this is that φ̄0 contains in addition to the dominant,

lowest gas-like state (i.e. the super Tonks-Girardeau state) φ− also small admixtures

of higher lying gas states which oscillate in time all with slightly different frequencies.
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Figure 23: Comparison of the many body results with the results from the two particle
system with periodic boundary conditions in the case γ = −89.0355. The thick black
line corresponds to the two particle case, the thin green one shows the N = 9 particle
case (calculated via TEBD), and the blue dashed one is the beating approximation
(140).

For larger times these oscillations lead to an effective dephasing in the interference

part of g(2). On the other hand the direct contribution of these excited gas states

to g(2) is negligible. An approximation which is much better suited to describe the

large time behavior is |φ0〉 ≈ ε|φb〉 + |φ−〉. Comparing (136) and (138) shows, that

we have only changed a factor of 2 such that

g(2)(t)
γ→−∞−−−−→

{
5− 4 cos

[(
ω2 + π2/t0

)
t
]} π2

γ2
, (140)

where we used that the super Tonks-Girardeau gas energy is ~π2/t0 for strong interac-

tion, giving a minor correction to the frequency. On short timescales this expression

is invalid, but for t > t0/γ
2 it becomes a much better approximation than (139) and

is shown in Fig. 23. It is interesting to note that g(2) scales as 1/γ2, while the pair

fraction, i.e. the probability to find particles in a paired state, η = |ε|2 = 8π2/|γ|3

scales as |γ|−3 and is thus more difficult to observe for large |γ|.

In summary we have shown in this section by numerical TEBD simulations that

an interaction quench of a 1D Bose gas from strong repulsive to strong attractive

interactions puts the gas predominantly into the lowest gas-like excited state, the

super Tonks-Girardeau gas. There is however a small coherent admixture of two-
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particle bound states that results in a large amplitude oscillation of the local density-

density correlation with a frequency corresponding to the energy difference between

super Tonks-Girardeau gas and bound pair state. At the same time higher-order

correlations remain extremely small showing that more deeply bound, multi-particle

cluster states are not formed in the quench. Analytical calculations of the N = 2

case where shown to reproduce the results of the many-particle simulations with

high accuracy. This indicates that the many-body state can be well approximated

by a Jastrow-Bijl type pair product wave function, where each term is a coherent

superposition of a gas-like state with a very small component of a two-particle bound

state. The peculiar oscillations of g(2) show furthermore that despite their small

weight, the two-particle cluster states are accessible to experimental probes. For

strong interactions, the bound pairs are highly co-localized. Since in all physical

realizations of the LL model, the true inter particle potential is of finite range, details

of the potential will show up in the binding energy. In this way, the two particle

correlation dynamics can be used to measure details of the underlying true potential.

In contrast to the quench presented in the preceding section, we do not observe

local relaxation here. One possible interpretation is, that the diagonal ensemble

(66) contains very few states that contribute to the local g(2), namely the super-

Tonks gas and the states that contain bound pairs. Therefore the decoherence, which

must be assumed when using the diagonal ensemble, never happens, but coherent

oscillations are observed instead. Furthermore it is rather obvious, that the eigenstate

thermalization hypothesis must not necessarily hold here, because the spectrum of

the attractive Lieb-Liniger gas is rather peculiar. Above the various deeply bound

dimers and aggregations of larger particle numbers [TZS08], there are the gas-like

states starting at the super-Tonks gas, which have in the strongly interacting limit

the same spectrum as free fermions. Therefore the spectrum looks as if the system

was close to its ground state and we can not expect the eigenstate thermalization

hypothesis to work. Fortunately, the fact that we are working close to an eigenstate

turns out to be favorable for the application of the TEBD algorithm, because there is

only moderate entanglement produced. The calculations give another example, that

the TEBD algorithm is suitable for the simulation of dynamical processes in strongly

interacting, continuous quantum gases.

In order to assess whether the effect predicted is accessible in current experiments

let us compare the beat frequency ω2 = γ2~ρ2/4m to the transverse trap frequency

ω⊥. Introducing the longitudinal trap frequency ω‖ one finds ω2 = γ2Nω‖/4. For

γ ≈ 10 and 10 particles per tube this gives ω2 ≈ 250ω‖. For the experiment of

[HGM+09] this corresponds to about 3kHz which is only a factor of 4 smaller than

ω⊥. Using larger laser beam diameters this factor can be increased however to one
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order of magnitude, such that the 1D approximation remains valid17. Furthermore

our numerics showed that the oscillations with a single dominant frequency ω2 prevail

even for values of γ as low as −1, which would result in a reduction of ω2 by two

orders of magnitude.

17E. Haller, private communication
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7 Time dependent correlations18

The goal of the present section is the exact numerical calculation of the time de-

pendent two-particle correlation function in the Lieb-Liniger model. Such a quantity

is now available in experiments via analyzing the temporal correlations in detection

events originating from a single position in the cold atomic gas. Explicitly, the quan-

tity of interest is the time and normal ordered two-particle correlation function

g(2)(ξ = x− x0, τ = t− t0) =
〈Ψ̂†t0(x0)Ψ̂†t(x)Ψ̂t(x)Ψ̂t0(x0)〉
〈Ψ̂†t0(x0)Ψ̂t0(x0)〉〈Ψ̂†t(x)Ψ̂t(x)〉

. (141)

Due to repulsive interactions, its value is smaller then 1 for small ξ and τ and ap-

proaches the value 1 (no correlation), for ξ � 1/ρ or τ � 2/ρ2π2 = 1/ωF (the latter

is because the typical energy scale of the system is given by the Fermi energy at not

too small γ). Although similar to the two particle correlation function of the preced-

ing sections, this is not a dynamically evolving quantity in the sense that the system

as a whole would be out of equilibrium. (The combination of operators at different

times does not allow to swap the time-dependence to the state here. The index of

the field operators gives the time in the Heisenberg picture.) The expectation values

are rather taken in a steady state. (We will restrict the discussion to a low temper-

ature ensemble below quantum criticality, respectively the ground state itself). The

dependence on only the differences ξ and τ assumes a homogeneous system in the

thermodynamic limit. Correspondingly the densities entering the denominator for

normalization are equal to the constant density ρ.

Recent technological developments [WLG+09, BGP+09, BPT+10, SWE+10, WES+11]

allow for detection and manipulation of cold atoms with a spatial resolution of a single

lattice site, or respectively well below the average particle distance in the continuous

case. A method using an ionizing electron beam in a scanning electron microscope

setup has been pioneered in the group of H. Ott [GUHO06, WGL+09]. The scheme is

depicted in Fig. 24 (left): The trapped 87Rb gas can be cooled to form a Bose-Einstein

condensate. An electron beam is focused on the cloud, which ionizes atoms at a well

controlled position. The ions are pulled out of the cloud by an electric field and de-

tected by a channeltron detector. Due to the high sensitivity of the detector, one has

single atom efficiency. By scanning the beam over the cloud, particle positions can

be resolved with uncertainty much below the average inter-particle distance. Com-

plementary, by focusing the beam on a fixed position, the point of ionization in time

can be reconstructed from the arrival time at the detector [GWE+11]. In [GWE+11],

18Results of this section are available together with measurements from a recent cold atoms
experiment in the preprint[GML+12].
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Figure 24: Scheme of the experimental setup. Left: General setup. (Picture taken
from [WGL+09]) The scanning of the electron beam is used to measure the global
density distribution. Right: To measure time-dependent calculations, an additional
optical lattice is imposed on the gas, and the beam is fixed to the central position, in-
tersecting a number of quasi one-dimensional tubes. (Picture taken from [GML+12])

temporal bunching in a three-dimensional rubidium gas has been observed, when

heated above the critical temperature of the Bose-Einstein transition. Using an ad-

ditional optical lattice, see Fig. 24 (right), the experiment can be conducted in the

one-dimensional, Lieb-Liniger regime [GML+12], and gives access to time-dependent

correlations. The quantity extracted is the correlation in the arrival times of the ions

at the detector. It is equivalent to g(2)(ξ, τ), while for the time being only correla-

tions at the same position, ξ = 0, are accessible in the experiment. Additionally one

has to take into account, that due to technical limitations of the setup, the electron

beam always intersects a row of 8 to 11 one-dimensional systems, each in the shape

of an elongated tube, simultaneously. This reduces the overall contrast and requires

a suitably weighted average over the single systems, which feature a different density

and different Tonks-parameter each.

In the following we will provide calculations of g(2)(ξ, τ) in the ground state.
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Figure 25: Local density distribution (averaged over all tubes that intersect with
the electron beam) measured in the experiment (symbols), compared to a fit using
the Yang-Yang solution [YY69] in linear density approximation (green continuous
lines). The experiment is performed with two different total numbers of particles:
9.3 ± 0.7 · 103 (“10k”, a) respectively 52 ± 5 · 103 (“60k”, b). The fit yields temper-
atures well below the degeneracy temperature, such that the results coincide with
the zero temperature profile (dashed line), except at the edges of the system, where
the degeneracy temperature is small, and the gas is in the high-temperature, non-
degenerate regime.

This is sufficient for a comparison to the experiment, because the temperatures are

very low there. This was checked by fitting a density profile, calculated using the

thermodynamical Bethe ansatz [YY69] and local density approximation, to the mea-

sured density profile of the gas [GML+12]. This yields a temperature that confirms

that the relevant part of the system, around the center, is well below the degener-

acy temperature Td = ρ2/2, see Fig. 25. The smallness of the effect of the finite

temperature can be seen in g(2)(0), which we calculate from the Hellmann-Feynman

theorem [KGDS03] and which differs at most by 1% (for the interaction strength

given) between the observed temperature and T = 0.

The dynamical density-density correlation function ∼ 〈Ψ̂†tΨ̂tΨ̂
†
t0Ψ̂t0〉 in the Lieb-

Liniger model has been calculated from the Bethe ansatz solution [CC06]. However

it differs from the correlation function considered here, because it is not time and

normal ordered. There is no simple relation between the two, because the commutator

between field operators is non-trivial (it contains essentially all the dynamics of the

system), and we have to employ an independent calculation.

The numerical procedure will only involve the propagation of quantum states, not
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Figure 26: Local density in initial state, 〈Ψ̂(x0 = 0)|ρ̂(x)|Ψ̂(x0 = 0)〉 (continuous
line), and in the ground state, 〈0|ρ̂(x)|0〉, for comparison (dashed line). (γ = 1.3944,
25 particles in harmonic trap, generated using imaginary time evolution via TEBD,
see also Fig. 8.)

of the field operators. We start with the ground state |0〉. We apply the field operator

at position x0 and get the state |Ψ̂(x0)〉 = Ψ̂(x0)|0〉. The correlation function may

now be written

g(2)(ξ, τ) =
1

ρ2
〈Ψ̂(x0)|Ψ̂†t−t0(x)Ψ̂t−t0(x)|Ψ̂(x0)〉

=
1

ρ2
〈Ψ̂(x0)|Û †t−t0 ρ̂(x)Ût−t0|Ψ̂(x0)〉 (142)

The second form shows, that we can shift the time dependence to the state |Ψ̂(x0)〉
instead of propagating the field operators. g(2)(ξ, τ) is thus equal to the local density

at position x in the evolved state |Ψ̂(x0)〉t−t0 = Ût−t0|Ψ̂(x0)〉. This can be interpreted

as follows: At t = t0 a particle is removed from the system, see Fig. 26, corresponding

to a detection event in the experiment. The probability to detect another particle

is proportional to the local density at the given position, which is time dependent,

because the removal of the first particle excites the system.
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Figure 27: 〈Ψ̂(x0 = 0)|U †t−t0 ρ̂(x)Ut−t0
|Ψ̂(x0 = 0)〉 in three different regimes.
Time is given in units of 1/ωF and curves
for later times are shifted up for clearness
(the local density is always zero towards
the edges of the panel).

7.1 TEBD numerics

We calculate g(2)(ξ, τ) numerically using TEBD in the following way: The ground

state is calculated for N = 25 particles in a harmonic trap as in section 3.5, using a

sufficiently small discretization length ∆x (and the discretization formula (89), which

maps the system to the Bose-Hubbard model). It will turn out, that this system size

is large enough, such that finite size effects are not influencing the dynamics on time

scales relevant for g(2)(ξ, τ) at the center of the trap. We can thus identify the results

with those of the thermodynamic limit, using the same density as in the center of trap

at x0 = 0. In the next step, we prepare |Ψ̂(x0 = 0)〉 by acting with the discretized

version, Ψ̂(0) ≈ â0/
√

∆x, on the ground state, see Fig. 26. This is a local operation,

which can be easily implemented for MPS. Finally, we evolve the the resulting state,

which contains exactly N−1 particles, in time. We get Ut−t0|Ψ̂(x0 = 0)〉 and calculate

the correlation function from the expectation value of the local density

g(2)(ξ, τ) =
1

ρ2

(
〈Ψ̂(x0 = 0)|U †t−t0

)
ρ̂(x)

(
Ut−t0|Ψ̂(x0 = 0)〉

)
. (143)

In Fig. 27 we show this density dynamics of the initial state.

The evolution of g(2)(ξ, τ) is shown in Fig. 27 for different interaction strength.

Starting with the uncorrelated state for free bosons, g(2)(ξ, τ) = 1 = const. and we
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Figure 28: g(2)(τ) for bosons with interac-
tion strength increasing from a to c. Fast
oscillations are lattice artifacts. Symbols
indicate the exact value of g(2)(0, 0) in the
thermodynamic limit in the ground state
calculated via the Hellmann-Feynman the-
orem (44) using the equation of state pub-
lished in table form in [DLO01a, DLO01b].

see no structure at all. For increasing interaction strength it develops a minimum

at ξ = τ = 0 that approaches zero with γ becoming large [LL63]. The dynamics

happens on a timescale of 1/ωF. The spatial extension of the hole is initially of

the order 1/ρ and spreads in the following. The local correlation function g(2)(τ) is

shown in Fig. 28 for different Tonks-parameters. (We will skip the spatial dependence

whenever ξ = 0.) For higher Tonks parameters, Friedel oscillations are visible, before

the function approaches 1 and the particles (and therefore the detection events in the

experiment) become uncorrelated. The fast oscillations are a discretization artifacts

due to the finite ∆x between 1/5ρ and 1/7ρ for the data shown.

The TEBD calculations presented in this section are actually numerically quite

inexpensive. This is because the initial state |Ψ̂(x0)〉 is close to an eigenstate, in the

sense that they deviate from it only in a small region. We thus expect to have a

small number of excitations in the system. This is reflected in the fact, that a bond

dimension of χ = 50 was sufficient to generate converged results for all data shown.

7.2 Adaptions to the experimental situation

7.2.1 Finite beam width

In the experiment [GWE+11, GML+12] the detection beam is never perfectly focused,

but has a finite width of a fraction of 1/ρ. The measured correlation function is
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Figure 29: Dependence of g̃(2)(τ) on the width FWHMbeam of the electron beam.

therefore somewhat smeared out. This can be taken into account by

g̃(2)(τ) =

∫ ∞
−∞

dx W (x) 〈Ψ̂(x0 = 0)|Û †t−t0 ρ̂(x)Ût−t0|Ψ̂(x0 = 0)〉, (144)

where W (x) is the normalized Gaussian weighting function

W (x) =

√
2

FWHMbeam

·
√

log 2

π
· 2−2

(
x

FWHMbeam

)2
, (145)

as shown in Fig. 29 for different width of the beam. Note that the full width (full

width half maximum) of W (x) is actually
√

2 times the full width FWHMbeam of the

beam, because both the position of the first and the second particle detected have this

uncertainty. In the experiment the beam width is of the order FWHMbeam ≈ 1/3ρ.

This is larger than the numerical discretization length used. We see from the figure,

that consequently the lattice artifacts are concealed. Otherwise the curve is not

changed, except for the value at τ = 0 which is most sensitive to the beam width.

Only at larger FWHMbeam, which was not used in the experiment, deformations

occur. The finite width of the beam, will be taken into account when comparing to

the experiment.
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Figure 30: g̃(2)(τ) for finite beam width FWHMbeam = 1/3ρ in the intermediate
regime of interactions, as used for comparison with experimental data.

7.2.2 Varying Tonks parameter

As mentioned above, the experiment averages over several independent systems with

varying interaction strength. We generate sets of correlation functions for various

values of γ. One is shown in Fig. 30 for FWHMbeam = 1/3ρ and γ in the range of 1.4

to 4.3.

7.2.3 More than two detection events

In the experiment, the system is continuously exposed to the ionizing beam in order

to acquire a sufficient number of ionization events to extract correlations. In fact

the experiment has to be repeated several thousand times, among other reasons

because each ionization event reduces the number of particles in the system, and this

depletion must not become noticeable. The correlations between detection events

does not distinguish between events that directly follow each other and those with

other events in between. Thus, assuming that the system is always in equilibrium

when the first particle (of a pair that contributes to the correlation) is detected, is

not strictly fulfilled. To estimate the effect of a third detection event, we calculate

one of the extreme cases: The fact, that the system is not back to the ground state

locally for every measurement will lead to contributions of the form〈
Ψ̂†(t0)Ψ̂†(t0)Ψ̂†(t)Ψ̂(t)Ψ̂(t0)Ψ̂(t0)

〉
(146)
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Figure 31: Comparison of g(2)(τ) to higher correlation functions which contribute as
minor corrections to the detection statistics (γ = 7.5034 here).

to the correlations in the detection events. We can see from Fig. 31, that even for this

extreme case, the relaxation of the correlation is only somewhat slower than that of

g(2)(τ). It’s contribution to the overall result will also be small, because three events

close together are very rare: The average time between detection events is much longer

than 1/ωF, such that the anti-bunching can be seen only in the rare pairs of events

with small temporal separation. Three events close together are therefore even more

rarely observed. (The data acquired are not sufficient to extract meaningful third

order correlations.) Accordingly, we will not take into account corrections arising

from more than two detection events in the comparison to the experiment.

