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Abstract

Spreading processes play an integral role in our day to day lives. From the transmission
of infectious diseases, to cascading power line failures which lead to black outs, to the
fast spread of forest fires across dry landscapes, the underlying physics governing these
outbreaks is quite similar. Therefore, understanding these processes, their scope, and
their dynamics, is not without merit. In particular, these systems are described by
a mix of network theory, basic epidemic models, and statistical physics. Within this
thesis, we will apply these models to describe spreading processes on a microscopic level:
interactions between individual atoms.

Our platform to investigate these spreading processes are Rydberg atoms. Specifically,
by tailoring dipole interactions between these atoms, the so called facilitation regime
can be reached, where the laser-driven excitation of an atom only becomes possible if
an excited Rydberg atom is already present. This conditional excitation resembles the
infection of a healthy individual only occurring in the presence of an already infected
one.

Using facilitation as a platform, we first investigate spreading processes in the clas-
sical high-dephasing limit of Rydberg atoms in a gas, using large-scale Monte Carlo
simulations. Here, a phase transition between an active phase (infinite spread) and
an absorbing state (limited spread) exists. In the limit of low gas temperatures, we
find the spreading of excitations to be constrained to an underlying network. For low
network connectivity we find a heterogeneous Griffiths phase, which replaces the active-
absorbing phase transition. For high network connectivity we find the universality class
of the phase transition to depend on the gas temperature, displaying directed percolation
universality — the most important class for nonequilibrium phase transitions — at low
temperatures and mean field universality at high temperatures.

At intermediate temperatures we find activity spreading akin to Lévy flights, where
a small number of very fast Rydberg atoms manage to excite (“infect”) atoms at very
large distances. Consequently, the system falls into the anomalous directed percolation
universality class, and we show possibly the first experimental evidence of a system
displaying this universality class. Finally, we derive an analytical expression for the high
dephasing rates between Rydberg atoms, which are a generic feature of these systems.

In addition to this, we investigate facilitation in the quantum regime using time-
evolving block decimation simulations to model a one-dimensional chain of atoms trapped
in a tweezer array. Here, we explicitly regard the motional degree of freedom of the atoms
in the tweezer traps as quantized phonon excitations. Resulting from dipole-dipole inter-
actions between Rydberg atoms, higher lying phonon states can be excited. Assuming
a Lennard-Jones style dipole potential, resulting from an avoided crossing of different
Rydberg states, we find a number of non-trivial effects. These include the generation of
non-classical squeezed states, strong and long-range correlations between phonon exci-
tations, the thermalization of local phonon degrees of freedom despite a purely unitary
time-evolution, and a non-ergodic behavior of spin domains in the form of emergent
Bloch oscillations. Under a Born-Oppenheimer approximation, we separate spin (in-
ternal ground and Rydberg states) and phonon degrees of freedom of the atoms, and
manage to find a simple analytical description of the various processes in the system.
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Zusammenfassung

Ausbreitungsprozesse spielen eine zentrale Rolle in unserem Alltag. Von der Übertra-
gung von infektiösen Krankheiten über kaskadierende Stromausfälle bis hin zur schnellen
Ausbreitung von Waldbränden in trockenen Landschaften – die zugrunde liegende Physik
dieser Phänomene ist bemerkenswert ähnlich. Daher ist das Verständnis dieser Prozesse,
ihres Umfangs und ihrer Dynamik von großer Bedeutung. Insbesondere lassen sich solche
Systeme durch eine Kombination einfacher epidemischer Modelle, verschiedener Netz-
werkgeometrien und statischer Physik beschreiben. Im Rahmen dieser Arbeit werden
diese Modelle angewendet, um die Dynamik von Ausbreitungsprozessen in Systemen aus
Spin-12 Teilchen zu beschreiben.

Unsere Plattform zur Untersuchung dieser Prozesse sind Rydbergatome. Insbesondere
können Dipolwechselwirkungen zwischen diesen Atomen so gestaltet werden, dass das
sogenannte Facilitation-Regime erreicht wird. In diesem ist die laserinduzierte Anregung
eines Atoms nur möglich, wenn sich ein anderes, bereits angeregtes Rydbergatom in der
Nähe befindet. Diese bedingte Anregung ähnelt der Infektion eines gesunden Menschen
durch einen infizierten Menschen.

Im Rahmen des Rydberg-Facilitation-Regimes untersuchen wir zunächst Ausbreitungs-
prozesse im klassischen Limes eines Gases bei hohen Dephasierungsraten mithilfe von
Monte-Carlo-Simulationen. Wir stellen fest, dass sich die Anregungen entlang eines zu-
grunde liegenden Netzwerks ausbreiten, was zu einer heterogenen Griffiths-Phase führt,
im Falle geringer Konnektivität im Netzwerk. Zudem untersuchen wir den zugrunde
liegenden Phasenübergang zwischen der aktiven Phase (unendliche Ausbreitung) und
dem absorbierenden Zustand (begrenzte Ausbreitung). Wir finden, dass die Univer-
salitätsklasse dieses Phasenübergangs von der Gastemperatur abhängt: Bei niedrigen
Temperaturen zeigt sich Directed Percolation (dt. gerichtete Perkolation) – die wichtig-
ste Universalitätsklasse für Nichtgleichgewichts-Phasenübergänge – während bei hohen
Temperaturen ein Mean-Field-Vehalten (dt. Molekularfeld) auftritt.

Bei mittleren Temperaturen beobachten wir, neben dem regulären Ausbreitungsmech-
anismus, eine weitere Ausbreitung der Aktivität, die Lévy-flights ähnelt, wobei wenige
sehr schnelle Rydbergatome Atome über große Distanzen hinweg Grundzustandsatome
anregen (

”
infizieren “) können. Infolgedessen fällt das System in die Universalitätsklasse

der anomalous directed percolation (dt. anomal gerichteten Perkolation), und wir zeigen
möglicherweise den ersten experimentellen Befund eines Systems, welches diese Uni-
versalitätsklasse aufweist. Schließlich leiten wir einen analytischen Ausdruck für die
hohen Raten der Dephasierung optisch getriebener Rydbergatome her, die ein gener-
isches Merkmal solcher Systeme darstellen.

Des Weiteren untersuchen wir Facilitation im quantenmechanischen Regime mithilfe
eines time-evolving block decimation (dt. zeitentwickelnde Block-Dezimierung) Algo-
rithmus für eine eindimensionale Kette von Atomen, die in einer Reihe optischer Fallen,
sog. tweeezer (dt. Pinzetten), gefangen sind. Dabei berücksichtigen wir die Bewegung
der Atome in den Fallen explizit als quantisierte Phononenanregungen. Aufgrund der
Dipol-Dipol-Wechselwirkungen zwischen Rydberg-Atomen können dabei höher liegende
Phononenzustände angeregt werden. Unter der Annahme eines Lennard-Jones-artigen
Dipolpotentials finden wir eine Reihe nichttrivialer Effekte. Diese umfassen die Erzeu-
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gung nichtklassischer gequetschter Zustände, starke und langreichweitige Korrelatio-
nen zwischen Phononenanregungen, die Thermalisierung lokaler Phononenfreiheitsgrade
trotz einer rein unitären Zeitentwicklung sowie ein nicht-ergodisches Verhalten von Spin-
domänen in Form emergenter Bloch-Oszillationen. Mithilfe der Born-Oppenheimer-
Näherung gelingt es uns, Spin- (innere Grund- und Rydbergzustände) und Phononfrei-
heitsgrade der Atome zu trennen und eine überraschend einfache analytische Beschrei-
bung der verschiedenen Prozesse im System herzuleiten.
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[P7] S. Ohler, D. Brady, W. Lötzsch, M. Fleischhauer, and J. S. Otterbach. ”Towards Learning
Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks”. ICML 2nd
AI4Science Workshop, Baltimore, MD (2022).

ix

https://doi.org/10.1103/PhysRevResearch.6.013052
https://doi.org/10.1103/PhysRevA.108.052812
https://doi.org/10.1103/PhysRevA.108.052812
https://doi.org/10.1103/PhysRevLett.133.173401
https://doi.org/10.1103/PhysRevLett.133.173401
https://doi.org/10.1103/8rlg-169g
https://doi.org/10.1103/8rlg-169g
https://doi.org/10.48550/arXiv.2504.19679
https://doi.org/10.48550/arXiv.2505.09314
https://doi.org/10.48550/arXiv.2505.09314
https://doi.org/10.48550/arXiv.2207.08927
https://doi.org/10.48550/arXiv.2207.08927




List of Abbreviations

ADP anomalous directed percolation
DP directed percolation
ER Erdős–Rényi
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1. Introduction

Due to their stability and strong, long range interactions, Rydberg atoms allow for
the study of various equilibrium and nonequilibrium processes in highly controlled ex-
perimental environments [1, 2]. By tuning laser parameters, these interactions can be
tailored into the facilitation regime [3]. Facilitation is a process where an atom excited
to a high-lying Rydberg state allows for the excitation of neighboring atoms into the Ry-
dberg state on very fast time scales. Consequently, this process bears many similarities
to epidemics, where Rydberg atoms act as hosts of an infection which they subsequently
pass on to neighboring atoms [4].

In the scope of this thesis, we regard the dynamics of Rydberg facilitation in various
settings. Under laser driving and dissipation, it has been shown that Rydberg facilitation
hosts an absorbing-state phase transition [5], a hallmark type of nonequilibrium phase
transitions. Moreover, both numerical [6] and experimental [7] indications were found
which show this phase transition to fall into the directed percolation (DP) universality
class. DP constitutes the most important universality class for nonequilibrium phase
transitions as a result of its postulated ubiquity. In the early 1980s, Janssen [8] and
Grassberger [9] formulated their celebrated DP-conjecture, which states that any system
generically falls into the DP universality class if it meets four conditions (cf. Sec. 1.3.2).
To date, no counter examples have been found and DP universality has even been found
in systems where one or more of these conditions are violated [10]. It seems unexpected
then that only very few systems exist where DP universality was unequivocally proven
experimentally. This lies in the inherent difficulty in extracting the three DP critical
exponents. The first experiment to measure the full set of DP critical exponents was in
turbulent liquid crystals in 2007 [11] and since then, as mentioned above, one [7] and
two [6] of the DP critical exponents were measured in Rydberg facilitation systems in
low dimensional lattices.

In a laser-driven gas of atoms under dissipation, it has been shown that Rydberg facil-
itation displays signatures of self-organized criticality (SOC) [12, 13]. SOC is a process
in which a system drives itself to the critical point of a phase transition [14]. Though
not without controversy, SOC is postulated to be the process behind the abundance of
power-laws throughout nature [15]. In an experiment on the Rydberg facilitation gas
displaying SOC, one of the three critical exponents of the DP universality class was
measured recently. Here, a significant deviation from the expected DP critical exponent
was found, which was attributed to a loss of atoms in the system. This atomic loss is
the driving force behind SOC, and it was postulated that SOC might generically modify
the universal behavior of the system [12].

Finally, in an experiment observing the short time dynamics, i.e. the initial spreading
of ”infections”, a sub-exponential growth in the excitation number, similar to real-world
epidemics, was observed [16]. This slow, power-law growth hints at a heterogeneity in
the gas. Furthermore, for the late-time dynamics, a power-law decay of the excitation
number was also found, with continuously varying exponents depending on external
parameters. A ubiquity of power-laws with non-universal exponents is a hallmark of
a Griffiths phase [17]. The emergence of this phase was attributed to different veloc-
ity classes in the gas restricting which atoms can interact with each other, therefore
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1. Introduction

introducing heterogeneity into the spreading processes [16].

From here, we start by analyzing the gas of atoms in the facilitation regime. Due to
high dephasing rates generically present in these systems [18–20], a description through
classical rate equations becomes accurate [21–24]. Therefore, we simulate the dynamics
using large-scale Monte Carlo simulations of classical rate equations (cf. Appendix A for
an explicit description of the algorithm), which allow for simulations on the order of 104

atoms.

We investigate the Rydberg facilitation gas in [P1-P4]. In particular, in [P1] we prove
existence of a heterogeneous Griffiths phase in the gas in the limits of low temperatures
and low gas densities. We find this to emerge from an underlying network constraining
the spread of excitations. Following this in [P2], we improve on the mean field Langevin
equations presented in Ref. [12] leading to a much better agreement with our Monte
Carlo simulations. Building on this in [P3], we investigate the universality class of the
absorbing-state phase transition and find it to depend on the temperature of the gas. For
low temperatures, DP critical behavior is present, but with increasing temperature, the
anomalous directed percolation (ADP) universality class emerges, which is characterized
by smoothly varying critical exponents. Notably, we are able to replicate the critical
exponent measured in Ref. [12], showing that the deviation from DP universality likely
stems from Lévy flights and not SOC. In [P4], we utilize a mapping of the DP critical
exponents to avalanche exponents, allowing us access to extract the full set of DP critical
exponents.

This concludes our work on the Rydberg facilitation gas and we turn to studying
facilitation in a one-dimensional array of Rydberg atoms in optical tweezers. With laser
driving under facilitation conditions, a Rydberg atom can only be excited or de-excited
in the presence of exactly one other Rydberg atom. Spontaneous decay of Rydberg
atoms can be neglected when regarding the dynamics on time-scales much shorter than
the spontaneous decay rate. Consequently, when looking at the dynamics of domains of
Rydberg atoms in 1D arrays, i.e. m neighboring Rydberg atoms with all others atoms
being in the ground state, the dynamics simplify to the growing and shrinking of domains
at the domain edges. Importantly, these domains cannot coalesce or split [25].

As a result of dipole interactions, Rydberg atoms repel each other, leading to the
excitation of motional states within the tweezer traps. These motional excitations can
have a measurable impact on the spin dynamics. In Ref. [26], the dipole potential
between Rydberg atoms is Taylor expanded up to linear order. The authors find the
coupling of internal electronic and external motional degrees of freedom to drastically
slow the spreading of the domain, which would otherwise be ballistic. However, up to
linear order all dipole interactions within a domain completely cancel out making it
necessary to regard higher orders of the dipole potential expansion.

In [P5], we regard this system up to second order and with a harmonic or inverted har-
monic dipole potential between Rydberg atoms. This is the leading-order expansion of a
Lennard-Jones style dipole potential recently realized experimentally between Rydberg
atoms [27]. With a harmonic potential, we now find highly correlated behavior with
non-classical center of mass states (squeezed states) taken on by the Rydberg atoms.
Furthermore, this also has an effect on the dynamics of the domain.

Finally, we turn to studying one of the causes for dephasing in Rydberg systems.
As mentioned above, high dephasing rates are a generic feature of Rydberg systems,
however despite this, a quantitative understanding is largely missing. In [P6] we derive

2



1.1. Outline

an analytical expression for the dephasing rate resulting from dipole interactions between
Rydberg atoms. We find this expression to fit very well with our simulations in the regime
where the laser detuning ∆ is larger, but on the order of the Rabi frequency Ω.

1.1. Outline

This thesis is structured as follows. Chapter 1 contains an introduction, as well as a
theoretical background into the fields research within this thesis. In particular, Sec. 1.2
discusses the physics of Rydberg atoms, Sec. 1.3 concerns phase transitions and uni-
versality, as well as discussing DP and SOC, Sec. 1.4 discusses epidemic and network
models, and finally, Sec. 1.5 concerns non-classical squeezed states. Chapters 2-5 contain
my contributions to the Rydberg facilitation gas with [P1-P4]. Chapter 6 contains my
contribution to Rydberg facilitation in the one-dimensional tweezer array in [P5]. And
finally, Chapter 7 concerns the derivation of an analytical expression for the dephasing
rate of Rydberg atoms from [P6]. Publication [P7] is not discussed in this thesis. Finally,
Chapter 8 contains a summary of our results, as well as an outlook for each of the fields
researched within this thesis.

The artificial intelligence tool ChatGPT was used to correct Python and LaTeX code,
as well as to facilitate literature search.
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1.2. Rydberg Atoms

1.2. Rydberg Atoms

A Rydberg atom is any atom with one or more highly excited electrons. In the past
two decades a resurgence of interest in Rydberg atoms has occurred. This has two main
reasons, first the discovery of particular phenomena based on Rydberg-Rydberg inter-
actions, such as Rydberg blockade [28–30] quickly made Rydberg atoms a promising
candidate for neutral atom quantum computation and simulation. Second, a vast im-
provement in tweezer array protocols has allowed for the creation of defect-free arrays of
neutral atoms with arbitrary shapes [31–33] (see Fig. 1.1a). For these reasons, Rydberg
quantum simulators [34] have found a wide use of applications, such as in the study of
coherent transport properties [35, 36] (Fig. 1.1b), the quantum Ising model [37–41], spin
liquid phases [42, 43], or quantum phase transitions to ZN symmetric phases [39, 44, 45].

(a) Defect-free atom geometries generated
with optical tweezers. From [31].
Reprinted with permission from AAAS.

(b) Rydberg quantum simulator of the Su-
Schreiffer-Heeger model. From [36].
Reprinted with permission from AAAS.

Figure 1.1.: Examples of current state-of-the-art tweezer arrays and Rydberg quantum
simulators.

In this section, the physics of Rydberg atoms will be investigated. First, the core
properties will be examined, after which the different two-atom dipole-dipole Rydberg
interactions and resulting effects such as blockade and facilitation will be discussed.

1.2.1. Properties of Rydberg Atoms

Historically, the term Rydberg atom comes from the labeling of spectral lines in the
late 1800s. In 1888 Swedish physicist Johannes Rydberg discovered that the energies of
bound states of electrons of the Hydrogen atom are described by the empirical equation

En = −RH

n2
, (1.1)

where RH is a constant, now known as the Rydberg constant, and n is an integer, later
found to be the principle quantum number [46]. A quantitative derivation was achieved
in the framework of quantum mechanics by Wolfgang Pauli in 1926 [47]. As n can be
any integer value, eq. (1.1) implies the existence of an infinite number of energy levels,

5



1. Introduction

becoming closer and closer to each other as n increases. It is these high lying states that
became known as Rydberg states [1, 48].

When an atom becomes excited into a state with such a high principle quantum
number n its properties become extreme, often scaling algebraically with n. For example,
the radius of the atom, in terms of its electron wave function, scales as ⟨Ψ| r̂ |Ψ⟩ ∼ n2

[49]. For hydrogen atoms with n = 110, observed for example in the Orion nebula in
1965 [50], this radius is on the order of 1 µm and is larger than a virus [48]. At such
distances, the electron is only weakly bound to the nucleus making it extremely sensitive
to external influences, such as electric fields or other Rydberg atoms [49].

As a result of the radius increasing with n, the radiative lifetime also becomes extreme,
scaling as [49]

τsp ∼ n3. (1.2)

This results from the spatial extent of the wave function becoming very large for high
n and, subsequently, the overlap between this highly excited state and the ground state
wave function of the atom becomes very small, resulting in a small dipole matrix ele-
ment [48]. However, in addition to a decay to the ground state, the atom could also
radiatively decay into a neighboring state, which features a similarly spread out wave
function. The dipole matrix element to neighboring states scales strongly with n as
⟨nS1/2| d̂ |(n+ 1)P3/2⟩ ∼ n2 with the dipole operator d̂. It is important to note that as
n increases, the transition wavelength to neighboring states also increases. Fortunately
for the stability of Rydberg atoms, the number of available vacuum modes into which
the Rydberg state could spontaneously decay actually decreases faster than n2, making
spontaneous decay into neighboring states unlikely [48].

Stimulated decay, however, is not affected by the constraint of available vacuum modes
making it another relevant process governing the lifetimes of Rydberg states. The tran-
sitions between neighboring Rydberg states are typically in the microwave regime and
therefore at frequencies populated by black-body radiation. One finds that, at finite
temperature, the black-body induced lifetime is approximately given as [1]

τbb ∼ n2. (1.3)

The weaker scaling in n when compared to the radiative lifetime τsp shows that black-
body induced decay poses a limitation on the lifetime of Rydberg atoms. See Ref. [51] for
a review, especially concerning spontaneous versus stimulated decay of Rydberg states.

1.2.2. Interacting Rydberg Atoms

Rydberg atoms have two main properties which make them particularly useful in experi-
mental applications. First, as a result of the large distance between nucleus and electron
they become very sensitive to external fields making them ideal platforms for quantum
sensing of microwave and terahertz radiation [49]. Second, Rydberg atoms feature strong
interactions between each other. These interactions give rise to effects such as Rydberg
blockade or Rydberg facilitation, which will be discussed later on.

In this section we will focus on the latter property, namely the strong interaction be-
tween Rydberg atoms. These interactions result from a virtual photon exchange between

6



1.2. Rydberg Atoms

Rydberg atoms and occur over large inter-atomic distances r of up to several µm. The
two most relevant interactions are the resonant dipolar interaction, decaying as 1/r3 and
the off-resonant van-der-Waals interaction, decaying as 1/r6.

Figure 1.2.: (Left) Dipolar c3 interaction. A resonant exchange of a virtual photon lets
atom 1 decay to a neighboring Rydberg state while exciting atom 2. (Right)
Van-der-Waals c6 interaction. Since the energy spacing between |n′′P ⟩, |nS⟩,
and |n′P ⟩, |nS⟩ is shifted by δF , the second atom cannot be excited giving
rise to an off-resonant interaction. Figure adapted from Ref. [48].

Dipolar c3 Interaction

The dipolar interaction requires two Rydberg atoms to be in neighboring states with an
allowed dipole transition, e.g. |α⟩ = |nS⟩ and |β⟩ = |(n− 1))P ⟩. In the two atom basis,
the states |αβ⟩ and |βα⟩ are degenerate and can interact via a coherent exchange of a
virtual photon (cf. Fig. 1.2 (left)). This is known as a flip-flop interaction, where atom
1 undergoes |α⟩ → |β⟩ and atom 2 undergoes |β⟩ → |α⟩.

In particular, under the multipole expansion, the leading order dipole-dipole interac-
tion potential is given by

Vdd(r) =
1

4πϵ0

d1 · d2 − 3(d1 · n)(d2 · n)

r3
, (1.4)

with n = r/r and the electric dipole operator of atom j labeled dj [52]. In the two atom
basis, i.e. with states {|αβ⟩ , |βα⟩}, the interaction Hamiltonian can be written as

Ĥ =

(
0 Vdd(r)

Vdd(r) 0

)
. (1.5)

As the states are degenerate, a coherent exchange between them is possible mediated by
the interaction potential Vdd(r). This potential is quadratic in the dipole operator and,
as discussed in the previous section, therefore scales as (n2)2 = n4. Furthermore, dipole-
dipole interactions scale with the interatomic distance as ∼ 1/r3, and have a strong
dependence on the angle between the atoms and the quantization axis. The total scaling
of the interaction potential is therefore

7



1. Introduction

V (r) =
c3
r3

(1 − 3 cos2 θ), (1.6)

with the angle between the quantization axis, set by e.g. the presence of an external
magnetic field, and the interatomic axis θ, and the interaction constant c3 ∼ n4, giving
this interaction the colloquial name c3 interaction.

Van-der-Waals c6 Interaction

The van-der-Waals interaction on the other hand originates from an off-resonant ex-
change of a virtual photon. Here both Rydberg atoms are initially in the same state,
e.g. |nS⟩. Again, the first atom decays to a neighboring state |n′P ⟩ and emits a virtual
photon, however, since most likely no state |n′′P ⟩ exists with the same energy difference,
the virtual photon is immediately re-emitted and the atoms return to their original states
(cf. Fig. 1.2 (right)). The difference in energy between the states |nS⟩, |n′P ⟩, and |nS⟩,
|n′′P ⟩ is known as the Förster defect δF [53, 54]. The scaling of the interaction energy
is more complicated in this regime and will be derived in detail in the following.

Consider the states (in the two atom basis) |nS, nS⟩ and |n′P, n′′P ⟩. In this basis, the
interaction Hamiltonian can be written as

Ĥ =

(
δF Vdd(r)

Vdd(r) 0

)
. (1.7)

Diagonalizing this Hamiltonian, one receives the eigenenergies given by

λ1,2 =
1

2

(
δF ±

√
δ2F + 4Vdd(r)2

)
, (1.8)

which can be Taylor expanded for large δF . Doing this, the eigenenergies are given as

λ1 = δF +
Vdd(r)2

δF
, (1.9)

λ2 = −Vdd(r)2

δF
. (1.10)

Due to the high density of energy levels for high n, this process occurs over many different
pair states |n′P, n′′P ⟩. Therefore, the interaction potential is received by summing over
all pair states and reads

V (r) =
∑

n′,n′′

| ⟨n′P, n′′P |Vdd(r)|nSnS⟩ |2
δF (n′, n′′)

. (1.11)

This interaction is often simply written as

V (r) =
c6
r6
, (1.12)

8



1.2. Rydberg Atoms

with the van-der-Waals coefficient c6, which depends on the initial state of the Rydberg
atoms. This coefficient scales as c6 ∼ n11, since the potential scales with the fourth power
of the dipole operator dj , and the Förster defect scales as δF ∼ n−3. Furthermore, since
the interaction potential is received by summing over different pair states, there is almost
no angular dependence of the interaction and the c6 interaction is (nearly) isotropic [53].

For δF → 0, the so-called Förster resonance occurs. In this case, a single term domi-
nates in the sum and the c3 interaction, in particular its angular dependence and 1/r3

scaling, is recovered. Note, that this will also occur for small interatomic distances,
where Vdd(r)2 ≫ δ2F , and the Taylor expansion in eq. (1.8) is no longer valid [2].

All Rydberg-Rydberg interactions discussed throughout this thesis are c6 van-der-
Waals interactions.

1.2.3. Rydberg Blockade

Perhaps the most important property that Rydberg atoms feature is Rydberg blockade.
Theoretically predicted in 2001 [28] and subsequently experimentally realized for the first
time in 2009 [29], Rydberg blockade is a process in which one Rydberg atom prevents
the excitation of another within a certain radius rb, called the blockade radius [30].
The blockade radius is typically on the order of µm and can even extend to tens of
micrometers, see e.g. [55]. This process not only allows for the creation of qubit gates
[2, 28, 56, 57], it also allows for the use of Rydberg atoms as quantum simulators [34].

The underlying physics is quite simple. Consider a two-atom system, with each atom
laser coupled between a ground |g⟩ and a Rydberg state |r⟩. The effect is most prominent
for low angular momentum Rydberg states, i.e. |r⟩ = |nS⟩. Coupled by a (resonant) laser
with Rabi-frequency Ω, the two-atom system can now be described in the basis

{
|gg⟩ , |+⟩ , |−⟩ , |rr⟩

}
, (1.13)

where |±⟩ = 1√
2

(
|gr⟩ ± |rg⟩

)
. Starting in |gg⟩, a resonant excitation to |+⟩ occurs with

the rate
√

2Ω. Now, depending on the interatomic distance, the energy of the state
|rr⟩ is shifted by the Rydberg interaction potential V (r). For large distances, such that
V (r) ≪ Ω, the coupling between |+⟩ and |rr⟩ remains (nearly) resonant. However, for
smaller distances, such that V (r) ≫ Ω, the shift becomes so large that the |rr⟩ state
becomes effectively decoupled from the dynamics. A simultaneous excitation of both
atoms is no longer possible and the system performs Rabi oscillations between |g⟩ and
|+⟩ at the rate

√
2Ω (cf. Fig. 1.3 (left)). The distance where the transition occurs is

known as the blockade radius and is given by1

rb = 6

√
c6
Ω
. (1.14)

This effect is not limited to two atoms. For N atoms closely packed within rb, a sin-
gle excitation is shared between all atoms and they perform Rabi oscillations with the
rate

√
NΩ. This collective behavior is called a Rydberg superatom and is particularly

interesting in part due to its high level of entanglement [58].