7.2.4 Local depletion

The presence of the electron beam leads to a significant reduction of the total particle

density around its center [Gua] in the experiment. This effect can be taken into

account by assuming that the local potential for the particles is the harmonic trapping

potential plus a repulsive potential at the position (the trap center at x0 = 0) and

with the width of the electron beam, which has a Gaussian profile. Its strength

can be adjusted, such that the reduction of the particle density at this position is

comparable to that in the experiment. Fig. 32a shows the particle density around

the hole, both for the ground state of the resulting potential, as well as after the

application of Ψ̂(x0 = 0), i.e. after the detection of a particle at the trap center, for
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Figure 32: a) Ground state |0〉 (broken lines) and initial state |Ψ̂(x0 = 0)〉 (continuous
lines) local density for pure harmonic confinement (black), weak (green) and stronger
(blue) Gaussian local potential of FWHM 1/3ρ. In all cases γ ≈ 1.3944 taking not
the local density inside the hole, but in the center of the ground state with only the
harmonic confinement as a reference (which is very close to the density surrounding
the hole). b) 〈Ψ̂(x0 = 0)|U †t−t0 ρ̂(x)Ut−t0|Ψ̂(x0 = 0)〉 as in Fig. 27 for the stronger
case.

two different strength of the local potential imposed by the electron beam. Fig. 32b

additionally shows 〈Ψ̂(x0 = 0)|ρ̂t−t0(x)|Ψ̂(x0 = 0)〉. The behavior is similar to that of

the quasi homogeneous case: The density modulations excited by the first detection

event propagate away from the center and the density around the electron beam goes

back to its ground state value, i.e., the dashed curve in part a of the figure. The

propagation is through the region surrounding the beam, which has higher density.

This explains, why the time scale is again given by the properties of the region

surrounding the beam, i.e. it remains to a large extend unchanged.

Although the beam strongly deforms the local density distribution of the ground

state, g(2)(τ) is only weakly affected, see Fig. 33. Taking the density outside the hole

created by the beam as a reference in the definition of ωF and γ one gets a result

surprisingly similar to the quasi-homogeneous calculation. We will therefore not take

the local depletion into account when comparing to the experiment.

7.2.5 Average over multiple systems

In the experiment the electron beam intersects a number M of independent, and

therefore uncorrelated systems, which is of the order 10. The detector is unable

to discriminate the origin of the ions. Accordingly the anti-bunching signal in the

averaged correlation function g
(2)
av (τ) will be reduced compared to the bare g̃(2)(τ) for

a single system. The individual systems are not equivalent, but have different density
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Figure 33: g(2)(τ) for the three cases shown in Fig. 32. γ ≈ 1.3944 taking not the
local density inside the hole, but in the center of the ground state with only the
harmonic confinement as a reference (which is very close to the density surrounding
the hole). This density also enters in ωF.

ρj at x0 = 0, such that the probability for a detected ion to originate from tube j is

pj = ρj/ρtot with the summed density ρtot =
∑

j ρj. Although the bare interaction

strength g can be assumed to be the same in every tube, this results in individually

different Tonks parameters and therefore different g̃
(2)
j (τ). The averaged correlation

function is therefore

g(2)
av (τ) =

M∑
i,j=1

pipj

(
δi,j g̃

(2)
j (τ) + (1− δi,j)

)
= 1−

M∑
j=1

p2
j

(
1− g̃(2)

j (τ)
)
. (147)

For example if the tubes were equivalent and the anti-bunching perfect (g̃
(2)
j (τ) = 0),

the result would be g
(2)
av (τ) = 1− 1/M , i.e., the contrast in the anti-bunching would

be reduced only by a factor of 1/M . Formula (147) will be used in the comparison

to the experimental data below.
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Figure 34: Comparison between theoretical prediction and experimental measurement
of two-particle correlations for two experiments with different total particle number
(see text). Top panel: Calculated g̃(2)(τ) at the trap center for the central tube (which
contributes the most and has lowest γ), including the finite width FWHMbeam = 1/3ρ

of the beam. Middle and lower panel: Average g
(2)
av (τ) (147) of the calculated curves

(continuous lines) and correlations extracted from the detection events (error-bars).

7.3 Comparison to experimental data

The experiment is performed with two different total numbers of particles: 9.3 ±
0.7 · 103 (“10k”) respectively 52± 5 · 103 (“60k”). This results in different timescales

due to different linear density, different total number of tubes (M = 8 respectively

M = 11) and different Tonks parameter (γ = 2.3 respectively γ = 0.6 in the central

tube). To apply formula (147), various curves for different values of γ have been

calculated, such that g̃
(2)
j (τ) is available for every tube by means of interpolation.

The result is shown in Fig. 34: As expected, the anti-bunching is strongly reduced

(6% respectively 2%), in spite of the relatively high γ-values, due to the averaging.

The statistical errors in the experimental results are quite large. Within this limit,

the agreement is quite satisfying, and both the amplitude and the timescale of the
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Figure 35: 〈Υ̂(x0 = 0)|U †t−t0 ρ̂(x)Ut−t0
|Υ̂(x0 = 0)〉 (using discretization with
nearest neighbor interactions) in three dif-
ferent regimes. Time is given in units of
1/ωF and curves for later times are shifted
up for clearness (the local density is always
zero towards the edges of the panel). Com-
pare to the bosonic case in Fig. 27.

correlations are reproduced correctly.

7.4 Dependence on particle statistics

In contrast to the correlation functions of sections 5 and 6, g(2)(ξ, τ) is sensitive to

the statistics of the particles. The above results are only valid for bosons, such as

the rubidium atoms used in the experiment. Replacing Ψ̂ by Υ̂ (21) and using the

fermionic Hamiltonian with the corresponding interaction strength (55) does not yield

the same correlation function. Thus an experiment should in principle also be able

to detect the difference between bosons and spin polarized fermions. This is because

|Ψ̂(x0)〉 = Ψ̂(x0)|0〉 and |Υ̂(x0)〉 = Υ̂(x0)|0〉 are not the same state, and do not yield

the same local density 〈 ˆρ(x)(τ)〉, except for τ = 0, see Fig. 35 (compare to Fig. 27).

The propagation of the excitation is different for bosons and fermions and in the

different regimes of the interaction strength. This becomes most obvious at γ = 0: For

free bosons, applying Ψ̂ to the coherent ground state again produces an eigenstate, the

ground state for N−1 particles, so there is no time dependence. In contrast applying

Υ̂ to the γ = 0 ground state (the Fermi-Tonks gas) introduces a pronounced hole19,

19In fact the resulting density must be the same, regardless of whether we eliminate a boson
or a fermion, except at the singular point x = x0. The fact that it is visible in Fig. 35a is truly
a lattice artifact. The resulting state must contain excitations not because of the discontinuity,
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Figure 36: g(2)(τ) for bosons (a-c) and fermions (d). Fast oscillations are lattice
artifacts. For bosons, nearest neighbor interactions (black) produce less pronounced
artifacts than discretization via hard core bosons with nearest neighbor interaction
(blue). The purple curve in (c) shows the analytic result for the Tonks gas [Ima12]
for comparison. The gray curve in (d) shows the analytic result for free fermions for
comparison. Symbols as in Fig. 28.

see Fig. 35a. In the Tonks regime the dynamics will also be very different depending

on statistics. One reason for this is the very different momentum distribution for the

two particle types, see Fig. 3: While Υ̂ can only create excitations up to the Fermi

energy (for the lack of higher momenta being present in the ground state), this is not

true for Ψ̂.

The evolution of g(2)(τ) is shown in Fig. 36. There is the expected large difference

between bosons and fermions. As γ is increased, the fermionic correlation function

approaches that of free fermions, (259), calculated analytically in appendix F, while

the bosonic correlation function approaches that of the Tonks gas [Ima12].

Numerically, both for bosons and fermions one has the choice of using either the

bosonic discretization, i.e. on-site interactions, or the fermionic discretization, i.e.

hard core particles with nearest neighbor interactions. For ground state calculations

but because of the alternating phases imposed on even respectively odd particle numbers by the
fermionic annihilator (21).
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we have seen in section 3 that both work equally well. For the dynamical problem

discussed here, using the “wrong” discretization of the interaction introduces stronger

artifacts. For fermions this is understandable, because the annihilation operator Υ̂ is

ill defined for more than two particles at the same position (which has finite probabil-

ity in the ground state calculated from the bosonically discretized interaction). We

find that the lattice artifacts are smallest for bosons too, if we use the “canonical”

on-site interactions. Fig. 36 shows both for comparison.

Finally note, that in contrast to g(2)(ξ, τ), the dynamical density-density correla-

tion [CC06] is insensitive to the statistics of the particles.

In conclusion, we have demonstrated in this section, that exact numerical calcula-

tions of time dependent correlation functions at zero temperature can be done quite

efficiently using TEBD. We have successfully adapted the technique to the situation

present in current experiments using ultracold atoms in optical lattices and scanning

electron microscopy. The comparison is reasonable within the limits given by the sta-

tistical errors in the experimental data. Interestingly, the strong repulsive potential

of the electron beam does not introduce as large a deterioration of the measurable

correlations from the behavior of homogeneous gas as one might expect. This is be-

cause all locally created excitations have to be transported through the surrounding

and more dense medium, which is not affected by the repulsion of the beam.
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8 Dynamics and evaporation of defects in Mott-

insulating clusters of boson pairs20

Petrosyan et al. [PSAF07] have studied the many-body dynamics of the repulsively

bound dimers of bosons. Due to virtual transitions of the dimer constituent par-

ticles, the dimers at neighboring lattice sites strongly attract each other, with the

corresponding interaction energy exceeding the dimer tunneling energy by a factor

of 4, see section 1.1.2. For multiple dimers on the lattice, it is then energetically

favorable to form dynamically stable “droplets”, constituting incompressible Mott-

insulating clusters with the number of particles per site of exactly n = 2. Inevitable

imperfections in the preparation process would typically cause such Mott-insulating

clusters to contain hole and particle defects corresponding, respectively, to unpaired

and excess particles (monomers and trimers). An important question is thus how to

purify the system reducing thereby the entropy. In the present section, we discuss a

mechanism of self-purification of stable Mott-insulating clusters of dimers surrounded

by lattice vacuum. We study the dynamics of defects in a one-dimensional system by

analytical calculations and numerical TEBD simulations.

This section is organized as follows: In subsection 8.1 we outline the properties

of the pure dimer clusters [PSAF07] and the different types of defects, which display

different dynamical properties, see Figure 37. We then introduce in subsection 8.2

an effective theory of scattering of a single particle (hole defect) from a domain wall

separating the dimer cluster and the vacuum. The momentum redistribution of a

hole defect upon collisions with a particle defect in the lattice with periodic and open

boundaries is studied in subsection 8.3. In subsection 8.4 we present the results of

many-body numerical simulations for a realistic system with several hole and particle

defects in a dimer cluster surrounded by empty lattice. Finally, in subsection 8.5

we discuss the case of two bosonic species, which is more flexible theoretically, but is

demanding experimentally. In the limit of infinite intra-species interaction, it contains

the special case of the Hubbard model [HMMR+09], since in one-dimension and in

the absence of double occupancy, bosons and fermions are equivalent through the

Jordan-Wigner transformation. Much of the involved technical details are deferred

to Appendices B, C, D and E.

8.1 Clusters of repulsively bound dimers

Throughout this paper, we assume that the on-site interaction is the dominant energy

parameter, U � J . In this regime, the dimers are described by the Hamiltonian (see

20This section is based on the publication [MPF12].



102 8 Dynamics and evaporation of defects in Mott clusters

Figure 37: Trimer (particle defect), single hole, single particle, and effective hopping.

section 1.1.2)

Ĥ = −J̃
∑
j

(ĉ†j ĉj+1 + H.a.) + B̃
∑
j

ĉ†j ĉ
†
j+1ĉj+1ĉj. (15)

It can be mapped to the spin-1
2

XXZ model [SBE+09, MFS10] with the anisotropy

parameter ∆ = B̃/2J̃ = 4. For ∆ > 1, we are in the ferromagnetic, Ising-like

regime, and a cluster of dimers, corresponding to a lattice domain with maximum

magnetization, is dynamically stable. To understand this in terms of dimers, observe

that, for any U(� J), the maximal kinetic energy 2J̃ gained by releasing a dimer

from the cluster boundary is small compared to the binding energy B̃ of the dimer

to the cluster.

The stability of the dimer cluster is an intrinsic feature of the Bose-Hubbard

model. It is rooted in the bosonic amplification of the inter-site hopping of the parti-

cles, which in turn enhances the effective (second-order) nearest neighbor interaction

B̃. For the fermionic Hubbard model discussed in [HMMR+09] in the context of de-

fect evaporation from a dimer cluster, i.e., a band insulator, we show in subsection 8.5

that ∆ = 1 (B̃ = 2J̃), which means that the cluster is unstable and the dimers will

diffuse away.

8.1.1 Hole and particle defects

Within the cluster, hole and particle defects can propagate via resonant single-particle

hopping with enhanced amplitude, which stems from the bosonic statistics of the

surrounding n = 2 Mott-insulating environment, see Fig. 37. Outside the cluster,

hole defects correspond to free particles. Since their tunneling energy J is much

larger than the monomer-dimer interaction energy ∼ J2/U [VPS10], hole defects are

not bound to the cluster and can “evaporate”. However, the widths of the single

particle Bloch band is twice larger inside the cluster than outside of it, therefore

only the hole defects with energies in the center of the band can penetrate the cluster

boundaries and evaporate into the lattice vacuum. Low- and high-energy hole defects

remain in the cluster, because there is no momentum redistribution via two-particle

collisions between identical particles in one dimension. We show that the presence of

particle defects leads to efficient “thermalization” of the hole defects via momentum
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Figure 38: Illustration of the single defect effective theory.

redistributing collisions. Hence, very few such “catalyzing” particle defects can purify

the Mott-insulating cluster.

8.2 Single defect model in the strong-interaction limit

The dynamics of dimers is rather slow, as it is governed by the small characteristic

energies ∼ J2/U , but the dynamics of monomers is much faster, involving the large

single-particle hopping rate J . We can thus retain only the contributions on the scale

of J , which results in a very simple and transparent effective theory for the monomers.

For a monomer in the cluster (hole defect), the bosonic statistics plays an important

role: it increases the hopping amplitude of the monomer in the environment of dimers

by a factor of 2, see Fig. 37. As a result, the kinetic energy of the monomer inside the

dimer cluster is Ek = −4J cos(k), while in the vacuum it is Ek = −2J cos(k), where

k ∈ [−π, π] is the monomer quasi-momentum quantified by the phase change between

neighboring lattice sites. Therefore the monomer will be confined to the cluster if its

momentum is not inside the transmission region given by

k ∈ (−2π/3,−π/3) ∪ (π/3, 2π/3), (148)

up to a correction due to small interactions of the order of J2/U � J which we

neglected.

Consider the scattering of a monomer from the domain wall between the dimer

cluster occupying sites j < 0 (region A) and the vacuum at sites j > 0 (region B),

see Fig. 38. The local bare particle number is nj = 2 for j < 0 and nj = 0 for j > 0.

The particle number at j = 0 depends on the position i of the monomer ni = 1:

inside the cluster i < 0 we have n0 = 2, at the boundary i = 0 obviously n0 = 1,

while outside the cluster (in the vacuum) i > 0 leads to n0 = 0. Hence the position

of the wall shifts when the monomer crosses the boundary. This needs to be taken

into account when considering many defects. The hopping rate of the monomer is

JA = 2J for sites j ≤ 0 and JB = J for sites j > 0. The effective Hamiltonian for a

single monomer then reads

Ĥ = −JA

∑
j<0

(â†j âj+1 + H.a.)− JB

∑
j≥0

(â†j âj+1 + H.a.). (149)
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Figure 39: Transmission probability T (k) [cf. Eq. (241)] for various α = JB/JA.

In Appendix B we calculate the exact transmission probability T (k) of a particle

crossing a domain wall in a system described by Hamiltonian (149). The results are

illustrated in Fig. 39 for various α = JB/JA. The values of α = 1/2 and α = 2

correspond, respectively, to the single particle leaving the dimer cluster and entering

it from vacuum.

8.3 Momentum redistribution between the defects

We have seen above that a hole defect can leave the Mott-insulating cluster only

if its momentum is within the transmission range of Eq. (148), while a defect with

the momentum outside the transmission range will remain in the cluster indefinitely.

Hence, to completely purify the cluster of hole defects, their momenta should be

continuously redistributed over the entire range of k ∈ [−π, π]. In two or more

dimensions, collisions between identical particles can redistribute the absolute values

of their momenta, and we therefore expect the evaporation of all defects through

the cluster boundaries after a few collisions. In a one-dimensional lattice, however,

collisions of two particles interacting via any finite range potential can only exchange
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their quasi-momenta or leave the quasi-momenta unchanged [PM07, VP08, VP09,

Val10] (for indistinguishable particles both outcomes are equivalent), provided that

the lattice is deep enough so that the band gap precludes interband transitions.

Similarly, collisions with the fixed boundaries can only reverse the quasi-momentum

of a particle. The simplest momentum redistribution mechanism is then a three

particle collision. This happens at a rate proportional to the defect density squared,

which is too slow for cold atom experiments.

In the dimer cluster, in addition to hole defects (monomers), we may have particle

defects (trimers) with different effective mass. The hopping rates of a monomer and a

trimer in the cluster are Ja = 2J and Jt = 3J , respectively, Fig. 37. Before collision,

their momenta are ka and kt, while conservation of momentum, ka+kt = k′a+k′t, and

energy, Ja cos(ka) +Jt cos(kt) = Ja cos(k′a) +Jt cos(k′t), during the collision determine

the new momenta k′a and k′t via

Ja cos(ka) + Jt cos(kt) = Ja cos(k′a) + Jt cos(ka + kt − k′a). (150)

If there is a collision with the wall, or a third defect of either kind, before this process

is reversed, all energetically allowed combinations of ka, kt can be assumed, as will be

verified below by exact numerical simulations.

8.3.1 Two classical particles

The timescale for momentum redistribution can be calculated from purely classical

considerations. A monomer or a trimer moving in the Mott-insulating cluster has

a kinetic energy of Ekµ = −2Jµ cos(kµ) and the corresponding group velocity of

vµ = 2Jµ sin(kµ) [µ = a, t].

Consider first two wave packets in a periodic lattice of length L. After a collision

(the defects can not penetrate each other), their velocities are assumed to be va =

2Ja sin(ka) < vt = 2Jt sin(kt). The next collision happens after time

tc
2

=
L− 1

2

1

Jt sin(kt)− Ja sin(ka)
, (151)

and the new momenta are determined by Eq. (150). It follows that the time interval

between all subsequent collisions is the same tc/2, since Eq. (150) and

L− 1

2

1

Jt sin(kt)− Ja sin(ka)

=
L− 1

2

1

−Jt sin(ka + kt − k′a) + Ja sin(k′a)



106 8 Dynamics and evaporation of defects in Mott clusters

Figure 40: Dynamics of the momentum distribution for the monomer (left column)
and trimer (right column) in a lattice of L = 64 sites. The initial momenta are
ka = π 13

16
and kt = −π 9

16
. Upper panels correspond to periodic boundary conditions,

where the markers on the right indicate multiples of the revival time tc ≈ 46.63/Jt.
Lower Panels are obtained for open boundary conditions. Dashed vertical lines mark
the transmission regions for monomer quasi-momenta as per Eq. (148).

have always a common solution.

In the presence of a wall, or a third defect, the momenta can take any values

energetically allowed. A revival is not expected, but now t−1
c is an effective rate of

momentum redistribution. It is essentially given by J over the mean free path, i.e.,

it is proportional to J times the average defect density, which is indeed much faster

than the rate of three particle collisions.

8.3.2 Two quantum particles: Numerical simulations

We simulate the quantum dynamics of the hole and particle defects in a dimer cluster

using the two-particle Hamiltonian in momentum space, see Appendix C. Each defect

is initially prepared in a momentum eigenstate, with the combined state given by

|ka, kt〉 =
1

L

L∑
ja,jt=1

eikajaeiktjt â†ja t̂
†
jt
|vac〉, (152)
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where â†j creates a monomer and t̂†j a trimer at site j of a finite lattice filled with

dimers, playing here the role of an effective vacuum |vac〉.
Fig. 40 shows the results of our numerical simulations. In the case of periodic

boundary conditions, the dynamics is mainly classical; only two values of momentum

k are assumed by each particle, and after the classical revival time tc, the momentum

distribution is restored to the initial one. For open boundary conditions, however, we

observe fast redistribution of momenta, and already the first revival is hardly notice-

able. We may therefore conclude that a single trimer can catalyze the redistribution

of momenta of monomers, making the evaporation of almost all hole defects possible,

provided that their average kinetic energy is initially close to the center of the band.

This will be verified by the following many-body calculations.

8.4 Many-body numerical simulations

To study the dynamics of several defects under experimentally realistic conditions,

we use a sufficiently long lattice that can accommodate dimer clusters spanning a few

dozen sites. The complete Hilbert space for such a system is too large to be amenable

to exact diagonalization treatments. We therefore resort to time-dependent density

matrix renormalization group specifically, the TEBD algorithm. Even then, however,

simulating the full Bose-Hubbard model is a difficult task. This is due to sizable

quantum fluctuations present even in the pure dimer cluster for any finite interaction

strengths U/J . These fluctuations contribute to the many-body entanglement and

consume much of the computational resources required to simulate the dynamics of

the defects. We therefore introduce an effective model for the defects only.

8.4.1 Many defect effective theory in the strong-interaction limit

Since the states with different number of particles per site have energies separated by

multiples of U(� J), the numbers of monomers, dimers, and trimers in a lattice are,

to a good approximation, conserved separately. This allows us to treat the monomers,

dimers, and trimers as distinguishable species, each represented by hard-core bosons,

Eqs. (16). Furthermore, as discussed in section 8.1, dimers forming stable clusters

do not contribute to the dynamics of the system. For our initial conditions, typically

containing a single cluster, we can thus reformulate the problem as one of the hole

and particle defects moving on the background of dimers or vacuum, with the spatial

configuration of the dimer cluster entering the effective Hamiltonian for the defects

only as a parameter.

We define a reference system in which the pure dimer cluster occupies certain

lattice sites while all the defects are placed at the beginning (left side) of the lattice.
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As the defects move in the lattice, the effective hopping rates depend on whether

they are inside or outside the Mott-insulating cluster. In turn, the position of the

cluster depends on the positions of the defects, since each defect crossing the system

from the left to the right shifts the position of the dimers, and the cluster as a whole,

by one site to the left. The effective Hamiltonian for the defects can then be cast as

Ĥ =
L−1∑
j=1

N∑
−→n=0

Ĥ
[Θ(j+−→n )]
j ⊗ P̂

−→n
[j+2,L] ≡

L−1∑
j=1

H̃j, (153)

where P̂
−→n
[j+2,L] is the projector onto the subspace containing exactly −→n hole and

particle defects on sites j + 2 to L, while each local operator Ĥ
[Θ]
j acts on sites j and

j + 1 as

Ĥ
[Θ]
j = −J [Θ]

a (â†j âj+1 + H.a.)t̂j t̂j+1t̂
†
j+1t̂

†
j

−J [Θ]
t (t̂†j t̂j+1 + H.a.)âj âj+1â

†
j+1â

†
j. (154)

Here â†j and âj (t̂†j and t̂j) are the hard-core bosonic creation and annihilation op-

erators for the monomers (trimers). The function Θ(j) is initialized for all j with

respect to the reference system, and it can take two values: Θ(j) = 1 for site j + 1

being empty (vacuum) and Θ(j) = 2 for j + 1 containing a dimer. Then the hopping

rates for the monomers are J
[1]
a = J and J

[2]
a = 2J , and for the trimers are J

[1]
t = 0

(they can not move on an empty lattice in first order in J) and J
[2]
t = 3J .

Note that since the effective Hamiltonian (154) contains two species of particles

with hardcore interactions, it can not be mapped onto a model of free fermions via

the Jordan-Wigner transformation (which is possible for identical hardcore bosons).

The dynamics is therefore non-trivial and actual calculations require numerical many-

body (TEBD) techniques. The practical advantage of the effective model—besides

the largely reduced number of particles—is that the fast timescale U−1 is eliminated

from the system’s dynamics and in our numerical simulations we can choose Trotter

steps on the time scale . J−1. Further discussion on the effective defect model is

given in Appendix D.

8.4.2 Initial states

In our numerical calculations, we use several typical configurations of the defects in

the lattice, each configuration described by a pure quantum state. Various coherent

and incoherent superpositions of such configurations would represent mixed initial

states.

We consider piecewise product states. A Mott-insulating segment of length l
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contains a fixed number of particles n at every site (n = 2 inside the dimer cluster

and n = 0 in the vacuum),

|·〉nl =
l⊗

j=1

(â†j)
n

√
n!
|vac〉, (155)

with |vac〉 denoting the true vacuum. Each segment can contain an additional defect.

For a defect localized as site j, we use the notation

|j+〉nl =
â†j√
n+ 1

|·〉nl , (156a)

|j−〉nl =
âj√
n
|·〉nl (n ≥ 1), (156b)

with ± corresponding, respectively, to a particle and a hole defect. Similarly, we

denote a defect with momentum k, which must be a multiple of 2π/l, as

|k〉n+
l =

1√
l

l∑
j=1

eikj|j+〉nl , (157a)

|k〉n−l =
1√
l

l∑
j=1

eikj|j−〉nl (n ≥ 1). (157b)

We prepare the cluster by joining Mott-insulating segments with and without

defects. Since we are only interested in low defect densities, we do not use segments

containing multiple defects. In order to perform TEBD simulations, the initial states

have to be represented in the MPS form, which is discussed in Appendix E.

8.4.3 Numerical results

Figures 41 and 42 show the time evolution of defects in a n = 2 Mott-insulating

cluster surrounded by vacuum, obtained from the full Bose-Hubbard model. Hole

defects with quasi-momenta at the center of the band can easily leave the cluster

after just a few scattering events, Fig. 41. Hole defects prepared at the edges of the

band remain trapped in the cluster. An additional particle defect, which itself can

not leave the cluster, induces fast momentum redistribution of the hole defects, large

fraction of which can now leave the cluster.

The same effect is observed with localized defects, Fig. 42. For hole defects alone,

about one third of their population leaves the cluster (note that the localized initial

state of each defect has uniform distribution of momentum k ∈ [−π, π], and not

energy Ek ∈ [−4J, 4J ]), while an additional localized particle defect increases this
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Figure 41: Density of monomers (left column) and trimers (right column) in the n = 2
Mott-insulating cluster of 24 sites surrounded by empty lattice, |·〉032, on both sides.
In the top panels, the initial state of the cluster | − π/2〉2−8 |·〉28|π/2〉2−8 corresponds
to two monomers at the center of the band moving to the left and right. In the
central panel, the initial state |π〉2−8 |·〉28|0〉2−8 corresponds to two monomers at the
upper and lower band edges. In the bottom panel, the initial state |π〉2−8 |π/2〉2+

8 |0〉2−8
is the same as in the central panels plus a particle defect at the center of the band,
moving to the right. The interaction strength is U = 100J . The density of monomers
(trimers) corresponds to the probability of finding exactly one (three) particles at a
given site. A TEBD [Vid03] algorithm with bond dimension χ = 200 is used for the
time evolution with a fourth order Trotter decomposition and time step size 1/50J ,
with particle number conservation explicitly included in the MPS [DCJZ05].

fraction significantly.

In Fig. 43(a) and (b) we show the time evolution of the total population of

monomers outside the dimer cluster pertaining to the cases illustrated in Figs. 41 and

42, respectively. Again, hole defects with quasi-momenta in the center of the band

easily escape the cluster even without the assistance of a particle defect, Fig. 43(a).

Conversely, for the hole defects with quasi-momenta at the edges of the Bloch band

in the cluster, very little population is found outside the cluster in the long time
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Figure 42: Same as Fig. 41 but for localized initial states: Top panel, |4−〉28|·〉28|4−〉28,
two localized monomers; bottom panel, |4−〉28|4+〉28|4−〉28, same plus a localized trimer.
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Figure 43: Total population (integrated density,
∑31

j=1〈â
†
j âj〉 +

∑88
j=58〈â

†
j âj〉) of

monomers outside the dimer cluster. (a) Initial states of the cluster are: in the
upper black branch, |−π/2〉2−8 |·〉28|π/2〉2−8 (solid line), |−π/2〉2−8 |4+〉28|π/2〉2−8 (dashed
line), and | − π/2〉2−8 |π/2〉2+

8 |π/2〉2−8 (dot-dashed line); in the lower blue branch,
|π〉2−8 |·〉28|0〉2−8 (solid line), |π〉2−8 |4+〉28|0〉2−8 (dashed line), and |π〉2−8 |π/2〉2+

8 |0〉2−8 (dot-
dashed line). (b) Initial states of the cluster are: |4−〉28|·〉28|4−〉28 (solid line),
|4−〉28|4+〉28|4−〉28 (dashed line), and |4−〉28|π/2〉2+

8 |4−〉28 (dot-dashed line). The inter-
action strength is U = 100J . Numerical parameters are the same as in Figs. 41
and 42, and the curves terminate when the accumulated cut-off error equals 10−2.
The gray lines are obtained from the equivalent effective model, with the time step
increased to 1/10J .

limit (the small fraction of monomer population in the vacuum is due to the finite

binding energy U of the dimers). Adding a particle defect in the cluster significantly

increases the fraction of monomers outside the cluster; we find that the increase is

always larger for a particle defect in the center of the band than for a localized one.
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Figure 44: Total population (
∑63

j=1〈â
†
j âj〉 +

∑160
j=98〈â

†
j âj〉) of monomers out-

side the dimer cluster of 32 sites surrounded by empty lattice, |·〉064, on both
sides. (a) Initial states of the cluster are: in the upper black branch,
| − π/2〉2−8 |·〉28|π/2〉2−8 | − π/2〉2−8 (solid line), | − π/2〉2−8 |4+〉28|π/2〉2−8 | − π/2〉2−8
(dashed line), and | − π/2〉2−8 |π/2〉2+

8 |π/2〉2−8 | − π/2〉2−8 (dot-dashed line); in the
lower blue branch, |π〉2−8 |·〉28|0〉2−8 |π〉2−8 (solid line), |π〉2−8 |4+〉28|0〉2−8 |π〉2−8 (dashed
line), and |π〉2−8 |π/2〉2+

8 |0〉2−8 |π〉2−8 (dot-dashed line). (b) Initial states of the
cluster are: |4−〉28|·〉28|4−〉28|4−〉28 (solid line), |4−〉28|4+〉28|4−〉28|4−〉28 (dashed line),
and |4−〉28|π/2〉2+

8 |4−〉28|4−〉28 (dot-dashed line). (c) Initial states of the clus-
ter are: |π〉2−8 |·〉28|0〉2−8 |4−〉28 (solid line), |π〉2−8 |4+〉28|0〉2−8 |4−〉28 (dashed line), and
|π〉2−8 |π/2〉2+

8 |4−〉28|4−〉28 (dot-dashed line). Simulations were performed with the effec-
tive model. Bond dimensions χ = 300 are used, and the time step size is 1/10J . The
curves terminate when the accumulated cut-off error equals 10−1.

For the initially localized hole defects, Fig. 43(b), and without assistance of a

particle defect, we find that, as expected, about a third of their total population

occupying the center of the Bloch band leaves the cluster in the long-time limit. A

particle defect can further increase the portion of escaping population of the hole

defects by redistributing their quasi-momenta over the entire band.

Note that the results of numerical simulations for the system with a particle

defect are reliable for shorter times as compared to the simulations with the hole

defects only, which is due to the larger entanglement created dynamically upon the

trimer-monomer collisions.

So far we have been restricted to the treatment of only two monomers and one

trimer and for relatively short times, because in the full Bose-Hubbard model the fast
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Figure 45: Illustration of the single-defect physics in the two species model.

growing entanglement in the system limits the numerical method. With the effective

model containing only the hole and particles defects, we can simulate the dynamics

for much longer times with the same numerical accuracy, as can be seen in Fig. 43.

The perfect agreement between the full and effective models allows us to employ the

effective model for simulating larger systems and for longer times.

Fig. 44 shows numerical results for a system containing initially up to four defects.

As expected, the evaporation works for the larger systems as well. Most importantly,

in the presence of a particle defects, the number of hole defects left in the cluster

in the long-time limit falls well below unity (extrapolating the curves to somewhat

larger times than shown in Fig. 44, if necessary).

8.5 Two species Bose-Hubbard model

We have seen in the previous sections that, in the single species Bose-Hubbard model,

the hopping amplitudes of a monomer inside an n = 2 Mott-insulating cluster and

on an empty lattice differ by a fixed factor of 2. More flexibility is offered by the two

species Bose-Hubbard model, which we now briefly discuss. The Hamiltonian for the

system is

Ĥ = −Ja

∑
j

(â†j âj+1 + H.a.)− Jb

∑
j

(b̂†j b̂j+1 + H.a.)

+
Ua

2

∑
j

â†j â
†
j âj âj +

Ub

2

∑
j

b̂†j b̂
†
j b̂j b̂j

+Uab

∑
â†j âj b̂

†
j b̂j, (158)

where âj (b̂j) are the bosonic operators for the particles of type a (b) hopping between

adjacent sites with the rate Ja (Jb), while Ua, Ub and Uab are the intra- and inter-

species on-site interactions.

Assuming the conditions Ua, Ub, Uab, |Ua + Ub − 2Uab| � Ja, Jb, we first consider

the situation where each lattice site is either empty or contains a single a-b dimer, that

is, a pair of strongly interacting (via Uab) particles a and b localized on the same site.

Upon adiabatic elimination of the non resonant states containing unpaired particles

on neighboring sites [SBE+09], we obtain an effective Hamiltonian of the form of
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Eq. (15), where now the dimer hopping and nearest-neighbor interaction are given

by

J̃ = −2JaJb

Uab

, B̃ = −2

(
2J2

a

Ua

+
2J2

b

Ub

+
J2

a + J2
b

Uab

)
. (159)

With all the interactions repulsive, the anisotropy parameter

∆ = B̃/2J̃ =
Ja

Jb

(
1

2
+
Uab

Ua

)
+
Jb

Ja

(
1

2
+
Uab

Ub

)
(160)

is larger than 1 for any finite Ua/Uab or Ub/Uab, and the Mott-insulating cluster of

a-b dimers is stable.