1Note in the literature, e.g. [48, 49], one also finds rb = 6

√
c6
γ⊥

, where γ⊥ corresponds to the laser

linewidth. In reality, rb depends on the greatest of the two quantities.
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1. Introduction

Figure 1.3.: Blockade and Facilitation. (Left) Rydberg blockade. For distances r < rb no
excitation is possible, since the Rydberg-Rydberg interaction V (r) pushes
the doubly excited state |RR⟩ out of resonance. (Right) Rydberg facilita-
tion. The laser light is tuned away from resonance with detuning ∆. Conse-
quently, a resonant excitation is only possible at the distance rf , where the
detuning cancels the Rydberg-Rydberg interaction, i.e. ∆ + V (rf) = 0.

1.2.4. Rydberg Facilitation

Quite the opposite effect can be achieved if the driving laser light is strongly detuned,
i.e. ∆ ≫ Ω, with the detuning from resonance ∆. Now excitations from |gg⟩ to |+⟩, as
well as from |+⟩ to |rr⟩ are strongly suppressed. However, there exists a distance rf ,
called the facilitation radius, where

V (rf) + ∆ = 0, (1.15)

i.e. the Rydberg-Rydberg interaction cancels out the detuning and a resonant coupling
between |+⟩ and |rr⟩ occurs [3] (cf. Fig. 1.3 (right)). Eq. (1.15) is known as the facili-
tation condition and the facilitation distance rf at which this occurs is given by2

rf = 6

√
c6
∆
. (1.16)

As a result of the finite linewidth of the laser, coupling between |+⟩ and |rr⟩ not only
occurs exactly at the facilitation radius rf , but also within a spherical shell around a
Rydberg atom with radius rf . In the high dephasing limit, where Rydberg dynamics
can be accurately modeled by classical rate equations [21–24], e.g. in a gas of Rydberg
atoms, the facilitation rate is approximately a Lorentzian function of the interatomic
distance. This allows us to define the approximate width of the facilitation shell as (see
Appendix B for a derivation)

δrf =
γ⊥
2∆

rf , (1.17)

2Note that Rydberg blockade still occurs in this regime for all interatomic distances r < rf . Therefore,
the blockade radius is given by the facilitation radius in this regime.
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1.2. Rydberg Atoms

with the dephasing rate of the Rydberg state γ⊥.
Since facilitation corresponds to a conditional excitation, which only occurs if an ex-

citation is already present, this can be mapped to an epidemic system (topic of [P2],
see also [4, 16]). In this mapping, atoms in the Rydberg state correspond to infected
individuals and atoms in the ground state correspond to healthy, susceptible individuals.
The spontaneous decay of Rydberg atoms, which would normally be a nuisance for ex-
periments, actually constitutes the recovery of infected individuals back into the ground
(susceptible) state here and therefore becomes an integral part of the dynamics. As with
epidemics, these systems exhibit an absorbing-state phase transition between an active
phase, where activity (in the form of Rydberg excitations) is wide spread throughout
the system, and an absorbing state without any Rydberg excitations [5]. Note, this
mapping is only truly accurate in the limit ∆ → ∞, as an absorbing state does not allow
for spontaneous excitations.
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1.3. Phase Transitions, Universality, and Self-Organized
Criticality

No matter where you look in nature you will find power-laws. The size distribution
of tsunamis [59], earthquakes [60, 61], forest fires [62], tornado groups [63], solar flares
[64], neuron activations [65], epidemic outbreaks [66], among many other examples, all
follow a power-law distribution [15] (cf. Fig. 1.4). However, from statistical mechanics,
we understand that power-laws and scale-free behavior are a characteristic feature of
systems at criticality, i.e. the critical point of a phase transition. For a system to be at
criticality typically requires a fine-tuning of parameters, making it unclear how so many
systems in nature could be critical.

(a) Forest fire size distributions in (A) U.S.A.
1986-1995, (B) western U.S.A. (1150-
1960), (C) Alaskan boreal forests (1990-
1991), and (D) Australian Capital Terri-
tory (1926-1991). From [62]. Reprinted
with permission from AAAS.

(b) Number of occurrences of earthquakes
of different (logarithmic) magnitudes
from January, 1934 to May, 1943 in and
around Southern California. Raw data
taken from Ref. [60].

Figure 1.4.: Real-world distributions of forest-fire and earthquake sizes showing a power-
law behavior. Note that the magnitude of earthquakes is already a logarith-
mic quantity.

Although it is the subject of some debate [15], self-organized criticality (SOC) offers an
elegant and simple explanation for this [14]. In the presence of driving and dissipation,
if a given system has a sufficiently large separation of these time-scales, it will drive itself
to the critical point of an absorbing-state phase transition, and remain there for relevant
time-scales.

In this section, we will first discuss the physics of phase transitions, including equi-
librium, nonequilibrium, and quantum phase transitions. Following this, we will discuss
criticality. In particular, systems at criticality tend to lose any form of length scales
and consequently fractal-like structures emerge. Based on the behavior of a system at
criticality, it can be grouped with other - typically microscopically very different systems
- into universality classes. We will discuss the Ising and directed percolation (DP) univer-
sality classes, which are arguably the most important universality classes for equilibrium
and nonequilibrium phase transitions respectively [10]. Finally, we will discuss SOC,
utilizing the knowledge gained on phase transitions and universality.
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1.3.1. Equilibrium Phase Transitions and the Ising Model

Phase transitions occur when a physical system changes state abruptly, and non-analytically,
when varying a physical quantity like the temperature, pressure, or an external field.
These quantities are known as the control parameter as they control which phase the
system is in. The state of the system on either side of the phase transition is then either
described as ordered or disordered. This is quantified by an order parameter which is
zero in the disordered phase and non-zero in the ordered phase.3

Phase transitions are generally categorized into first order and second order phase
transitions. First order phase transitions have a discontinuous change in the order pa-
rameter when crossing the critical point (cf. Fig. 1.5b), while second order phase transi-
tions remain continuous in the order parameter, but are discontinuous in its derivatives
(cf. Fig. 1.5c). For this reason, second order phase transitions are also called continuous
phase transitions. See Fig. 1.5 for a visualization of this using the Ising model.

The quantitative framework for understanding continuous phase transitions was cre-
ated in the context of equilibrium phase transitions, i.e. in systems at thermodynamic
equilibrium. Emerging from this framework is the concept of universality, which can
actually be applied to systems far from equilibrium [67] and to systems exhibiting a
quantum phase transition [68].

Naturally a phase transition occurs in the wake of competing processes and it is con-
sidered an equilibrium phase transition if the system is in thermal equilibrium. In order
to illustrate this, we will use the Ising model, which describes ferromagnetism [69]. Here
the competing processes are the energy minimization which occurs when neighboring
spins are co-aligned and thermal fluctuations, which causes spins to randomly flip. In
the following, let us quantitatively look at the two dimensional Ising model. A phase
diagram and the behavior of the order parameters around the critical temperature can
be seen in Fig. 1.5.

Consider a two dimensional lattice, with spins σi at each vertex, which can either point
up or down, i.e. σi = ±1. Neighboring spins interact with some interaction strength
J > 0 and we can apply an external magnetic field with energy contribution h. Let (i, j)
be the set of all neighboring indices, then the Hamiltonian of the system can be written
as

H = −J
∑

(i,j)

σiσj − h
∑

i

σi. (1.18)

From eq. (1.18) it is immediately clear that neighboring co-aligned spins, i.e. up-up or
down-down, are energetically more favorable since this reduces the first term.

Now, if the thermal fluctuations are small, the co-alignment of spins wins and the
system is in a phase with a global magnetization, i.e. an overwhelming majority of
spins point in the same direction. Conversely, if thermal fluctuations are too strong, no
globally ordered phase can exist and the system has a net zero magnetization. Therefore,
the order parameter of the ferromagnetic phase is the magnetization m =

∑
i σi, where

σi = ±1 is the alignment of spin i, and the control parameter is the temperature T , which
dictates the strength of thermal fluctuations. The phase transition from a ferro- to a

3Note that phase transitions between different ordered states also exist, where the above discussion has
to be generalized to different order parameters respectively.
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Figure 1.5.: Ising Phases and Phase Transitions. a) 2D Ising model phase diagram for
temperature T in units of critical (Curie) temperature Tc and external mag-
netic field h in units of coupling strength J . Color represents the net mag-
netization m ≡ 1

N

∑N
i=1 σi. b) Magnetization as a function of field strength

for T = 1
2Tc (pink line in a)), displaying a first order phase transition at

h/J = 0. c) Absolute value of magnetization as a function of temperature
for h/J = 0 (light blue line in a)) displaying a second order phase transition
at Tc. The trajectories of (b) and (c) can be seen in (a).

paramagnet occurs at the Curie temperature Tc [70]. These two competing processes are
readily seen in the free energy F = H − TS of the system, which it seeks to minimize in
equilibrium. For example, co-alignment minimizes both the internal energy H, but also
the entropy S.

For continuous phase transitions, systems close to the critical point are ”habitually
described by power laws” [10]. Power laws are functions of the form f(x) = Cxα, for
some constant C and some real-valued exponent α. They intrinsically hold the property
of scale invariance, i.e.

y1 = Cxα ∝ xα (1.19a)

y2 = C(kx)α ≡ Ckαxα ∝ xα. (1.19b)

When rescaling x with some constant k, both the function y1 and the scaled function
y2 remain proportional to xα, albeit with some other prefactor. This shows us that the
behavior of the system does not depend on the scale at which we are looking at it. In
Fig. 1.6 we can see what this means in the context of the 2D Ising model. Here, a 2D
grid of spins is shown, with spins in the down state being black and spins in the up
state being white. At criticality we can see spin up clusters (white regions) of any size
emerging, reminiscent of fractal like structures.

A quantitative understanding of scale-invariant behavior in equilibrium systems was
developed by Kenneth G. Wilson within the framework of the renormalization group
(RG) formalism, earning him the Nobel Prize in Physics in 1982 [71, 72]. In the following,
we will briefly discuss the scaling behavior of the 2D Ising model near criticality and the
core concepts of Wilson’s application of the RG formalism.

For the 2D Ising model, the scale-invariant properties near criticality include the
magnetization m, the susceptibility χ, the specific heat C, the correlation length ξ,
and the decay of the correlation function G(r) with distance r. Defining the reduced
temperature τ ≡ −T−Tc

Tc
, with τ = 0 at criticality, these quantities obey
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Figure 1.6.: Configurations of the two-dimensional Ising model below, at, and above the
critical temperature Tc. White pixels correspond to spin-up and black pixels
to spin-down sites. At the critical temperature the system shows a lack of
size scale for spin-up clusters. Figure taken from Ref. [10], i.e. M. Henkel,
H. Hinrichsen, and S. Lübeck, Non-equilibrium phase transitions (Springer
2008). Reproduced with permission from Springer Nature.

m(τ) ∝ τβ (1.20a)

m(τ = 0) ∝ |h|1/δ (1.20b)

χ(τ) ∝ |τ |−γ (1.20c)

C(τ) ∝ |τ |−α (1.20d)

ξ(τ) ∝ |τ |−ν (1.20e)

G(r, τ = 0) ∝ r−d+2−η, (1.20f)

near criticality, with the six critical exponents β, δ, γ, α, ν, and η, as well as the
dimension d. Through a set of scaling relations from Rushbrooke [73], Widom [74], Fisher
[75], and Josephson [76], relations between the critical exponents can be established
(cf. [10]). Following these relations, the Ising model is described by two independent
critical exponents.

These critical exponents describe all systems near universality which fall into the Ising
universality class. This is given when a system shares the same global properties, such
as dimensionality or symmetry, which is the case for e.g. the van-der-Waals gas. This
means that despite having a completely different microscopic structure, both the Ising
model and the van-der-Waals gas behave the same near criticality. This unexpected fact
can be explained by the RG formalism, which will be briefly introduced in the following.

When looking at the parameter phase space of the Ising model, i.e. (T, h), we can
perform an RG approach. Here, we coarse-grain the Hamiltonian, averaging out short-
range fluctuations. This process in turn modifies the parameters in the system, and
an iterative application of this coarse-graining leads to a set of flow equations for the
parameters of the system. If we regard these in phase space, we find a set of fixed points,
corresponding to the critical points of the system. The fact that these are fixed points
with respect to the flow equations shows us that here the system remains invariant under
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coarse-graining, i.e. it is scale-invariant.
More so, in the RG approach, the iterative application of coarse-graining means that

the microscopic details of the system become irrelevant. The fixed points only depend on
general properties of the system, such as its dimension or its symmetries. Therefore, the
behavior at these fixed points is universal and is shared with all systems that share the
dimension or symmetries of the given system. This is the fundamental idea of defining
universality classes, and the Ising model falls into – and is the namesake of – the Ising
universality class. Other systems in this class, which follow the same scaling laws near
criticality, are the van-der-Waals gas or critical opalescence in binary fluid mixtures.

1.3.2. Nonequilibrium Phase Transitions and Directed Percolation

In contrast to equilibrium phase transitions, continuous phase transitions in systems
far from equilibrium are much less well understood [10]. Any system is considered
nonequilibrium if it does not obey detailed balance. Detailed balance is given when all
microscopic processes occur at the same rate as their respective reverse processes, i.e.
the system obeys

wi→jSi = wj→iSj , (1.21)

where Sν is the equilibrium probability of being in state ν and wν→µ is the transition
rate from state ν to state µ [77]. As long as detailed balance is given, the distribution of
states in the system remains constant over time, i.e. the system is at equilibrium. For
nonequilibrium systems, the absence of detailed balance means there is a breaking of
time-reversal symmetry and as such, the time-evolution of the system becomes relevant
in classifying the dynamics of the system. Consequently for the description of nonequilib-
rium systems, time enters the dimensionality in many cases, and the dimensionality for
these systems is typically denoted as d+ 1, where d is the number of spatial dimensions.
Unlike spatial dimensions, the time dimension displays preferential directionality.

Arguably, the most important type of nonequilibrium phase transition is the absorbing-
state phase transition. This phase transition separates a fluctuating active phase, where
activity (e.g. fire in a forest, or infected patients in a population) is widespread in the
system, and an absorbing state without activity. The key concept here is that if the
system enters the absorbing state it cannot escape from it anymore. An example of this
is if the last infected patient of a virus recovers without infecting anyone else. Following
this the virus would be extinct and no further infections could take place. This fact
alone signals a breaking of detailed balance, as the system can enter the absorbing state,
but never leave it.

Absorbing-state phase transitions are key in the description of epidemics and disease
spreading. The underlying framework of epidemic models is also used to describe the
spread of information, traffic patterns, social behavior, and can even be mapped to the
spreading of Rydberg excitations under the facilitation constraint (cf. [P1, P2], Sec. 1.4).

The concept of universality, discussed in the previous section, which was created in
the context of continuous, equilibrium phase transitions, can be expanded to describe
continuous, nonequilibrium phase transitions. Similar to how the Ising universality class
is arguably the most important universality class for equilibrium systems, directed per-
colation (DP) emerges as the most important class for nonequilibrium systems [10]. Per-
colation pertains to connectivity and asks the question if a system is connected enough
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for a given particle to move through the entire system. This displays a continuous phase
transition between a disconnected and a connected phase (cf. Sec. 1.4.2). For directed
percolation, the individual links in the system receive a preferential direction. Once
again, it immediately becomes clear that detailed balance is broken - a particle can
move through a given link, but cannot return the way it came.

One of the most simple DP systems is a one-dimensional lattice where neighboring
sites are connected with probability p. At pc ≈ 0.6447 the system exhibits a percolation
transition [10]. For p > pc, activity can spread through the system and for p < pc activity
quickly dies out. This can be seen in Fig. 1.7, where active sites are white and inactive
sites are black.

Figure 1.7.: Directed percolation on a lattice. 1D lattice with active nodes (white) and
inactive nodes (black) starting with one initial active seed. In each time step
activity can be passed on from a given active site to neighboring sites with
probability p, whereupon the active site becomes inactive. At pc ≈ 0.6447
the system is critical as a balance between spreading and decay is present.

The reason DP is so important is due to its apparent ubiquity. In the early 1980s,
Janssen [8] and Grassberger [9] conjectured that any nonequilibrium phase transition
falls into DP universality if it meets the following four conditions [67]:

1. The system has a continuous phase transition between a fluctuating active phase
and a unique absorbing state.

2. The phase transition has a positive, scalar order parameter.

3. The dynamic rules are short range.

4. There are no special attributes, such as additional symmetries, conservation laws,
or quenched randomness.

To date, no counterexamples have been found [10] and DP universality has even been
predicted in systems where one or several of these criteria are not fulfilled [78, 79].
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However, despite the immense successes DP has enjoyed on the theoretical side, only
a handful of experimental platforms are known where DP behavior has unambiguously
been proven. This is due to the inherent difficulty that comes with measuring the
DP critical exponents. The first such platforms was found in 2007 in turbulent liquid
crystals and a full set of critical exponents in d = 2 + 1 dimensions was measured [11,
80]. Furthermore, in contrast to the Ising model, the critical exponents characterizing
DP have so far only been estimated, as no general analytic framework exists yet. These
numeric estimates, even for the simplest case of d = 1 + 1 dimensions, suggest that these
exponents may be irrational numbers in contrast to simple rational numbers found in
equilibrium 2D integrable systems [10].

Rydberg systems in the facilitation regime behave like epidemics and as such feature
an absorbing-state phase transition. For 1D systems, DP universality was theoretically
predicted [6] and subsequently experimentally observed [7]. These cases however, re-
garded the system in the absence of dissipation, specifically in the form of atomic losses.
These atomic losses lead the system to drive itself to criticality, a process known as
SOC. It was not understood if SOC modified the universal behavior of DP, or if it could
compromise the universal behavior in its entirety [12, 78, 81]. In [P3] we showed that, in
this system, DP universality actually persists in the presence of SOC, once again adding
to the immense robustness DP universality seems to have.

1.3.3. Quantum Phase Transitions

Finally, let us touch on the subject of quantum phase transitions. In a classical system,
a phase transition occurs at a finite temperature, e.g. the Curie temperature in the Ising
model. Here, the temperature T corresponds to the control parameter as it dictates the
strength of thermal fluctuations, which cause a breaking of order in the system. In a
quantum phase transition however, order is broken by quantum fluctuations dictated
by some control parameter g. Since quantum fluctuations would compete with thermal
fluctuations at any finite temperature, a pure quantum phase transition is only given at
absolute zero, i.e. T = 0. Here, the quantum critical point (QCP) emerges, i.e. at T = 0
and g = gc (cf. Fig. 1.8).

For continuous quantum phase transitions, as in the classical case, one finds a diver-
gence of characteristic length scales near criticality. Once again, the behavior of the
system near criticality does not depend on the microscopic details of the system and the
concept of universality can be applied here. However, this singular behavior at criticality
is only present in the ground state of the system, i.e. requiring T = 0. Since reaching
this point is experimentally impossible, much of the theory of quantum phase transitions
tries to describe the behavior of the system close to criticality [68].

For T > 0, and a control parameter sufficiently close to criticality, i.e. g ≈ gc, the
quantum critical phase arises. Here, both types of fluctuations (thermal and quantum)
play an important role. While the system looks critical with respect to the control
parameter g, i.e. in the form of scale-invariance, it is driven away from criticality by
thermal fluctuations [82]. In other words, this phase features thermal excitations of the
quantum critical ground state. Finally, at high enough temperatures non-universality
sets in when the thermal energy exceeds characteristic microscopic energy scales [82].
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Figure 1.8.: Phase Diagrams with Quantum Critical Point. The figure shows two possi-
bilities for quantum criticality, with (left) and without (right) a thermally
ordered state, i.e. where order persists at T > 0. Figure adapted from
Ref. [82].

1.3.4. Self-Organized Criticality

Having discussed the significance of scale-invariance and how this is a generic feature
of continuous phase transitions at criticality, the question arises as to why power-laws
are so ubiquitous in nature. In particular, we cannot assume that generic systems
throughout nature are all fine-tuned to the critical point of a phase transition. An
elegant explanation for this was offered through self-organized criticality (SOC) by Per
Bak, Chao Tang, and Kurt Wiesenfeld in 1987 [14]. In their original paper, Bak, Tang,
and Wiesenfeld introduced a sand pile model, which consists of a 2D lattice and where
each point on the lattice contains either 0, 1, 2, or 3 sand grains. If any given point
exceeds 3 sand grains, the site topples and the four sand grains are distributed evenly
to all nearest neighbors. Starting with either a completely empty lattice, or a random
distribution of sand grains throughout the lattice, the system dynamically evolves as
follows:

1. Drop a sand grain onto a random site.

2. If the site now exceeds three sand grains it topples.

3. If the site topples redistribute four sand grains to the four nearest neighbors.

4. Then, if any of these sites exceeds four sand grains, they topple.

5. Wait until all toppling has finished and start with Step 1.

Typically this model uses open boundary conditions, meaning that when a site at the
edge of the lattice topples one sand grain will be lost from the system. Importantly,
this model assumes the limit of infinitely slow driving, i.e. the next grain of sand is
only placed once all activity in the system has stopped. The system exhibits a phase
transition between an unstable (active) phase, where, in the absence of dissipation, a
single grain of sand would cause an infinite cascade of topplings and an absorbing state
where the addition of a sand grain would not have any effect on the system at large.
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In the active phase, the presence of dissipation at the boundaries and infinitely slow
driving cause the system to naturally evolve toward criticality. Once there, the slow
driving stabilizes the system and causes it to remain critical.

At criticality, the dynamics of the system are governed by avalanches, i.e. chained
topplings of sand piles. Due to the critical nature of the system, these avalanches lose any
scale and their size becomes power-law distributed. In three dimensions, the avalanche
size distribution of the sand pile model follows [14]

P (s) ∼ s−τ , (1.22)

with the critical exponent τ ≈ 1.35. Therefore, Bak, Tang, and Wiesenfeld presented
a model which drives itself to criticality under the requirement that the time-scales of
driving and dissipation are sufficiently separated.

Following the work of Bak, Tang, and Wiesenfeld, exponents very similar to τ were
identified in power-law behavior seen throughout nature. This led to considerable ex-
citement and the emergence of ever bolder claims as to the role of SOC in nature. In
Ref. [15], these interpretations are listed in order of increasing scope as

1. ”Self-tuned phase transitions exist in nature.”

2. ”All fractals in nature are caused by SOC.”

3. ”All power-laws are caused by SOC.”

4. ”The contingency of nature is caused by SOC.”

To this day, no concrete evidence exists supporting any of these claims beyond the
first. More so, Claims 2 and 3 are long known to be wrong [15, 83, 84]. The true scope
of SOC likely needs to be reduced to its core claim: that self-tuned phase transitions
exist in nature. In systems with an absorbing-state phase transition, slow driving, paired
with fast dissipation, allows the system to quickly decay to criticality and remain there
on mesoscopic time-scales. This does explain why power-laws exist so abundantly in
nature, but does not attempt to identify a universal power-law exponent among these
systems.4

4There is also some controversy as to whether certain postulated SOC systems, i.e. systems without a
conservation law, such as the Drossel-Schwabl forest fire model [85], are truly critical. These systems
exhibit an exponential cutoff in their power-law distributions making them only ”quasi-critical” or
”apparently scale-invariant” [81].
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1.4. Epidemics on Complex Networks

The study of infectious diseases has proven to be an incredibly powerful and versatile
tool with applications reaching far beyond epidemics. Aside from infectious diseases, the
underlying framework can be used to describe the spread of (mis-)information, social
behavior, or power grid failures to name a few [86]. In this section, we will discuss the
mathematical framework of compartmental epidemic models and network models.

Following the pioneering work of Kermack and McKendrick [87], modern epidemic
models generally divide the population into compartments. The most important ones
are: susceptible (S) individuals, who are healthy but can contract the disease; infected
(I) individuals, who carry the disease and can transmit it to susceptible individuals; and
recovered/removed (R) individuals who can no longer contract the disease because they
are either immune or dead. In this section we will focus on models using only S, I, and R
compartments, however, other compartments, such as exposed (E), can be incorporated
depending on the nature of the disease (see [86] for a review article).

The most basic models assume a population-wide homogeneous mixing of infections.
Under this assumption, all individuals interact equally with each other. While this does
not describe a realistic setting, a lot can already be learned from these simple models. For
example, these models feature an absorbing-state phase transition5 between an active
(endemic) phase, where the infection persists perpetually in the population, and an
absorbing phase, where the infection goes extinct.

In real-world epidemics an infected individual will not be able to infect all other in-
dividuals in the population equally. Instead, they are limited to individuals in their
vicinity. In epidemic models this is quantified using network models. Within this frame-
work, the spread of excitations is confined to an underlying network and, depending on
the type of network, the properties of the epidemic are greatly altered. For example, on
scale-free networks, such as the Internet, the absorbing state vanishes. As a result, even
the smallest transmission rates of computer viruses cause an endemic state. Therefore,
scale-free networks are incredibly vulnerable to epidemics.

To facilitate a systematic discussion of epidemic models on complex networks, this
section is divided as follows:

• Epidemic Models - Here we discuss epidemic models under the homogeneous mixing
assumption, i.e. in the complete absence of any network structure.

• Network Models - Here we discuss network models, the terminology, and different
types of networks.

• Epidemics on Networks - Finally, we will put the findings of the previous two
subsections together and discuss how spreading processes behave on different net-
works.

1.4.1. Epidemic Models

As stated above, the simplest epidemic models are based on population-wide random
mixing [88]. This homogeneous mixing assumption states that all individuals interact
at random with each other and neglects any form of underlying network structure [86].

5For models with only S and I compartments.
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The most basic models, such as Kermack & McKendrick [87], Bailey [89], and Anderson
& May [88] compartmentalize individuals based on their disease status.

For compartmental epidemic models the underlying rules are quite simple: consider a
system of N nodes (these can be individuals, neurons, websites, etc.), which can either
be infected/active (I) or susceptible/inactive (S). Each infected node can either recover
to the susceptible state at rate γ, or pass on its infection to a susceptible node at rate
λ. Typically, time is rescaled into units of the recovery rate γ. With this, the recovery
rate is 1 and the infection rate is given as λ/γ, sometimes simply called λ.

The Susceptible-Infected-Susceptible Model

In the absence of any network structure and considering only infected (I) and susceptible
(S) compartments, an epidemic is entirely characterized by the portion of the population
which is infected, called ρ ∈ [0, 1]. The dynamics are governed by a master equation of
the form

d

dt
ρ = −ρ+ λρ(1 − ρ). (1.23)

Recovery is given at rate 1 and infection is a second order process, occurring at rate λρ.
The rate λρ, at which susceptible individuals are infected is often called the force of
infection [86]. Eq. (1.23) describes the so-called susceptible-infected-susceptible (SIS)
model [88]. The SIS model describes an infection where individuals immediately become
susceptible again after recovery. This model has for example been used to model sexually
transmitted diseases where repeated infections are common [90].

This system exhibits an absorbing-state phase transition at λc = 1, between an active
phase and an absorbing state. The critical infection rate λc is referred to as the epidemic
threshold. In the active phase, i.e. for λ > 1, activity spreads indefinitely in the system
and the density of infected individuals reaches a steady state ρ(t→ ∞) > 0. In the
absorbing state, i.e. for λ < 1, activity dies out exponentially leading to ρ(t→ ∞) = 0.
The critical point of the phase transition is characterized by a power-law decay of the
infected density. Inserting λ = λc = 1 into eq. (1.23), the master equation reads

d

dt
ρ = −ρ2, (1.24)

which has the solution ρ(t) = 1
t+ 1

ρ0

, with ρ0 = ρ(t = 0). Therefore, for large t, the be-

havior of active density at the critical point is given by ρ ∼ t−1 (cf. Fig. 1.9).

The Susceptible-Infected-Recovered Model

For certain diseases reinfections are unlikely due to a subsequent immunization. Diseases
such as whooping cough or measles bring forth a lifelong immunization in an individual
[90]. These diseases are modeled with the susceptible-infected-recovered (SIR) model,
which actually constitutes the first compartmental epidemic model (Kermack and McK-
endrick [87]).

As in the SIS model, in the SIR model infected individuals pass on their infection to a
susceptible individual at rate λ. However, infected individuals recover at rate 1 into the
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Figure 1.9.: Dynamics and steady states of the SIS model. (Left) Decay of infected
density ρ over time t with an initially fully infected system, i.e. ρ(t = 0) = 1.
Blue signifies the absorbing state, characterized by an exponential decay of ρ
to 0 (epidemic dies out) and red signifies the endemic (active) phase, where
ρ reaches a steady state. At criticality (black) ρ decays as a power-law.
(Right) phase diagram with the control parameter λ (infection rate) and
the order parameter being the steady state infected density. A continuous
phase transition is present.

recovered state, meaning the susceptible state never gets repopulated. The dynamics
are now described by coupled differential equations as

d

dt
ρ = −ρ+ λρ(n− ρ) (1.25a)

d

dt
n = −ρ, (1.25b)

where n ≤ 1 is the percentage of the population in susceptible and infected states. In
the SIS model n = 1 for all times. While in an SIS epidemic a steady state is reached, in
the SIR model the disease will always die out at long times. Consequently, no endemic
state can be reach in the SIR model. As opposed to the SIS model, where one typically
regards steady-state properties, in the SIR model one is interested in the percentage of
the population which will have been infected at t→ ∞, i.e. one asks the question, ’how
far-reaching is the epidemic?’

We will later see that for SIR models on networks, this question directly maps to a
percolation problem. A global spreading corresponds to a percolating phase, and a local,
confined outbreak corresponds to the non-percolating phase.

The Generalized Growth Model

Looking at the decay of the active density, as done in Fig. 1.9, is an instructive theo-
retical tool to analyze phases present in the system. We used this in [P1] to prove the
existence of a Griffths phase (cf. Sec. 1.4.3) in the Rydberg facilitation gas. However,
this requires a great portion of the population to be infected at time t = 0, making it,
at best, cumbersome in real-world experiments.
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A lot of information about an epidemic can be derived from its early time dynam-
ics. The Generalized Growth Model (GGM) predicts the behavior of the growth of the
cumulative number of incidences C. This follows

d

dt
C = rCp, (1.26)

where r corresponds to the growth rate at early times and p is the deceleration of growth
[91]. For p = 1 growth is exponential, whereas p < 1 corresponds to power-law growth

with C ∼ t
p

1−p . Power-law growth, being slower than exponential growth, is generally
associated with factors impeding epidemic spreading. The most prominent factors are
spatial constraints and heterogeneity in the network structure underlying the epidemic
spread [16].

1.4.2. Network Models

Much information about complex systems can be derived by looking at connection pat-
terns in the system. In this sense, the internet would be broken down into the connections
between websites. When doing this, one finds that a handful of websites are connected
to a huge number of other websites.

A network is a system composed of a certain number of nodes, which can be connected
pairwise to each other by links. The terms network and graph are often used interchange-
ably, but have subtle differences. Networks describe how real-world systems, such as the
Internet, a transportation network, or social networks behave. From a mathematical
standpoint, these systems are described by graphs in which vertices are connected by
edges. While networks apply to real-world systems and problems, graphs are purely
abstract mathematical objects. The correspondence between these sets of terminology
is listed in Tab. 1.1. However, a distinction between the two is rarely made [92].

Table 1.1.: Correspondence of terminology between network science and graph theory
(from [92]).

Network Science Graph Theory

Network Graph

Node Vertex

Link Edge

Each node in a network has a degree k corresponding to the number of links to other
nodes it has. The distribution of these degrees throughout the network is called the
degree distribution P (k) and allows for a typification of the network (see Tab. 1.2).
For example, an Erdős–Rényi (ER) network (also known as a random network), has a
Poissonian degree distribution [93], i.e.

P (k) =
⟨k⟩k
k!

e−⟨k⟩, (1.27)
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where ⟨k⟩ is the average degree of the network. For an ER network, a percolation
transition occurs at ⟨k⟩ = 1, separating a percolating and a non-percolating phase. In
the percolating phase the system is composed of one giant connected component spanning
the entire system. In the non-percolating phase, the system is composed of many small,
disconnected clusters [93] (cf. Fig. 1.10). The percolation threshold depends on the
nature of the graph, and some graphs may not have one at all.

Figure 1.10.: (Top) 2D lattice with p = 0.1 (left) and p = 0.6 (center), as well as de-
gree distribution (dots) and a binomial distribution (solid lines). (Bottom)
Erdős–Rényi (ER) network with ⟨k⟩ = 0.5 (left) and ⟨k⟩ = 3.0 (center), as
well as degree distribution (dots) and Poissonian distribution (solid lines).
All data points use N = 400. The largest clusters are in pink and the
smallest in baby blue with grey nodes being completely disconnect.

In addition to the degree distribution, the adjacency matrix A plays a central role in
the typification of networks and can present information useful for understanding the
nature of spreading on the network. The entries of the adjacency matrix are defined as
follows

Aij =

{
1, if there is a link between i and j,

0, else.
(1.28)

For undirected networks A is symmetric. The adjacency matrix can reveal important
structural features of the network, such as connected components.
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Table 1.2.: Types of networks and their degree distributions. Note, this does not consti-
tute a complete list.

Type Degree Distribution

Erdős–Rényi Poissonian

Scale-Free P (k) ∼ k−γ , γ ≤ 3

Scale-Rich P (k) ∼ k−γ , γ > 3

Lattice δk,2d

1.4.3. Epidemics on Networks

Combining basic compartmental epidemic models with network structures allows for
very complex and diverse dynamics to occur. In fact, the complexity becomes so great
that few exact results for epidemic processes on networks have been found and many
results rely on mean field theory [86].

For the SIS model on a network, one central result comes from the structure of the
adjacency matrix. Namely, the epidemic threshold is shifted from λc = 1 depending on
the properties of the network. Using a degree based mean field approach, the network
dependent epidemic threshold can be calculated, yielding

λc =
1

Λ
, (1.29)

where Λ is the largest eigenvalue of the adjacency matrix A [94]. Neglecting correlations
between nodes of different degree k, k′, this can be further simplified to

λc =
⟨k⟩
⟨k2⟩ . (1.30)

From eq. (1.30) it becomes apparent that in certain networks the epidemic threshold can
vanish. In scale-free networks, where P (k) ∼ k−γ , and 2 < γ < 3, the second moment
diverges, i.e. ⟨k2⟩ → ∞, while ⟨k⟩ remains finite. Therefore, the epidemic threshold
tends to λc = 0. Here, arbitrarily small infection rates will lead the system to be in an
endemic state, making scale-free networks incredibly susceptible to epidemics [86]. This
is a consequence of the structure of scale-free networks. These types of networks have
a small number of nodes, called hubs, with many links, which can drastically increase
the spread of infections. Therefore, in order to prevent the spread of diseases on these
networks, it is crucial to prioritize immunizing hubs.

Finally, the dynamics of the SIR model on a network map directly to a bond percola-
tion problem. As stated above, in the SIR model the question arises, ’what percentage
of the population will have been infected?’ Starting from a single infected node, the
probability that it passes on its infection to another connected node before recovering is
given by [95]

T = 1 − e−λ, (1.31)
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with λ being the infection rate divided by the recovery rate. Since T is identical for
all connections of infected nodes to susceptible nodes, we can map this problem to a
bond percolation problem on a network (similar to the 2D lattice in Fig. 1.10). Here,
bonds exist with the probability T and a percolation transition occurs at Tc, where Tc
depends on the network geometry. For example, Tc = 1

2 for a 2D lattice. From this, the
epidemic threshold λc can be calculated, above which a global spreading of infections
occurs, corresponding to a percolating network.

Griffiths Phase

For SIS epidemics on random, ER networks the epidemic threshold depends on the
average degree ⟨k⟩ of the network. As one approaches the percolation threshold, the
epidemic threshold begins to deviate significantly from its mean field prediction, λc = 1.
A standard, but lengthy pair-approximation finds [17]

λ(1)c =
⟨k⟩

⟨k⟩ − 1
, (1.32)

with the mean-field value being recovered for infinite connectivity, i.e. lim⟨k⟩→∞ λ
(1)
c = λc.

In particular, at the percolation threshold ⟨k⟩ = 1, the epidemic threshold diverges,
meaning that in the case of a non-percolating network, no active phase exists. Instead
this phase is replaced with an extended Griffiths phase [17].

In the Griffiths phase activity spreading is constrained to local clusters, i.e. small
groups of connected nodes. While the system is globally inactive, activity in local clusters
can persist on very long timescales. To illustrate this, the decay of the global activity
ρ(t) in the Griffiths phase will be calculated in the following.

For a random network in the non-percolating phase, the size distribution of clusters
is exponential, i.e.

P (s) ∼ e−cs, (1.33)

where s is the size of a given cluster and c ∈ R>0 depends on the degree of the network.
The average time for initially active cluster to become inactive also depends exponentially
on the cluster size, but actually increases with the length of the cluster. This results
from all nodes having to return to the susceptible state before another node can be
infected. For linear clusters, i.e. all nodes forming a line, the characteristic lifetime τ of
activity in a cluster of size s is given by

τ(s) ∼ e−bs, (1.34)

where b = lnλ− 1 + 1
λ [96]. The global activity in the Griffiths phase can be calculated

by averaging over different cluster sizes s with

ρ(t) =

∫
ds sP (s)e−t/τ(s). (1.35)

Using a saddle point approximation one finds ρ(t) ∼ t−c/b [17]. Astonishingly, the two
competing exponential processes result in a generic scale-invariant behavior of the ac-
tivity in time, thus showing that activity can persist on very long timescales.
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1.5. Squeezed States

A squeezed state is a quantum state in which the uncertainty of one of its observables
is decreased below the standard quantum limit (see below), at the cost of increasing
the uncertainty of the conjugate observable. For example, in a harmonic oscillator
the uncertainties of position x̂ and momentum p̂ are bounded from below, following
Heisenberg’s uncertainty relation, with

∆x̂∆p̂ ≥ ℏ
2
. (1.36)

However, this only limits the product of the two observables. A minimal, balanced
uncertainty (e.g. in a coherent state, cf. Sec. 1.5.2) occurs when uncertainties of the
two observables are equal and saturate the uncertainty relation. Considering conjugate
variables with a characteristic scale, e.g. ξ for X̂1 and 1

ξ for X̂2, this takes the form

∆X̂1 = ∆X̂2 =
1√
2
. (1.37)

In the context of interferometry, eq. (1.37) is known as the standard quantum limit and
it sets an upper boundary on the precision of measurements, where these become limited
by quantum noise. Squeezed states offer a way of going beyond this limit by reducing
the uncertainty of one variable below this limit, at the cost of increasing the uncertainty
of the other, in a way that does not violate the uncertainty principle. Note that squeezed
states do not need to saturate the uncertainty principle.

1.5.1. The Quantized Electromagnetic Field

Much of the work in understanding squeezed states has arisen in the context of squeezed
states of light [97]. In the context of quantum field theory, the electromagnetic field is
treated as an infinite set of uncoupled harmonic oscillators, one for each mode k and
polarization λ. The number of excitations in a given mode is quantized, i.e. as photons.
The excitation and de-excitation of photons is modeled by creation â† and annihilation
â operators on the respective mode oscillator6. The (complex) electric field in the mode
k and with polarization λ is given by

Ê(r, t) = f(ω)ϵλ[âei(k·r−ωt) + â†e−i(k·r−ωt)], (1.38)

where f(ω) is a real-valued function of the frequency and the ϵλ is the vectorized polar-
ization [98]. For the sake of representing the phase space distribution of the single-mode
electric field, we can define two dimensionless operators as sums of creation and annihi-
lation operators. These field quadratures can be written as

X̂1 =
1√
2

(â† + â), (1.39a)

X̂2 =
i√
2

(â† − â), (1.39b)

6For simplicity we drop the index k of the oscillator mode energy and set ℏ = 1.
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and from their definition, they resemble the position and momentum operators of a har-
monic oscillator. Following a quick calculation, one can show that these obey [X̂1, X̂2] = i,
meaning X̂1 and X̂2 behave like canonical conjugates and must obey the uncertainty

principle, i.e.
√

⟨∆X̂2
1 ⟩
√

⟨∆X̂2
2 ⟩ ≥ 1

2 . We can rewrite the single mode electric field from

eq. (1.38) in terms of these quadratures as

Ê(r, t) = f(ω)ϵλ[X̂1 cos(k · r− ωt) − X̂2 sin(k · r− ωt)]. (1.40)

Therefore, we can decompose the oscillating electric field into the quadratures X̂1 and
X̂2, corresponding to the amplitude and phase quadratures, respectively.

1.5.2. Quantum States of Light

Having briefly seen how the (single mode) electromagnetic field can be treated in the
context of quantum field theory, we now turn to the quantum states which this field can
take. Since the electromagnetic field is just an infinite collection of uncoupled harmonic
oscillators, we can focus on a single mode, with its Hamiltonian given by

Ĥk = ωk

(
â†â+

1

2

)
, (1.41)

where ωk is the quantized, photon energy. There are different representations of a
quantum state, described by a density matrix ρ̂, of an electromagnetic mode in phase
space. The most common representations are the Glauber-Sudarshan P representation
[99, 100], the Husimi Q representation [101], and the Wigner distribution [102]. These
can be defined by their characteristic functions, with ξ ∈ C, as [103]

χP(ξ, ξ∗) = Tr{eiξâ
†
eiξ

∗âρ̂}, (1.42a)

χQ(ξ, ξ∗) = Tr{eiξ
∗âeiξâ

†
ρ̂}, (1.42b)

χW(ξ, ξ∗) = Tr{eiξâ
†+iξ∗âρ̂}. (1.42c)

Thus the P function corresponds to normal ordering, the Q function corresponds to
anti-normal ordering, and the Wigner function corresponds to symmetric ordering of
operators. A given distribution can then be extracted via a two-dimensional Fourier
transformation. For example, the Wigner function reads [103]

W (α, α∗) =
1

π2

∫∫
dξdξ∗ χW(ξ, ξ∗) e−iξα∗

e−iξ∗α. (1.43)

The Wigner functions of various states of light discussed in throughout this section can
be seen in Fig. 1.11.

Fock States

First and foremost, let us regard the eigenstates of Hamiltonian (1.41). These are the
number states, or Fock states, and they correspond to n excitations (photons) being

32



1.5. Squeezed States

present in the oscillator. Starting from the ground (vacuum) state |0⟩, which we assume
to be normalized, we can define higher-lying Fock states as

|n⟩ =
1√
n!

(â†)n |0⟩ . (1.44)

These states obey ⟨m|n⟩ = δmn and
∑∞

n=0 |n⟩ ⟨n| = 1̂. A Fock state |n⟩ describes an
excitation of the electromagnetic field (in the mode k) with exactly n photons of energy
ωk. Correspondingly, their average energy is

⟨n|Ĥ|n⟩ = ωk

(
n+

1

2

)
. (1.45)

Figure 1.11.: Phase space distribution of different states of light. Wigner function
W (X1, X2) (cf. eq. (1.43)) of a (a) Fock |0⟩ state, (b) Fock |2⟩ state, (c)
coherent state, and (d) squeezed state being squeezed in the X̂1 coordinate
and stretched in the X̂2 coordinate. Purple corresponds to positive and
yellow to negative values of the Wigner function.

In the vacuum state, i.e. Fock |0⟩, we can calculate the expected value and the
fluctuations of the electric field and receive

⟨Ê(r, t)⟩ = ⟨0|Ê(r, t)|0⟩ = 0, (1.46a)

⟨∆Ê(r, t)2⟩ = ⟨0|Ê(r, t)2|0⟩ − ⟨0|Ê(r, t)|0⟩2 =
f2(ω)ϵ2λ

2
> 0. (1.46b)
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As one would expect, the expected value of the electric field vanishes. However, the same
is not true for its fluctuations. Despite the absence of photons, the fluctuations of the
electric field are greater than zero. This means that in addition to the infinite energy
background, which the electromagnetic field exhibits in a vacuum, the field also fluctu-
ates. These vacuum fluctuations have measurable effects including allowing for atoms
in excited electronic states to spontaneously decay [104, 105], causing the Lamb shift
in the energy between two electron orbitals of the Hydrogen atom [106], and producing
the Casimir effect, where two conducting metal plates in a vacuum become attracted to
each other [107].

For a Fock state |n⟩, with n photons present, the expectation value of the electric field
can be calculated from eq. (1.38) and reads

⟨n|Ê(r, t)|n⟩ = 0. (1.47)

Interestingly, the expectation value of the electric field vanishes in this basis, despite n
photons being present. Furthermore, the distribution of the Wigner function (cf. (1.43))
takes on negative values for Fock states with n > 0 and their photon statistics always
show sub-Poissonian statistics, regardless of n. Both of these are indications of non-
classical behavior, for example the photon statistics of classical light are always Poisso-
nian or super-Poissonian. As a result of their highly non-classical nature, Fock states
are extremely hard to produce experimentally [108].

Coherent States

Perhaps the most classical states of light in the context of quantum optics are the coherent
states |α⟩. These are defined as right-handed eigenstates of the annihilation operator â,
i.e.

â |α⟩ = α |α⟩ , (1.48)

with the eigenvalue α ∈ C. Now, if we regard the expectation value and fluctuations of
the electric field in a coherent state, we find

⟨α|Ê(r, t)|α⟩ =
√

2f(ω)ϵλ[Re{α} cos(k · r− ωt) + Im{α} sin(k · r− ωt)], (1.49a)

⟨α|∆Ê(r, t)2|α⟩ =
f2(ω)ϵ2λ

2
. (1.49b)

From eq. (1.49a) we find the expectation value to effectively take its classical value,
where Re{α} and Im{α} correspond to the field amplitudes. The fluctuations of the
electric field take on the value of vacuum fluctuations (cf. (1.46b)) irrespective of the
field amplitude. Furthermore, when regarding the uncertainties of the field quadratures

of a coherent state, we find
√

⟨∆X̂2
1 ⟩ =

√
⟨∆X̂2

2 ⟩ = 1√
2
. From these we can discern that

coherent states saturate the uncertainty relation, and in particular, the uncertainties in
the quadratures are balanced. Therefore, when regarding coherent states in phase space
(cf. Fig. 1.11), coherent states appear with circular shapes.
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By projecting the coherent states into the Fock basis, we can investigate their photon
statistics. In the Fock basis, these read

|α⟩ =
∞∑

n=0

αn

√
n!

e−|α|2/2 |n⟩ , (1.50)

which yields the photon number distribution P (n) = | ⟨α|n⟩ |2 = e−|α|2/2 |α|2n
n! . The num-

ber distribution of photons in a coherent state is Poissonian and therefore, once again,
acts classically.

Lastly, let us turn to the relative noise of the electric field, calculated by using
eqs. (1.49). In the context of interferometry and high precision measurements this is
a key quantity. For coherent states, we can calculate the relative noise (RN) as

RN =

√
⟨α|∆Ê2|α⟩
[⟨α|Ê|α⟩]2

∝ 1

|α| , (1.51)

since ⟨α|∆Ê2|α⟩ = const. and

√
[⟨α|Ê|α⟩]2 ∝ |α|. Furthermore, |α| corresponds to the

square root of the mean photon number, i.e. |α| =
√
⟨α|n̂|α⟩, causing the relative noise

to decrease with the square root of the mean photon number, i.e. RN ∼ 1√
n

. Through

their low and balanced relative noise – by saturating the Heisenberg uncertainty relation
– coherent states resemble classical light most closely. In fact an idealized laser emits
coherent states of light.

Coherent states can be generated from vacuum states by applying the unitary dis-
placement operator D(α) = eαâ

†−α∗â onto the vacuum state |0⟩ [109, 110], i.e.

|α⟩ = D̂(α) |0⟩ . (1.52)

The displacement operator D̂(α) can be thought of as moving a localized state in phase
space by the complex magnitude α.

Squeezed States

The uncertainty relation only sets a minimum constraint on the area covered by quantum
noise in phase space. For coherent states, which have minimal uncertainty, this area is
circular. We can consider squeezing this area into an ellipse, where the uncertainty in
one quadrature goes below the standard quantum limit, while the uncertainty in the
other increases. These squeezed states offer a way to beat the 1√

n
limit set by quantum

noise on the accuracy of high precision measurements (cf. Fig. 1.12).
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Figure 1.12.: Time dynamics of squeezed states. (Left column) Phase space distribu-
tion and (right column) expectation value (lines) and quantum fluctuations
(shaded areas) of the electric field over time for (top row) a coherent state,
(center row) a state squeezed with reduced noise in X̂2 (reduced phase
noise), and (bottom row) a squeezed state with reduced noise in X̂1 (re-
duced amplitude noise).

Squeezed states can be generated from coherent states via the unitary squeeze operator,
defined as [98]

Ŝ(z) = e
1
2
(z∗â2−zâ†2) (1.53)

with z = reiθ. In this case they are referred to as squeezed coherent states, and we will
label them |α, z⟩ ≡ Ŝ(z)D̂(α) |0⟩. As seen in Fig. 1.12, the area covered by a squeezed
coherent state in phase space is squeezed into an ellipse of the same area as the coherent
state. The eccentricity of the ellipse depends on the parameter r, as such this parameter
is referred to as the squeeze parameter. The angle of the ellipse, i.e. the directions of the
major/minor axes of the ellipse, are determined by the parameter θ, referred to as the
squeezing angle. Note that the squeeze and displacement operators do not commute.

For a squeezed coherent state |α, z⟩, we can calculate the quadrature variances, cor-
responding to the length of the major and minor axes of the state in phase space. This
is explicitly done for a squeezed coherent state |α, z⟩ in Ref. [103]7. The maximal and
minimal quadrature variances do not depend on the squeezing angle θ, so for simplicity,
we will regard θ = 0. In this case, the maximal quadrature variance is in X̂2 and the
minimal variance is in X̂1, i.e.

7Note a factor 1√
2
difference in the definition of X̂1 and X̂2 between Ref. [103] and the convention used

here.
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⟨∆X̂2
1 ⟩ = ⟨(X̂1)

2⟩ − (⟨X̂1⟩)2 (1.54)

=
1

2
e−2r, (1.55)

⟨∆X̂2
2 ⟩ = ⟨(X̂2)

2⟩ − (⟨X̂2⟩)2 (1.56)

=
1

2
e2r. (1.57)

For r = 0, we receive the variances of a coherent state, and for all r > 0 we find the
variances to saturate the Heisenberg uncertainty relation, making a squeezed coherent
state an ideal squeezed state [103]. Finally, the squeeze operator transforms the bosonic
ladder operators to

b̂ = Ŝ(z)âŜ†(z) = uâ+ vâ† (1.58a)

b̂† = Ŝ(z)â†Ŝ†(z) = v∗â+ uâ†, (1.58b)

with u = cosh z, v = sinh z, and |u|2 − |v|2 = 1. The transformation (1.58) is of the
form of a bosonic Bogoliubov transformation, useful for the diagonalization of quadratic
Hamiltonians, which we use in [P5]. The generation of squeezed states has been exper-
imentally realized with nonlinear optical media, e.g. via four wave mixing [111] or via
parametric down conversion [112].

1.5.3. Applications of Squeezing

Finally, let us finish this section by discussing two manifestations of squeezing in and
beyond quantum optics. For example, it was proposed quite some time ago to implement
squeezing in the search for gravitational waves [113]. Following the groundbreaking
measurement of gravitational waves in late 2015 [114], these interferometers have started
using photon squeezing to enhance signal-to-noise ratios [115]. This has become more
and more necessary as increasing the laser power to reduce the signal-to-noise ratio
(cf. eq. (1.51)) has proven to be ultimately limited by the thermal deformation of optical
components [116].

Another application comes in form of spin squeezing [117]. In atomic ensembles of
ultra-cold atoms, collective spin states can be squeezed to enhance measurement pre-
cision (cf. Ref. [118] for a review). This can be used to detect quantum entanglement
[119] or facilitate the construction of more precise atomic clocks [120].
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2. Griffiths Phase in a Facilitated
Rydberg Gas at Low Temperatures

D. Brady, J. Bender, P. Mischke, S. Ohler, T. Niederprüm, H. Ott, and M. Fleischhauer
Physical Review Research 6, 013052 (2024)

This work is the first of our studies analyzing the epidemic-like behavior of Rydberg
facilitation in a gas. It showcases an experimental observation of generic scale-invariance
in the gas and investigates this using extensive theoretical modeling through Monte Carlo
simulations and analytic considerations. Scale-invariance is a signature of a system at
criticality, i.e. it should occur at a specific point in the parameter space and only with
certain, characteristic power-law exponents (cf. Sec. 1.3). Therefore, a generic occurrence
of scale-invariance with continuously varying power-law exponents hints at the existence
of an exotic Griffiths phase [17] (cf. Sec. 1.4.3).

Figure 2.1.: (Left) Qualitative phase diagram of the low temperature Rydberg facilita-
tion gas, with network connectivity ⟨k⟩ and normalized infection rate λ/γ.
(Right) Decay of Rydberg density ρ with all atoms excited in the beginning,
i.e. ρ(t = 0) = n for different points in the phase diagram (colors). In the
Griffiths phase a power-law decay of ρ(t) with various different decay expo-
nents is expected.

The central idea of this publication was to understand the origin of heterogeneous
Griffiths effects in the gas. A recent experiment [16], as well as our own experiment,
showed generic scale-invariance in the Rydberg gas. In Ref. [16] this was attributed to
heterogeneity induced by different velocity classes in the gas. It was argued that Rydberg
atoms with high velocities only very rarely interact with (infect) other atoms due to an
exponentially decaying Landau-Zener (LZ) transition probability. In this publication,
we prove the existence of a Griffiths phase within the Rydberg gas, but show that this
phase does not originate from velocity classes. Instead, the Griffiths phase emerges at
low temperatures as a result of excitation spreading being confined to a network.

Firstly, we show that the decaying LZ probability with increasing atom velocity is
(mostly) correctly modeled in our Monte Carlo simulations. Our simulations, however,
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do not show Griffiths effects at high temperatures, as would otherwise be expected fol-
lowing Ref. [16]. The reason for this being an increase in the number of atoms with which
a fast atom can interact with in a given time, compensating the decreased excitation
probability for each atom it passes. Consequently, the number of atoms a single Rydberg
atom infects does not depend on its velocity and, therefore, for high gas temperatures
we find a simple absorbing-state phase transition in the gas.

However, at low temperatures we discovered that the spreading of excitations is con-
strained to a random, Erdős–Rényi (ER) network [93]. An ER network exhibits a
phase transition between a percolating phase for ⟨k⟩ > 1 and a non-percolating phase for
⟨k⟩ < 1, where ⟨k⟩ is the average number of connections a given node has (cf. Sec. 1.4.2).
We discovered that we can quantitatively map the Rydberg facilitation gas to an ER
network, where we find the average connectivity to be given by

⟨k⟩ = nVs, (2.1)

where n is the gas density and Vs is the volume of the facilitation shell.
Given an infection rate λ larger than the recovery rate γ, the spreading of infections

through the system depends drastically on the network. For ⟨k⟩ > 1, the infection can
spread unhindered through the giant cluster in the system. Here, the infected density
ρ will reach a non-zero steady state and infections persist indefinitely in the system
(active phase). However, for ⟨k⟩ < 1, the finite size of individual (disconnected) clusters
hinders a global spread of infections. The system becomes locally active and a Griffiths
phase emerges [17]. In this case, the infection cannot persist due to the finite size of
infected clusters, and it decays (slower than exponentially) as a power-law over time. The
exponent of this power-law decay depends explicitly on the infection and recovery rates
and is therefore non-universal. Finally, if the recovery rate is stronger, i.e. λ/γ < 1, the
infection dies out exponentially in time irrespective of the network structure (absorbing
phase).