Inside the n = na + nb = 2 (na = nb = 1) Mott-insulating cluster, a hole defect

of type a (unpaired particle b) is created by âj, see Fig. 45. The defect hops in the

cluster with the rate Ja while outside the cluster its hopping rate is Jb. It must

be stable and not resonantly converted into a pair of particles b and a single b-hole

(unpaired particle a), which requires that Ub − Uab � Ja, Jb. Neglecting the second-

order corrections of the order of J2
a,b/Ua,b,ab, we have the effective single-particle

Hamiltonian (149) with JA = Ja and JB = Jb. Using the results of Appendix B, we

can calculate the transmission probability T (k) of the particle through the domain

wall separating the regions A and B for various Jb/Ja, which is shown in Fig. 39.

At Ja = Jb (α = 1) we find an almost perfect transmission for all k, up to a small

correction due to finite interactions. The above results equally apply to a hole defect

of type b (unpaired particle a) with the replacement a↔ b.

We have performed numerical simulations of the dynamics of several defects in a

dimer cluster surrounded by vacuum using the full model of Eq. (158). For computa-

tional reasons, we truncate the local Hilbert space to three bosons of each species per

site, which is justified by the fact that, due to the strong interactions, the occupation

of a single site by more particles can safely be neglected.

In Fig. 46 we show the behavior of two unpaired particles b, or a-holes, moving

in the cluster with different initial velocities. In the case of Ja = Jb (top panel), both

defects almost completely leave the cluster upon the first encounter with the walls.

For Ja 6= Jb, only partial transmission of each defect is observed, depending on its

initial quasi-momentum, as per Fig. 39. As an example, at Ja = 2Jb (central panel)

the unpaired particle b with k = π/2 can exit the cluster, while that with k = π/4

can not, as its quasi momentum is close to the lower band edge.

Fig. 47 illustrates the results for a pair of initially localized defects of different

type. Again, for Ja = Jb, both defects easily leave the cluster through its walls, but

when Ja 6= Jb, only a fraction of the population of each defect leaves the cluster

after the first collision with its wall. Note, however, that since the two types of hole
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Figure 46: Density of unpaired particles b, or a-holes, in the cluster (left column),
and particles a (right column), in the lattice with a Mott-insulating cluster of a-b
dimers spanning 24 sites surrounded by empty lattice, |·〉032, on both sides. The initial
state of the cluster | − π/2〉2−a

8 |·〉28|π/4〉2−a
8 corresponds to two a-hole defects moving

to the left with velocity 2Ja, and to the right with velocity
√

2Ja, respectively, while
all particles a are dimerized with particles b (no b-hole defects). The parameters are
Ua = Ub = 60Jb, Uab = 40Jb, and Ja = Jb (top panel), Ja = 2Jb (central panel), and
Ja = 1

2
Jb (bottom panel). A TEBD algorithm with bond dimension χ = 100 is used

for the time evolution with a fourth order Trotter decomposition and time step size
1/50Jb, with the particle number conservation for each species explicitly included in
the MPS.

defects have different effective mass, their collisions with each other and the walls

of the cluster can effectively redistribute their momenta, and no trimer defects are

required to purify the Mott-insulating cluster.

8.5.1 Fermionic Hubbard model

A related work [HMMR+09] deals with fermionic dimers described by the Hubbard

model. After preparing a cold atomic gas with filling of n ' 2 in the trap center,

followed by turning off the trap, the hole defects will simply tunnel out of the cluster
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Figure 47: Dynamics of an initially localized unpaired particle b, or a-hole, in the
cluster (left column), and an unpaired particle a, b-hole, in the cluster (right column),
for the initial cluster state |4−a〉28|·〉28|4−b〉28. All parameters are as in Fig. 46, and the
bond dimension of the TEBD is χ = 200.

into the vacuum. In one dimension, this is equivalent to the two-species bosonic model

discussed above, for Ua = Ub and Ua/Uab.Ub/Uab → ∞, i.e., if double occupancies

by a single species is completely suppressed, as in the fermionic case. In this case

however, according to (160), the effective attraction between two pairs approaches

its minimum, because the effective second-order tunneling of the on-site pairs is not

restrained by the interaction between the pairs. This corresponds to the critical

value ∆ = 1 for the anisotropy and the dimer cluster is unstable. Thus, although the

transmissibility is perfect in this case, i.e., the hole defects are not effected at all by

the boundaries, the cluster also dissolves on a time scale Uab/J
2. A numerical study

using the Heisenberg model and an initial product state cluster as in our case, but

without any defects, has been published recently [KMT11]. It shows the decay of the

cluster and also the different velocities of paired and unpaired particles.

To conclude, in one-dimensional Mott-insulating clusters of repulsively bound

dimers of bosons [PSAF07], hole defects (unpaired particles, or monomers) can evap-
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orate through the cluster boundaries, taking away the entropy of the system. In the

case of dimers of identical bosons, only part of the monomer population can leave

the cluster unassisted. Complete evaporation of the hole defects is possible in the

presence of catalyzing particle defects (trimers), which efficiently thermalize the hole

defects via momentum redistributing collisions. The particle defects themselves can

not leave the cluster, due to the large energy mismatch 2U between a single excess

particle on top of the n = 2 Mott-insulating cluster and on an empty lattice.

In the case of dimers composed of two different bosonic species, the defect evap-

oration proceeds by itself, without the need of any catalyzing species.
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Part IV

t-DMRG in the Heisenberg picture

White’s DMRG and it’s more recent generalizations to time evolution using TEBD

or t-DMRG algorithms are indispensable tools in the numerical simulation of one-

dimensional quantum many body systems. They permit high-accuracy calculations,

provided that the entanglement between any two complementary partitions remains

small. For finite-range interactions this is the case for the ground state [VC06].

However in real time evolution the entanglement often grows linear in time, limited

only by the Lieb-Robinson upper bound [LR72, BHV06, EO06]. Very often the

actual time evolution of the entanglement entropy is indeed linear. For example for

the spin-1
2

XY chain the evolution of the entanglement entropy was investigated in

[FC08] showing explicitly the linear growth in time.

However the evolved state contains a lot of information which is of little interest.

Experimental measurements as well as theories are almost solely concerned with few

particle properties, i.e., quantities that can be expressed in terms of expectation values

of only a small number of elementary operators. This suggests to go to the Heisenberg

picture instead, and to simulate the dynamics of these operators. Prosen et al.

[PŽ07, PP07] where the first to pursue this approach. They observed an exponential

speed up in numerical simulations of local operators for integrable systems. So far

there is however no general understanding of why this is the case and whether or not

integrability is crucial. In the present part of this thesis we have a closer look at this

question. In section 9 we first introduce matrix product operators (MPO), which are

used to represent operators in the Heisenberg picture TEBD. In section 10 we first

provide an explanation of the speed-up for integrable models that can be mapped to

free fermions. We also argue that integrability is not necessary and that the existence

of a conservation law may suffice for the efficient simulation of the dynamics of local

operators that constitute the conserved quantity. We will discuss the spin-1
2

and

spin-1 XXZ models as specific examples supporting and illustrating our arguments.

In section 11 we discuss in detail how to take conserved quantities into account for the

construction of matrix product operators, and what simplifications and advantages

arise from this.
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9 Matrix product operators

MPOs can be understood as a generalization of product operators in the same way

as shown in (70) for MPS,

Ô = Tr

[⊗
m

(∑
j

A[m],j ôj

)]
. (161)

The ôj form an orthogonal basis of the local operator space of single site, normalized

according to the Hilbert-Schmidt norm,

Tr
[
ô†j ôj′

]
= δj,j′ . (162)

The space of operators can be mapped to a “super-space” of kets via

Ô =
∑
~i,~j

o~i,~j|~i〉〈~j| 7−→ |Ô〉 =
∑
~i,~j

o~i,~j

∣∣∣ ~j~i 〉. (163)

Again the ~i and ~j are vectors of occupation numbers for every lattice site, thus

corresponding to a Fock state. In these terms we talk about an upper in- and a lower

out-chain. (“In” and “out” refer to the original operator acting as a function.) An

MPO is then equivalent to an MPS representation of such a “super-state”. E.g., the

Schmidt decomposition at two neighboring bonds reads

|Ô〉 =

χ∑
α,β=1

d−1∑
i=0

d−1∑
j=0

λ[m−1]
α Γ

[m]i,j
α,β λ

[m]
β

∣∣∣ j
i

〉
m
⊗ |α〉A ⊗ |β〉B. (164)

The structure of the Γ tensors for certain symmetric operators will be discussed in

sections 11.1 and 11.2. Note that the local Hilbert space dimension d in general has

to be restricted to some reasonable value, usually by allowing for a maximum on-site

number d of states (e.g. by allowing for a maximum occupation number of d−1). This

is because otherwise certain operators (even such basic ones as a particle annihilator

or even unity) would have non-vanishing contributions from infinitely many states

(particle numbers) and in general can not even be normalized.

The relevant measure for the resources required to approximate an operator well

by an MPO is now the entanglement in operator space, a possible measure being

the operator space entanglement entropy [PP07] (OSEE) which is defined just as

the entanglement entropy (75) for MPS. It must not be confused with the systems

statistical entropy when interpreting Ô as a density matrix: As a striking example, the



120 9 Matrix product operators

Figure 48: In the grand canonical Hilbert space a product operator can be interpreted
as a state on a double chain, which can be in general maximally entangled locally,
but not at all along the chain.

infinite temperature density matrix 1/dL has maximal statistical entropy of L log2(d)

but it is clearly a product operator and therefore the OSEE is 0. On the other hand

a projector |Ψ〉〈Ψ| is always pure and has statistical entropy 0 while its OSEE is just

the entanglement entropy of the state |Ψ〉 which can be as large as L log2(d)/2, in

which case there will be no efficient approximation by an MPO.

We observe that a product operator always maps to a product state, i.e., with

bond dimension χ = 1, and therefore with no entanglement between the sites:

⊗
m

Ô[m] =
⊗
m

(∑
i,j

o
[m]
j,i |i〉m〈j|m

)
7−→

⊗
m

(∑
i,j

o
[m]
j,i

∣∣∣ j
i

〉
m

)
. (165)

Product operators, and eventually sums of a small number of those, e.g. correlators,

form the majority of physically interesting quantities, namely those which are po-

tentially measurable in real many body systems. What makes a Heisenberg picture

dynamical simulation a promising approach, is the fact that we find no entanglement

in them initially, i.e., at time t = 0.This is illustrated in Fig. 48.

The Heisenberg equation of motion for the operators, i∂tÔ =
[
Ô, Ĥ

]
, gives rise

to a Schrödinger type equation of motion for the “super-states“, i∂t|Ô〉 = H̃|Ô〉, with

the new Hamiltonian

H̃ = 1⊗ Ĥ − Ĥ ⊗ 1. (166)

Thus this “super-Hamiltonian” acts on the in- and out-chains independently. (In

general the dynamics is however not just the dynamics of two independent chains,

because the initial operator will be mapped to a state with strong entanglement

between the in- and out-chain, equation (163).)
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10 Dynamical simulation of integrable and non-

integrable models in the Heisenberg picture21

In order to do Heisenberg picture simulations using e.g. the TEBD scheme, the

operator Ô(t) at time t is expressed in terms of a matrix product operator (MPO). For

typical observables this is straightforward for the initial time t = 0. Time evolution

is then calculated by updating the matrices according to the Heisenberg equation

of motion using a Trotter decomposition. Because this corresponds to a Schrödinger

type equation of motion in the super space, efficient simulation again requires that the

bond dimension of the MPO is limited to a maximum value χ. We restrict ourselves

to open boundary conditions here, but this is not an issue for local operators as long

as the time is shorter than time required to reach the boundaries, which is essentially

given by system size over the finite speed at which information can spread through the

system [LR72]. This means that only the χ largest Schmidt values in the Hilbert space

of operators are kept, corresponding to a small operator-space entanglement between

any two complementary partitions of the lattice. To quantify the entanglement of

an operator Ô(t), which, as discussed in the previous section, can be viewed as state

vector in operator space, we use the operator space Rényi entropies (OSRE):

Sα =
log2 Tr κ̂α

1− α
≥ Sβ, β > α > 0 (167)

Here κ̂ is the corresponding reduced density matrix in operator space resulting from

tracing out the left or right partition of the in- and out-doublechain at a given bond.

In the limit α → 1, Sα is the well known von Neumann entropy, which is a good

measure of bi-partite entanglement. For α → 0, Sα gives the dimension of the

Hilbert space. Clearly for an MPO of bond dimension χ, the maximum for all Rényi

entropies is log2 χ. Although it is not yet fully established when a quantum state or an

operator is faithfully represented by a matrix product with finite bond dimension, one

can employ the results of Schuch et al. [SWVC08a] to show that efficient simulation

is impossible if the Rényi entropies with α > 1 scale faster than logarithmically with

time. If Sα>1 grows linearly in time, we must expect that the computational cost

required to reach a certain accuracy, which is polynomial in χ, will grow exponentially

with time (note that this is not necessarily true for Sα with α ≤ 1 [SWVC08a]). In

fact for the time evolution of typical state vectors in the Schrödinger picture this is

very often the case [SWVC08b]. On the other hand an at most logarithmic growth

of Sα>1 is a necessary condition for an efficient simulability. Although not sufficient,

it also gives good indication when such a simulation is possible. In the following we

21This section is based on the publication [MUF11].
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will discuss the time evolution of the OSRE for a generic model, the XXZ chain,

Ĥ = −1

2

∑
j

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1 + ∆σ̂zj σ̂

z
j+1

)
, (168)

where σ̂x,y,z denote the Pauli matrices in the spin-1
2

case and the spin-1 matrices

(eigenvalues −1, 0, 1) in the spin-1 case respectively. The spin-1
2

case is integrable for

any value of the anisotropy ∆ and maps to interacting fermions using the Jordan-

Wigner transformation (99). For the special case of ∆ = 0 (spin-1
2

XX model) it can

be mapped to free fermions.

10.1 Integrable models equivalent to free fermions

Let us consider the spin-1
2

XXZ model as a generic example of a 1D integrable model.

We have calculated the time evolution of the OSRE S2 for different types of simple

operators using the TEBD scheme with open boundary conditions and a fourth order

Trotter decomposition [SS99]. The restriction to open boundary conditions is not an

issue for local operators as long as the time is shorter than the propagation time to

reach the boundaries [LR72]. Although not shown the operator space von-Neumann

entropy S1 has the same scaling behavior. One clearly notices that the OSRE of

all operators scales at most logarithmically in time, an observation made already by

Prosen et al. for other integrable models [PP07, PP09]. In the special case of ∆ = 0

the entropy even saturates at a finite value for some operators like σ̂z or products of

operators at a small number of different lattice sites.

In the following we will provide an explanation of the entropy scaling for the case

of the XX-model, i.e., for ∆ = 0, which can be mapped to free fermions. This will be

done by reexpressing the XXZ model in terms of Majorana-fermion operators [Pro08]:

ŵ2j−1 =
(∏
l<j

σ̂zl

)
σ̂xj

ŵ2j =
(∏
l<j

σ̂zl

)
σ̂yj . (169)

The Majorana operators are Hermitian and fulfill anti-commutation relations {ŵj, ŵl} =

2δjl. The three types of interactions in the XXZ-model can be reexpressed as

σ̂xj σ̂
x
j+1 = −iŵ2jŵ2(j+1)−1,

σ̂yj σ̂
y
j+1 = iŵ2j−1ŵ2(j+1), (170)

σ̂zj σ̂
z
j+1 = −ŵ2j−1ŵ2jŵ2(j+1)−1ŵ2(j+1).
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Figure 49: OSRE dynamics for the 40 site spin-1
2

XXZ model for a split in the center.
The legend gives initial operator and anisotropy in the order in which the arrow cuts
the graphs. Dashed lines mark infinite index operators (see text). χ = 1000 is used
in all cases and the numerical error is negligible on the time scale shown.

A complete basis in the operator space is given by

P̂α =
∏
j

ŵ
α2j−1

2j−1 ŵ
α2j

2j , (171)

where α ≡ (α1, α2, . . . ) and {αl} ∈ {0, 1}N . We can now define adjoint-fermion

annihilators and creators via

âj|P̂α〉 = αj|ŵjP̂α〉,
â†j|P̂α〉 = (1− αj)|ŵjP̂α〉, (172)

with {âj, â†l} = δjl. Associating the adjoint vacuum |P̂0〉 with the unity operator 1,

i.e., |1〉 = |P̂0〉, we can express all operators in terms of adjoint-fermion excitations

[PP09]:

|P̂α〉 =
∏
j

(
â†2j−1

)α2j−1
(
â†2j
)α2j |1〉. (173)

Mapping the Heisenberg equation then gives a Schrödinger like equation for the evo-

lution in operator space,

i
d

dt
P̂α =

[
P̂α, Ĥ

]
7→ i

d

dt
|P̂α〉 =

∣∣∣[P̂α, Ĥ]〉 =: Ĥ|P̂α〉. (174)
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with a “super”-Hamiltonian Ĥ. Explicitly calculating the terms in the commutator

for the XX-model via

|[P̂α, σ̂xj σ̂xj+1]〉 = 2i
(
â†2j â2(j+1)−1 − h.a.

)
|P̂α〉, and

|[P̂α, σ̂yj σ̂
y
j+1]〉 = −2i

(
â†2j−1â2(j+1) − h.a.