For the theoretical modeling we utilize large scale Monte Carlo simulations of classical
rate equations. A detailed description of the algorithm can be found in Appendix A.
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The spread of excitations by Rydberg facilitation bears many similarities to epidemics. Such systems can
be modeled with Monte Carlo simulations of classical rate equations to great accuracy as a result of high
dephasing. Motivated by experiments, we theoretically analyze the dynamics of a Rydberg many-body system in
the facilitation regime in the limits of high and low temperatures. In the high-temperature limit, a homogeneous
mean-field behavior is recovered, while characteristic effects of heterogeneity can be seen in a frozen gas. At high
temperatures, the system displays an absorbing-state phase transition and, in the presence of an additional loss
channel, self-organized criticality. In a frozen or low-temperature gas, excitations are constrained to a network
resembling an Erdős-Rényi graph. We show that the absorbing-state phase transition is replaced with an extended
Griffiths phase, which we accurately describe by a susceptible-infected-susceptible model on the Erdős-Rényi
network taking into account Rydberg blockade.

DOI: 10.1103/PhysRevResearch.6.013052

I. INTRODUCTION

Rydberg atoms have gained a lot of attention in recent years
due to their strong interactions over large distances [1]. This,
paired with their long lifetimes in the order of milliseconds,
creates a platform to explore quantum many-body physics
of strongly interacting spin systems [2–9] and to implement
key elements for quantum information processing [10–14].
Moreover, optically driven Rydberg atoms [see Fig. 1(a)] can
be used to investigate many-body dynamics of spin systems in
inherently dissipative environments [15–19], as the laser ex-
citation into high-lying Rydberg states is often accompanied
by strong dephasing. The latter includes important dynam-
ical phenomena such as an absorbing-state phase transition
[see Fig. 1(b)], one of the simplest classical nonequilibrium
phase transitions displaying critical behavior and universality
[20,21].

Absorbing-state phase transitions are of general interest
as they occur in many phenomena outside of physics such
as population dynamics, epidemics or the spreading of in-
formation in social media [22–25]. Systems with this phase
transition are believed fall into the universality class of di-
rected percolation (DP) [20]. The unambiguous experimental
observation of DP universal behavior is, however, challeng-
ing and has only been achieved in a few systems in recent
years [26–31]. More recently, experimental signatures of such

*Corresponding author: brady@rptu.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

a transition have been reported in optically driven Rydberg
gases [32].

In Rydberg systems, dissipation can give rise to another
important dynamical phenomenon: self-organized criticality
(SOC) [33,34], which is believed to be a cause for the abun-
dance of scale invariance in nature [35–38]. An SOC system
dynamically evolves to the critical point of a phase transition
by itself due to dissipation and without the need for parameter
fine tuning [see Fig. 1(c)]. Since the dissipation is strongly
reduced once the critical point is reached, further evolution
into the absorbing phase happens on much longer timescales.
Recent experiments on Rydberg facilitation have shown some
evidence of SOC through the use of ionization or a decay
into an auxiliary inert (dead) state as a loss mechanism [see
Fig. 1(a)] [39] (see Ref. [40] for related experiments).

However, the DP transition is known to be susceptible to
disorder [41] and more recent experiments on Rydberg facil-
itation in a trapped ultracold gas of atoms gave indications
for an emergent heterogeneity in the system [42]. In such
a heterogeneous system, the critical point of the absorbing-
state phase transition is replaced by an intermediate extended
Griffiths phase. Griffiths phases are characterized by generic
scale invariance and the lack of universal behavior. This is
in contrast to an absorbing state phase transition where scale
invariance is only expected at the critical point. As a result
(e.g., in the Rydberg gas), one expects a power-law decay in
active density over time with continuously varying exponents
depending on the driving strength [43].

In Ref. [42], it was experimentally shown that a Ryd-
berg system in the facilitation regime produces signatures
of such a Griffiths phase for short times compared to
the lifetime of the Rydberg state. A power-law decay in
Rydberg density over time was observed with the decay expo-
nents varying with driving strength and a phenomenological
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(a) (b)

(c) (d)

FIG. 1. (a) Laser field couples ground |g〉 and Rydberg |r〉 states,
resulting in a transition rate �f (�) [see Eq. (3)]. The Rydberg state
can spontaneously decay into |g〉 or an inert state |0〉. (b) Steady-state
Rydberg density depending on total active density (i.e., in states |g〉
and |r〉) for b = 0 from Monte Carlo simulations. (c) Total active
density ntot over time from Monte Carlo simulations for b > 0, show-
ing self-organization of the system to the critical density ncrit, if the
initial density is larger. (d) Schematic of facilitation shell (white):
Atoms (grey) in the red area are subject to Rydberg blockade and
atoms in the blue area only weakly interact with the Rydberg atoms
(red).

susceptible-infected-susceptible (SIS) network model was put
forward to describe the observations. The model included a
fitting function for the node weights of the network depend-
ing on the excitation rate κ . The interpretation being that in
the network model, heterogeneity originates from a velocity
selective excitation mechanism, where only atoms with rela-
tive velocities smaller than the Landau-Zener velocity vLZ(κ )
could participate in facilitation dynamics. Above this velocity,
all further excitations are exponentially suppressed.

In the present paper, we present experimental indications
for generic scale invariance and strong theoretical indications
for a Griffiths phase in a Rydberg facilitation gas by Monte
Carlo simulations.

In the experiment, we continuously monitor the number of
Rydberg excitations in a trapped ultracold gas of 87Rb atoms.
We show that the size distribution of the Rydberg excitation
number follows a power-law distribution, i.e., shows a scale-
free behavior, over an extended parameter regime, which is a
key characteristic of a Griffiths phase.

To understand and quantitatively describe the emergence
of the Griffiths phase, we theoretically analyze two limiting
cases: (i) a frozen gas and (ii) a gas with high temperature.
While we recover a direct absorbing-state phase transition in
the high-temperature limit with no signs of a velocity induced
heterogeneity, we can identify a Griffiths phase in the frozen
gas limit as a result of the finite paths along which facilitated
excitations can spread. We give a quantitative analysis of the
factors contributing to the emergence of a Griffiths phase and
provide an estimate for the characteristic exponents of the
power-law decay of Rydberg activity in this phase.

The facilitation of Rydberg excitations in a gas of optically
driven atoms can be microscopically described by a Lindblad
master equation [44] for the density matrix ρ̂, which takes the
form

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑
l

L̂l ρ̂L̂†
l − 1

2
{L̂†

l L̂l , ρ̂}. (1)

Here, the atom-light interaction Hamiltonian Ĥ is given by

Ĥ =
∑

i

[
�

(
σ̂

gr
i + σ̂

rg
i

) +
( ∑

j �=i

c6

r6
i j

σ̂ rr
j − �

)
σ̂ rr

i

]
, (2)

where σ̂
μν
j = |μ〉 j j〈ν| is the transition operator between states

|ν〉 and |μ〉 of the jth atom. The strength of the laser driv-
ing shifted from the ground-Rydberg resonance frequency by
the detuning � is described by the Rabi frequency �, and
there is a van der Waals interaction proportional to c6/r6

i j ,
with ri j = |�ri − �r j | being the distance between atoms i and j.
Dissipative processes are taken into account by the Lindblad
jump operators L̂(i)

1 = √
(1 − b)γ σ̂

gr
i , L̂(i)

2 = √
bγ σ̂ r0

i describ-
ing spontaneous decay of the Rydberg state into the ground
state |g〉 and the inert state |0〉, with the branching parameter b.
Finally, dephasing, attributed to laser phase noise and Doppler
broadening [39] as well as the spread of the atomic wave
packet over the van der Waals potential [45], is described by
L̂(i)

⊥ = √
γ⊥σ̂ rr

i .
The strong van der Waals interaction of a Rydberg atom

shifts energy levels of the surrounding atoms significantly up
to distances of multiple µm. When the atoms are resonantly
coupled to a laser field, this will block further excitations into
Rydberg states from occurring for all atoms within a finite
distance, a phenomenon known as Rydberg blockade [11]. On
the other hand, if the laser excitation is strongly detuned, the
excitation of isolated atoms is suppressed while atoms close
to the facilitation distance rf ≡ 6

√ c6
�

are shifted into resonance
[Fig. 1(d)] and are excited with a greatly increased rate. This
process, termed Rydberg facilitation, leads to a cascade of
excitations quickly spreading through the system following
a single (off-resonant) excitation [46,47]. It is important to
note that Rydberg blockade still occurs in this regime. The
excitation of atoms with distances r < rf is greatly suppressed
[red zone in Fig. 1(d)].

II. EXPERIMENTAL OBSERVATION OF SCALE-FREE
BEHAVIOR IN A DRIVEN RYDBERG GAS

To experimentally test scale invariance, we investigate the
excitation density in a trapped gas of 87Rb atoms. To this
end, we prepare a sample containing 150 × 103 atoms at a
temperature of 1 µK in a crossed optical dipole trap. The
sample has a density on the order of 1012/cm3. From the 5S1/2

ground state, a UV laser at 297 nm continuously couples to
the 40P3/2 Rydberg state with a detuning of +40 MHz and a
resonant Rabi frequency of 2π × 100 kHz. The temperature
of the gas corresponds to a most probable speed v̂ = 0.7 rfγ

with the facilitation radius rf and decay rate γ .
Atoms in the 40P3/2 state are ionized because of multiple

intrinsic processes [48,49], which we use to continuously
monitor the excitation number. To this end, we guide the
resulting ions to a detector using a small electric field. This
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FIG. 2. (a) Ion signal per 10 µs time interval for a single experi-
ment run (blue line) and average over 1000 experimental runs (black
line). The ground state is off-resonantly coupled to the Rydberg
state for 100 ms. During the measurement, the density continuously
decreases because of the intrinsic ionization of Rydberg atoms. In the
first few milliseconds, the system is in the active phase, displaying
continuously high activity. Afterward, the dynamics is dominated by
isolated avalanches. The colored areas indicate the time segments
evaluated in (b). (b) Experimentally found distribution of ion counts
for different sample densities averaged over 1000 experimental runs.
We choose exemplary 5 ms-long time segments at 15 ms (orange),
40 ms (green), and 85 ms (violet) corresponding to three densities.
The distributions show power-law behavior (fitted in red), albeit with
distinct exponents (−1.51, −1.79, and −2.03, respectively). The
shaded region characterizes the uncertainty in the measurements.
It represents the maximum (minumum) relative occurrence when
shifting the evaluation windows by ±5 ms.

yields a time-resolved signal proportional to the number of
Rydberg excitations in the sample [Fig. 2(a)].

At the beginning of the continuous laser exposure, which
lasts 100 ms, there are no excitations in the sample. As soon
as the first off-resonant excitation is created, activity spreads
through the system via facilitation, setting it up in the active
phase. Due to the continuous atom loss caused by the ioniza-
tion of excited atoms, the sample density decreases, reducing
the effective driving strength. The sample thus approaches the
phase transition.

We divide the ion signal in segments of 5 ms to account
for the temporally varying effective driving. For each of these
segments, we analyze the ion count distribution in 10 µs bins
and average over 1000 experimental runs. After about 10 ms,
the average activity has dropped more than an order of magni-
tude compared to its maximum value, while in individual runs
it is dominated by avalanches. Therefore, we assume that at
this time the sample is leaving the active phase.

Our measurement data shows persistent power-law behav-
ior in the distribution of avalanche sizes over a wide range of

densities [Fig. 2(b)]. Power laws are a clear signature of scale
invariance, which is expected only at the critical point of an
absorbing-state phase transition or in a Griffiths phase char-
acterizing a heterogeneous system. The extracted exponent of
the power-law distribution is not fixed but varies with density,
strongly indicating nonuniversal behavior. While these obser-
vations are not an experimental proof of heterogeneity, we use
them as motivation to theoretically investigate possible origins
of heterogeneity and a related Griffiths phase in the system.

III. MICROSCOPIC MODEL OF RYDBERG FACILITATION

After having shown indications of scale-invariant behav-
ior in the Rydberg facilitation gas, however, with varying
exponents in the experiments, we now turn to a theoretical
modeling of the microscopic dynamics.

In the limit of large dephasing, the dynamics of a many-
body Rydberg gas are effectively governed by classical rate
equations [50]. As such, we will simulate a gas of atoms
governed by Eq. (1) using classical Monte Carlo simulations
of a set of rate equations derived from Eq. (1) in the limit
of large dephasing. After adiabatic elimination of coherences,
Eq. (1) reduces to classical rate equations between ground,
Rydberg, and inert states [see Fig. 1(a)], with the stimulated
rate �f (�) given as

�f (�) = 2�2γ⊥

γ 2
⊥ + �2

( ∑
j �=i
j∈�

r6
f

r6
i j

− 1
)2

, (3)

where � is the set of indices of Rydberg-excited atoms. To
ensure numerical stability in the simulation, the singularity of
the potential in Eq. (3) is truncated at a cutoff value.

Using Eq. (3), we can formulate a set of classical rate
equations for the probability of the ith atom being in the
Rydberg state P(i)

r or the ground state P(i)
g as

d

dt
P(i)

r = �f (�)P(i)
g − (�f (�) + γ )P(i)

r , (4a)

d

dt
P(i)

g = (�f (�) + (1 − b)γ )P(i)
r − �f (�)P(i)

g . (4b)

If no other Rydberg atom exists in the gas or their distance
is much larger than rf, �f (�) reduces to the off-resonant
excitation rate of an isolated atom:

τ = 2�2γ⊥
γ 2

⊥ + �2
. (5)

As a result of the broadening of the ground-Rydberg tran-
sition, given by the dephasing rate γ⊥, facilitation can occur in
a smeared-out region around the facilitation distance rf, given
by

δrf = γ⊥
2�

rf. (6)

Therefore, each Rydberg atom spans a facilitation shell
around it at the radius rf and with the width δrf [white disks
in Fig. 1(d)]. Inside this shell, the stimulated rate takes its
maximal value �f = 2�2

γ⊥
, referred to as the facilitation rate.

Relevant for later mappings to epidemic models is this rate
integrated over volume Vs of the facilitation shell given by

κ = �f Vs. (7)
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The relevant quantities of interest here are the coarse-
grained Rydberg density (in a small volume �V )

ρ(�r, t ) = 1

�V

∑
i:�ri∈�V

〈
σ̂ rr

i

〉
, (8)

and the total active density of ground-state and Rydberg
atoms:

n(�r, t ) = 1

�V

∑
i:�ri∈�V

(〈
σ̂ rr

i

〉 + 〈
σ̂

gg
i

〉)
. (9)

In the following, n will be referred to as the total density of
the gas, for simplicity. As atoms in state |0〉 do not participate
in the dynamics of the system [see Fig. 1(a)], a decay into this
state corresponds to a reduction of the total density, i.e., atom
loss.

With this, nκ corresponds to the rate with which excitations
spread through the cloud.

The gas is simulated in a cube with size L3 and peri-
odic boundary conditions, typically L = 7 rf. Atom positions
are chosen randomly and velocities are sampled from the
Maxwell-Boltzmann distribution with the temperature param-
eter v̂, corresponding to the most probable atom velocity in
the gas. After choosing a fixed time step (dt = 1/400 γ ), the
time evolution of the system is given by a fixed time step
Monte Carlo (ftsMC) algorithm [51]. We choose a ftsMC al-
gorithm as opposed to a kinetic Monte Carlo algorithm [52] as
atomic movement, paired with long-range interactions leads
to quickly changing transitional rates in the system.

In Ref. [39], Langevin equations have been derived to
macroscopically describe the density of Rydberg atoms ρ and
the total density n in the system. As shown in Ref. [39], the
homogeneous mean-field solution, in which diffusion terms
are neglected, is sufficient to model the system. These equa-
tions then take the form

d

dt
ρ = −κ (2ρ2 − ρn) − γ ρ − τ (2ρ − n) + ξ, (10a)

n = n0 − bγ
∫ t

0
dt ′ ρ(t ′), (10b)

with the off-resonant excitation rate τ and a noise term ξ .
The parameter b characterizes the percentage of Rydberg
atoms which spontaneously decay into the dead state |0〉 [see
Fig. 1(a)]. As mentioned above, atoms that decay into this
state are effectively removed from the system.

Assuming a gas with a heterogeneous density, diffusion
results in a stabilization of the critical point over long times.
For details pertaining to this, see Ref. [53].

In the absence of decay into |0〉, i.e., for b = 0, and in the
absence of an off-resonant excitation, i.e., τ = 0, the dynam-
ics described by Eqs. (10) feature an absorbing-state phase
transition at the critical atom density

ncrit = γ

κ
, (11)

when the facilitation rate is fixed or, alternatively, at the
critical facilitation rate κcrit = γ /n0 for fixed density. Below
the critical point, any initially existing excitations in the sys-
tem will eventually decay and the steady state of the system
is one where all atoms are in the ground state (absorbing
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FIG. 3. (a) Sum of Rydberg and ground state atom densities
over time from Monte Carlo simulations (blue dots) for v̂ = 0 rfγ

and v̂ = 100 rfγ compared with the prediction from the Langevin
Eqs. (10) from Ref. [39] (red line). (b) Rydberg density for
v̂ = 100 rfγ . (c) Rydberg density for v̂ = 0 rfγ . For all plots, we use
the parameters: n0 = 4 r−3

f , �/γ = 20, �/γ=2000, γ⊥/γ = 20,

b = 0.3, L/rf = 7.

phase). Above the critical point, any arbitrarily small number
of excitations initially present in the system will facilitate
further excitations cascading through the system until a steady
state with finite excitation density ρ(t → ∞) > 0 is reached
(active phase).

Off-resonant excitations, with the rate τ , will seed an exci-
tation cascade in the active phase; whereas, in the absorbing
phase, they cause fluctuations in the excitation number. As
a result, the true absorbing state ρ = 0 can only be approxi-
mately reached experimentally through a large separation of
the off-resonant and facilitation timescales, suppressing off-
resonant excitations on the experimentally relevant facilitation
timescales.

Finally, the (slow) decay into a dead state |0〉 with rate
bγ is responsible for the self-organized approach to the crit-
ical point when starting in the active phase, as indicated in
Fig. 1(c). Starting at an initial density n0 above the critical
value ncrit, i.e., in the active phase, the large number of atoms
in the Rydberg state causes a fast loss of atoms into the
dead state. As a consequence, the total density of atoms n
effectively participating in the facilitation process, i.e., atoms
in states |g〉 and |r〉 decrease quickly and approach the critical
value. This loss continues at the critical density and drives the
system further into the absorbing state. However, this happens
on a much slower timescale, as fewer Rydberg excitations are
present at the critical point.

In Fig. 3, we have plotted the time evolution of the total
density n, initially ten times higher than the critical density
ncrit, and the Rydberg density ρ for a frozen gas as well as
a high-temperature gas with otherwise identical conditions,
obtained from Monte Carlo simulations. Here, all atoms in
the system are initially in the ground state until one atom
is off-resonantly excited to the Rydberg state. For compari-
son, we also show the solution of the mean-field Langevin
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Eqs. (10), which capture the long-time SOC dynamics of
the high-temperature gas, but fail to describe the frozen gas
outside of very short times [see Figs. 3(b) and 3(c)]. The dis-
crepancy in the peak values of ρ can be attributed to Rydberg
blockade, which truncates the maximum number of Rydberg
excitations simultaneously present in the gas.

Qualitatively, the Rydberg density in the frozen gas dis-
plays a similar time dynamic to that of the high temperature
gas, albeit with substantial quantitative differences in the long-
time limit. We will show that in the low-temperature regime
of the Rydberg gas, the absorbing state phase transition is
replaced with an extended Griffiths phase, whose characteris-
tic features become visible when off-resonant excitations and
decay into state |0〉 are negligible.

It is important to note that for b > 0 the decay into |0〉
dominates the dynamics at times t > 1/bγ . Thus, to ex-
perimentally observe a Griffiths phase by monitoring the
long-time dynamics with this system, ionization and loss of
Rydberg atoms (manifested in the parameter b) must be re-
duced as much as possible.

In Ref. [42], it was argued that a Rydberg atom moving
at an average velocity larger than the Landau-Zener ve-
locity vLZ = 2π2�2rf/(3�) effectively decouples from the
excitation cascade. As a result, it was argued that this sys-
tem features an emerging heterogeneity at high temperatures.
Considering the two limiting cases of a frozen gas and a
high-temperature gas, we argue that the Griffiths phase, which
originates from spatial inhomogeneity, disappears when the
atom’s average velocity is increased above a certain limit,
resulting in a direct absorbing-state phase transition.

A quantitative discussion of the crossover between a
frozen system with an extended Griffiths phase and a high-
temperature gas with a direct absorbing-state phase transition
is beyond the scope of the present paper and is subject to
future work. Instead we will focus on the quantitative de-
scription of the facilitation dynamics in a low-temperature or
frozen gas.

IV. NETWORK STRUCTURE OF FACILITATION
PATHS IN A FROZEN GAS

The emergence of a Griffiths phase results from facilitation
events being constrained to a network structure. In the limit of
a frozen gas, atoms have random but fixed positions. If we
regard the system at the timescale of facilitated excitations,
off-resonant excitations can be neglected. Therefore, the dy-
namics are described by the facilitated spreading of Rydberg
excitations, which is only possible if atomic distances are
approximately rf. As a result, we can regard the structure
of atom positions and the paths along which excitations can
spread as a random graph with edges where atoms have the
distance r ∈ [rf − δrf

2 , rf + δrf
2 ].

Assuming a uniform distribution of atom positions in the
gas, the probability that a randomly selected atom has k atoms
in its facilitation shell [see Fig. 1(d)], meaning the atom is of
degree k, is given by the Poissonian distribution:

P(k) = (nVs)k

k!
exp (−nVs). (12)

As the degree distribution is Poissonian, we can map this
problem to a random Erdős-Rényi (ER) network [54]. In con-
trast, the network structure of atoms trapped by an optical
lattice or tweezer array would be given by a regular lattice
network.

Of particular interest in random graph theory is the ques-
tion if a system percolates. In a percolating system, the
probability p that a bond between two randomly selected
atoms exists is high enough, such that a path exists which
runs through the entire system, i.e. there almost surely exists a
single cluster (i.e., a single connected set of vertices) with its
size in the order of the system size. If, however, the connectiv-
ity is below a critical threshold for bond connectivity p < pc,
the system is composed of many small, disconnected clusters
[54,55]. For p = pc, the percolation transition occurs. A 2D
network with p = pc from Monte Carlo sampling is illustrated
in Fig. 4.

If N is the number of atoms and s1(N ) is the size of the
largest connected cluster (LCC), then the system percolates
if limN→∞ s1(N )/N > 0. For an ER network, the percolation
transition occurs when the average network degree is 〈k〉 = 1
[55,56]. Using Eq. (12), the density at which the percolation
transition occurs is therefore

nperc = 1

Vs
. (13)

This density is a factor �f/γ larger than the critical density
ncrit of the absorbing state phase transition, given by Eq. (11).
We can verify that Eq. (13) corresponds to the correct perco-
lation density by calculating the size of the LCC s1 depending
on the density of the gas (Fig. 4). In the thermodynamic limit,
s1/N = 0 for all densities n < nperc. As numeric simulations
are restricted to a finite system size, however, we instead
consider the percolation transition to occur when s1 grows
faster than linear with the density n (the black dashed line in
Fig. 4 corresponds to linear growth).

Of relevance for the Griffiths phase is the size distribution
of clusters in the network. Using Monte Carlo simulations,
we can verify that the lengths of clusters follow a geometric
distribution P(s) ∼ e−cs under the assumption that clusters are
made of linear chains of s atoms. This assumption holds true
for small cluster sizes and an average network degree 〈k〉 � 1.

We can then approximate the decay constant c, with p0

being the probability of an atom having the degree k = 0, as

P(s) = p0(1 − p0)s−1 (14a)

= e−nVs (1 − e−nVs )s−1 (14b)

∝ e−cs, (14c)

with c = −ln(1 − e−nVs ). In Fig. 5, a comparison between
cluster sizes in Monte-Carlo simulations and Eqs. (14) is
shown. The agreement is very good for small densities as
almost all clusters in the gas are composed of linear chains.
As the density of the gas increases, the probability that at least
one atom in the cluster has more than two connections, i.e.,
k � 3, increases. While the distribution remains exponential,
the probability for larger clusters to exist in the system greatly
increases compared to the prediction by Eqs. (14).
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FIG. 4. Schematic frozen gas atom positions (blue dots) for a 2D
system with L = 10 rf. Network clusters connecting atoms which
have distances ri j ∈ [rf − δrf

2 , rf + δrf
2 ] (grey dashed lines) and the

largest connected cluster of these (red lines) for n0 = nperc are shown
(left). Size of largest connected cluster (LCC) s1 depending on the
density from Monte Carlo samples in a 3D cube with L = 7 rf (right).
The black dashed line corresponds to a power law with exponent
ν = 1. And LCC divided by number of atoms N depending on
density (inset).

V. EPIDEMIC DYNAMICS ON THE NETWORK

It is known that Rydberg systems in the facilitation regime
bear close similarities to epidemics [42,57]. In the follow-
ing, we will systematically analyze the Rydberg facilitation
dynamics on the random network formed by atoms within
their respective facilitation shells. For this, we will map the
dynamics to the SIS epidemic model [58–60]. We will (i)
disregard the decay of Rydberg atoms into the dead state |0〉
[parameter b = 0, see Fig. 1(a)], reducing the dynamics of
each atom to a two-level system. Additionally, we will (ii)
neglect off-resonant excitations by setting τ = 0, meaning
excitations can only be created by means of facilitation. We
will refer to simulations carried out with these two constraints
as the SIS approximation.

One major difference between our Rydberg system in the
SIS approximation and a classical SIS system remains with
Rydberg blockade. Atoms excited to the Rydberg state do not

2 4 6 8 10 12 14
s
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10−2

100

P
(s
)

FIG. 5. Network cluster size probability distribution
from 3D Monte-Carlo samples (dots) and Eqs. (14)
(dashed lines). From left to right for the densities
n0/nperc = [0.019, 0.063, 0.125, 0.188, 0.250, 0.313].

only facilitate the spread of excitations, they can also block
the spreading in adjacent clusters. This will be analyzed more
systematically later.

The network structure of a cluster of atoms in facilitation
distance of each other strongly depends on the temperature
of the gas. If the RMS average relative velocity v is large,
such that each excited Rydberg atom meets many ground-state
atoms during its lifetime γ −1, i.e., if in a 3D gas

v � γ n−1/3, (15)

any network structure is effectively washed out and the system
is homogeneous. Close to the critical point of the absorbing-
state phase transition, the above condition is equivalent to v �
γ r f . If, on the other hand, the average velocity of atoms is
very small, such that during a facilitation time �−1

f they do
not move out of the facilitation shell, i.e., if

v � �f δrf, (16)

the atoms form a finitely connected network. We will now
discuss these two limits.

A. High-temperature limit

In a high-temperature gas with RMS average relative
velocity v � γ n−1/3, we can map the system to the SIS epi-
demic model [58–60]. The SIS model is characterized by the
infection and recovery rates, λ and μ, respectively, which for
the Rydberg gas read

λ = nκ, (17a)

μ = γ . (17b)

The SIS model predicts an active (absorbing) phase transi-
tion when

λ(1)
c = μ, (18)

where excitation spread equals spontaneous decay. This cor-
responds to the critical density Eq. (11) of the absorbing state
phase transition discussed before.