)
|P̂α〉 (175)

yields the XX super-Hamiltonian

ĤXX = i
∑
j

(
â†2j â2j+1 + â†2j−1â2j+2 − h.a.

)
(176)

This Hamiltonian corresponds to two uncoupled chains of free fermions. The total

number of adjoint fermions,
∑2N

m=1 â
†
mâm, is conserved. Note that the anisotropy ∆

in the original XXZ Hamiltonian would introduce recombination and pair creation

of adjoint fermions across the chains. Although the above mapping is non-local,

operators acting only left of a given site j will be mapped to fermions that are again

only left of the pair {2j − 1, 2j} of sites. So the OSRE of the original XX-model will

be the same as the corresponding state vector Rényi entropy of two uncoupled chains

of free fermions. Thus we have to calculate the entanglement dynamics of the two

uncoupled chains with an initial state given by the operator in questions to get the

OSRE in the XX model. The key point is that local operators are equivalent to very

special, simple initial states in the corresponding fermion chains. We here have to

distinguish between finite index operators (those that involve only a finite number of

adjoint fermions after the mapping) and infinite index operators (involving a number

proportional to the system size L). An example of the first kind is

|σ̂zj 〉 = −iâ†2j−1â
†
2j|1〉 (finite index). (177)

Examples of the second kind arise either from local operators like

|σ̂xj 〉 = ij−1

2(j−1)∏
l=1

â†l

 â†2j−1|1〉 (infinite index) (178)

or non-local ones like

|F̂ 〉 =

∣∣∣∣∣
j−1∏
l=1

σ̂zl

〉
= ij−1

2(j−1)∏
l=1

â†l

 |1〉 (infinite index). (179)

We proceed by showing that the bi-partite Rényi entropy S2 for a system of free
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fermions in 1D is strictly related to the number fluctuations in any one of the two

partitions assuming a fixed total number. We can assume that the initial state of the

fermions corresponding to the local operators of interest is a Gaussian state. Due to

the free evolution it remains Gaussian and can be transformed into a product form

ρ̂ =
⊗

j ρ̂j where the ρ̂j correspond to site j and have eigenvalues
1±ηj

2
, |ηj| ≤ 1. The

square of the variance of the total particle number in each partition is then [Kli06]

∆N2
A =

∑
j∈A

(1− η2
j )/4 = ∆N2

B. (180)

On the other hand

S2 = − log2 Trρ̂2

= −
∑
j

log2

(
1− (1− η2

j )/2
)
. (181)

Using 2
ln 2

x
2−x ≤ − log2 (1− x) ≤ 1

ln 2
x

1−x , where 0 ≤ x ≤ 1
2
, one obtains

4

ln 2
∆N2 ≥ S2 ≥

2

ln 2
∆N2. (182)

For finite index operators we find saturation as can be seen in Fig. 49. This reflects

the fact, that there is only a finite number M of free particles present in both chains

together. Thus a finite χ of 2M yields the exact solution [CPH+10, HPCP09] for all

times22. For infinite index operators we observe logarithmic growth of the OSRE, see

Fig. 49. While the infinite number of involved adjoint fermions may suggest a linear

growth of ∆N2, this is not the case as can be understood in the following way: The

super state corresponding to an infinite index operator like |F̂ 〉 (a finite size example

of which is shown in Fig. 49) is filled up completely with fermions in the left part

of the chains. Inside these regions the Pauli principle prevents hopping of fermions

and thus only particles at the edge where the effective band-insulator is connected

to the vacuum can move and fill the empty parts of the double chain. For the half

filled chain Antal et al. have shown that ∆N2 ∼= (ln t + D)/2π2 in the limit of large

t with a known constant D > 0 [AKR08]. Other infinite index operators that result

in an initial occupation of the two chains different from that of |F̂ 〉 only on a finite

number of sites show the same logarithmic long time behavior of the OSRE, see |σ̂+〉
at a single site, also shown in Fig. 49. This explains the logarithmical growth of the

OSRE in the XX model as a generic example of an integrable model that can be

22S2 remains finite also because ∆N2 t→∞−−−→ M
4 as the probability for a particle of being left or

right becomes equal.
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mapped to free fermions.

10.2 Non-integrable models

We now show that there is another class of systems and operators which may allow

an efficient simulation of dynamics in the Heisenberg picture. We construct an upper

bound for the OSRE Sα, α > 1, in terms of the infinite-temperature auto-correlation

function (ITAC). Without loss of generality we assume a normalized operator

1

dL
Tr
[
Ô†Ô

]
= 1, (183)

where d is the local dimension of the chain. With respect to a splitting of the chain

of length L into two parts here and below all Â act on the sub chain A of length LA

and all B̂ on B of length LB. Any operator can be represented as

Ô (t) =
∑
m,n

Λmn (t) Âm ⊗ B̂n (184)

with orthonormal bases 1
dLA

Tr
[
Ân
†Âm

]
= 1

dLB
Tr
[
B̂†nB̂m

]
= δnm. Λ is a matrix

and its singular values
√
λn, (λ1 ≥ λ2 ≥ . . . are the eigenvalues of the reduced

density matrix in operator space κ̂) are coefficients of a Schmidt decomposition Ô(t) =∑χ
n=1

√
λnÂn(t) ⊗ B̂n(t). The Schmidt rank χ is at most d2 min(LA,LB). This allows

to express the infinite-temperature auto-correlation function in terms of Schmidt

coefficients. We find for α > 1∣∣∣〈Ô†(t)Ô〉
T=∞

∣∣∣ =
∣∣Tr
[
Λ† (t) Λ (0)

]∣∣
≤

χ∑
k=1

√
λkλk (0) (185)

≤ Tr
√
κ̂(0)

(
χ∑
k=1

√
λk(0)

Tr
√
κ̂(0)

λ
α
2
k

) 1
α

(186)

=
(

Tr
√
κ̂(0)

)1− 1
α

(
χ∑
k=1

λαk

) 1
2α

(187)

In (185) we made use of von Neumann’s trace inequality (see e.g. [Gan59]). Further-

more Jensen’s inequality can be used because x
1
α is a concave function in x. Finally

(187) is true by the Cauchy-Schwarz inequality. We thus obtain the following esti-

mate for Rényi entropies, assuming an initial product operator, Tr
√
κ̂(0) = 1, for
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Figure 50: OSRE dynamics for the 40 site spin-1 XXZ model for a split in the center.
Dotted, dashed, and solid lines indicate simulations using χ = 300, χ = 500, and
χ = 1000 respectively. The left panel features a logarithmic, the right panel a linear
time scale. The curves show clear indication of the predicted long-time scaling. The
insets show two corresponding ITAC curves for σ̂+

20 (note the logarithmic vertical
scaling).

simplicity:

Sα ≤
2α

1− α
log2

∣∣∣〈Ô†(t)Ô〉
T=∞

∣∣∣ for α > 1. (188)

If the ITAC decays with a power law or even slower in time, Sα will grow at most

logarithmically for α > 1. The ITAC has been studied over decades in condensed

matter physics as it is measured in nuclear magnetic resonance and neutron scattering

experiments in magnetic spin chains. While not proved rigorously, it is believed that

the Bloembergen-de Gennes conjecture [Blo49, DG58, KM63] of spin diffusion holds:

If
∑L

j=1 Ôj is a conserved quantity, then the ITAC of Ôj will show diffusive behavior

(i.e. scale as ∼ 1/
√
t in 1D). To our knowledge there is no counter example except

for integrable models, where this diffusive behavior can turn into a ballistic one (i.e.

∼ 1/t in 1D) [FM98, Sir06]. Nevertheless it always remains slower than exponential.

We conclude that in the Heisenberg picture TEBD we can expect S2 to grow at most

logarithmically in time, even if the model is non-integrable, if the initial operator

belongs to a conservation law (for integrable systems there is an infinite number of

those, but one is sufficient). This in turn indicates that for this special operator an

efficient classical simulation should be possible for large times.

The spin-1 XXZ chain is an example of a non-integrable system, although exten-

sion to additional higher-order nonlinear terms may turn it into an integrable one

[BT86, Sog84]. However the total z-magnetization
∑L

j=1 σ̂
z
j is conserved, where σ̂zj is

now the z-component of the spin at lattice site j with eigenvalues −1, 0, 1. This con-

servation law will lead to a logarithmic scaling of S2 for σ̂z. Fig. 50 shows numerical
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Figure 51: Operator space von Neumann entropy dynamics for the 40 site Ising
model (189) for a split in the center. The initial operator is σ̂x20. The time axis has
logarithmic scale, while the insert shows the same curves with a linear time scale.
The curves show clear indication of the predicted long-time scaling. Due to the lack
of exploitable conserved quantities, in TEBD calculations we are limited to a block
dimension of χ = 400. The curves end where the cutoff error reaches 5 · 10−3.

indication for this. It should be noted that the spin-1 model is computationally much

harder than the spin-1
2

model since the local Hilbert space dimension is increased.

Although we do observe logarithmic scaling of the OSRE corresponding to σ̂z, the

matrix dimension χ up to the point where the cutoff error reaches 10−2. A clear

tendency is visible: On the logarithmic scale S2 approaches a straight line, while in

the linear plot a sub-linear scaling is evident. This is consistent with the expected

logarithmic scaling of the OSRE. For σ̂+ Fig. 50 shows logarithmic scaling of S2 only

for ∆ = 1 because only then the total x- and y-magnetization are also conserved.

Otherwise it indicates linear growth of S2 with time. We can understand this now

as a direct consequence of the Bloembergen-de Gennes conjecture, which predicts

a power law rather than an exponentially decaying ITAC in the isotropic case (see

insets of Fig. 50).

From the numerical results we can also extract the von Neumann entropy as a

function of time. It scales exactly as S2 in the spin-1
2

model for all operators we looked

at. The results are not conclusive in the spin-1 case however, since the dependence

on the matrix dimension χ used in the simulations is much stronger. At least they

do not contradict the presumption, that again the scaling is the same as for S2.

As another example the von Neumann entropy can be calculated using Heisen-

berg picture TEBD for the regular and chaotic Hamiltonians used in the work of

Prosen and Žnidarič [PŽ07]. As representative regular (chaotic) model these authors
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Figure 52: OSRE dynamics for the 40 site spin-1/2 XXZ model for a split in the
center. a) σ̂+

20 – purple dashed and black solid lines indicate simulations using χ = 500
and χ = 1000 respectively. b) σ̂x20 – green dotted, purple dashed, and black solid
lines indicate simulations using χ = 100, χ = 200, and χ = 400 respectively. The
matrix dimension can be chosen larger for σ̂+ than for σ̂x, because the latter does
not commute with the total particle number N and the resulting more efficient MPS
representation, see section 11.1, can not be used. Note that although both operators
are equivalent here (σ̂z = σ̂++(σ̂+)

†
) and therefore show the same logarithmic scaling

of S2, the prefactor is smaller in the σ̂+ case.

considered the quantum Ising model in a longitudinal (tilted) field,

Ĥ = −
∑
j

(
σ̂xj σ̂

x
j+1 +Bxσ̂

x
j +Bzσ̂

z
j

)
, (189)

with Bx = 0 and Bz = 2 (Bx = Bz = 1). We plotted the numerically calculated

OSRE in Fig. 51. It shows the expected time dependence, i.e. logarithmic scaling in

the regular and linear scaling in the chaotic case.
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Finally note, that there are cases where the OSEE scales logarithmically with

time, but this behavior can not be directly explained by the arguments presented in

the present section: Fig. 52 shows S2 for σ̂+ on a single site in the spin-1/2 XXZ

model (and for σ̂x which does not contain any additional information in this model

because σ̂x = σ̂+ + (σ̂+)
†
). The scaling is logarithmic independently of the value of

∆. However a direct mapping to free fermions is only possible for an anisotropy of

∆ = 0. The operators are directly connected to conserved densities only for ∆ = 1.

The logarithmic scaling for other values of the anisotropy can be ascribed to the

integrability of the model, given that it is not observed in the spin-1 case above.

However this connection can not be made directly via the arguments given here.

In summary, in this section we have given a simple explanation of the at most

logarithmic time dependence of the OSRE S2 for the spin-1/2 XX model as a generic

integrable model that can be mapped to free fermions. The operator dynamics in

that model is equivalent to two uncoupled chains of free fermions with an initial

state corresponding to the operator under consideration. For local operators these

initial states are rather simple. E.g. an operator σ̂zj corresponds to a single fermion

in each chain. We have shown that the bi-partite OSRE S2 is strictly related to

the fluctuations of the fermion number in the two partitions, which in turn allowed

a simple understanding of the entropy dynamics. We have shown furthermore that

for any model, integrable or not, S2 in operator space can be bound by the infinite-

temperature auto-correlation function of the considered operator. This in turn means

that for systems and observables for which the Bloembergen-de Gennes conjecture of

spin diffusion holds, an at most logarithmic growth of the operator space entangle-

ment is expected. The latter applies e.g. for local operators that constitute a global

conservation law.



131

11 Particle number conservation in quantum many-

body simulations with matrix product opera-

tors23

Particle number conservation is present in many non-relativistic model systems. It

results from a global U(1) symmetry, i.e. the Hamiltonian is invariant under the

transformation

âj 7→ â′ = eiφâj, (190)

where φ is any real number. Particle number conservation is implemented in MPS

algorithms routinely. Its explicit implementation is necessary if one wants to calculate

ground state (section 3.5) or dynamical (sections 5 and 6) properties in the low filling

limit, where the average number of particles per lattice site is small compared to 1,

as it results e.g. from the discretization of a continuous model, section 3.

In DMRG-like dynamical simulations matrix product operators naturally arise

either as density-operators at non-zero-temperature [VGRC04, ZV04] or in open sys-

tems [VGRC04, ZV04, HPCP09, PŽ09] or as general operators in the Heisenberg

picture, see [PŽ07] and the preceding section. (The Hamiltonian itself can also be

conveniently expressed [McC07] as an MPO of small bond dimension in the case

of short-range interactions, which gives rise to elegant formulations of the algorithm

[Sch11].) In this section we will focus on operators in the Heisenberg picture. Most of

the results are however equally valid in the context of finite temperature calculations.

The purpose of the present work is to show how symmetries can be imposed

on MPOs in general and to discuss the computational benefits and penalties. For

simplicity, we will restrict the discussion to particle number conservation. It can be

incorporated into MPOs on two levels: The first option reduces the Hilbert space

dimension only halfway, as the operator is not projected onto a certain symmetry

sector. It only requires the operator to annihilate (or create) a fixed number ∆N of

particles (which might be zero),

Ô =
∑
N

P̂N−∆N ÔP̂N , (191)

where P̂N is the projectors onto the N particle Hilbert space. This property is con-

served under time-evolution with a particle-number conserving Hamiltonian. The

operator is not restricted to any particular input particle number. We will therefore

refer to this as the grand-canonical method24. The way the symmetry is imposed is

23This section is based on the publication [Mut11].
24We do however not require the operator to actually be a density matrix, which would imply
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Figure 53: In the grand canonical Hilbert space a product operator can be interpreted
as a state on a double chain, which can be in general maximally entangled locally,
but not at all along the chain, see Fig. 48. If the operator is however projected to
a certain particle number, the corresponding double-chain state gets entangled also
along the chain. This entanglement can overcompensate the benefits from shrinking
the Hilbert space, depending on the actual particle number in question.

then equivalent to the usual way of adjoining good quantum numbers to an MPO

[Sch11]. This approach has already proven useful in practical calculations [MUF11]

and introduces no entanglement overhead. With the second option, we however go

a step further: The Hilbert space dimension is reduced further by projecting onto a

symmetry sector. This second method of using the conservation law for MPOs re-

stricts the operator to a particular input particle number. We will therefore refer to it

as the canonical method. This approach however introduces additional entanglement

in the MPO, as illustrated in Fig. 53. If the filling (number of particles per lattice

site) is sufficiently low this is not a problem. However it can make the method less

useful in the generic case.

In sections 11.1 and 11.2 we will discuss the two distinct ways of imposing particle

number conservation onto MPOs in detail. Section 11.3 will give details on how to

construct the projected operator in practice and gives exact results on the entangle-

ment overhead introduced. Section 11.4 gives example calculations, which illustrate

how the two methods and also the “brute force” method, where no symmetry is taken

into account, perform in comparison.

11.1 Unprojected operators

To introduce the first method, which works in the grand-canonical Hilbert space, we

observe that, because Ĥ conserves the total particle number, H̃ conserves the number

difference between the in- and out- chains:[
H̃, N̂ ⊗ 1− 1⊗ N̂

]
= 0 (192)

If we consider operators (191) which annihilate (or create) a fixed number of

∆N = 0
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particles ∆N (like, e.g., the particle annihilation and creation operators âm or â†m
at some given site m, and products of those) they will map to an eigenstates of this

difference. (If Ô is a density matrix, [Ô, N̂ ] = 0 and therefore it is such an operator

and ∆N = 0.) Note that the identity on the whole Hilbert space,

1 =
⊗
m

1[m] =
∑
N

P̂N , (193)

is a prototype of an operator of the form given in equation (191). ∆N now is a

conserved quantity in the super-space. The Heisenberg dynamics will then take place

only in a specific symmetry sector (with a fixed ∆N) and the MPO can be restricted

accordingly. This can be done in exactly the same way as for MPS when the total

number itself is conserved:

Consider the canonical form of the MPO and the Schmidt decomposition at two

neighboring bonds, equation (164). If |Ô〉 is a particle number difference eigenstate,

then also the Schmidt vectors |α〉A and |β〉B must be eigenstates of the particle

number difference in their respective subsystems. By the notation used in (164),

the local particle number difference ∆Nlocal = ∆N − ∆NA − ∆NB = j − i is thus

determined from j, α and β alone,

j + ∆NB = i−∆NA + ∆N. (194)

In an actual implementation (with no further local degrees of freedom) there is no

second physical index i necessary in the Γ tensor. This particular form of the MPS

can be kept during time evolution, using the scheme discussed in section 2.1. For

details we refer the reader to the literature [DCJZ05, McC07, SZV10].