In Fig. 6(a), Monte Carlo simulations of the Rydberg sys-
tem with the SIS approximation and ρ(t = 0) = n are shown
for the high-temperature gas for different values of n and
a fixed facilitation rate �f . We note that as shown in the
Appendix, the excitation probabilities following from Monte
Carlo simulations of rate equations and those from full co-
herent density matrix simulations agree, showing that the rate
equation approach remains valid also in the high-temperature
limit. One recognizes that an active (absorbing)-state phase
transition occurs for λ = λ(1)

c , with the Rydberg density either
exponentially decaying at the timescale μ (for λ < λ(1)

c ) or
decaying to a steady-state active density (for λ > λ(1)

c ). At the
critical density [green curve in Fig. 6(a)], the system should
decay with ρ ∼ t−1 [61], however, this decay is truncated by
an exponential decay due to finite system size.

B. Frozen gas limit

In the limit of an effectively frozen gas, the atoms that
can participate at the facilitation process form a network. The
dynamics of an SIS epidemic strongly depend on the structure
of this underlying network. For example, in the case of a
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FIG. 6. Decay of Rydberg density over time from Monte Carlo
simulations in the SIS approximation (b = 0, τ = 0) with an ini-
tial density ρ(t = 0) = n for the gas at high temperature (a) with
v̂ = 100 rfγ and for the frozen gas (b) with v̂ = 0 rfγ . The black
dashed line in (a) is a power-law decay with ρ ∼ t−1, expected at the
critical density. The colors show total system densities (increasing
from left to right) with n = 0.003, 0.03, 0.39, 1.98, 3.97, 5.95, 9.12,
11.90, 14.28, 15.91, 16.66, and 19.94. (a) only shows the lowest
seven densities. The critical density is ncrit = 0.39. Between the
percolation density nperc = 15.91 and n(2)

crit = 16.6, the curves feature
a decay (see Fig. 7).

heterogeneous but scale-free network, i.e., P(k) ∼ k−ν , the
absorbing phase can disappear altogether, leaving the system
in an endemic phase regardless of the infection rate [62–64].

For the case of a heterogeneous ER network, which de-
scribes the frozen gas of atoms, an active phase can only
occur if the network is above the percolation threshold (i.e.,
〈k〉 > 1). However, for a finitely connected (but percolating)
ER network, the threshold for the active phase is modified
since activity occurs in localized regions and thus the effective
infection rate is reduced. One finds [61]

λ(2)
c = μ

〈k〉
〈k〉 − 1

, (19)

with 〈k〉 being the average degree of the network. For
〈k〉 → ∞, the threshold given by Eq. (18) is recovered. For
a fixed facilitation rate and facilitation volume, this threshold
can be expressed in terms of a critical density of atoms using
〈k〉 = nVs:

n(2)
crit = 1

Vs
+ γ

κ

≡ nperc + n(1)
crit. (20)

If the network is below the percolation threshold, the fi-
nite size of clusters truncates the spread of activity through
the system. Therefore, the network cannot support an active
phase and, instead, a Griffiths phase emerges above the critical
infection rate λ(1)

c [61]. One of the most distinguishing char-
acteristics of a Griffiths phase is the presence of rare regions
with above average activity which lead to a slow, algebraic
decay of excitations [43].

In the nonpercolating network (i.e., 〈k〉 < 1), for λ � μ

decay dominates, leading to very short times until all ac-
tivity disappears in clusters as excitations cannot sustain
themselves. If, however, λ > λ(1)

c = μ, the time until activity
disappears in clusters increases exponentially with cluster size
s and is given by [65]

τ (s) ∝
√

2π

s

λ

(λ − 1)2
exp

{
s

(
ln(λ) − 1 + 1

λ

)}
. (21)

In the following, we will refer to τ (s) as the extinction time
of activity in a cluster. As a result of the convolution of
exponentially rare cluster sizes P(s) ∼ e−cs and a cluster life-
time increasing exponentially with cluster size τ (s) = eas, the
activity in the Griffiths phase decays with a power law:

ρ(t ) =
∫

ds sP(s) e−t/τ (s). (22)

Using Eqs. (14) and (21), the integral in Eq. (22) can be ap-
proximated with Laplace’s method and results in an algebraic
decay

ρ ∼ t−c/a, (23)

with the coefficient a given by Eq. (21) as a = ln(λ) − 1 + 1
λ

.
If the network is above the percolation threshold, i.e., if
〈k〉� 1, but the driving strength is below the critical value
for the active phase λ(2)

c , the decay of activity is expected to
follow a stretched exponential. A qualitative phase diagram of
the facilitation dynamics in the frozen Rydberg gas is shown
in Fig. 7.

Figure 6(b) shows the results of Monte Carlo simulations
for a frozen gas in the SIS approximation for the same pa-
rameters and color code as in the high-temperature case of
Fig. 6(a). For n < ncrit, all initial excitations decay exponen-
tially (curves 1 and 2 from left to right), corresponding to the
absorbing phase. The behavior changes at and above the criti-
cal point but below the percolation threshold ncrit � n < nperc

(curves 3–7). Here, the system is in an extended Griffiths
phase with a power-law decay with varying exponents. Above
the percolation threshold but below the threshold of the active
phase nperc � n < n(2)

crit, the decay is expected to become a
stretched exponential [61], which we cannot resolve, however,
in our simulations due to the very long timescale of this decay.
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FIG. 7. Schematic phase diagram of Rydberg facilitation of a
frozen gas with the percolation threshold given at 〈k〉 = 1. Increasing
the density n of the gas, one moves along the red line crossing from
an absorbing into a Griffiths phase at ncrit, and subsequently into a
phase with stretched exponential decay at the percolation threshold
nperc and eventually into the active phase at n(2)

crit. Time has been
rescaled such that μ = 1.

Finally, for n � n(2)
crit the system enters the active phase where

excitations simply decay to a steady state.
In the following, we want to give a quantitative estimate for

the power-law decay coefficient in the Griffiths phase based on
the SIS model and compare them with those from the Monte
Carlo simulations. In contrast to the standard SIS model, a
Rydberg system features Rydberg blockade and facilitated
de-excitation, making it unclear if analytic predictions from
an SIS model would be accurate. To check this, we com-
pare the extinction time of activity in clusters in a linear
excitation chain, given by Eq. (21), using the spreading rate
λ = �fVs × 1r−3

f , with Monte Carlo simulations of the SIS
approximation in Fig. 8. For this, we simulate a 1D cluster of
length s, where each atom is initially in the Rydberg state and
measure the average time until all atoms are decayed. Here,
we assume the above-mentioned SIS approximation (no decay
to |0〉 and no off-resonant excitations). One recognizes that
Eq. (21) gives a good approximation of the extinction time.

Using Eqs. (14) and (21), we can approximate the power-
law exponent ν in the Griffiths phase dependent on the density
and internal rates. We receive

ν ≡ − c

a
= − ln(1 − e−nVs )

ln(λ) − 1 + λ−1
, (24)

with λ = 4π�f
δrf
rf

. The comparison with exponents fitted from
the power-law decay of Rydberg density in Monte Carlo simu-
lations of the frozen gas under the SIS approximation (seen in
Fig. 6) can be seen in Fig. 9(b). Our very rough approximation
of the Griffth-phase decay exponents qualitatively fits with
Monte Carlo data.
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FIG. 8. Extinction times for activity in clusters in Monte Carlo
simulations of 1D lattice chains of length s (blue dots) and prediction
by Ref. [65] (red line).

A fundamental difference between Rydberg facilitation
and classical SIS activity spreading is Rydberg blockade.
Considering the frozen gas limit, two effects arise from Ryd-
berg blockade: First, if an atom is surrounded by two Rydberg
atoms in the facilitation distance, i.e., the atom is in the middle
of a cluster, then it cannot be facilitated, as it receives twice
the dipole shift and is pushed out of resonance again. If this
atom decays or is in the ground state at the beginning, it
cannot be excited, resulting in a hole splitting the cluster
[19]. Additionally, Rydberg atoms can block excitations from
spreading through adjacent clusters. However, neither of these
effects change the actual structure of the network, instead they
effectively retard the timescale at which excitations spread.
For a quantitative comparison, we simulate the Rydberg gas
and compare the decay of excitations in the SIS approximation
with and without Rydberg blockade (Fig. 9).

As blockade allows fewer Rydberg atoms to be present
in the system, the steady-state Rydberg density of the active
phase, and therefore the density at which the power-law decay
of the Griffiths phase begins is much lower. However, as seen
in Fig. 9, the exponents of the power-law decay in the Griffiths
phase show no qualitative change depending on the presence
of Rydberg blockade in the system.

VI. CONCLUSION

We studied the facilitation dynamics of Rydberg excita-
tions in an ultracold gas of atoms. In the homogeneous limit,
the system is expected to show a phase transition between an
absorbing phase and an active phase, and—in the presence
of an additional loss channel from the Rydberg state—SOC.
However, experiments with a gas of trapped 87Rb atoms at
low temperatures show signs of scale-invariant dynamics in an
extended parameter regime, which is a signature of a Griffiths
phase replacing the critical point of the absorbing-state phase
transition.

To understand the emergence of scale invariance in the
experiment in an extended parameter regime, we numerically
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FIG. 9. (a) Decay of Rydberg density over time from Monte
Carlo simulations in the SIS approximation for the frozen gas with-
out Rydberg blockade (full lines) compared to the results from
Fig. 6(b) (dashed lines). The colors show total system densities
(increasing from left to right) with n = 0.003, 0.03, 0.39, 1.98,
3.97, 5.95, 9.12, 11.90, 14.28, 15.91, 16.66, and 19.94. (b) Power-
law decay exponent ν = −c/a of Rydberg density over time fitted
from frozen-gas Monte Carlo simulations in the SIS approximation
from Fig. 9(a) with Rydberg blockade (blue dots), without Rydberg
blockade (orange dots), and from the analytical approximation given
by Eq. (24) (red line).

simulated the many-body Rydberg gas in the facilitation
regime through the use of Monte Carlo simulations in the
classical rate-equation approximation. We showed that the
latter is well justified for the large dephasing characteristic
for the experiment even for a high-temperature gas. Since a
Griffiths phase originates from heterogeneity in the system,
we numerically and theoretically analyzed two limiting cases:
(i) a high-temperature gas and (ii) a frozen gas. While in the
high-temperature limit, a homogeneous mean-field behavior
is recovered, with a clear absorbing-state phase transition and
SOC, the facilitation dynamics in a low-temperature or frozen
gas is governed by the presence of a network structure of
atoms that can participate in the excitation spread. Numerical
simulations show characteristic power-law decay of Rydberg
excitations in time if off-resonant excitations and atom losses
are neglected.

We have shown that in the frozen gas the spread of exci-
tations is constrained to a network resembling a random ER

graph. Increasing the density of atoms, the ER network has a
percolation transition from a fragmented phase, in which the
maximum cluster size of connected atoms remains finite, to
a phase where the size of the largest cluster scales with the
size of the system. A theoretical explanation of the Rydberg
facilitation dynamics observed in Monte Carlo simulations
can then be given by mapping to a SIS epidemic model on
such an ER graph taking into account the effects of Rydberg
blockade, which truncates the maximum Rydberg excitation
density. An active phase of self-sustained Rydberg excitations
is only possible above the percolation threshold. Below this
threshold, an extended Griffiths phase emerges in the place
of the (for homogeneous systems) expected absorbing-state
phase transition. We showed that the modified SIS model
quantitatively explains the observed power-law decay expo-
nents as well as the overall dynamics of the Rydberg density.

While the limits of a high-temperature and a frozen gas
are well captured with our model, it does not yet allow the
study of the crossover between the two regimes. To this end,
the Rydberg facilitation process needs to be mapped to a
dynamical network, which is beyond the scope of the present
paper and will be the subject of future work. Furthermore,
to quantitatively understand the power-law exponents in the
number distribution of Rydberg atoms in a given time inter-
val observed in the experiment, it is necessary to extend the
microscopic simulations to much larger system sizes match-
ing those used in the experiments. To this end, different
approaches, e.g., using machine-learning algorithms might
be useful [66]. Finally, the interplay between coherent quan-
tum dynamics and dynamical network structures in Rydberg
facilitation under conditions where dephasing is much less
dominant could give rise to very different dynamics [67,68].
The latter requires, however, the development of microscopic
simulation techniques capable of incorporating quantum co-
herences in 3D Rydberg gases, at least in an approximate
way [69].
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APPENDIX: EFFECTS OF RELATIVE MOTION
BETWEEN ATOMS

The rate equation approximation used for the Monte Carlo
simulations [e.g., Eq. (3)] is valid as long as the population
dynamics are slow compared to the dephasing rate. In a frozen
gas, the relevant timescales are solely determined by the
internal dynamics of an individual atom for a given (fixed)
configuration of Rydberg atoms in its vicinity. If, however,
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FIG. 10. Velocity-dependent excitation probability of a ground-
state atom flying past a Rydberg atom for the impact parameter
d = 0.5rf (blue) and d = rf (orange) (see inset) calculated from
Monte Carlo simulations with fixed time step dt = 1/400 γ (dots),
full numeric density matrix simulation (solid lines), and analytical
Landau-Zener formula Eq. (A2) (dashed lines). Full solution and rate
equation approximation only differ for the case of grazing incidence
(d = rf).

the gas of atoms has a finite temperature, a ground state atom
can fly in and out of the facilitation volume Vs of a Rydberg
atom, which can amount to a fast sweep of the detuning of the
ground state atom. Thus, there is an additional timescale given
by the crossing time ∼δr f /v.

To analyze the effects of atomic motion onto the facilitation
process, we consider the two-body problem of a ground state
atom moving with velocity v and with the impact parame-
ter d relative to a Rydberg atom (see inset of Fig. 10). For
d > rf, the ground state atom is not shifted into resonance
and no facilitation occurs. For d � rf, one has to distinguish
two cases depending on the impact parameter: (i) d < rf the
ground-state atom flies through the facilitation shell twice
(blue case in Fig. 10) and (ii) d ≈ rf the ground-state atom
grazes the facilitation shell and is only briefly shifted into
resonance (orange case in Fig. 10).

In case (i), using the excitation rate from Eq. (3) as �↑(t ),
we find the excitation probability after a single pass of the
ground state atom through the facilitation shell as

pexc = 1 − exp

{
−

∫ t f

ti

dt �↑(t )

}

= 1 − exp

{
−2�2

∫ t f

ti

dt
γ⊥

�(t )2 + γ 2
⊥

}
. (A1)

Note that this expression assumes a short passage time
through the facilitation shell, so the facilitated de-excitation
process can be ignored. For longer passage times, the excita-
tion probability approaches the steady-state value of 1/2, as
can be seen Fig. 10.

Linearizing the time-dependent detuning �(t ) for times
ti < t < t f , while passing through the facilitation shell, we
receive �(t ) ≈ �̇ × (t − t0), yielding

pexc = 1 − exp

{
−2�2

�̇

∫ � f

�i

d�
γ⊥

�2 + γ 2
⊥

}

≈ 1 − exp

{
−2π

�2

�̇

}
, (A2)

where we have assumed that |�i, f | = |�(ti, f )| � γ⊥, which
is exactly the same expression as given by the Landau-Zener
formula.

If pexc is small, the asymptotic excitation probability after
two passages is just pexc ≈ 1 − exp{−4π�2/�̇}. From this
discussion, we expect the rate equations to accurately describe
the facilitation process even for large atom velocities as long
as the impact parameter d is different from r f ± δr f .

In case (ii), however, i.e., for grazing incidence, the
Landau-Zener formula is no longer valid and there could
be a difference between the rate-equation approximation and
the solution of the full two-particle density matrix equations.
This is indeed the case, as can be seen from Fig. 10, where
we have plotted the asymptotic excitation probability of the
ground-state atom as a function of relative velocity and impact
parameter both from a simulation of the full density-matrix
equations (dashed lines), the analytic Landau Zener formula
(solid line), and by a Monte Carlo simulation of the rate equa-
tion in the large-dephasing limit with time step dt = 1/400 γ

(dots). One recognizes perfect agreement except for large
relative velocities and impact parameters close to the facili-
tation radius d ≈ rf, where the rate equations predict up to an
order of magnitude higher excitation probabilities than the full
simulation. Since δrf � rf, the contribution of these grazing-
incidence cases is negligibly small, allowing us to accurately
describe high gas temperatures with a fixed time-step Monte
Carlo algorithm.

Furthermore, at high temperatures (as can be seen from
Fig. 10), the excitation probability above the Landau-Zener
velocity vLZ = 2π2�2rf/(3�) indeed quickly drops and
scales as 1/v, the number of ground-state atoms seen by a
moving Rydberg atom in a given time increases linearly with
its velocity v, too. This compensates the former effect, and
thus does not lead to an emerging heterogeneity in phase space
as argued in Ref. [42], as long as the Rydberg atom does not
move out of the gas sample.
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3. Mean-Field Approach to Rydberg
Facilitation in a Gas of Atoms at
High and Low Temperatures

D. Brady and M. Fleischhauer
Physical Review A 108, 052812 (2023)

Having understood the nuances of the Rydberg facilitation gas in the high and low
temperature regimes respectively, we now tackle improving the mean field description
in terms of macroscopic Langevin equations presented in Ref. [12]. In particular, these
equations show a large discrepancy when compared to our Monte Carlo simulations
in (i) the maximum number of excitations and (ii) the late-time dynamics in the low
temperature gas.

For this, we regard the evolution of the number of Rydberg atoms ρ over time, which
corresponds to the number of infected in an epidemic picture. This can be roughly
separated into three regimes [86]: (i) epidemic growth where ρ rises rapidly as initial ex-
citations quickly infect and spread throughout the gas, (ii) saturation where ρ is roughly
constant as an intermediate steady-state between infection and recovery is reached, and
finally (iii) relaxation where ρ decays back to zero. This decay results from infected
individuals being immunized after recovery, or dying.

Figure 3.1.: Rydberg density over time for the cases of (left) high temperature, (center)
low temperature and percolating network, and (right) low temperature and
non-percolating network. The black dots are taken from Monte Carlo sim-
ulations of the Rydberg facilitation gas, the dashed red line corresponds to
the mean field equations from Ref. [12] and the solid red line corresponds
to our mean field equations, which take into account Rydberg blockade and
the network structure.

The first discrepancy is in the maximum number of Rydberg excitations in the system.
We show that Rydberg blockade sets an upper limit to the number of excitations possible
in the system. In the epidemic picture this corresponds to lockdowns being in place. By
simply modifying the infection rate λ to include blockade effects, we receive a fantastic
agreement on the mean field level between the new Langevin equations and our Monte
Carlo simulations in the high temperature regime.
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For the low temperature regime, we have learned that network effects play a crucial
role in the dynamics. In this regime we find the second discrepancy, namely in the
late-time dynamics of ρ. We show that the infection rate λ needs to be reduced to
account for the finite connectivity of the network, even in the percolating regime. We
derive a new infection rate which accounts for the network structure and gives a fantastic
agreement for the low temperature percolating case and a good agreement for the low
temperature non-percolating case. As the latter case represents a strongly heterogeneous
phase (Griffiths phase), we do not expect to find a perfect mean field description there.
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The excitation spread caused by Rydberg facilitation in a gas of laser-driven atoms is an interesting model
system for studying epidemic dynamics. We derive a mean-field approach to describe this facilitation process in
the limits of high and low temperatures, which takes into account Rydberg blockade and the network character
of excitation spreading in a low-temperature gas. As opposed to previous mean-field models, our approach
accurately predicts all stages of the facilitation dynamics from the initial fast epidemic growth, an extended
saturation period, to the final relaxation phase.

DOI: 10.1103/PhysRevA.108.052812

I. INTRODUCTION

Rydberg atoms have gained a lot of interest in the last few
decades due to their strongly exaggerated properties. In par-
ticular, they have very long life times and strong interactions
over distances covering several m [1]. These features allow
Rydberg systems to be especially useful in a multitude of
applications such as quantum information processing [2–6] or
the study of many-body spin physics [7–14].

One interesting process in many-body Rydberg systems is
Rydberg facilitation, which has been used to study dissipative
or kinetically constrained spin systems [15,16], transport and
localization phenomena in disordered systems [17], or self-
organized criticality [18,19].

In this type of many-body system, atoms are coupled off-
resonantly to a Rydberg state. As a result of the Rydberg
dipole interaction, however, atoms near an already excited
Rydberg atom can be excited resonantly. Thus an initial seed
excitation can lead to a cascade of excitations. It has been
shown experimentally that this type of system bears close
similarities to epidemic dynamics [20].

The most simple description of epidemic-type systems is
given by susceptible-infected-susceptible (SIS) models. Here,
each individual has two internal states, susceptible (S) or
infected (I). Susceptible individuals are infected with the rate
κ and infected individuals return to the susceptible state with
the rate γ [21–23].

Under the assumption of homogeneous mixing, where all
individuals interact with each other completely at random,
all information about the epidemic dynamics is contained in
the total fractions ρν in the susceptible (ν = S) and infected
state (ν = I), which obey the simple homogeneous mean-field
equations given by [24]

d

dt
ρI = κρIρS − γ ρI, (1a)

d

dt
ρS = −κρIρS + γ ρI. (1b)

This system features an absorbing-state phase transition be-
tween two dynamical phases, namely, an absorbing phase in
which all infections die out, and an active phase where, in the

thermodynamic limit, infections last forever. A suitable order
parameter to distinguish these phases is the steady-state active
(infected) density ρI

ss. From Eq. (1a) one recognizes that this
phase transition occurs when

ρSκ = γ . (2)

In addition to the SIS model, which describes diseases
where repeat infections are common (predominantly sexually
transmitted diseases) the susceptible-infected-recovered (SIR)
model can be used to describe diseases which feature life-
long immunity in individuals following an infection, such as
measles or whooping cough [25]. The SIR model features a
recovered state R, with the respective population as ρR. The
dynamics are given by [26–28]

d

dt
ρS = −κρIρS, (3a)

d

dt
ρI = κρIρS − γ ρI, (3b)

d

dt
ρR = γ ρI. (3c)

The dynamics of both SIS and SIR models are well un-
derstood in the homogeneous mean-field regime. While the
homogeneous mixing assumption is well justified in systems
where the infection spreading occurs on a regular lattice in
high spatial dimensions, it fails in many relevant cases, for
example, if the the SIS-SIR dynamics take place on real-life
networks. For such network systems, including, e.g., random
Erdős-Rényi (ER) [29] and scale-free (SF) networks [30], a
large body of more sophisticated approximation methods have
been developed [31–33], but many questions remain unsolved.
Here, Rydberg atoms provide a platform to experimentally
investigate the epidemic dynamics on a variety of complex
networks, which can, e.g., be engineered by the use of tweezer
arrays [10]. Moreover, in a gas of atoms contained in some
macroscopic trapping potential one can investigate the transi-
tion between a random ER network at very low temperatures,
where the motion of atoms on the relevant timescales of
the facilitation process can be ignored, to the homogeneous
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(a) (b)

(c) (d)

FIG. 1. (a) Level scheme of internal atomic states with ground
|g〉 (susceptible) state, Rydberg |r〉 (infected) state, and inert |0〉
(recovered) state. An external laser drives the transition between
|g〉 and |r〉 and spontaneous decay occurs from |r〉 to either |g〉 or
|0〉, modulated by branching parameter b ∈ [0, 1]. (b) Monte Carlo
data of the Rydberg density ρ (red) and total active density n (in
states |g〉 and |r〉) (blue) over time, with b = 0.3 and initial condition
ρ(t = 0) = 0, showing the typical epidemic stages. The blue dashed
line corresponds to n/ncrit = 1. (c) Schematic of Rydberg atoms
(red dots) spanning facilitation shells (yellow region) and blockade
spheres (red region). Ground-state atoms (gray dots) in the blue
region are subject to off-resonant laser coupling. (d) Schematic phase
diagram for the high (top) and low (bottom) temperature regimes
depending on the total gas density n.

mixing limit for a gas of high temperatures [34]. The latter
corresponding to an annealed random network.

For Rydberg facilitation systems, each atom can be con-
sidered as a three-level system with the ground (susceptible),
Rydberg (infected), and inert or ionized (recovered) states [see
Fig. 1(a)]. A concrete mapping of the Rydberg facilitation
system to SIS and SIR models will be discussed later. The
decay from the Rydberg to the inert state, given by the rate
bγ , results in a loss of susceptible and infected individuals
in the population, moving the system into an absorbing state.
This gives rise to three typical epidemic stages, which were
experimentally observed in Rydberg facilitation systems [20].
Following an initial infection, there is a rapid epidemic growth
in infected individuals, or Rydberg atoms, in the system. This
is followed by a saturation and an eventual relaxation at long
times as a result of the system reaching an absorbing-state on
these timescales [see Fig. 1(b)].

To describe the macroscopic dynamics of the Rydberg
facilitation process in a gas, a simple mean-field model was
put forward in [18], which, however, fails to provide a quan-
titative prediction of the microscopic dynamics, accurately
calculated by Monte Carlo simulations [34] (see Fig. 2). This
discrepancy results from the mean-field model not regarding
(i) Rydberg blockade, which prevents the excitation of any
atom closer than some radius rblockade to a Rydberg atom and
(ii) the emergent ER network at low temperatures.

In the following, we will develop a mean-field description
of the dynamics of Rydberg excitations in a many-body-
facilitated gas that accounts for both of these effects and
provides accurate predictions of the full facilitation dynamics,
which we demonstrate by comparing our predictions with

(a)

(b)

(c)

FIG. 2. Rydberg density ρ over time for ρ(t = 0) = 0 and
b = 0.3 modeled with Monte Carlo simulations (blue dots), Eq. (12)
(red, faint), and Eq. (33) (red, solid), for (a) high-temperature gas
with starting density n0 = 4.0 r−3

f > ncrit , (b) low-temperature per-
colating gas with n0 = 20 r−3

f > nperc, and (c) low-temperature
nonpercolating gas with n0 = 4 r−3

f < nperc.

Monte Carlo simulations. The network structure of the cold
gas leads to a higher total gas density at very long times and
subsequently a higher Rydberg density in the saturation phase
in comparison to mean-field predictions. Rydberg blockade
causes a significant modification of the facilitation (infec-
tion) rate if the density of Rydberg excited atoms (infected
individuals) reaches some threshold value. Similarly to the
effect of regulatory measures on the dynamics of epidemics
(“lockdown”), it limits the maximum density of Rydberg-
excited atoms (infected individuals), but at the same time
leads to a substantial prolongation of the slow transition into
the absorbing (recovery) phase.
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II. MICROSCOPIC MODEL OF RYDBERG FACILITATION

A microscopic description of Rydberg facilitation in a gas
can be achieved from a Lindblad master equation of the den-
sity matrix ρ̂ which takes the form

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑
l

L̂l ρ̂L̂†
l − 1

2
{L̂†

l L̂l , ρ̂}, (4)

with the atom-light interaction Hamiltonian Ĥ given by

Ĥ =
∑

i

⎡
⎣�(σ̂ gr

i + σ̂
rg
i ) +

⎛
⎝∑

j �=i

c6

r6
i j

σ̂ rr
j − �

⎞
⎠σ̂ rr

i

⎤
⎦. (5)

Here σ̂
μν
i = |μ〉ii〈ν| is the projection operator of the ith atom

from the internal state ν to μ. The external driving field is
described by the Rabi frequency � and the detuning �, and
the van der Waals interaction energy between Rydberg atoms
i and j is given by c6/r6

i j , with ri j being the distance between
the atoms. Finally, in Eq. (4) dissipation is described by the
jump operators L̂l . These take the form L̂(i)

1 = √
(1 − b)γ σ̂

gr
i ,

L̂(i)
2 = √

bγ σ̂ 0r
i for spontaneous decay from |r〉 to |g〉 and |0〉,

as well as L̂(i)
3 = √

γ⊥σ̂ rr
i for the dephasing of the Rydberg

state. The parameter b ∈ [0, 1] corresponds to the percentage
of Rydberg atoms, which spontaneously decay to |0〉 and are
thereby removed from the system. Therefore, if b = 0 the
system corresponds to a two-level system and resembles an
SIS epidemic [see Fig. 1(a)].

Dephasing results from, e.g., Doppler broadening or the
spread of the atomic wave packet over the van der Waals po-
tential [18,35]. In the large dephasing limit, the dynamics of a
many-body Rydberg gas are effectively governed by classical
rate equations [36]. As a result, this system can be simulated
to great accuracy using Monte Carlo simulations. Starting
from Eq. (4), after adiabatic elimination of coherences, one
can formulate a set of rate equations for the probabilities of
atom i being in the Rydberg state with P(i)

r or ground state
with P(i)

g as

d

dt
P(i)

r = 	f(
)P(i)
g − (	f(
) + γ )P(i)

r , (6a)

d

dt
P(i)

g = (	f(
) + (1 − b)γ )P(i)
r − 	f(
)P(i)

g , (6b)

with the stimulated excitation rate given by

	f(
) = 2�2γ⊥

γ 2
⊥ + �2

( ∑
j �=i
j∈


r6
f

r6
i j

− 1
)2

. (7)

Here 
 is the set of indices of Rydberg-excited atoms. If no
other Rydberg atom exists in the gas or their distance is much
larger than rf, 	f(
) reduces to the off-resonant excitation rate
of an isolated atom

τ = 2�2γ⊥
γ 2

⊥ + �2
. (8)

If a Rydberg atom is present in the system, the atoms located
around a certain distance to it, called facilitation distance rf,
are shifted into resonance and can be excited on a much faster
timescale, given by the facilitation rate 	f = 2�2/γ⊥. The

facilitation distance is given by

rf = 6

√
c6

�
. (9)

Rydberg facilitation can be observed when � � �, as this
naturally gives rise to a hierarchy in timescales such that

	f � γ � τ. (10)

In this case, off-resonant excitations and the decay of Rydberg
atoms are effectively static on the timescale of facilitated
excitations. Each Rydberg atom spans a spherical shell, with
distance rf and approximate width δrf, in which atoms are
resonantly coupled to the driving laser field. The width of
the facilitation shell is thereby determined by the effective
linewidth of the excitation transition and reads

δrf = γ⊥
2�

rf. (11)

Atoms closer than rf − δrf/2 to a Rydberg atom are subject to
Rydberg blockade [3] and cannot be excited since they are
shifted out of resonance again. These three regions around
a Rydberg atom (off-resonant coupling, facilitation, and
blockade) can be schematically seen in Fig. 1(c).

In [18], a mean-field equation for a macroscopic descrip-
tion of the many-body Rydberg facilitation dynamics has been
derived. For a homogeneous gas this reads

d

dt
ρ = −κ (2ρ2 − ρn) − γ ρ − τ (2ρ − n), (12a)

d

dt
n = −bγ ρ. (12b)

Here ρ corresponds to the coarse-grained Rydberg density (in
a small volume �V )

ρ(	r, t ) = 1

�V

∑
i:	ri∈�V

〈
σ̂ rr

i

〉
, (13)

and n is the density of ground and Rydberg state atoms

n(	r, t ) = 1

�V

∑
i:	ri∈�V

(〈
σ̂ rr

i

〉 + 〈
σ̂

gg
i

〉)
. (14)

Note that n does not count |0〉 state atoms and therefore
decreases over time if b > 0. The spreading rate of Rydberg
excitations in the many-body gas is given by the two-body
facilitation rate integrated over the facilitation shell

κ = 	fVs, (15)

with the volume of the facilitation shell Vs ≈ 4πδrfr2
f . The

above equations predict an absorbing-state phase transition
between an active and absorbing phase for the critical gas
density

ncrit = γ

	fVs
. (16)

Equation (12a) for the (mean-field) Rydberg density in the
many-body gas strongly resembles the SIS equation of mo-
tion of infected individuals given by Eq. (1a). However, in
contrast to SIS-SIR epidemics, Rydberg systems additionally
feature (i) off-resonant excitations with rate τ , (ii) resonant
(facilitated) deexcitations of Rydberg atoms [described by the
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term −2κρ2 in Eq. (12a)], and (iii) Rydberg blockade which
is not regarded in Eq. (12a).

For the atom number conserving limit (b = τ = 0) [18],
Eq. (12a) directly maps to those of the SIS dynamics [Eq. (1)]
by identifying ρI = 2ρ and ρS = n − 2ρ � 0 with conserved
total density ρI + ρS = n − 2ρ + 2ρ = n. Moreover in the
high-temperature limit, the deexcitation can effectively be
neglected as it is a second-order process in terms of Rydberg
density.

For the low-temperature gas, the excitation dynamics are
constrained to an ER network in which the individual nodes
are comprised of atoms (either in |g〉 or |r〉), and connections
between nodes, say i and j, exist if ri j ≈ rf. The number
of connections a node has (i.e., the number of atoms with
distance rf to an atom) is called the degree k of the atom. In an
ER network the node degrees follow a Poissonian distribution
with average degree

〈k〉 = nVs. (17)

An ER network features a percolation transition at 〈k〉 = 1 be-
tween an (almost fully) connected network and a fragmented
network, comprised of many small disconnected clusters.
Here, clusters refers to a group of connected nodes. From
Eq. (17), we can identify the gas density at which the per-
colation transition occurs as

nperc = 1

Vs
. (18)

This density is a factor 	f/γ larger than the critical density of
the phase transition to the absorbing phase for a homogeneous
gas [34]. A schematic phase diagram for the high- and low-
temperature gas can be seen in Fig. 1(d). For further details on
the mapping of the Rydberg facilitation gas to an ER network
see [34].

In this paper, we model the actual many-body dynamics
using Monte Carlo simulations of the rate equations (6). We
assume a cubic box with length L = 7rf and periodic bound-
ary conditions. Atom positions are chosen randomly and
velocities are sampled from a Maxwell-Boltzmann distribu-
tion with temperature parameter v̂, corresponding to the most
probable atom velocity in the gas. For the time evolution we
utilize a fixed time step Monte Carlo algorithm [37], with the
time step dt = 1/400 γ −1, as long-range interactions paired
with the fast movement of atoms in the high-temperature case
results in quickly changing transitional rates in the system. To
ensure numeric stability the c6 potential in Eq. (7) is truncated
at a cutoff value around the singularity ri j → 0.

III. MODIFIED LANGEVIN DESCRIPTION
OF EPIDEMIC EVOLUTION

In the following section, we develop an effective macro-
scopic theory of the Rydberg facilitation process, expanding
the Langevin equation (12), starting from the microscopic
model. This new equation takes into account Rydberg
blockade, as well as the network structure in the case of the
low-temperature gas.

In Fig. 2, the dynamics of Rydberg excitations predicted by
the improved Langevin equation and by Monte Carlo simula-
tions are compared for the cases: (i) high-temperature gas with

n0 > ncrit , (ii) low-temperature gas initially above the per-
colation threshold with n0 > nperc, and (iii) low-temperature
gas initially below the percolation threshold n0 < nperc. Here
n0 refers to the gas density at t = 0. Additionally, we use a
branching parameter b = 0.3, allowing some loss into the re-
covered state |0〉. Therefore, for all cases (i) to (iii), the system
drives itself to the absorbing-state and follows the typical
epidemic stages as seen in Fig. 1(b).

We start from the microscopic Heisenberg-Langevin
equations describing the quantum many-body dynamics of
Rydberg excitations for atoms at given spatial positions given
by

d

dt
σ̂ rr

i = −i�
(
σ̂

rg
i − σ̂

gr
i

) − γ σ̂ rr
i + ξ̂1, (19)

d

dt
σ̂

rg
i = −i

(
�

(
σ̂ rr

i − σ̂
gg
i

) − V̂iσ̂
rg
i

) − γ⊥σ̂
rg
i + ξ̂2. (20)

These equations can be obtained from the Lindblad master
equation [Eq. (4)] using d

dt 〈σ̂ rr
i 〉 = Tr{σ̂ rr

i
d
dt ρ̂} noting that for

the operator dynamics a Langevin noise term ξ̂ has to be
added to conserve commutation relations [38]. These noise
terms disappear in the quantum mechanical average and their
properties can be obtained from the fluctuation-dissipation
relation [39].

The operator V̂i describes the detuning of the ith atom and
depends on the states of all other atoms. It is given by

V̂i = �

⎛
⎝−1 +

∑
j �=i

r6
f

r6
i j

σ̂ rr
j

⎞
⎠. (21)

We note that the operator-valued quantities are objects in
Hilbert space describing the quantum mechanical evolution
and are subject to the classical statistics of the (time-
dependent) random positions of the atoms. The dynamics
of the atom positions are treated classically, which is well
justified in the high-dephasing limit, assumed throughout the
present paper.

Furthermore, the effect of c6 forces acting on the center-of-
mass motion of the atoms due to the distance dependence of
V̂i are disregarded in the present paper. They will be discussed
elsewhere in more detail [40], where we will show that, under
typical experimental conditions, they can be accounted for by
a change of the atoms velocity distribution and, in the case of
a trapped gas, by an additional loss channel.

Assuming high dephasing γ⊥ � �, the coherences σ̂
rg
i

quickly decay to quasistationary values relative to the relevant
many-body timescales. Therefore, we adiabatically eliminate
coherences ( d

dt σ̂
rg
i = 0) and arrive at

d

dt
σ̂ rr

i = − 2�2γ⊥
γ⊥2 + V̂ 2

i

(
σ̂ rr

i − σ̂
gg
i

) − γ σ̂ rr
i + ξ̂ . (22)

As a result of the quickly decaying potential V̂i with inter-
atomic distance, only Rydberg atoms with distances ri j � rf

are relevant for the internal dynamics of atom i. Therefore, we
can perform a spatially local approximation by introducing the
projection operator �̂i(m), projecting onto m Rydberg atoms
with distances ri j � rf. Using the completeness relation∑

m

�̂i(m) = 1̂, (23)
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we are able to expand the fraction in Eq. (22) giving

d

dt
σ̂ rr

i = − �̂i(0)
2�2γ⊥

γ⊥2 + �2

(
σ̂ rr

i − σ̂
gg
i

)

− �̂i(1)
2�2γ⊥

γ⊥2 + �2
(( rf

r1i

)6 − 1
)2

︸ ︷︷ ︸
(∗)

(
σ̂ rr

i − σ̂
gg
i

)

+ · · ·
− γ σ̂ rr

i + ξ̂ . (24)

All rates for more than one Rydberg atom in the facilitation
sphere (m > 1) are strongly suppressed due to blockade. As a
result, we truncate the expansion at m = 1.

Finally, we calculate the expectation value of the operator
σ̂ rr

i with a double averaging over the quantum mechanical
state and the ensemble of the many different atom positions
in the gas. We will denote these double averages as 〈〈σ̂ rr

i 〉〉
and write

d

dt

〈〈
σ̂ rr

i

〉〉 = −τ
〈〈
�̂i(0)

(
σ̂ rr

i − σ̂
gg
i

)〉〉
−	f

〈〈
�̂i(1)

(
σ̂ rr

i − σ̂
gg
i

)〉〉
− γ

〈〈
σ̂ rr

i

〉〉
(25)

≈ −τ 〈〈�̂i(0)〉〉(〈〈σ̂ rr
i

〉〉 − 〈〈
σ̂

gg
i

〉〉)
−	f pshell

〈〈
�̂i(1)

〉〉(〈〈
σ̂ rr

i

〉〉 − 〈〈
σ̂

gg
i

〉〉)
− γ

〈〈
σ̂ rr

i

〉〉
. (26)

Here we introduce the off-resonant excitation rate
τ = 2�2γ⊥

γ⊥2+�2 , the facilitated excitation rate 	f = 2�2

γ⊥
,

and (assuming a randomly distributed gas) the classical
probability pshell = Vs/Vf that the Rydberg atom is in the
facilitation shell if it is already in the facilitation sphere.

With the random gas assumption, we can approximate the
probabilities 〈〈�̂i(m)〉〉 as Poissonian with the rate ρVf (i.e.,
〈〈�̂i(m)〉〉 = (ρVf )me−ρVf /m!) resulting in

〈〈�̂i(0)〉〉 = e−ρVf , (27)

pshell〈〈�̂i(1)〉〉 ≡ Vs

Vf
〈〈�i(1)〉〉 = ρVs e−ρVf . (28)

We then perform the coarse-graining given by Eqs. (13) and
(14) and arrive at

d

dt
ρ = − κe−ρVfρ(2ρ − n)

− γ ρ − τ (2ρ − n). (29)

Furthermore, we assume here e−ρVfτ ≈ τ as the off-resonant
rate is only relevant when ρVf � 1.

The spreading rate of excitations κ is now exponentially
damped by the density of Rydberg atoms. This gives a better
description of the spreading of Rydberg excitations in the
epidemic growth stage. However, as all atoms with distances
closer than rblockade to a Rydberg atom cannot be excited due
to Rydberg blockade [red region in Fig. 1(c)], there exists
a maximum density of Rydberg atoms ρmax, given by the

packing density of nonoverlapping spheres, above which no
more excitations are possible.

To quantify the blockade induced saturation density in
the gas, we introduce the parameter η corresponding to the
packing density of spheres in a given volume.

For the high-temperature gas, this corresponds to the dens-
est packing of spheres, given by η = π

3
√

2
≈ 74.0%. In this

regime we can assume this packing density to be achieved,
as the high motion of the atoms allow the system to organize
itself to this state.

For the frozen gas, the packing density is slightly lower,
and is given by the closest density of randomly packed
spheres, which is given by η ≈ 63.5% [41].

As δrf � rf we can approximate the blockade radius as
rblockade ≈ rf and write

ρmax = 2
η

Vfac
, (30)

with the approximate volume of the blockade sphere
Vfac = 4

3πr3
f . The factor of 2 emerges as when a facilitation

event occurs, the facilitated atom is centered on the block-
ade sphere of the facilitating Rydberg atom. As a result, the
blockade spheres of these atoms overlap. If, however, a third
Rydberg atom is facilitated (by the second Rydberg atom),
its blockade sphere borders the blockade sphere of the first
Rydberg atom with, on average, very little overlap [see
Fig. 1(c)].

As the laser coupling smoothly changes from resonant, for
an atom with distance r = rf to a Rydberg atom, to strongly
suppressed for r < rf, this can be regarded as a packing of soft
spheres with an uncertainty in volume of δVfac = 4πδrfr2

f . The
result is a smearing out of ρmax given by δρmax = δVfac

2η

V 2
fac

. We
can now add a heuristic function which sets the facilitation
rate to 0 if ρ > ρmax as

h(ρ) = 1

2

[
1 + tanh

(
ρmax − ρ

δρmax

)]
. (31)

The added factors e−ρVf and h(ρ) to the facilitation rate κ

suffice to accurately describe the dynamics of the Rydberg
density in the high-temperature gas [see Fig. 2(a)].

Moreover, the truncation of the maximum number of in-
fected individuals as a result of blockade gives qualitative
agreement with the effect of control measures such as lock-
downs seen in the COVID-19 pandemic [42].

For the low-temperature gas the finite connectivity greatly
reduces the facilitation rate. Taking into account that facilita-
tion can only occur if the degree of the atom k is not 0, we
alter the facilitation rate to

κ → κ P(k > 0). (32)

For an ER network with average degree 〈k〉 � 1, we can
approximate P(k > 0) ≈ 〈k〉. In this case the new infection
rate κ corresponds to the Kephart-White model [43,44].

The full Langevin equation for the Rydberg density reads

d

dt
ρ = − κe−ρVf h(ρ)P(k > 0)ρ(2ρ − n)

− γ ρ − τ (2ρ − n), (33)
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with P(k > 0) = 1 − e−nVs for the low-temperature gas and
P(k > 0) = 1 at high temperatures, as the thermal velocity
of atoms allows for random-mixing of all atoms. As a result,
the high-temperature regime is described excellently by the
classical SIS-SIR models [Eqs. (1) and (3)] with the addition
of blockade.

In Fig. 2 we compare the predictions from the modi-
fied Langevin equation (33) with Monte Carlo simulations
in the high-temperature gas, the frozen percolating gas, and
the frozen nonpercolating gas. For the high temperature and
the frozen percolating case, Eq. (33) has a very good agree-
ment for all epidemic stages with Monte Carlo data. In
particular, it predicts the correct density in the saturation stage
in the high-temperature and the low-temperature percolating
gas in contrast to Eq. (12).

Furthermore, for the case of the low temperature gas,
Eq. (33) gives a much better approximation of the relaxation
epidemic stage (i.e., for times γ t � 102). In this stage, the
Rydberg density is much higher than the expected MF den-
sity (predicted by the faint red line), which holds for high
temperatures. In contrast to the high-temperature regime, the
system leaves the active phase at much higher gas density due
to the finite connectivity of excitation paths in the gas. The
factor P(k > 0) in the facilitation rate gives a much better
approximation of this increased Rydberg density.

IV. CONCLUSION

In conclusion, we developed a modified mean-field ap-
proach to model the Rydberg density over time in a
many-body gas under facilitation conditions for the limits of
high and low temperature. In the low temperature regime, we
additionally differentiated between a system with initial den-
sity n0 > nprec and n0 < nperc, where nperc is the percolation
density below which heterogeneous effects play a large role.

Our modeling is similar to that developed in [18], but
with three key improvements to the facilitation (or infection)
rate κ . We consider (i) random atom positions leading to a
Poissonian distribution in the number of Rydberg atoms closer
than rblockade to a given atom. In this case, the atom cannot be
excited or deexcited due to Rydberg blockade. As a result,

with increasing Rydberg density, the global facilitation rate κ

exponentially decreases.
Additionally, (ii) excited Rydberg atoms can be seen as

soft spheres inside of which no atoms can be excited due to
blockade. Therefore, there exists a tightest packing of excited
atoms beyond which the facilitation rate κ vanishes. In the
high-temperature regime, this packing density corresponds to
the tightest packing of spheres in a given volume, as the high
thermal velocities allow the system to continuously organize
itself to this state. In the low-temperature regime the packing
density is given by that of randomly placed spheres in a given
volume, which, in comparison, is slightly lower.

Finally, (iii) for the low-temperature regime, one has to
additionally consider the finite connectivity of the underlying
network along which facilitated excitations can spread. On a
mean-field level, we described this by reducing the facilitation
rate in correspondence with the portion of atoms with network
degree (i.e., the number of atoms in their facilitation shell)
k = 0. The percentage of these isolated atoms increases as the
network connectivity decreases, and is therefore dependent on
the total density of the gas.

For both the high temperature, as well as the low
temperature, high density case Eq. (33) gives excellent cor-
respondence to Monte Carlo data for all epidemic stages.

For the low temperature, low density gas the system is
characterized by strong heterogeneity making an accurate
mean-field description challenging. However, for this case we
still see a large improvement in the Langevin description of
the dynamics.
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and M. D. Lukin, Probing topological spin liquids on a pro-
grammable quantum simulator, Science 374, 1242 (2021).

[15] S. Helmrich, A. Arias, and S. Whitlock, Uncovering the
nonequilibrium phase structure of an open quantum spin sys-
tem, Phys. Rev. A 98, 022109 (2018).

[16] M. Magoni, P. Mazza, and I. Lesanovsky, Phonon dressing
of a facilitated one-dimensional Rydberg lattice gas, SciPost
Physics Core 5, 041 (2022).
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4. Anomalous Directed Percolation on a
Dynamic Network Using Rydberg
Facilitation

D. Brady, S. Ohler, J. Otterbach, and M. Fleischhauer
Physical Review Letters 133, 173401 (2024)

In this study, we further build on what we learned in [P1], especially concerning the
phases of the system. Here, we study the phase transitions in the system, and how
they are altered by the thermal movement of atoms. We have seen the low tempera-
ture gas to behave strikingly different to the high temperature gas, as a result of the
underlying network constraining excitation spread. From [P1], we know that at low
temperatures and in the non-percolating regime, the absorbing-state phase transition
of the system is replaced by an extended Griffiths phase. However, in the percolating
regime, the absorbing-state phase transition persists. Our goal is to quantify if and how
the universality class of this phase transition is affected by the gas temperature.

Figure 4.1.: (Left) Gas density over time self-organizing to critical point (horizontal lines)
as a result of atomic losses. At the critical density, the density decay slows
dramatically. (Right) Critical over initial density as a function of driving in
the percolating gas. The curves collapse for different initial densities (colors)
onto a single universal line, which decays as a power-law for high driving
and yields the critical exponents βfrozen ≈ 0.809(13) for the frozen gas (dots),
βhigh T = 0.996(18) for the high temperature gas (crosses). Within the error,
these values fall in line with DP and mean field predictions respectively.

It has been shown that Rydberg facilitation systems in low-dimensional lattices, in the
absence of atomic losses, belong to the directed percolation (DP) universality class [6, 7].
With atomic losses, Rydberg facilitation displays signatures of self-organized criticality
(SOC) [12, 13] and it is not clear if and how these atomic losses modify the universality
class of the system [12]. Universality refers to the emergence of shared behavior near
criticality across different systems, irrespective of microscopic parameters. Different
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classes of behavior can be distinguished by scaling relations near criticality, namely

ρ ∼ |p− pc|β, ξ∥ ∼ |p− pc|−ν∥ , ξ⊥ ∼ |p− pc|−ν⊥ , (4.1)

where ρ is the active density, ξ∥ and ξ⊥ are the temporal and spatial correlation lengths
respectively, |p− pc| corresponds to the distance from the critical point, and β, ν∥, and
ν⊥ are the three critical exponents. In the experiment of Ref. [12], the authors find the
exponent βexp = 0.910(4), which is in between DP universality (βDP ≈ 0.81) and mean
field universality (βMF = 1.00) predictions. They speculate that the deviation between
βexp and βDP might arise from atomic losses and underlying SOC effects.

Using the scaling relation developed in Ref. [12], we find a universal collapse of our
Monte Carlo data both at high temperatures and in the low temperature, percolating
gas. Here, we find a value of the exponent β very close to the expected mean field
exponent in the high temperature gas, and a value of β very close to the expected DP
critical exponent in the low temperature, percolating gas. We further support this by
determining the critical exponent ν∥ for the low and high temperature cases and find
these to fall in line with the DP and mean field critical values of ν∥ respectively. For
the low temperature, non-percolating gas, we do not find a universal collapse of data
reflecting the extended Griffiths phase replacing the absorbing-state phase transition.

Our results suggest the Rydberg facilitation gas at low temperatures to fall into DP
universality and at high temperatures to fall into mean field universality. However, in
order to understand the exponent measured in Ref. [12], we need to look at the behavior
at intermediate temperatures. Here, we find universal behavior at every temperature in
between the above limits, albeit with a continuously varying critical exponent β. We
find this to result from rare, long-range Lévy flights [121] mediated by a few, very fast
atoms. Here the anomalous directed percolation (ADP) universality class emerges, where
the critical exponents depend on the characteristic length scale of the Lévy flights [10].
We find an analytical expression for the distribution of Lévy flights dependent on the
gas temperature and map a field theoretical model to approximate the critical exponent
β near the mean field phase.

Following this study, we can conclude that SOC does not modify the universal behavior
of this system. For the experimental parameters from Ref. [12], we find their temperature
to be in between the DP and mean field limits, and at that temperature our simulations
approximately replicate their measured exponent βexp.
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The facilitation of Rydberg excitations in a gas of atoms provides an ideal model system to study
epidemic evolution on (dynamic) networks and self-organization of complex systems to the critical point of
a nonequilibrium phase transition. Using Monte Carlo simulations and a machine learning algorithm we
show that the universality class of this phase transition can be tuned but is robust against decay inherent to
the self-organization process. The classes include directed percolation (DP), the most common class in
short-range spreading models, and mean-field (MF) behavior, but also different types of anomalous
directed percolation (ADP), characterized by rare long-range excitation processes. In a frozen gas, ground
state atoms that can facilitate each other form a static network, for which we predict DP universality. With
atomic motion the network becomes dynamic by long-range (Lévy-flight type) excitations. This leads to
continuously varying critical exponents, varying smoothly between DP and MF values, corresponding to
the ADP universality class. These findings also explain the recently observed critical exponent of Rydberg
facilitation in an ultracold gas experiment [Helmrich et al., Nature (London) 577, 481 (2020)], which was
in between DP and MF values.

DOI: 10.1103/PhysRevLett.133.173401

Introduction—Nonequilibrium phase transitions [1] and
the dynamical self-organization of complex systems to the
corresponding critical point [2,3] are key phenomena
believed to be the underlying reason for the abundance of
scale invariance in nature. They are characteristic for a broad
spectrum of spreading processes ranging from epidemic
dynamics of diseases [4,5], earthquakes [6], and forest fires
[7], to neural networks [8], electric circuits, and information
spreading in the internet [9]. The most relevant nonequili-
brium phase transitions are those between an active and an
inactive phase (absorbing state) of dynamical activity. In
contrast to their equilibrium counterpart, they are much less
understood. However, the behavior near the critical point
shows universal features characterized by different non-
equilibrium universality classes [1].
One of the most prominent such universality class is

directed percolation (DP) [1], originally describing the flow
of fluids through porous materials. Janssen and Grassberger
conjectured that nonequilibrium transitions in any classical
system should belong to the DP universality class if they
(i) exhibit a continuous phase transition between an active
and a unique absorbing state, (ii) the transition is charac-
terized by a positive one-component order parameter,
(iii) the dynamical rules involve only short-range inter-
actions, and (iv) the system has no special attributes such as
additional symmetries or quenched randomness [10,11]. To
date no counterexamples to these criteria have been found
[12], and DP universality has even been predicted in more
general systems, e.g., with multiple absorbing states
[13,14].