This grand-canonical method gives great advantage [MUF11] over the plain ap-

proach which works for general systems without conservation laws. A comparison for

an example case will be given in section 11.4.

Before we continue to the second method, we take a look at the entanglement in

this first approach. Therefore we give an explicit construction of the initial MPO in

two steps. The first step is the construction of an MPO for the identity operator.

This task is trivial, but we take a route that can be conveniently generalized in section

11.2: Given a state
∑

~j c~j|~j〉, that is a superposition of Fock states, the mapping

|j〉m 7−→ |j〉m〈j|m, (195)

which is applied locally at every site m simultaneously, maps it to a superposition∑
~j c~j|~j〉〈~j| of projectors onto these Fock states. We get the identity matrix by su-
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perimposing all Fock states with amplitude c~j = 1,

∑
~j

|~j〉 =
⊗
m

(
d−1∑
j=0

|j〉m

)
7−→

⊗
m

(
d−1∑
j=0

|j〉m〈j|m

)
=
∑
~j

|~j〉〈~j| = 1. (196)

It’s MPO representation,

|1〉 =
∑
~j

|
~j
~j
〉 =

⊗
m

(
d−1∑
j=0

∣∣∣ j
j

〉
m

)
(197)

thus has large entanglement between the two chains. The entanglement is however

contained within the matrices themselves. There is no entanglement between different

lattice sites, thus a bond dimension of χ = 1 suffices. The matrices of the MPO are

simply 1.

In the second step we get the MPO representation of Ô by applying Ô itself only

to the out-chain of |1〉,

|Ô〉 =
∑
~i,~j

o~i,~j

∣∣∣ ~j~i 〉 =
(
1⊗ Ô

)
|1〉. (198)

A typical observable will be reasonably simple, e.g., a two point correlator â†mâmâ
†
m′ âm′

which is a product operator. Another one is a local current i
(
â†j âj+1 − â†j+1âj

)
for

which χ = 2. Then its MPO will also have a simple form. This will change dramati-

cally however, if we project the operator to the subspace of a given particle number,

as discussed in the next section.

11.2 Projected operators

This method works in the canonical Hilbert space. H̃ does of course not only conserve

the number difference between the two chains, but also the total numbers in the in-

chain, N̂ (in) = N̂ ⊗ 1, and in the out-chain, N̂ (out) = 1⊗ N̂ , separately :[
H̃, N̂ ⊗ 1

]
=
[
H̃,1⊗ N̂

]
= 0 (199)

However MPO representations for general operators (191) are not eigenstates of any

of these. Taking into account particle number conservation in each chain separately

therefore only applies to operators that are nonzero only in a given symmetry sector.

If we project the operator to a given input particle number N , i.e., take only one of
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the summands in (191),

ÔN = P̂N−∆N ÔP̂N , (200)

we find an eigenstate of the total particle number in the upper and in the lower chain

simultaneously. Thus when working in the canonical Hilbert space, particle number

conservation can be used twice:

If in (164) |Ô〉 is a particle number eigenstate in both chains, then also the Schmidt

vectors |α〉A and |β〉B must be eigenstates of the particle number in both chains in

their respective subsystems. The local particle numbers i and j are thus determined

from α and β alone,

N
(in)
A + j +N

(in)
B = N

N
(out)
A + i+N

(out)
B = N −∆N. (201)

In an actual implementation (with no further local degrees of freedom) there are no

physical indices i and j at all necessary in the Γ tensor. This particular form of the

MPS can again be kept during time evolution. Thereby the T tensor, equation (81),

will break up into even smaller blocks, speeding up the calculation of it’s singular

value decomposition even more than in the grand-canonical method.

We get the MPO representation of ÔN by applying Ô itself to the out-chain of

the MPO representation of P̂N ,

|ÔN〉 = |P̂N−∆N ÔP̂N〉 =
(
1⊗ Ô

)
|P̂N〉. (202)

P̂N is now the identity only in the sector of particle number N . It vanishes in the

remains of the grand canonical Hilbert space. P̂N takes the role as a prototype of a

projected operator, analogous to the identity in (198). The difficulty of the second

approach results from the fact that P̂N is clearly not a product operator, but entangled

between sites, as illustrated in Fig. 53. We will construct it explicitly in section 11.3.

Working with the canonical method has the advantage, that we do not have to

limit the local dimension explicitly to d, as d < N is automatically fulfilled, which

comes in handy, e.g., for bosonic models.

Of course Ô and ÔN are not equivalent. But in certain cases this is not relevant,

e.g. if Ô is an observable (which implies ∆N = 0), and we evolve Ô in time using

Heisenberg t-DMRG in order to find the dynamics of its expectation value. Then

the result is the same using ÔN if the state |Ψ0〉 of the system for which we want to

calculate the expectation value is a particle number eigenstate, N̂ |Ψ0〉 = N |Ψ0〉:

〈Ψ0|Ôt|Ψ0〉 = 〈Ψ0|P̂N ÔtP̂N |Ψ0〉 = 〈Ψ0|
(
P̂N ÔP̂N

)
t
|Ψ0〉 (203)
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Figure 54: Logarithmic scaling of the OSEE of the projector P̂N at the center of
the chain with particle number N and system size L. We show S[L/2] in a system
of fermions (d = 2) on a lattice, a) as a function of N for fixed system size L = 40.
(Note that as N > L/2 the entropy goes down again due to the Pauli principle and
particle hole symmetry.) b) as a function of L for a fixed filling of N/L = 1/2. –
Symbols are from the numerical evaluation of (205). Straight lines show fits to these.
Dashed lines show the upper limit (210). We checked numerically, that also for a
higher local dimension d the prefactor of the logarithmic scaling actually stays much
below this limit.

An example of this type is given for a bosonic model at the end of section 11.4.

11.3 Preparing the projector onto the subspace of a fixed

particle number

What is left is the construction of the MPO representation of |P̂N〉. Following the

arguments in section 11.1 for the construction of |1〉, this reduces to preparing an

MPS that is a superposition of all Fock states with total particle number N , which

will be discussed in the following. The operationally simple mapping (195) together

with (163) will transform it to |P̂N〉.
Let us denote the normalized, equal superposition of all N -particle Fock states

which are locally constrained to a maximum particle number of d− 1 by |N〉. If we

want to work without a local constraint, we set d = N + 1. Given a bi-partition of

our lattice we note that its Schmidt decomposition is

|N〉 =
N∑
l=0

λ
[m]
l |l〉A ⊗ |N − l〉B. (204)

The sub-chain A comprises sites 1 to m, the sub-chain B comprises sites m + 1 to

L. This shows that the MPS will have bond dimension χ = N + 1. λ
[m]
l

2
is the
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probability of finding l particles left of bond m:

λ
[m]
l

2
=

Ωd (l,m) Ωd (N − l, L−m)

Ωd (N,L)
. (205)

Here Ωd(n, L) is the number of possibilities to distribute n indistinguishable particles

among L sites in such a way that no site is occupied by more than d − 1 particles,

given by the recursion formula [Fre56]

Ωd(n, L) =

min(n,d−1)∑
j=0

Ωd(n− j, L− 1); Ωd(n, 0) = δn0. (206)

For d = 2 this reduces to Ω2(n, L) =
(
L
n

)
, for d > n it reduces to Ωd>n(n, L) =

(
L+n−1

n

)
.

We continue with the Schmidt decomposition at the following bond. (Repeating

it for all bonds leads to the canonical form of the MPS.) Here the remaining task is

to determine the coefficients of

|N〉 =
N∑
l=0

N∑
r=0

λ
[m]
l Γ

[m+1]
lr λ[m+1]

r |l〉A ⊗ |r − l〉m+1 ⊗ |N − r〉B′ . (207)

The λ tensors are already known from (205). The sub-chain B′ comprises sites m+ 2

to L. Thus Γ
[m+1]
lr

2
λ

[m+1]
r

2
is the probability of finding N − r particles at the right

side of bond m+ 1 provided that there are already l particles at the left of bond m:

Γ
[m+1]
lr

2
λ[m+1]
r

2
=

Ωd(r − l, 1)Ωd(N − (r − l), L− 1)

Ωd(N,L)
×

× Ωd(l,m)Ωd(N − r, L−m− 1)

Ωd(N − (r − l), L− 1)
× 1

λ
[m]
l

2 . (208)

Equations (205) and (208) determine the Γ and λ tensors completely. Thus we

can calculate the coefficients of the MPS exactly. By means of (195) and (163) this

also yields the MPO representation of P̂N :

|N〉
(195)

7−→
P̂N√

Ωd(N,L)

(163)

7−→
|P̂N〉√

Ωd(N,L)
. (209)

The Γ matrices do not have physical indices explicitly, because the local particle

numbers are given by the bond indices (due to particle number conservation), l and

r here. Note that in this particular case, the value of the bond index has a physical



138 11 Particle number conservation in MPO

meaning25, namely the particle number at the left side of the bond m considered.

The absence of physical indices is especially useful for bosonic systems, because the

local Hilbert space dimension must not artificially be cut-off.

This construction shows the main difficulty of going to the canonical version of the

MPO: Even the trivial operator P̂N has an extensive bond dimension of χ = N + 1.

The initial entanglement, even of a local operator, is no longer only between the chains

but also along the chain, see the illustration in Fig. 53 and the example in Fig. 56. Al-

though computations can be done with a higher bond dimension here, this advantage

is often overcompensated by the initial entanglement. However a linear growth of the

matrix dimension does not imply, that the algorithm is inefficient. In contrast, the

required matrix dimension in general grows exponentially with time[CC05], which is

a more severe limitation. Here, a linear scaling of the matrix dimension implies that

the OSEE scales only logarithmically with system size,

S[m] = −
L∑
l=0

λ
[m]
l

2
log2

(
λ

[m]
l

2
)
≤ log2(N + 1), (210)

which is favorable26. This entropy is minor compared to the entropy which has to

be added on top for time evolution. Beyond that, for a low over all particle number

N , the entropy that can be generated dynamically is bounded or at least drastically

reduced. Longer times can then be reached as we will see in the example of the next

section.

In fact the upper bound (210) is not even tight, as shown in Fig. 54. For details

on the relation between the scaling of the entropy and the efficiency of an MPS see

[SWVC08a].

11.4 Examples

As first example we take the spin-1
2

XXZ chain

Ĥ = −1

2

∑
〈m,n〉

(σ̂xmσ̂
x
n + σ̂ymσ̂

y
n + ∆σ̂zmσ̂

z
n) , (211)

where the σ̂ denote the Pauli matrices and the sum runs over all nearest neighbors.

The U(1) symmetry (rotation around the z-axis) of the system implies conservation

25I.e., here we have a one to one correspondence between index and good quantum number.
26Actually the polynomial scaling of the matrix dimension can be taken as the definition of

efficient. The nontrivial problem in general is to show that from the logarithmic scaling of the
entanglement entropy one can conclude that there exist efficient approximations by MPS, see, e.g.
[VC06].



11.4 Examples 139

10
0

10
1

10
−2

10
−1

10
0

IT
A

C

t

a)

5 10 15

10
−2

10
−1

10
0

IT
A

C

t

b)

Figure 55: Spin-1
2

XXZ-chain of length L = 40 at ∆ = 0.8, time evolution in the
Heisenberg picture. ITAC at site m = 20: Re [CN(t)] (N = 1, 2, 4, 8, 16, 20 from
top down, calculated using the canonical (solid line) and the grand-canonical method
(orange circles)) and Re [G(t)] calculated from the unprojected (dashed orange) and a
“brute force” method (blue crosses) the latter ignoring particle number conservation
completely. a) double logarithmic plot to emphasize the power law behavior of the
ITAC. b) same data as a), but linear time axis for better visibility of the difference in
time reached by the different methods (and in the different symmetry sectors in case
of the projected method). Bond dimensions used where χ = 4000 in the canonical
calculations, χ = 1000 for the grand-canonical example, and χ = 500 in the “brute
force“ calculation. All curves end at the point where the accumulated cut-off error
reaches 10−2. The TEBD algorithm is used with time step size 1/4 in all cases. Curves
are shown only up to t = 20. At later times boundary effects show up, because the
excitations have propagated to the end of the chain.

of the total magnetization M̂z =
∑

m σ̂
z
m. Via a Wigner-Jordan transformation this

transforms into particle number conservation in the equivalent fermion lattice model.

The properties of the model depend strongly on the anisotropy ∆. E. g., in the
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Figure 56: Spin-1
2

XXZ-chain of length L = 40 at ∆ = 0.8, time evolution in the

Heisenberg picture. a) OSEE S[20](t) of P̂N σ̂
z
20P̂N (solid, N = 1, 2, 4, 8, 16, 20 from

bottom up) and σ̂z20 (dashed: from canonical, crosses: from ”brute force“ calculation
without taking symmetry constraints into account at all). Panels b) and c) both show
the OSEE S[m](t) between sites m and m+ 1. Initial operators are b) σ̂z20 (calculated
using the grand-canonical method) and c) P̂16σ̂

z
20P̂16 (calculated using the canonical

method). The same data sets as in Fig. reffig:delta08 are used.

critical regime, |∆| < 1, spin transport is believed to be ballistic, while in the gapped

regime |∆| > 1 it seems diffusive [PŽ09]. A quantity of interest in this context is the

infinite temperature auto-correlation function (ITAC)

〈Ô†t Ô〉T=∞ = Tr
[
Ô†t Ôρ̂T=∞

]
(212)

for Ô = σ̂zm at a given lattice site m. The expectation value is taken at infinite

temperature, which makes it straight forward to calculate it from the Heisenberg
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Figure 57: Exponent κ of the decay of the ITAC in ths spin-1
2

XXZ model as a
function of the anisotropy parameter ∆. Red triangles show TEBD calculations
using unprojected operators with the same parameters as in Fig. 55. The gray boxes
indicate the original results [FM98] using exact diagonalization. In Both cases the
exponent is extracted using the fitting function (213).

picture time evolution27. In general it decays as t−1/2, an observation usually called

spin diffusion.

In the spin-1
2

chain this behavior has been confirmed numerically for ∆ & 1.

Around ∆ = 1 there is a change towards a t−1 power law, which is the exact asymp-

totic behavior at ∆ = 0. However the exponents are hard to extract numerically,

especially for ∆ around 1 and larger, because of the limited timescales accessible.

In the grand canonical ensemble there exist exact diagonalization [FM98], as well

as transfer matrix DMRG [Sir06] studies. The Heisenberg picture t-DMRG results

using unprojected operators presented here reproduce these results, see Fig. 57. The

timescale accessible with Heisenberg picture t-DMRG is somewhat larger. For the

value of ∆ = 0.8 we find an exponent for the decay of κ ≈ −0.83 from the data shown

27Note that the infinite temperature density matrix of any system is proportional to the unity
operator. Therefore from the definition of the ITAC, we see that in order to calculate it we have to

do the same in the Schrödinger picture (take Tr
[
Ô† · ÛtÔ1Û†

t

]
, where Ût is the full propagator) and

in the Heisenberg picture (take Tr
[
Û†
t Ô

†1Ût · Ô
]
). In fact this is an example where the requirement

of using a mixed state in the Schrödinger picture makes it exactly as demanding as the Heisenberg
picture calculation.
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in Fig. 55 using an empirical fitting function proposed in [FM98],

〈Ô†t Ô〉T=∞ ≈ tκ
[
A+Be−γ(t−t0) cos (Ω(t− t0))

]
, (213)

applied in a least squares fit to the data in the range t = 3 to t = 11.5. Although

this value for the exponent is slightly closer to −1 than in previous calculations

[FM98, Sir06], a decisive conclusion whether there is a sudden change of the exponent

at ∆ = 1 can not be drawn.

We calculate the ITAC here to compare the power of the different methods dis-

cussed above. In Fig. 55 we show Heisenberg picture t-DMRG results for the nor-

malized ITAC at ∆ = 0.8 both in the grand canonical ensemble,

G(t) = 〈(σ̂zm)t σ̂
z
m〉T=∞ = Tr[(σ̂zm)t σ̂

z
m]/2L, (214)

as well as in the canonical ensemble,

CN(t) = 〈(σ̂zm)t σ̂
z
m〉T=∞ = Tr

[(
P̂N σ̂

z
mP̂N

)
t
σ̂zm

]/(L
N

)
. (215)

Because Tr
[(
P̂M ÔP̂N

)
t
Ô
]

= Tr
[
P̂M ÔtP̂N Ô

]
= Tr

[
ÔtP̂N ÔP̂M

]
we can calculate the

latter from both the projected, time-evolved or the unprojected, time-evolved σ̂zm.