In spite of its the apparent generality only few exper-
imental platforms are known for which DP behavior has
unambiguously been proven.
In 2007 the first such platform was found in turbulent

liquid crystals and a full set of critical exponents in d ¼
2þ 1 dimensions was measured [15,16]. Since then,
interacting systems of Rydberg atoms in the facilitation
regime have been suggested to study absorbing state phase
transitions, for which DP universal behavior was predicted
on a lattice with nearest neighbor interactions [17], and
subsequently experimentally observed in a 1D gas [18].
One important aspect, relevant for the emergence of scale
invariance, which these model systems lack is the effect of
losses from the system. In a number nonconserving regime
the gas density in the active phase decreases over time
which drives the system to its critical point [19,20], a
phenomenon called self-organized criticality (SOC) [2,3].
It is not conclusively understood if, and to which extend

SOC modifies DP universality [13,19,21]. An experiment
investigating Rydberg facilitation in a 3D gas, performed in
this number nonconserving regime [19], showed signatures
of SOC, but a deviation from DP universality. This
deviation was attributed to the self-organization process,
as it has been shown that losses can modify the universal
properties of the phase transition and may compromise
criticality altogether [21]. Specifically in sandpile models
dissipation is a relevant perturbation in the renormalization
group sense and any degree of bulk dissipation (in the
absence of loading) breaks criticality [21,22].
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Through numerical experiments and analytic consider-
ations we show that the deviation in the Rydberg experi-
ment is neither due to SOC [19] nor due to heterogeneity
[23], but results from a violation of the Jansen-Grassberger
conditions leading to a dependency of the universality class
on the relative velocity of the atoms in the gas. Tuning the
parameters which set the reference scale of the atomic
velocity, the system can either display DP, mean-field
(MF), or anomalous directed percolation (ADP) universal-
ity. In Fig. 1 numerical results for the critical exponent of
the active density around the critical point can be seen as a
function of the root mean square (rms) velocity of the
atoms. Also shown is the critical exponent measured in [19]
along with the estimated region of velocities in the experi-
ment ranging between the average thermal velocity of the
atoms and that resulting from the acceleration in the
repulsive Van der Waals potential.
Several real-life spreading processes go beyond the

Janssen-Grassberger conjecture. For example, the spread
of diseases by flying insects in addition to direct contact
violates the condition of short-range excitations [24,25].
Likewise, spreading processes often take place on

dynamical rather than static networks [26]. These often
change on a timescale comparablewith that of the spreading
process [27].
Microscopic system—We consider a three-dimensional

gas of N atoms coupled between a ground jGi and a
Rydberg jRi state with a laser with Rabi frequency Ω and
detuning Δ [see Fig. 1(a)]. The unitary dynamics are
described by the Hamiltonian Ĥ ¼ P

iΩσ̂xi − Δσ̂rri þP
j<iðc6=r6ijÞσ̂rri σ̂rrj , where σ̂rri is the projection operator

of the ith atom onto its Rydberg state, c6 is the Van der
Waals coefficient for the Rydberg-Rydberg interaction
potential, and rij ¼ jr⃗i − r⃗jj is the distance between atoms
i and j.
In addition to the unitary dynamics, we account for

spontaneous decay of the Rydberg state into the ground or
an additional dark state j0i described by the jump operators
L̂1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − bÞγp jGiiihRj and L̂2;i ¼
ffiffiffiffiffi
bγ

p j0iiihRj, respec-
tively. Here the parameter b∈ ½0; 1� describes the portion of
atoms lost from the system, e.g., following decay into inert
states, or state-changing collisions. Finally, dephasing is
accounted for by L̂3;i ¼ ffiffiffiffiffi

γ⊥
p jRiiihRj. Typically in Rydberg

gases γ⊥ ≥ Ω, allowing classical rate equations to describe
these systems to high accuracy [28].
The evolution of the N-body density matrix is given by

the Lindblad master equation ðd=dtÞρ̂ ¼ −i½Ĥ; ρ̂� þ L̂ðρ̂Þ,
with the superoperator L̂ðρ̂Þ [29]. After adiabatic elimina-
tion of coherences a set of rate equations for the occupation
probabilities in Rydberg (pj

r) and ground states (pj
g) of the

jth atom can be derived. These read

d
dt
pj
r¼−ðΓjþγÞpj

rþΓjp
j
g;

d
dt
ðpj

rþpj
gÞ¼−bγpj

r; ð1Þ

where the rate Γj ¼ 2Ω2γ⊥=ðγ2⊥ þ V2
jÞ with Vj ¼ Δ½−1þP

l∈Σðr6f =r6jlÞ� depends on the dipole-dipole shift induced
by all other Rydberg atoms denoted by Σ.
For all simulationswe initiate randompositions in a 3Dbox

with lengthL ¼ 7rf and periodic boundary conditions. Atom
velocities are sampled from a Maxwell-Boltzmann distribu-
tion, i.e., a Gaussian in each direction, with rms velocity v.
Furthermore,we use γ⊥=γ ¼ 20 and aMonteCarlo algorithm
[30] with fixed time step γdt ¼ 0.0025.
For Rydberg facilitation systems, atoms are continuously

driven far from resonance, i.e., Δ ≫ Ω. As a result of the
strong detuning, off-resonant (seed) excitations are strongly
suppressed. However, in the presence of a Rydberg atom,
other atoms with distance r ≈ rf ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC6=ΔÞ6
p

are shifted
into resonance as a result of the vdW interaction [see
Fig. 1(b)].
Consequently, atoms within a spherical shell with

volume Vs ≈ 4πδrfr2f around a Rydberg atom can be
facilitated (i.e., excited on much faster timescales). Here
δrf ≈ ðγ⊥=2ΔÞrf is the width of the facilitation shell. The
rate of excitation for atoms within the facilitation shell is

FIG. 1. (a) Single atom dynamics: ground jGi and Rydberg
states jRi are laser-coupled with Rabi-frequency Ω and detuning
Δ ≫ Ω. jRi decays with rate γ and with branching b∈ ½0; 1� out of
the system. (b) Two atom scheme. Dipole interaction shifts jRRi
into resonance at the facilitation distance rf . (c) Schematic of
spreading dynamics: Facilitation is constrained to orange shells
with radius rf andwidth δrf . Spreading then occurs at effective rate
κ (see main text). (d) Critical exponent β (blue dots, see main text)
as a function of mean gas velocity v. Also shown is the theoretical
prediction (black line, see main text), for the mean field, directed
percolation, and anomalous directed percolation I regimes. Errors
in β are given by the covariance matrix when fitting (see text). All
points use the parameters b ¼ 0.3, Δ=γ ¼ 2000, with varied
Ω=γ ∈ ½1; 10� and gas density n0r3f ∈ ½20; 30�.
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Γf ¼ 2Ω2=γ⊥. Facilitation can also be interpreted as in-
fection processes, with a global spreading rate κ ¼ ΓfnVs,
where n is the gas density. Spontaneous decay of Rydberg
atoms back to the ground state then corresponds to recovery
with rate γ.
Critical scaling—These systems feature a nonequili-

brium phase transition between an absorbing phase, for
κ < γ, with no excited atoms in the thermodynamic limit,
and an active phase, for κ > γ, featuring widespread and
infinitely long-lived activity. Near the critical driving
strength κ ≈ γ, there is universal behavior characterized
by scaling relations for the Rydberg density ρ, as well as the
temporal and spatial correlation lengths, ξk and ξ⊥,
respectively,

ρ ∼ ðp − pcÞβ; ξk;⊥ ∼ jp − pcj−νk;⊥ : ð2Þ

Here p − pc corresponds to the distance of the control
parameter from the critical point, and β, νk, ν⊥ are critical
exponents. Finally, while seed excitations are strongly
suppressed, they still occur with rate τ ∼ 1=Δ2.
In the following, we consider the system in the SOC

regime, allowing Rydberg atoms to additionally decay to an
inert state, effectively removing them from the system, with
the rate bγ [see Fig. 1(a)]. As a consequence, the system
drives itself to the critical density given in MF approxi-
mation by nc ¼ ðΔγ=4πΩ2Þr−3f .
The SOC dynamics for different initial gas densities can

be seen in Fig. 2(a). In the initial active phase there is a fast
loss of atoms to inert states until the critical point is reached
where this loss slows down substantially. To observe
universal critical behavior these two timescales must be
well separated [31].
Since an infinite separation of timescales is not numeri-

cally feasible, a slow decay of the density at the critical
point is expected [this can be seen in Fig. 2(a)]. This,
however, poses a challenge for the determination of the
critical density. To this end, we trained a machine learning
(ML) algorithm to predict nc based on the time-dependent
density nðtÞ [32]. Predictions of nc can be seen in Fig. 2(a)
as horizontal dashed lines for each trajectory.
For the critical scaling we first consider the limit where

the thermal movement of atoms occurs on a much slower
timescale than the internal dynamics, rendering them effec-
tively static (i.e., the thermal gas velocity is v < δrfΓf .) In
this frozen-gas limit, the spreading of excitations is con-
strained to a random Erdős-Rényi network with the average
network degree hki given by hki ¼ nVs [34].
At hki ¼ 1 a transition occurs between a nonpercolating

network of ground state atoms with distance rf , composed
of many small disconnected clusters, and a percolating
network with one large cluster on the order of the size of the
system [35]. For hki < 1 this gives rise to a heterogeneous,
nonuniversal Griffiths phase replacing the critical point.
Above the percolation transition, however, i.e., hki > 1, the

absorbing-state phase transition is recovered [34,36]. (The
SOC dynamics do not change the Erdős-Rényi character of
the network, but only lead to a reduction of hki).
At high gas temperatures the continuous mixing of

atomic positions and subsequent fast decay of spatial
correlations leads to mean field behavior regardless of
hki [37].
An unambiguous signature of universal behavior and a

precise method for the classification into a certain univer-
sality class is the collapse of data obtained over a large
parameter range onto specific scaling functions. Following
Ref. [19], we consider the density of atoms in active states
(i.e., in the ground and Rydberg state, but not in the inert
state) at the critical point nc, normalized to the initial
density n0 as a function of the generalized driving strength
Ω2n1=α0 , with α being tuned until all data points collapse
onto a single curve. Scale invariance requires

nc
n0

¼ f
�
Ω2n1=α0

�
ð3Þ

to hold over the entire parameter range, with a scaling
function fðxÞ, which can be chosen as fðxÞ ¼ xβcðxμβ þ
xμβc Þ−1=μ [19], where xc and μ are free parameters defining
the position and sharpness of the critical point. Finally, β
corresponds to the critical exponent from Eq. (2).

FIG. 2. (a) SOC dynamics of density of ground and Rydberg
atoms in high temperature limit (v=δrfΓf ¼ 5443) for b ¼ 0.3,
Ω=γ ¼ 3.7, and Δ=γ ¼ 1000, with varied n0 showing self-
organized criticality to a single density nc. Machine learning
predictions of the critical density for each trajectory (horizontal
dashed lines) and nc (horizontal solid black line). (b) ML
predictions of critical density nc normalized by initial density
n0 depending on the rescaled driving (see main text) for (b) the
nonpercolating gas, hki < 1 (left) and (c) for the percolating gas,
hki > 1 (right) for both frozen (v=δrfΓf ¼ 0) and high temper-
ature (v=δrfΓf ¼ 5443) limits. The exponent α is tuned until all
data points collapse. For the frozen, nonpercolating gas no
collapse can be found.
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For both high temperature and frozen limits, the results
are plotted in Figs. 2(b) and 2(c) for hki < 1 and hki > 1,
respectively. For the high temperature limit we receive a
collapse of all data points onto a single power-law using
α ¼ 1.08ð1Þ (hki < 1) and α ¼ 1.26ð1Þ (hki > 1). We then
extract the critical exponents βlowhki ¼ 1.049ð19Þ and
βhighhki ¼ 0.996ð18Þ, respectively, which both fall in line
with the expected mean field exponent βMF ¼ 1.00. Errors
are calculated from the covariance matrix of the fit
parameters.
For the low temperature regime, on the other hand, [dots

in Figs. 2(b) and 2(c)] we find no collapse of data below
the percolation threshold, i.e., hki < 1, for values of
α∈ ½0.5; 2.0�, indicating nonuniversal behavior which is
consistent with a heterogeneous Griffiths phase [34]. For
hki > 1, however, the data collapse onto a single power-law
for α ¼ 0.88ð1Þ, with the slope clearly differing from the
high temperature one. Furthermore, when using the above
mentioned fit function we obtain the power-law exponent
βfrozen ¼ 0.809ð13Þ, very close to the expected 3D DP
critical exponent βDP ≈ 0.813 [12].
To unambiguously confirm DP and MF universality in

the low and high temperature limits, we also determine the
critical exponent νk governing temporal correlations around
the critical point. We find a good agreement with literature
values. A detailed analysis including numerical results can
be found in Supplemental Material [32].
Anomalous directed percolation—From the above dis-

cussion one would naively expect that there is a critical
value of the mean gas velocity where a phase transition
between DP and MF behavior takes place. Astonishingly
however, we find for gas temperatures between the two
limits (and hki > 1) a universal collapse of data points
with a monotonously changing critical exponent β over
multiple orders of magnitude in the rms gas velocity
[Fig. 1(d)].
Increasing the temperature the system leaves the DP

regime at rather low velocities corresponding to the (very
small) width of the facilitation shell per facilitation time,
i.e., v− ¼ δrfΓf (left mark in Fig. 1). This is due to the
number of ground-state atoms that can be facilitated by a
single Rydberg atom increasing once this velocity is
exceeded. On the other hand, for velocities greater than
vþ ¼ rfΓf , i.e., when an atom flies distances larger than the
facilitation distance in the facilitation time, the network
character of (ground) state atoms becomes completely
washed out (right mark in Fig. 1).
In the following we show that the critical behavior with

continuously varying β in the velocity range between these
two limiting values is a signature of ADP universality,
resulting from effective long-range spreading processes and
heavy-tailed waiting time distributions [38].
Absorbing-state phase transitions in complex systems

where excitation distances follow a Lévy flight distribution
for large r as

PðrÞ ∼ 1

rdþσ ; ð4Þ

where d is the dimension and σ is a free parameter, no
longer fulfill the Janssen-Grassberger conjecture if σ
becomes too small. Such systems, however, still show
universal behavior, albeit with continuously varying critical
exponents depending on the value of σ [12,38]. The same is
true if the distribution of time intervals between successive
excitations [i.e., waiting time distribution PðδtÞ] is heavy
tailed. In general, the algebraic spatial and temporal
distributions effectively reduce the upper critical dimen-
sion, and the critical exponents approach the MF values.
In the frozen gas limit each atom is confined to a cluster

and has k atoms in its facilitation shell, with k given by a
Poissonian distribution as PðkÞ ¼ ½ðnVsÞk=k!�e−nVs . With
increasing thermal velocity, the probability that an atom
finds another connection outside of its original cluster
increases. Since the underlying network is a random
network, even small distances in real space can correspond
to completely new connections, i.e., very distant jumps in
the network.
For an initially excited Rydberg atom with velocity v, the

distribution of distances to the next facilitated atom can be
seen in Fig. 3(a), where the dots are from MC simulations.
Outside of the facilitation shell (vertical black dashed line),
we find that this probability decays as a power-law with an
exponent σ decreasing with increasing atom velocity. For
large distances around v=Γf the excitation probability is
exponentially truncated.
This distribution can be described analytically outside of

the facilitation shell by

PðrÞ ¼ 2πξr
Z

π

0

dθ
e−ξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θþr2−1

p
−cos θ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ r2 − 1

p ; ð5Þ

with ξ ¼ ðhki=δrfÞð1 − e−δrfΓf=vÞ [black solid line in
Fig. 3(a)]. The derivation of Eq. (5) can be found in the
Supplemental Material [32].
In 3D systems, (long-range) MF behavior occurs for

σ < 1.5 [lower black dashed line in Fig. 3(b)], while for
σ > 2.118ð17Þ regular DP behavior is expected [upper
black dashed line in Fig. 3(b)] [12]. In between these limits,
the long range interactions are prevalent enough to disrupt
DP universality, but not strong enough to suppress all
correlations. Here, the system is governed by a family of
continuously varying universality classes (ADP), labeled
by the long-range parameter σ [12].
Fitting the spatial distribution of excitation distances

with an exponentially truncated power-law fðxÞ ¼
c1x−c2e−c3x, with c2 ¼ σ − 1 [as Pðr⃗Þd3x ¼ PðrÞ4πr2dr],
we receive very good agreement between the data and the
fit function [dashed lines in Fig. 3(a)]. From this we can
extract the power-law slope σðvÞ governing the flight
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distance distribution depending on the thermal gas velocity
seen in Fig. 3(b).
For the distribution of times between excitations (see

Supplemental Material [32]), we find a deviation from a
pure exponential distribution for gas velocities in the
interval v=δrfΓf ∈ ½0.5; 50.0�. In this regime [reflected by
the green shaded region in Fig. 3(b)], spatial and temporal
long-range processes are relevant.
For gas velocities in the interval v=δrfΓf ∈ ½50; 160�, we

find an exponential waiting time distribution, but a spatial
power-law distribution with σ > 1.5, giving rise to the ADP
I regime [1]. Here the critical exponents β and νk can be
field theoretically approximated in perturbation theory to
one-loop order, which yields [12] for σ > 1.5

β ¼ 1 − 2
2σ − 3

7σ
; νk ¼ 1þ 2σ − 3

7σ2
; ð6Þ

and β ¼ νk ¼ 1 for σ ≤ 1.5. For gas velocities v=δrfΓf ≳
50 we see a very good agreement between the field
theoretical approximation of β½σðvÞ� and our simulation
results (black line in Fig. 1). With decreasing velocity, i.e.,
entering the ADP II regime, the field theoretical predictions
begin to diverge (gray dashed line in Fig. 1) resulting from
the nonexponential distribution in waiting times and the
failure of the perturbation expansion.

Conclusion—Systems of facilitated Rydberg excitations
form an accessible experimental platform to investigate
nonequilibrium dynamics. Using Monte Carlo simulations
we discover the existence of rare Lévy-flight type excita-
tions which, if prevalent enough, can alter the universality
class of the nonequilibrium phase transition in the system.
This deviation from directed percolation universality was
previously assumed to be a result of self-organized criti-
cality. However, for low temperatures we find critical
exponents which coincide with DP universality while the
system also displays SOC.
One important aspect is whether all universality classes

can be experimentally realized. For typical ultracold
Rydberg gases temperatures below 1 μK [39] are reachable.
The critical temperature to reach the DP regime is given by
v− ¼ δrfΓf ≡ ðκ=4πr2f Þ (explicitly T− ¼ ðmκ=3kB4πr2f Þ,
with the atom mass m). For the parameters used in [19]
this becomes T− ≈ 7 μK.
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Supplementary Material
Anomalous Directed Percolation on a Dynamic Network using Rydberg Facilitation

Machine Learning the Critical Density

In the following we detail the machine learning (ML) algorithm used to determine the critical density nc from the
time-dependent total density n(t) (ground and Rydberg state atoms) as the system drives towards (and beyond) the
critical point.

Upon the system reaching its critical density, the total density continues to decay as a result of a finite separation
of time-scales in the system (see Fig. 2a in the main text), which makes the unambiguous determination of the true
critical point difficult. For the case of high gas temperatures, specifically an average thermal velocity v/δrfΓf = 5443,
the dynamics of the system are accurately described by mean field equations [36]. For the mean field limit the critical
density nc is given by nc = ∆γ

4πΩ2 r
−3
f (see main text).

We train the ML algorithm on data in the mean field regime by passing it a sub-sampled vector X, consisting of
100 density values from n(t), which are equally spaced in time. The times are spaced in the interval γt ∈ [0, 2000]
and have a spacing of γ δt = 20. All training trajectories use v/δrfΓf = 5443 and are the average of 50 Monte-Carlo
runs. As all training data is in the percolating limit, the system consists of roughly 104 atoms, resulting in a fast
convergence of Monte-Carlo simulations.

In total, the algorithm is trained using 5866 trajectories, each with a unique combination of Ω and n0. The algorithm
outputs Y ∈ [0, 1] and predicts Ȳ ≡ nc(Ω)/n0 for nc < n0 and Ȳ ≡ 1 for nc ≥ n0, where we found a modified Huber-
Loss function [39] to give the most accurate predictions. This is defined as

L∆(Y − Ȳ ) =

{
100 × 1

2
|Y−Ȳ |2

Ȳ
, |Y − Ȳ | ≤ ∆

100 × ∆
2

|Y−Ȳ |
Ȳ

, |Y − Ȳ | > ∆
. (1)

Using ∆ = 1 yields an average percentage error of 4 % between the predicted critical density and the mean field value.
After successfully training the algorithm in the MF regime, we apply the algorithm to determine nc/n0 for arbitrary v.

Analytical Description of Lévy Flights

The heavy-tailed distribution of excitation distances P (r) is caused by atomic motion as we will show in the
following. To this end we describe the distribution considering the distance z a Rydberg atom would cover before
facilitating another atom. By discretizing space into infinitesimal steps δz we can write the probability that the
excitation happens after at least J steps as P (X > J) = (1 − pexc)

J . Here pexc is the excitation probability in a given
time interval δt = δz/v. As the number of atoms in the facilitation shell of a Rydberg atom in t+ δt are given by the
Poissonian distribution, the excitation probability reads pexc =

∑∞
k=0 P (k)(1 − (1 − p↑)k), i.e.

pexc = 1 − exp
{
−⟨k⟩ δz

δrf
(1 − e−δrfΓf/v)

}
, (2)

with the excitation probability in a single time step p↑ = 1 − e−Γfδt. Inserting (2) into P (X ≥ J) and taking the
limit δz → 0 for fixed z = Jδz, we receive an exponential distribution fZ(z) = ξe−ξz, with ξ = ⟨k⟩/δrf(1 − e−δrfΓf/v).
After the Rydberg atom flies the distance z, an atom is facilitated in a random position around it with distance rf ,
i.e. in spherical coordinates with uniformly distributed random variables θ ∈ [0, π) and φ ∈ [0, 2π), as well as a fixed
r ≡ rf . The probability distribution of the distance from the initial position of the Rydberg to the position where the
first atom is facilitated is given by

P (r) =2πξr

∫ π

0

dθ
e−ξ(

√
cos2 θ+r2−1−cos θ)√

cos2 θ + r2 − 1
, (3)

where r⃗ = rf êr(θ, φ) + (0, 0, z)T . In eq. (3) the distribution is given up to a numerically solvable integral and the
solution can be seen as the black solid lines in Fig. 4a in the main text. We see an excellent agreement between the
distribution given by eq. (3) and the numerical data.
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2

Critical Exponent δ in the Number Conserving Regime

In the following we determine the critical exponent δ = β/ν∥ for low and high temperature limits. To this end, we
consider the decay of excitations from the fully excited state ρ(t = 0) = n(t = 0), in the number conserving case, i.e.
b = τ = 0.

For the case of weak driving, i.e. in the absorbing phase κ < γ, a pure exponential decay to ρ(t→ ∞) = 0 is
expected, while for strong driving, i.e. in the active phase κ > γ, a non-zero steady state density emerges [12]
ρ(t→ ∞) > 0. At the critical driving strength, i.e. κ = κc = γ, there is a power-law decay in the active density of the
form ρ ∼ t−δ with the exponent δ = β/ν∥. For contact processes on networks, the critical driving strength is expected
to be slightly larger however, i.e. κc ≳ γ [35]. For MF δ = β = ν∥ = 1, whereas for 3D DP universality one expects a
less steep slope with exponent δ ≈ 0.732, since νDP

∥ = 1.11(1), see e.g. Ref. [1].

In Fig. S1 we see this expected behavior with an intermediate power-law for the driving strength κ(Ω, n0) = κc,
which is exponentially truncated as a result of finite size effects. For the high temperature limit we receive δ = 1.0(1)
with the literature value being δMF = 1.00; and for the frozen gas we receive δ = 0.65(10) with the literature value
being δDP ≈ 0.73. The behavior around the critical driving strength is very sensitive to the Rabi frequency Ω, which
is reflected in the rather large error margins in δ. Still, we find a good agreement with the DP and MF predictions of
δ and a clear difference between the values δ takes in the two limits.
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FIG. S1: Decay of the density of excited atoms over time taken from Monte-Carlo simulations with all atoms initially
excited ρ(t = 0) = n0 with varying driving Ω with n0r

3
f = 20 for high temperature (v/δrfΓf = 5443, left) and the

frozen gas (v/δrfΓf = 0, right). Both plots display an absorbing state phase transition with exponential decay for
κ < κc ≈ γ, decay to a steady state for κ > κc and power-law decay for κ = κc. The dashed lines represent a power-law
decay with exponent δ = 1.0(1) (left) and δ = 0.65(10) (right). Furthermore we use ∆/γ = 1000 and b = 0.

Waiting Time Distribution

In addition to the spatial distribution of excitations discussed in the main text, the temporal distribution plays an
important role in determining the universality class of the underlying phase transition. For mean gas velocities in the
interval v/δrfΓf ∈ [0.5, 50] we find a deviation from an exponential distribution in the waiting times (central plot in
Fig. S2). In particular, we find an exponentially truncated power-law distribution making long waiting times much
more likely when compared to the pure exponential distribution (see Fig. S2). Consequently, systems with spatial and
temporal long-range interactions generically fall into a mixed anomalous directed percolation (called ADP II in the
main text) universality class differing from anomalous directed percolation (called ADP I in the main text) [12]. In
particular the field-theoretical approximations for the critical exponents (given by eq. (6) in the main text) no longer
hold in this regime.
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FIG. S2: Distribution of times δt taken from Monte-Carlo simulations (blue dots) until the first facilitation event
occurs from an initial seed for different gas velocities v and exponential fit (black dashed lines). All plots are in the
percolating regime, i.e. ⟨k⟩ > 1 and use Ω/γ = 20, ∆/γ = 2000, n0r

3
f = 20.
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Rydberg-Excitation Spreading on a
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J. S. Otterbach, and M. Fleischhauer

Physical Review Research 7, 033167 (2025)

This constitutes our final study of the Rydberg facilitation gas. Here, we once again
investigate the temperature dependent universality class transition from directed percola-
tion (DP) via anomalous directed percolation (ADP) to mean field universality, discovered
in [P3]. The phase transition is characterized by three critical exponents β, ν∥, and ν⊥,
each corresponding to a different type of scaling behavior in the vicinity of the critical
point. In Ref. [10], these exponents were mapped to the distribution of areas, sizes,
and durations of avalanches - short bursts of activity - at the critical point. Avalanches
represent one of the prime experimentally accessible quantities of absorbing-state phase
transitions. These quantities are power-law distributed near the critical point, i.e. they
follow P (ν) ∼ ν−τν , with ν ∈ {a, s, t} (area, size, and time). The avalanche exponents
for area a, size s, and time t, mapped from the critical exponents, for the dimension d,
are given by [10]

τa = 1 +
β

dν⊥
, τs = 1 +

β

ν∥ + dν⊥ − β
, τt = 1 +

β

ν∥
. (5.1)

Figure 5.1.: Distributions of avalanche areas, sizes, and times from Monte Carlo simu-
lations. All distributions clearly follow a power-law over multiple decades.
In order to quantitatively measure the exponents, a finite-size extrapolation
needs to be undertaken.

These avalanche exponents allow us to access the critical exponents ν⊥ and ν∥, corre-
sponding to the spatial and temporal correlation length scaling exponents respectively.
While we were able to numerically determine ν∥ in [P3], the method used there came
with tremendous numerical effort and is experimentally unfeasible. We therefore were
only able to find ν∥ for two values of the gas temperature T , i.e. in the low and high
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temperature limits. But especially ν⊥ has eluded our study in [P3] due to the inher-
ent difficulty of extracting it directly from scaling relations around the critical point.
Following the above mapping, we have access to the full set of critical exponents and
are able to extract these for various temperatures numerically and in the ADP phase
experimentally.

From our simulations we can strongly underline the behavior found in [P3]. Namely,
that the universality class of the system changes smoothly from DP at low temperatures,
to various stages of ADP, and finally to mean field universal behavior at high tem-
peratures. We also investigate the effects of dissipation on the avalanche (and critical)
exponents. Here, we find the exponents to be quite robust against dissipative effects.

Finally, we also measure the avalanche exponents experimentally for one temperature
within the ADP phase. Here, we find an agreement between the expected and the mea-
sured time exponents, as well as the experimental magnitude exponent. The magnitude
exponent is a combination of area and size exponents, as these cannot be distinguished
in the experiment. However, in the ADP phase, the values of the area and size exponents
are roughly the same.
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Understanding the universal properties of nonequilibrium phase transitions of spreading processes is a chal-
lenging problem. This applies in particular to irregular and dynamically varying networks. We here investigate an
experimentally accessible model system for such processes, namely, the absorbing-state phase transition (ASPT)
of Rydberg-excitation spreading, known as Rydberg facilitation, in a laser-driven gas of mobile atoms. It occurs
on an irregular graph, set by the random atom positions in the gas, and, depending on temperature, changes its
character from static to dynamic. By studying the behavior of the order parameter in the work of Brady et al.
[Phys. Rev. Lett. 133, 173401 (2024)], we showed numerical evidence for a crossover from directed percolation
(DP) universality through various phases of anomalous directed percolation (ADP) to mean-field (MF) behavior
when the temperature of the gas is increased. As the behavior of the order parameter is not sufficient to uniquely
determine the universality class, we here analyze the distribution of avalanches—characteristic of nonequilibrium
critical behavior—to fully characterize the ASPT. Performing extended numerical calculations and experiments
on a cold 87Rb atom gas, we confirm our earlier numerical findings and our phenomenological model that
maps the dynamic network to a static one with power-law tails of the distribution of excitation distances.
Furthermore, we discuss the influence of dissipation, present in the experiment and a necessary ingredient for
the self-organization of the system to the critical point. In particular, we study the potential modification of the
universality class by losses as a function of dissipation strength.