The behavior in the canonical ensemble is as expected: For low filling, CN(t) decays

only to a finite value. (From combinatorial arguments we find that 1 − CN(t) ≤
4N/L.) Therefore at half filling CN(t) has to be smaller than G(t), because the latter

is the weighted average

G(t) =
1

2L

N∑
n=0

(
L

n

)
Cn(t). (216)

Fig. 55 shows, that for low filling the canonical approach is clearly superior. How-

ever for generic filling (N = L/2 corresponds to a total magnetization of 0) longer

times can be reached with the grand-canonical algorithm. All curves shown are calcu-

lated using about the same computational resources. In order to propagate P̂N σ̂
z
20P̂N

for half filling up to the same point in time with the same accuracy as σ̂z20 an increase

of computation time and memory by an order of magnitude would be required. The

reason becomes apparent in Fig. 56a. The OSEE scales logarithmically both in the

grand-canonical and the canonical picture for generic filling. This is expected from

[PŽ07, MUF11]. In fact the OSEE looks the same for both σ̂z20 and P̂N σ̂
z
20P̂N , but

the latter is shifted by the entanglement present in the initial MPO. The cut-off error

in the algorithm therefore grows faster and the calculation breaks down earlier. In

this example the higher bond dimension available for fixed particle number does not
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Figure 58: Expectation value of the local density at site 15 on a Bose Hubbard
lattice (restricted to local dimension d = 4) of length L = 30 at U = 10 initially
prepared in the state |0101 . . . 0101〉, calculated using the projected (solid, black)
and the unprojected method (orange circles). Bond dimensions used where χ = 2000
in the canonical calculations, χ = 500 in the grand canonical. Both curves end at
the point where the accumulated cut-off error reaches 10−3. The dashed line shows
the result of a Schrödinger picture calculation which can be regarded exact, as the
cut-off error is numerically zero at this time scale. The TEBD algorithm is used with
time step size 1/16 in all three cases.

quite make up for this. Vice versa, to propagate σ̂z20 up to t = 20, as can be done

easily for P̂N σ̂
z
20P̂N for low filling, would also require an increase of computational

resources by orders of magnitude.

The OSEE as a function of both lattice position and time is shown in Fig. 56b-c.

The light cone like appearance is imposed by causality28. It confirms that there will be

no finite size effects in the center of the system before times close to 20. The projected

operator is distinguished from the unprojected mainly by the fact, that there is initial

entanglement away from the center (which is where σ̂z20 acts nontrivial), compare to

the illustration given in Figs. 48 and 53. It is constant in time, as |P̂N〉 is an eigenstate

of H̃. The entanglement generated dynamically seems to merely add.

Fig. 55 also shows a “brute force” calculation for G(t), that does not take into

account particle number conservation at all. It is clearly inferior to the unprojected

method, section 11.1. Again a huge increase in computational resources would be

required to reach the same accuracy.

28More rigorous result[BHV06, EO06] of this reasoning have been provided in terms of Lieb-
Robinson bounds.
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As a second example we take the Bose Hubbard model,

Ĥ = −J
∑
〈m,n〉

(
â†mân + h.a.

)
+
U

2

∑
m

â†mâ
†
mâmâm. (217)

The â† and â operators are bosonic creation and annihilation operators. The first sum

is again over nearest neighbors. For convenience, we set the hopping parameter J = 1.

Recently there is a lot of interest in the thermalization of far-from equilibrium states

(not only in this model). Cramer et al. [CFM+08] investigated the dynamics of the

“anti-ferromagnetic” state |Ψ0〉 = |0101 . . . 0101〉 using Schrödinger picture t-DMRG.

They propose an experimental setup to prepare this state and observe its dynamics

in an experiment using ultracold atoms in optical lattices. First measurements have

been reported recently [TCF+11].

Fig. 58 shows the dynamics of the local density at site m = 15 in a system of total

length L = 30. Again the size has been chosen large enough, such that there are no

boundary effects arriving at the center for the times shown. The figure shows the ex-

pectation value in the state |Ψ0〉 (where site 15 is empty) calculated using both the un-

projected, 〈Ψ0|
(
â†15â15

)
t
|Ψ0〉, and the projected method, 〈Ψ0|

(
P̂15â

†
15â15P̂15

)
t
|Ψ0〉.

Since |Ψ0〉 is a particle number eigenstate, both expectation values are identical and

coincide with a Schrödinger picture calculation, 〈Ψ0|tâ†15â15|Ψ0〉t.

Again both curves are calculated using approximately the same numerical re-

sources. For performance purposes, we restrict the local Hilbert space to d = 4. We

find that using the projected operator we can calculate up to considerably larger

times. So here the canonical method is ahead of the grand-canonical, even if the

particle number N is of the order of L/2, in contrast to the first example. While

the canonical method is only moderately affected by a higher local dimension d > 4

(d = 16 being the largest meaningful number here), the unprojected one breaks down

as the Hilbert space dimension increases (not shown in the figure).

Although the timescales reachable are not large enough to see the local density

equilibrate at 1
2

for any of the methods, a Schrödinger picture calculation is actually

the method of choice in this example, as the timescale reachable is still significantly

larger[CFM+08] than in the Heisenberg picture. This is true in spite of the fact, that

the local density is a conserved density and in the Heisenberg picture we therefore

expect much better scaling of the OSEE with time[MUF11]. It can be explained by

the overhead of having to include high local occupation numbers in the Heisenberg

picture (in contrast to the above spin-1
2

example), which are actually not populated

dynamically for the given initial state. This is a quite general drawback of the Heisen-

berg picture calculation whenever the local degree of freedom is large, not necessarily
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because the particles are bosons, but also, e.g., for higher spin models. In the case of

a highly entangled or mixed initial state, the two pictures might compare differently.

Another overhead introduced by allowing for higher local occupation numbers is the

introduction of higher energy scales, because the maximum local interaction energy

in the truncated Bose Hubbard model is U
2

(d − 1)(d − 2). Therefore time steps ∆t

must be reduced as d−2 if a Suzuki Trotter expansion is used, to keep track of the

time evolution correctly.

The two different approaches to include particle number conservation into an

MPO have quite different effects on the performance of a Heisenberg-picture t-DMRG.

The grand-canonical method brings the advantages known from ordinary (t-)DMRG,

namely, the reduction of the Hilbert space dimension without introducing any ad-

ditional entanglement. It is the method of choice in the presence of an appropriate

symmetry. The Hilbert space dimension can be further reduced by projecting the

MPO to a certain symmetry-sector. The effect then is quite counter-intuitive. Al-

though the projected operators do only contain a small subset of the information

present in the grand-canonical MPO, their propagation in time is not always easier.

This is due to the entanglement introduced by fixing the total particle number. (The

identity is not a product operator if projected to a symmetry sector.) In the low

filling case, the reduction of the Hilbert space dimension is more important and we

gain access to longer times. For generic filling however, the grand-canonical method

remains superior.
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A Free bosons quenched in a periodic system

In this appendix we employ the Gaudin transformation [Gau83, KBI93, JPGB08,

BPG08] to study an interaction quench in the Lieb-Liniger models starting from the

ground state of free bosons. It will turn out, that it does not work in general, because

the resulting, transformed wave function can not be normalized.

We assume a ring of length L = 1 with N identical bosons initially in a coherent

superposition, Φ0(x1, . . . , xN) = 1. We work in the fundamental sector R1 : x1 <

x2 < · · · < xN . We decompose

Φ0(x1, . . . , xN) = 1 =
∑

k1<···<kN

ak1,...,kNΨk1,...,kN (x1, . . . , xN) (218)

into eigenfunctions of N free fermions on the ring,

Ψk1,...,kN (x1, . . . , xN) =
1√
N !

∣∣{ei·2π·klxm}
ml

∣∣ , (219)

k1, k2, . . . , kN ∈ Z.

We get the free fermionic wave function at finite time t as

Ψ(x1, . . . , xN ; t) =
∑

k1<···<kN

ak1,...,kN e
it
∑N
j=1

(2π)2k2j
2 Ψk1,...,kN (x1, . . . , xN). (220)

Clearly we get an exact revival for 2πt ∈ Z.

The Gaudin transformation yields the bosonic wave function for finite interaction

strength c. In R1 it reads

Φ(x1, . . . , xN ; t) = Nc,ΨOcΨ(x1, . . . , xN ; t)

= Nc,Ψ
∏

1≤m<n≤N

[
1 +

1

c
(∂n − ∂m)

]
Ψ(x1, . . . , xN ; t)

= Nc,Ψ
∑

k1<···<kN

ak1,...,kN e
it
∑N
j=1

(2π)2k2j
2 ×

×
∏

1≤m<n≤N

[
1 +

1

c
(∂n − ∂m)

]
Ψk1,...,kN (x1, . . . , xN)︸ ︷︷ ︸

=OcΨk1,...,kN (x1,...,xN )

, (221)

with a normalizing factor Nc,Ψ that depends on the interaction strength c as well as

on the wave function transformed. At t = 0 we do get back the initial bosonic wave

function Φ0 as required. The construction of a fermionic wave function that maps to
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the initial bosonic wave function under the Gaudin transformation is usually a tricky

task, but not here, because the derivatives in Oc all vanish.

To find the normalizing factor, we calculate

OcΨk1,...,kN (x1, . . . , xN) =
1√
N !

∑
p∈P({1,...,N})

(−1)pOc
N∏
j=1

ei2πkp(j)xj

=
1√
N !

∑
p∈P({1,...,N})

(−1)p ×

×

[ ∏
1≤m<n≤N

(
1 +

2πi

c
(kp(n) − kp(m))

)] N∏
j=1

ei2πkp(j)xj .(222)

Note that the plain waves are eigenfunctions of Oc and while the phase of the eigen-

value depends on the permutation, its absolute value does not, and we get explicitly

(see also [KBI93])

√
‖OcΨk1,...,kN (x1, . . . , xN)‖2 =:

1

Nc,k1,k2,...,kN
=

∏
1≤m<n≤N

√
1 +

(
2π

c

)2

(kn − km)2.

(223)

Using the fact, that OcΨk1,...,kN does again form an orthogonal set with respect to

the ks, we get

1

Nc,Ψ
=

√√√√ ∑
k1<···<kN

(
ak1,...,kN
Nc,k1,...,kN

)2

. (224)

As shown explicitly for three particles below, this sum does in general not converge

for c < ∞ and our choice of initial conditions Φ0 = 1. This fact is reflected in the

very discontinuous character of the fermionic wave function at finite t, as illustrated

in Fig. 59.

A.1 Explicit calculation for three particles

In the case N = 3 we have

ak1<k2<k3 =
∑

p∈P({1,2,3})

y

R1

dx3 e−i·2π(kp(1)x1+kp(2)x2+kp(3)x3)

= δ(k2)δ(k1 + k3)
i
√

6

π
η(k3) = ak3>0, (225)
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where we use

η(k) =

{
0 k = 0
1
k

k 6= 0
and δ(k) =

{
1 k = 0

0 k 6= 0
. (226)

We get the free fermionic wave function at finite time t as

Ψ(x1, . . . , xN ; t) =
∑
k3>0

ak3e
it(2π)2k23Ψk3(x1, . . . , xN). (227)

The symmetry of the a coefficients allows us to restrict ourselves to use only the

fermionic wave functions where k3 > 0, k2 = 0, and k1 = −k3:

Ψk3(x1, . . . , xN) = 2i[sin(2πk3(x3 − x1))−
− sin(2πk3(x2 − x1))− sin(2πk3(x3 − x2))] (228)

The bosonic wave function then follows as

Φ(x1, . . . , x3; t) = Nc
∑
k3>0

ak3e
it(2π)2k23

∏
1≤m<n≤N

[
1 +

1

c
(∂n − ∂m)

]
Ψk3(x1, . . . , xN)

= Nc
∑
k3>0

ak3e
it(2π)2k23Φk3(x1, . . . , xN), (229)

with the unnormalized bosonic wave function

Φk3(x1, . . . , x3) = − 1√
6

2i

c3

{
c(c2 + 4k2

3π
2) [sin(2πk3(x2 − x1)) + sin(2πk3(x3 − x2))]

+ c(20k2
3π

2 − c2) sin(2πk3(x3 − x1))

+ 4k3π(c2 + 4k2
3π

2) [cos(2πk3(x2 − x1)) + cos(2πk3(x3 − x2))]

+ 8k3π(2k2
3π

2 − c2) cos(2πk3(x3 − x1))
}
. (230)

Using

1

Nc,k3
=

√
1 +

(
2π

c

)2

(2k3)2

[
1 +

(
2π

c

)2

k2
3

]
. (231)
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the normalizing constant reads

1

N 2
c

=
∑
kk>0

(
ak3
Nc,k3

)2

=
∑
k3>0

∣∣∣∣∣i
√

6

πk3

∣∣∣∣∣
2

√

1 +

(
2π

c

)2

(2k3)2

[
1 +

(
2π

c

)2

k2
3

]
2

≥ 6

π2

∑
k3>0

[
1 +

(
2π
c

)2
k2

3

]3

k2
3

=

{
1 c =∞
∞ 0 < c <∞

(232)

So we can not directly sum up (229) numerically. This might be connected to the

fact, that there are no singularities in the Bethe ansatz solution of the Lieb-Liniger

model, except at γ = 0 [LL63, Lie63], which we have taken as initial condition here.

A look at the fermionic wave function, Fig. 59, shows that it appears to have an

infinite number of singularities, and the derivatives in Oc yield no useful results.
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a) b)
2πt = 2−12 2πt = 2−7

c) d)
2πt = 2−3 + 2−12 2πt = 2−2 + 2−7

e) f)

2πt = 2−5 2πt = 1+
√

5
2

Figure 59: Fermionic wave function Ψ(0, x2, x3; t) at different times (darkness =
absolute value, hue = phase). Note the interference effects, resulting in the duality
of wave fronts made out of triangles (b) and triangles made out of wave fronts (c),
the regular but discontinuous structure for times where 2πt is a ratio of two small
integers (e), and the fractal structure for irrational 2πt such as the golden ratio (f).
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B Transmission of a particle through a domain

wall

Here we calculate the probability of transmission of a particle with quasi-momentum

k through a domain wall, as per Eq. (149). For the particle incident from the left,

we solve the stationary Schrödinger equation using the standard scattering ansatz for

the wave function,

ψj =

{
eikj + ρe−ikj j ≤ 0

τeik
′j j ≥ 0

, (233)

where ρ and τ are the complex reflection and transmission amplitudes. The energy

eigenvalue is Ek = E
(A)
k = −2JA cos(k) = −2JB cos(k′) = E

(B)
k′ , and therefore the

refraction is given by

k′ = cos−1

(
cos(k)

α

)
. (234)

Thus the transmission vanishes if cos(k) ≥ α, where α = JB/JA. (In this thesis we

are primarily concerned with the case of α = 1/2, except for section 8.5.)

Continuity at j = 0 implies 1 + ρ = τ , which together with the Schrödinger

equation at j = 0,

(Ĥψ)0 = −JAψ−1 − JBψ1 = Ekψ0, (235)

yields

ρ =
JBe

ik′ + JAe
−ik − 2JA cos(k)

−JBeik
′ − JAeik + 2JA cos(k)

. (236)

The current density in the two parts of the system is given by

fj =

{
f

(A)
j = −iJA(ψ∗jψj+1 − ψjψ∗j+1) j < 0

f
(B)
j = −iJB(ψ∗jψj+1 − ψjψ∗j+1) j ≥ 0

. (237)

One can readily verify that

d

dt
ψ∗jψj = (−iĤψ)∗jψj + ψ∗j (−iĤψ)j = −(fj − fj−1). (238)

For the state of Eq. (233), we have

fin = 2JA sin(k), (239a)

fref = −2JA sin(k)ρ∗ρ, (239b)

ftrans = 2JB sin(k′)τ ∗τ, (239c)
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so that the reflection and transmission probabilities are

R =

∣∣∣∣fref

fin

∣∣∣∣ = ρ∗ρ, (240)

T =

∣∣∣∣ftrans

fin

∣∣∣∣ = α
sin(k′)

sin(k)
τ ∗τ. (241)

On can verify that T +R = 1 as it should.

C Two particle Hamiltonian in momentum space

We consider a pair of distinguishable, locally interacting particles on a lattice de-

scribed by Hamiltonian

Ĥ = −Ja

(
L−1∑
j=1

â†j âj+1 + γâ†Lâ1 + H.a.

)

−Jt

(
L−1∑
j=1

t̂†j t̂j+1 + γt̂†Lt̂1 + H.a.

)

+U
L∑
j=1

â†j âj t̂
†
j t̂j, (242)

where the periodic and open boundary conditions correspond, respectively, to γ = 1

and γ = 0. The operators â†j and t̂†j create soft-core particles interacting via U , which

is convenient for the exact numerical simulations presented in section 8.3.2.

In momentum representation, k = 2πν/L (ν = b−L
2

+ 1c . . . bL
2
c), we have â†k =

1√
L

∑L
j=1 e

ikj â†j and t̂†k = 1√
L

∑L
j=1 e

ikj t̂†j and the two particles have probability L−1 to

be on the same site. The Hamiltonian then reads

Ĥ =

−2Ja
∑
k

cos(k)â†kâk +
(1− γ)Ja

L

∑
k,k′

â†kâk′(e
ik + e−ik

′
)

−2Jt
∑
k

cos(k)t̂†k t̂k +
(1− γ)Jt

L

∑
k,k′

t̂†k t̂k′(e
ik + e−ik

′
)

+
U

L

∑
k,k′,k′′

â†kâk′ t̂
†
k′′ t̂(k+k′′−k′). (243)



154 D Effective theory for monomers and trimers

D Effective theory for monomers and trimers

The non-locality of the effective theory presented in section 8.4.1 might seem surpris-

ing at first sight. From the point of view of quantum information theory, however,

the Hamiltonian (153) is still local, in the sense that the commutator [H̃j, H̃j′ ] van-

ishes except for j′ = j ± 1, despite the fact that the support of any two H̃j, H̃j′ has

a large overlap. This property should always be conserved in any effective theory,

since it guarantees that correlations in the model system travel with the same max-

imal velocity as in the full system [BHV06, EO06]. This property also permits the

application of the TEBD numerical method, in conjunction with the conservation

of the total particle number, to the effective model. For then all the basis states

used in the TEBD (eigenstates of the reduced density matrices for all bi-partitions

of the lattice) are, by construction, the eigenstates of the total particle number in

the corresponding subsystem. Since the total particle number is the only observable

that enters Hamiltonian (153) via P̂
−→n
j , this type of non-locality does not introduce

additional difficulties in the use of the TEBD method.

The effective model can also be extended to higher orders in perturbation theory.

In second order, this introduces nearest neighbor interactions, local potentials and

effective exchange between monomers and trimers. All these terms are of the order

of J2/U and depend on Θ, which can now assume four different values depending

on the type of bond between sites j and j + 1. Another term of the same order

describes hole defect hopping to the next-nearest neighbor site in the cluster. As this

is spanning three sites, it also depends on the state of the central site and requites

more values of Θ. The presence of such a longer-range term would necessitate a more

general numerical simulation algorithm than TEBD. We have verified, however, that

the effective Hamiltonian (154) containing only the terms first order in J already

captures all the essential physics discussed in this paper.

In Fig. 60 we compare the dynamics of hole defects obtained from the full and

effective models, which agree very well for large interaction strength U � J . Ob-

serve, however, that a local theory neglecting the motion of the cluster boundaries,

Fig. 60(d), and therefore violating the conservation of the total number of dimers

and bare particles, does not describe the dynamics quantitatively correct.
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Figure 60: (Color online) Comparison of the full Bose-Hubbard dynamics, Eq. (13)
with U = 100J , (a) and (b), with the effective model, Eq. (153), (c). The initial state
contains a MI cluster of dimers on sites j ≥ 1 and localized monomers at sites j = −1
and j = 2. The density of dimers is shown in (a), and the density of monomers in (b)-
(d). Note that the cluster boundary is shifted upon particle crossing, which manifests
in (a) as a smoothing of step in the dimer density. The effective Hamiltonian without

moving boundaries, Ĥ =
∑L−1

j=1 Ĥ
[Θ(j)]
j , yields the dynamics of (d).
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E MPS representation of a state with particles in

a given single particle state

Here we show how to construct an exact MPS representation for a lattice containing a

fixed number of bosons each in a certain single particle state. The resulting MPS will

be in the canonical representation [PGVWC07] and symmetric [Sch11], i.e., it will

be an eigenstate of the total particle number by construction. The construction is

analogous to that of matrix product operators for fixed total particle number [Mut11],

see section 11.3.

The single particle state is given by a normalized wave-function φj. In the ex-

amples of section 8.4.2, we have φj = 1√
L
eikj with fixed momentum k, while for the

harmonic oscillator ground state used in section 5 φj would be a discretized version

of a Gaussian function, but what follows is really general. The corresponding state

|Ψ1〉 =
∑L

j=1 φj â
†
j|0〉 can be written as

|Ψ1〉 =
(√

qmâ
†
A +

√
1− qmâ†B

)
|0〉A ⊗ |0〉B, (244)

where sub-lattice A spans sites 1 to m and sub-lattice B is from m + 1 to L, while

qm =
∑m

j=1 φ
∗
jφj is the single particle probability of being in A. The bosonic creation

operators â†A and â†B are defined by

â†A =
1
√
qm

m∑
j=1

φj â
†
j, â†B =

1√
1− qm

L∑
j=m+1

φj â
†
j. (245)

The many-particle state of the lattice with N particles in the same single particle

state can then be expressed as

|ΨN〉 =
1√
N !

(√
qmâ

†
A +

√
1− qmâ†B

)N |0〉A ⊗ |0〉B
=

1√
N !

N∑
l=0

(
N

l

)
(246)

×
(√

qmâ
†
A

)l(√
1− qmâ†B

)N−l|0〉A ⊗ |0〉B,
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and the density matrix of the system is

|ΨN〉〈ΨN |

=
1

N !

N∑
l,l′=0

(
N

l

)(
N

l′

)
×
(√

qmâ
†
A

)l|0〉A〈0|A(√qmâA

)l′
⊗
(√

1− qmâ†B
)N−l|0〉B〈0|B(√1− qmâB

)N−l′
. (247)

The density matrix of subsystem A is

ρA = TrB

[
|ΨN〉〈ΨN|

]
=

1

N !

N∑
l=0

(
N

l

)2

(N − l)! (1− qm)N−l

×
(√

qmâ
†
A

)l|0〉A〈0|A(√qmâA

)l
. (248)

Note that ρA has at most χ = N + 1 nonzero eigenvalues, one for each possible

distribution of the N particles between A and B. With P̂
[A]
l the projector onto the l

particle sector of subsystem A, the probability of finding l particles in A is

TrA

[
ρAP̂

[A]
l

]
=

1

N !

N∑
l=0

(
N

l

)2

(N − l)! l! (1− qm)N−l(qm)l

=
N∑
l=0

(
N

l

)
(1− qm)N−l(qm)l

= Bqm(l|N), (249)

which is a binomial distribution.

We can now construct |ΨN〉 as a matrix product state in the canonical [PGVWC07]

form. Given a bi-partition of the lattice, its Schmidt decomposition is

|ΨN〉 =
N∑
l=0

λ
[m]
l |Ψ

l〉A ⊗ |ΨN−l〉B, (250)

with |Ψl〉A = 1√
l!
(â†A)l|0〉A and |ΨN−l〉B = 1√

(N−l)!
(â†B)(N−l)|0〉B. The MPS will have

bond dimension of χ = N + 1. The probability of finding l particles to the left of

bond m is (
λ

[m]
l

)2
= Bqm(l|N). (251)
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We then continue with the Schmidt decomposition at the following bond. The re-

maining task is to determine the coefficients of

|ΨN〉 =
N∑
l=0

N∑
r=l

λ
[m]
l Γ

[m+1]
lr λ[m+1]

r

×|Ψl〉A ⊗ |Ψr−l〉m+1 ⊗ |ΨN−r〉B′ . (252)

The λ tensors are already known from (251). The sub-chain B′ comprises sites m+ 2

to L. Thus
(
λ

[m]
l

)2∣∣Γ[m+1]
lr

∣∣2(λ[m+1]
r

)2
is the probability of finding N − r particles on

the right of bond m+ 1 and l particles on the left of bond m, resulting in

∣∣Γ[m+1]
lr

∣∣2 =
B qm

qm+1
(l|r)

Bqm(l|N)
(253)

=
r! (N − l)!
(r − l)!N !

q−rm+1

(
qm+1 − qm

)r−l(
1− qm

)l−N
.

For the phase to be correct, we obviously have to set

arg
(
Γ

[m+1]
lr

)
= (r − l) arg

(
φm+1

)
. (254)

Equations (251), (253), and (254) completely determine the tensors Γ and λ. Note

that in this particular case, the value of the bond index of λ[m] has a physical meaning

of the number of particles to the left of bond m. The resulting MPS is an eigenstate

of the total particle number, which can be used in TEBD implementations that take

advantage of particle number conservation explicitly, as in this paper.

The construction is more complicated when one intends to prepare Nα particles in

different single particle states α = 1, 2, . . . ,M . From simple combinatorial consider-

ations, we deduce that the Schmidt rank will be χ =
∏

α(1 +Nα), i.e., exponentially

large in the number M of different single particle states. (This implies that, as a start-

ing point for dynamical simulations, one can construct an exact MPS for the ground

state of non-interacting bosons, as done in [MSF10], but not for non-interacting

fermions.) The exact expression in terms of the qm,α will contain overlaps between

the different single particle states, which in general are finite in any subsystem even

if the single particle states are orthogonal on the entire lattice.
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F Two particle time dependent correlations in a

non interacting, homogeneous, spin polarized,

one-dimensional Fermi gas

We calculate g(2)(τ = t0 − t) in the ground state in the thermodynamic limit, where

all momentum eigenstates in [−~kF, ~kF] are occupied and all other states empty.

kF = πρ is the Fermi momentum. Calculating

g(2)(t0 = 0, t)ρ2 =
〈

Ψ̂†0(x)Ψ̂†t(x)Ψ̂t(x)Ψ̂0(x)
〉

(255)

=
1

4π2

∫
dk4 ei(k1+k2−k3−k4)xei

~k22−~k23
2m

t
〈

Ψ̂†0(k1)Ψ̂†0(k2)Ψ̂0(k3)Ψ̂0(k4)
〉

(256)

=
1

4π2

∫ kF

−kF
dk2 dk3

(
1− ei

~k22−~k23
2m

t

)
(257)

= ρ2

(
1− 1

4

∣∣∣∣∫ 1

−1

du eiu
2 ~k2Ft

2m

∣∣∣∣2
)
, (258)

shows that

g(2)(τ) = 1− 1

4

[∫ 1

−1

du cos

(
u2~k2

F(t− t0)

2m

)]2

. (259)

This function is shown in Fig. 36d.
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[Sch11] U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states”, Ann.
Phys. (New York) 326, 96–192 (2011) [DOI:10.1016/j.aop.2010.09.012].

[SDV06] Y. Y. Shi, L. M. Duan and G. Vidal, “Classical simulation of quantum many-body systems with a tree
tensor network”, Phys. Rev. A 74, 022320 (2006) [DOI:10.1103/PhysRevA.74.022320].

[Seb86] P. Seba, “The Generalized Point Interaction In One Dimension”, Czech. J. Phys. 36, 667–673 (1986).

[SF07] B. Schmidt and M. Fleischhauer, “Exact numerical simulations of a one-dimensional trapped Bose
gas”, Phys. Rev. A 75, 021601(R) (2007) [DOI:10.1103/PhysRevA.75.021601].

[Sir06] J. Sirker, “Spin diffusion and the anisotropic spin-1/2 Heisenberg chain”, Phys. Rev.
B 73, 224424 (2006) [DOI:10.1103/PhysRevB.73.224424].

[SK05] J. Sirker and A. Klumper, “Real-time dynamics at finite temperature by the density-matrix renormal-
ization group: A path-integral approach”, Phys. Rev. B 71, 241101 (2005) [DOI:10.1103/PhysRevB.
71.241101].

http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1103/PhysRevA.76.033606
http://dx.doi.org/10.1088/0022-3719/11/16/022
http://dx.doi.org/10.1103/PhysRevB.81.081103
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevE.75.015202
http://dx.doi.org/10.1088/1742-5468/2009/02/P02035
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.74.053616
http://dx.doi.org/10.1103/PhysRevA.74.053616
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.79.063634
http://dx.doi.org/10.1103/PhysRevA.79.063634
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.75.021601
http://dx.doi.org/10.1103/PhysRevB.73.224424
http://dx.doi.org/10.1103/PhysRevB.71.241101
http://dx.doi.org/10.1103/PhysRevB.71.241101


168 References

[Sog84] K. Sogo, “Ground-state and Low-lying Excitations in the Heisenberg XXZ Chain of Arbitrary Spin-
s”, Phys. Lett. A 104, 51–54 (1984) [DOI:10.1016/0375-9601(84)90588-7].

[SPF05] B. Schmidt, L. I. Plimak and M. Fleischhauer, “Stochastic simulation of a finite-temperature
one-dimensional Bose gas: From the Bogoliubov to the Tonks-Girardeau regime”, Phys. Rev.
A 71, 041601(R) (2005) [DOI:10.1103/PhysRevA.71.041601].

[SS99] A. T. Sornborger and E. D. Stewart, “Higher-order methods for simulations on quantum comput-
ers”, Phys. Rev. A 60, 1956–1965 (1999) [DOI:10.1103/PhysRevA.60.1956].

[Suz76] M. Suzuki, “Generalized Trotters Formula and Systematic Approximants of Exponential Operators
and Inner Derivations With Applications To Many-body Problems”, Commun. Math. Phys. 51, 183–
190 (1976) [DOI:10.1007/BF01609348].
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H. P. Büchler and P. Zoller, “Repulsively bound atom pairs in an optical lattice”, Nature 441, 853–
856 (2006) [DOI:10.1038/nature04918].

[Xia96] T. Xiang, “Density-matrix renormalization-group method in momentum space”, Phys. Rev.
B 53, 10445–10448 (1996) [DOI:10.1103/PhysRevB.53.R10445].

[Yan62] C. N. Yang, “Concept Of Off-Diagonal Long-Range Order And Quantum Phases Of Liquid He And Of
Superconductors”, Rev. Mod. Phys. 34, 694–704 (1962) [DOI:10.1103/RevModPhys.34.694].

[YG05] V. I. Yukalov and M. D. Girardeau, “Fermi-Bose mapping for one-dimensional Bose gases”, Laser Phys.
Lett. 2, 375–382 (2005) [DOI:10.1002/lapl.200510011].

[YY69] C. N. Yang and C. P. Yang, “Thermodynamics Of A One-Dimensional System Of Bosons With Repul-
sive Delta-Function Interaction”, J. Math. Phys. 10, 1115 (1969) [DOI:10.1063/1.1664947].

[ZNP97] X. Zotos, F. Naef and P. Prelovsek, “Transport and conservation laws”, Phys. Rev. B 55, 11029–
11032 (1997) [DOI:10.1103/PhysRevB.55.1102].

[ZSH11] J. Z. Zhao, D. N. Sheng and F. D. M. Haldane, “Fractional quantum Hall states at 1/3 and 5/2
filling: Density-matrix renormalization group calculations”, Phys. Rev. B 83, 195135 (2011) [DOI:10.
1103/PhysRevB.83.195135].

[ZV04] M. Zwolak and G. Vidal, “Mixed-state dynamics in one-dimensional quantum lattice systems: A time-
dependent superoperator renormalization algorithm”, Phys. Rev. Lett. 93, 207205 (2004) [DOI:10.
1103/PhysRevLett.93.207205].

http://dx.doi.org/10.1103/PhysRevA.63.053601
http://dx.doi.org/10.1088/0953-4075/41/16/161002
http://dx.doi.org/10.1088/0953-4075/42/12/121001
http://dx.doi.org/10.1088/0953-4075/42/12/121001
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevA.81.011601
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-6596/141/1/012020
http://dx.doi.org/10.1088/1742-6596/141/1/012020
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevLett.103.080404
http://dx.doi.org/10.1103/PhysRevLett.103.080404
http://dx.doi.org/10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1038/nature04918
http://dx.doi.org/10.1103/PhysRevB.53.R10445
http://dx.doi.org/10.1103/RevModPhys.34.694
http://dx.doi.org/10.1002/lapl.200510011
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1103/PhysRevB.55.1102
http://dx.doi.org/10.1103/PhysRevB.83.195135
http://dx.doi.org/10.1103/PhysRevB.83.195135
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.207205


170 References

[Zvo10] M. Zvonarev, “Notes on Bethe Ansatz”, http://cmt.harvard.edu/demler/TEACHING/Physics284/Lec-
tureZvonarev.pdf (2010).


	I Introduction
	Ultracold atoms in optical lattices
	Bose-Hubbard model
	Grandcanonical phase diagram
	Repulsively bound pairs

	Lieb-Liniger model
	Tonks-Girardeau gas
	Bethe ansatz
	Finite temperature
	Attractive interactions

	Bose–Fermi mapping for general contact interactions
	Luttinger liquid theory
	Thermalization dynamics in closed quantum systems

	Matrix product state algorithms
	Matrix product states
	Imposing conservation laws
	Density matrix renormalization group (DMRG)
	Time evolving block decimation (TEBD)


	II Ground state properties of quantum gases
	Discretized models of 1D quantum gases
	Discretization
	Bosonic mapping
	Fermionic mapping
	Jordan-Wigner mapping
	The interacting Fermi gas in a harmonic trap

	DMRG for models with long range interactions
	Polynomially decaying interactions
	Luttinger parameter
	Phase diagram on the lattice


	III Dynamics in strongly correlated quantum gases
	Fermionization dynamics of a strongly interacting 1D Bose gas
	Local relaxation
	Non-local dynamics
	Experimental observation

	Dynamics of pair correlations in the attractive Lieb-Liniger gas
	Numerical simulation of the full many-body case
	The two particle case

	Time dependent correlations
	TEBD numerics
	Adaptions to the experimental situation
	Finite beam width
	Varying Tonks parameter
	More than two detection events
	Local depletion
	Average over multiple systems

	Comparison to experimental data
	Dependence on particle statistics

	Dynamics and evaporation of defects in Mott clusters
	Clusters of repulsively bound dimers
	Hole and particle defects

	Single defect model in the strong-interaction limit
	Momentum redistribution between the defects
	Two classical particles
	Two quantum particles: Numerical simulations

	Many-body numerical simulations
	Many defect effective theory in the strong-interaction limit
	Initial states
	Numerical results

	Two species Bose-Hubbard model
	Fermionic Hubbard model



	IV t-DMRG in the Heisenberg picture
	Matrix product operators
	Integrable and non-integrable models in the Heisenberg picture
	Integrable models equivalent to free fermions
	Non-integrable models

	Particle number conservation in MPO
	Unprojected operators
	Projected operators
	Preparing the projector onto the subspace of a fixed particle number
	Examples


	Appendices
	Free bosons quenched in a periodic system
	Explicit calculation for three particles

	Transmission of a particle through a domain wall
	Two particle Hamiltonian in momentum space
	Effective theory for monomers and trimers
	MPS representation of single particle states
	Two particle correlations in a non interacting 1D Fermi gas

	References