DOI: 10.1103/8rlg-169g

I. INTRODUCTION

The critical behavior at nonequilibrium phase transitions
and the phenomenon of self-organized criticality (SOC) [1–3]
are closely related to avalanche events—sudden, fast outbursts
of energy after longer periods of inactivity. Although the topic
is not without its controversies [4], the SOC mechanism is
believed to be key to the abundance of real world examples of
power-law distributed avalanche events like earthquakes [5],
solar flares [6,7], and neuron activation in the brain [8,9],
since it describes how a system can evolve in time to the
critical point of a phase transition without an external drive or
fine tuning. One of the most important categories of nonequi-
librium phase transitions in spreading processes concerns
absorbing-state phase transitions (ASPT). Here the behavior
of the system changes from an active (spreading) phase with
perpetual excitation cascades to an inactive (absorbing) phase,
where a single excitation does not change the system at large.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Power-law distributed avalanche events are then observed at
the critical point between these two phases, reflecting the scale
invariance of the critical state. In this situation, a minimal
perturbation can cause a scale-free reaction of the system.

Avalanche events of self-organized critical systems have
first been studied in the context of sandpile models, most no-
tably the Bak-Tang-Wiesenfeld (BTW) model [1,2]. Shortly
after, additional systems were proposed that display SOC
behavior, such as the Manna [10], Drossel-Schwabl [11], or
Olami-Feder-Christensen model (OFC) [12] for a different
type of sandpile, forest fires, and earthquakes, respectively.
Most of the avalanche research so far has focused on lattice
models, where a toppling or relaxation event is defined as the
transfer of, e.g., energy or particles to adjacent sites on the
lattice. Some works have adapted these models to networks,
where adjacency is not defined by nearest neighbors on the
lattice but instead by links of the graph structure. Here, it was
found that the type of graph structure itself can significantly
affect the critical behavior [13].

Additionally, most work so far has been done on static
systems, where the adjacency relations between individual
sites do not change over time. This simplification is justified
in many cases, since avalanches typically happen on very
short timescales compared to other processes in the system.

2643-1564/2025/7(3)/033167(13) 033167-1 Published by the American Physical Society
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However, in other systems, for example, epidemic spreading,
the dynamical properties of the network are very important
and happen on relevant timescales [14]. The extent to which
graph dynamicity can impact the critical properties of the
system is not well understood. In the context of the OFC
model, for instance, it was found that the dissipative random-
neighbor version results in noncritical behavior compared to
critical scaling for fixed connectivity [15]; however, other
authors claim that also in the latter case the model turns
noncritical [16].

Generally, nonequilibrium phase transitions can be associ-
ated with a set of critical exponents that describe the scaling
of physical observables close to the critical point. For ASPTs,
these critical exponents can be related to the exponents of the
power-law distributions of avalanche events [17]. Obtaining
these critical exponents through experiments or simulations is
essential to identify the universality class of the ASPT and can
help in understanding the relevant physical processes.

For certain ASPTs, however, finding experimental rep-
resentations can be very difficult. One example is the
well-known universality class directed percolation (DP),
where to this day well-controllable experimental systems are
rare, the first one only being discovered in 2007 [18].

Gases of Rydberg atoms offer a versatile experimental plat-
form for the investigation of many-body phenomena, where
high-precision measurements on gases as well as on tailored
geometries can be performed [19–21]. Interactions of Ryd-
berg atoms can also be tuned to simulate the dynamics of the
SIS (susceptible-infected-susceptible) model [22,23], which
is an important example of a spreading model displaying
an absorbing-state phase transition, and Rydberg atoms have
been used experimentally to measure avalanche distributions
and other critical exponents [24]. In this context, the excitation
of an atom into a highly excited (Rydberg) state that can
spread to other atoms is considered the “active” or infected
state, whereas the ground state of the atom is the “passive” or
susceptible state.

Absorbing-state phase transitions and DP universality of
ensembles of Rydberg atoms have been previously studied
on fixed lattices, yielding numerical [25] and experimental
[26] signatures of DP in a one-dimensional chain of atoms.
Additionally, cluster growth processes have been studied in
a similar fashion [27]. In general, however, the spreading of
an excitation occurs on a network of atoms with fixed spatial
separation, given by the so-called facilitation distance. This
network can be a regular lattice, if the atoms are trapped,
e.g., in optical lattice potentials or tweezer arrays, or can be
static but random, e.g., in a cold gas. An important further
aspect of atomic gases is their thermal motion. In a recent
publication we provided numerical evidence that the ASPT of
a driven Rydberg gas under facilitation conditions changes its
universality class as a function of the (root mean square) gas
velocity [28]. For low temperatures we obtained DP scaling,
changing to anomalous DP (ADP) and eventually mean-field
(MF) for higher temperatures. These simulation results ex-
plained the unusual experimental measurement value of the
critical exponent β obtained in a previous publication [24].
However, the change in universality was only shown for the
critical exponent β as well as for one of the correlation
length exponents ν‖ [28], lacking the third critical exponent

ν⊥. Determining the exponents of the avalanche distribution
functions at the critical point provides an alternative way to
unambiguously determine the universality class, and we will
pursue this approach in the present paper, by both numerical
simulations and experimental studies. In addition, the scaling
of avalanche critical exponents on dynamical networks such
as in Rydberg facilitation remains a mostly open question,
with only one exponent having been measured in Ref. [24].

In this paper, we numerically study the avalanche events
in a three-dimensional gas of atoms that are driven by an
external laser field and compare the results with experimental
data as well as field-theoretical predictions for an effective
static model with temperature-dependent power-law tails in
the excitation distance. The atomic cloud is characterized by a
tunable velocity distribution that, combined with the distance-
dependent interaction, yields a dynamical graph on which
excitations can spread. As a function of velocity we obtain the
avalanche-exponents for area, size, and time of the avalanches
(for a definition see Sec. III B) and confirm the universality
class crossover from DP to anomalous directed percolation
that we found in a previous publication [28] analyzing the
β exponent of the order parameter, i.e., the Rydberg density.
This is a nontrivial result since predicting the avalanche expo-
nents requires knowledge of all three ASPT critical exponents
(β, ν‖, ν⊥). The numerical results are supported by exper-
imental observations of avalanche distributions of Rydberg
facilitation in a cold, trapped gas of 87Rb atoms. With this, our
work also provides the first experimental indication consistent
with ADP universality.

Secondly, the loss mechanisms inherent to self-
organization of a system to the critical point of an
absorbing-state phase transition can affect the universal
behavior at criticality or even destroy criticality altogether.
For this reason we consider additionally the effect of
losses from the excited state and quantify its influence on
criticality and exponent values for a frozen gas as well as
a finite-temperature gas by numerical simulations. This is
especially relevant in the context of our experimental results
that invariably include loss.

II. RYDBERG FACILITATION, MODEL,
AND EXPERIMENTAL SETUP

A. Microscopic system

We study a driven-dissipative system of atoms in three
dimensions, where any atom can at any time belong to one of
three states, namely, the ground state |G〉, the Rydberg state
|R〉, and the “removed” state |0〉, which describes a state in
which the atom does not take part in the dynamics at all (often
called “immune” in the context of epidemic spreading). We
apply an external driving (laser field) with Rabi frequency
� that couples |G〉 to |R〉 with detuning � (see Fig. 1). The
Rydberg state can spontaneously decay to the ground state
with rate (1 − b)γ with 0 � b � 1. The quantum mechanical
evolution of the system can then be described by a Lindblad
master equation [29] for the density operator ρ̂, which reads
(we set h̄ = 1)

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑
l

(
L̂l ρ̂L̂†

l − 1

2
{L̂†

l L̂l , ρ̂}
)

, (1)
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FIG. 1. Overview over the microscopic physics in our model. (a)
Single atom under external drive � with decay channels into ground
and inactive states. The parameter b controls the ratio between the
decay processes. (b) Two atoms with interatomic van der Waals force
that shifts the two-Rydberg state as a function of distance. At r = rf ,
the shift cancels the external detuning and the transition becomes
resonant. (c) Spreading of an avalanche on a network.

where the unitary evolution of the system is given by

Ĥ =
∑

i

�σ̂ x
i − �n̂i +

∑
j<i

c6

r6
i j

n̂in̂ j . (2)

Here, n̂i = (|R〉 〈R|)i is the number operator of the Rydberg
|R〉 state, ri j = |�ri − �r j | is the interatomic distance, and σ̂ x is
the Pauli x matrix. The last term in (2) corresponds to the van
der Waals interaction between two Rydberg atoms with c6 be-
ing the van der Waals coefficient. Using the Lindblad master
equation, the dissipation in the system is taken into account
by the Lindblad jump operators L̂(i)

1 = √
(1 − b)γ (|G〉〈R|)i,

L̂(i)
2 = √

bγ (|0〉〈R|)i, which describe spontaneous decay of
the i′th atom from the Rydberg state into the ground state
|G〉 and the inert state |0〉, respectively, with the branching
parameter b. Additionally, we include the effect of dephas-
ing, which stems mainly from laser phase noise and Doppler
broadening [24], but also from the nonzero width of the wave
function of the atom over the van der Waals potential [30], and
differential van der Waals forces [31]. The dephasing Lind-
blad operator reads L̂(i)

⊥ = √
γ⊥n̂i, where γ⊥ is the dephasing

rate.
In this publication, we always consider the high-dephasing

limit of the Rydberg gas, which has been proven to be a
good approximation for gaseous Rydberg systems [32]. In this
limit, the dynamics of the system is governed by effective
rate equations, which can be modeled using a classical Monte
Carlo approach [33] (for more details see Appendix A).

B. Facilitation mechanism

The level scheme of a single Rydberg atom and the
two-Rydberg dynamics is illustrated in Fig. 1. In the facil-
itation regime, the detuning � is chosen sufficiently large to

suppress spontaneous (seed) excitations from the ground state.
However, if one atom in the system is initially in the Rydberg
state, then the van der Waals interaction shifts the Rydberg
energy levels of the nearby ground-state atoms. Since the van
der Waals interaction is distance dependent, there exists a
distance called the facilitation radius rf = (c6/�)1/6, at which
the van der Waals interaction exactly cancels the detuning.
In this way, a Rydberg atom can resonantly “pass on” the
excitation to other atoms in a spherical shell with radius rf

around it. The width of this shell δrf is given by δrf = γ⊥
2�

rf

with δrf/rf 	 1 [34]. The rate of the resonant facilitation is
denoted by 
f = 2�2/γ⊥, which is an important timescale in
the system. Combining these two effects, we see that while an
initial (seed) excitation is very unlikely, as soon as Rydberg
atoms exist in the system it is possible to observe avalanche-
like cascades of excitations. For this a sufficiently high density
and strong enough external driving is needed such that the
global facilitation rate is stronger than the decay from the
Rydberg state to the ground state. At high atom velocities, the
Rydberg atoms see a homogeneous ground-state background
and the number of facilitated excitations is determined by
the density and driving strength only. For a frozen gas with
velocity v = 0, however, the atoms form a network where two
atoms are connected if and only if their distance falls into the
very narrow interval rf ± δrf . Since the atomic positions are
distributed uniformly, the resulting network of atoms that in
principle can participate in the Rydberg facilitation is of the
Erdős-Rényi [35] type [34].

C. Rydberg gas as a dynamical graph

The Erdős-Rényi network for the frozen gas is character-
ized by a Poissonian distribution PER of the number k of atoms
in the facilitation shell of a single Rydberg atom,

PER(k) = (nVs)k

k!
exp (−nVs). (3)

Here, Vs ≈ 4πδrf r2
f is the volume of the facilitation shell

and n = nG + nR the total density of remaining atoms in the
ground and Rydberg states. It is well known that such a net-
work features a percolation transition at the average network
degree 〈k〉 = 1. To be able to observe universal behavior, the
network needs to be above this threshold, since otherwise the
system is comprised of disconnected, finite clusters [34] and
a universal data collapse cannot be achieved [28]. Therefore,
the average degree 〈k〉 = nVs needs to be sufficiently larger
than unity. To increase 〈k〉 in our simulations we increase
n; however, that comes with significantly increased compu-
tational cost, leading us to choose 〈k〉 ∼ 2.5 as a reasonable
compromise. For this value, approximately 90% of atoms are
contained in the largest connected cluster (LCC) of atoms
that in principle could undergo Rydberg facilitation. For finite
temperature, the system has to be represented as a dynamical
graph, since the distances between the atoms change over
time. This implies that the pairs of atoms between which an
excitation can spread (pairs of atoms with a mutual distance
close to rf ) change over time, which, in the language of graph
theory, corresponds to the creation and desctruction of links
between nodes. Changing the gas velocity then allows to
change the rate of link creation and destruction and therefore
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FIG. 2. Average number of unique links an atom encounters over
the time 1/γ as a function of rms velocity normalized to the v = 0
case. The insets show the full distribution for velocities v = 0 (left)
and v = 10rfγ (right) as well as Poissonian and Gaussian fits.

the degree to which dynamical effects become relevant. We
quantify the degree to which the graph is dynamical by intro-
ducing the graph dynamicity D, which reads

D = 〈k〉dyn

〈k〉stat
, (4)

where kdyn counts all unique atoms (nodes) that an atom has
ever been connected to during the inverse decay time 1/γ

and kstat is the average number of instantaneous connections
(determined fully by the density and width of the facilitation
shell). The result can be seen in Fig. 2. We observe that after
a period of slow growth, starting from v ∼ 0.02rfγ we see a
continuous power-law increase in the number of unique con-
nections. Additionally, at this point the distribution of unique
partners changes from Poissonian (low-velocity) to Gaussian
(high-velocity). Coincidentally, this velocity scale agrees well
with the upper limit of DP universality found in Ref. [28].
In addition to the data, we also show the power-law fit to the
velocity interval from v > 0.06rfγ , which yields the exponent
λ = 0.85. The relevance of this power-law increase in dynam-
icity is, however, unclear. We note that this consideration takes
into account solely the dynamical graph structure of atoms
on which Rydberg facilitation is in principle possible, not the
actual excitation dynamics that depends on other factors like
the external drive intensity.

D. Experimental setup

To experimentally study the collective Rydberg facilitation
dynamics, we prepare a cloud of 87Rb atoms in a crossed
optical dipole trap with trapping frequencies of ωx,y,z =
2π × (332, 332, 73) Hz. The experimental setup is sketched
in Fig. 3. Forced evaporation in the dipole trap is stopped
at a final temperature of T = 1 µK, leading to a thermal
cloud with a density of ρ = 2.2 × 1013 cm−3. This tempera-
ture corresponds to an rms velocity of v = 0.39 ± 0.26rfγ .
The facilitation dynamics is induced by off-resonant, blue-
detuned (� = 40 MHz), continuous excitation from the |G〉 ≡
|5S1/2 F = 2 mF = 2〉 ground state to the |R〉 ≡ |40P3/2〉
Rydberg state for a total duration of 100 ms. Due to

FIG. 3. Sketch of the experimental setup. The Rydberg laser
off-resonantly drives facilitation dynamics and cascades of Rydberg
excitations (green circles) appear in the cold cloud. Rydberg atoms
can decay into ions via photo- or associative ionization, which are
guided to an ion detector where their arrival time is recorded. This
allows to observe the facilitation dynamics continuous in time.

photoionization from the dipole trap lasers and associative
ionization, a fraction of the Rydberg population gets ionized.
This decay channel contributes to the dissipation process that
brings atoms into the inactive state |0〉. This state accounts for
ions, atoms lost from the system since the Rydberg state is
not trapped, and also atoms that decayed to the |5S1/2 F = 1〉
ground state, which does not participate in the excitation dy-
namics. We estimate that approximately 2/3 of the Rydberg
excitations decay back to the |G〉 state, i.e., the branching ratio
is b ≈ 0.3 ± 0.15. The created ions are accelerated through a
small electric field toward an ion detector, where their arrival
time is detected. In this way, we obtain a time-continuous
measurement signal proportional to the Rydberg density,
which allows the observation of the facilitation dynamics in
situ. Due to the discrete nature of the ion arrival information,
binning the data is required to obtain an ion rate.

III. UNIVERSALITY CLASS AND AVALANCHE
DISTRIBUTION

A. Crossover of universality classes in Rydberg facilitation

In Ref. [28], it was shown by extensive numerical simu-
lations that the absorbing-state phase transition in a Rydberg
gas changes its universality class from DP through ADP to
MF by varying the velocity of the atoms. This crossover
was explained by mapping the Rydberg facilitation dynamics
on the dynamic network to a spreading process on a fixed
network, however with long-distance power-law tails in the
distribution of excitation distances. The power-law tails in
the probability distribution of distances between excitations
emerge since, due to the finite temperature of the gas, excited
Rydberg atoms can move larger distances before actually ex-
citing another ground-state atom. In order to determine the
probability distribution of distances r a Rydberg atom needs
to move before facilitating another atom, the space covered
by the Rydberg atom is discretized, i.e., r = Jδz with J ∈ N
[28]. This probability reads Q(X > J ) = (1 − pexc)J , where
pexc is the excitation probability in a given discretized interval
δz. In particular, if the Rydberg atom moves at velocity v,
the time spent in δz is given by δt = δz/v. For a single atom
the excitation probability in this interval δt is Poissonian and
reads p↑ = 1 − e−
f δt . Furthermore, the number of atoms in
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FIG. 4. Reciprocal Lévy-flight parameter as a function of gas
velocity. The horizontal lines denoting the transition from one uni-
versality class to another are given by Ref. [17]. The vertical lines
correspond to the velocities v− = δrf
f and v+ = rf
f . Shown data
has also been presented in Ref. [28].

the facilitation shell of a Rydberg atom also follows a Poisso-
nian distribution and therefore the excitation probability reads
pexc = ∑∞

k=0 P(k)(1 − (1 − p↑)k ), i.e.,

pexc = 1 − exp{−ξδz}, (5)

with ξ = 〈k〉
δrf

(1 − e−δrf 
f /v ). This then yields the probability
distribution of distances r from the initial position of the
Rydberg atom for the first successive excitation

Q(r) = 2πξr
∫ π

0
dθ

e−ξ (
√

cos2 θ+r2−1−cos θ )√
cos2 θ + r2 − 1

, (6)

where �r = rf êr (θ, ϕ) + (0, 0, z)T . We have shown in Ref. [28]
that this distribution agrees very well with the numerically ob-
tained distribution of first excitations in the finite-temperature
gas. It also agrees very well with a power-law fit of the form

Phop(r) ∼ 1

rd+σ
, (7)

which resembles a Lévy-flight statistic for d being the dimen-
sion of space and σ the Lévy-flight parameter.

In Fig. 4 we show the inverse Lévy-flight parameter over
the gas velocity 1/σ , obtained from power-law fits to the
distances between excitations in the simulated gas [28]. We
see that the Lévy-flight parameter σ = σ (v) depends on the
average velocity v = (〈v2〉)1/2 of the atoms, causing a tran-
sition between universality classes. The critical exponents
(β, ν‖, ν⊥) characterizing the behavior of the order parameter
(Rydberg density), temporal, and spatial correlations, respec-
tively, can be approximated as a function of σ close to the
MF regime via a renormalization-group approach. In this case,
for d = 2σ − ε, ε being a small parameter representing the
distance to the upper critical dimension, the exponents can be

written as [36]

β = 1 − 2ε

7σ
+ O(ε2),

ν⊥ = 1

σ
+ 2ε

7σ 2
+ O(ε2),

ν‖ = 1 + ε

7σ
+ O(ε2). (8)

In Ref. [28] we determined two of the three critical ex-
ponents β and ν‖, characterizing the order parameter and
temporal correlations, while the third one, ν⊥, which deter-
mines spatial correlations, was not accessible. In the following
we discuss an alternative approach to fully determine the
universality class, which we pursue in this work, both numer-
ically and experimentally.

B. Avalanches

A characteristic phenomenon in dynamical systems close
to the critical point of an ASPT is the appearance of
avalanches, i.e., cascades of excitation events spreading
through the system. Their time t (duration), area a, and size
s are random but show a power-law probability distribution,
which reflects the scale invariance at the critical point. For the
definitions of area and size we follow Ref. [17], where the
area is the number of unique sites (in our case atoms) that
were involved in the avalanche, while size is the total number
of relaxation (in our case decay) events that took place in the
avalanche, counting possibly multiple relaxations for a single
atom. Time is measured from the first excitation to the last
decay of the avalanche. The distributions then scale as

P(t ) ∼ t−τt , P(s) ∼ s−τs , P(a) ∼ a−τa . (9)

Generally, the critical exponents of the ASPT (β, ν‖, ν⊥) are
connected to these avalanche exponents in the following way
[17]:

τa = 1 + β

dν⊥
, τs = 1 + β

ν‖ + dν⊥ − β
, τt = 1 + β

ν‖
.

(10)

For the MF case, the critical exponents β, ν⊥, ν‖ are known
exactly, while for DP there exist numerical estimates in the
literature [37]. For the case of ADP, the critical scaling of the
system depends on the Lévy-flight parameter σ = σ (v).

1. Simulation results

To numerically investigate the critical properties at the
boundary between absorbing and active phase in the Rydberg
gas, we first need to pinpoint the parameters to obtain the
critical state, namely, the critical driving-strength parameter
�c and the corresponding critical density nc. To see universal
scaling in our system, the underlying Erdős-Rényi network
needs to be well above the percolation threshold [34], so we
fix nc = 20.0r−3

f , which corresponds to an average network
degree of 〈k〉 = 2.5. This holds for all gas velocities that we
consider, while �c changes as a function of velocity. We then
determine the critical driving strength �c via active-density
decay, where we start with all atoms in the excited state and
observe the decay process to the ground state (b = 0) (see
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FIG. 5. Simulation avalanche area, size, and time distributions for v = 0 and a system size of L = 20rf . The power-law fit function is
shown in black. Note that statistically insignificant counts have been omitted. The broadening and drop in the distributions for large values are
results of low statistics and finite-size effects.

also Appendix C). In the absorbing state, the active density
ρ will decrease exponentially with time, for an active state
ρ approaches a constant value, and for the critical state we
expect power-law decay [34,38]. Note that we could simply
use the SOC mechanism (b �= 0) to obtain the critical state
by starting in the active phase and time-evolving to the phase
transition. However, to achieve sufficient accuracy this would
necessitate an extreme separation of time scales, which is
computationally more expensive.

Having obtained the critical parameters, we perform re-
peated calculations where we generate a gas of ground-state
atoms at density n = nc and driving � = �c. Furthermore, we
use �/γ = 1000, γ⊥/γ = 20, and a cubic simulation volume
with edge length L and periodic boundary conditions. During
a simulation, we place a single excitation in the gas and let
the system evolve until no excited atoms remain, extracting
the area, size, and time of the avalanche. In this manner, we
obtain approximately 105 avalanches for each configuration of
parameters, allowing us to analyze the occurrence statistics.
See Fig. 5 for example distributions for a fixed system size at
v = 0. We do not extract the avalanche exponents from such
distributions directly, but perform a finite-size expansion on
the fitted exponents for system sizes up to L = 20rf . For more
details see Appendix B.

Using the two sets of equations, Eqs. (8) and (10), and
the mapping σ (v) from Ref. [28] (see Fig. 4), we can make
predictions about the expected avalanche exponents τt , τa, τs

over the Rydberg gas’ velocity in the DP, ADP, and MF
regimes. In Ref. [28] we additionally found that the Rydberg
gas enters the ADP II phase in between DP and ADP, which is
additionally characterized by Lévy-flight distributed waiting
times between facilitation (infection) events [39]. For this
regime, however, we cannot obtain theoretical predictions for
the critical exponents.

In Fig. 6 we show the predictions in the DP, ADP, and MF
phases combined with both the results of the simulations as
well as the experimental data for the time and magnitude ex-
ponents. The experimental magnitude exponent corresponds
to the area and size exponents; see the next section for details.
For the DP values, the thickness of the bars indicate the uncer-
tainty of the avalanche exponents derived from the uncertainty
of the critical exponents (β, ν⊥, ν‖) in the literature. For the

ADP values, the uncertainty interval is computed from the
σ uncertainty as shown in Fig. 4. The ADP predictions for
smaller velocities are shown with dashed lines and a shaded
uncertainty area, since the position at which a crossover to
the ADP II phase occurs is not known precisely. We observe
that for the expected DP and ADP universality classes the
simulation results agree very well with the literature values
and the ADP values found in Ref. [28]. For the case of
v = 10rfγ in the MF regime we see that while the time ex-
ponent remains close to theoretical predictions, the area and
size exponents are larger than the expected long-range (LR)
MF case.

There are two distinct MF cases that result in different
area and size exponents, depending on the dimension and the
range of interactions [17]. Short-range (SR) MF is expected
for d � 4 and σ � 2 and is characterized by the critical ex-
ponent νSR

⊥ = 1/2. In contrast, the LR MF case appears for
arbitrary dimension as long as σ < min(2, d/2) and is asso-
ciated with the value νLR

⊥ = 1/σ . Our simulations give values
of the area/size exponents that are in between the SR and LR
mean-field predictions. We do not have an understanding for
this behavior. However, it is important to note that both the
SR-MF as well as the LR-MF literature values were obtained
from static models on regular lattices, whereas we consider
a dynamical graph. Obviously, the mapping of moving atoms
with close-range interactions to a static network with long-
range connections (Lévy flights) breaks down when the atom
velocity becomes too large.

2. Experimental results

In order to observe the system at the critical point in the
experiment, the gas is initialized with parameters for the den-
sity and driving strength such that the dynamics always starts
in the active phase. Due to atom loss, as described above, the
density and thus the effective driving strength are reduced and
the system evolves toward the critical point (self-organization
of criticality). In the vicinity of the critical point the detected
ion signal distribution becomes clearly non-Poissonian and
avalanches of various sizes can be observed. The atom loss
rate is reduced as it scales with the Rydberg density. After
reaching the critical point, the system evolves slowly away
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FIG. 6. Left plot: Simulation avalanche exponents over velocity (in units of rfγ ) for b = 0. Each velocity uses a different value of � = �c.
Note that for both mean-field cases, the theoretical predictions for area and size become identical. The perturbative ADP predictions fade out
away from mean field. Also shown are the experimentally extracted values for time and magnitude (in the experiment area and size cannot be
distinguished). For an explanation of the latter, see text. Experimental values are derived from the highlighted area in the right plot. Right plot:
Experimental avalanche exponents as a function of time. Error bars represent the fit uncertainty; additional systematic errors may arise from,
e.g., binning. The dark green area corresponds to our estimate for tcrit , at which the critical point of the ASPT is reached. For more details on
the tcrit estimation see Appendix C.

from the critical point for two reasons. Firstly, the off-resonant
driving laser continues to create excitations at a low rate even
in the absorbing phase. Secondly, as long as there are Rydberg
excitations present, atoms will continue to become ionized or
decay into inert states. In the absorbing phase, the system,
even though it is noncritical, still shows power-law scaling
over finite scales. This dynamic in the measurement poses two
challenges when extracting the critical avalanche exponents:
(1) We need to find a reliable method to extract avalanches in
a system where the starting and ending time of avalanches
are masked by a random seed process, and (2) we have to
estimate rather accurately where the critical point is reached
during the time evolution of the sample. To distinguish dif-
ferent avalanches, we bin our data in tbin = 50 µs intervals
corresponding to the theoretical lifetime of the 40P3/2 Ry-
dberg state and consider an avalanche to end and the next
avalanche to start if one of those bins does not contain any
counts. The duration of an avalanche is then given by the
number of consecutive nonempty bins, and the magnitude
of the avalanche is quantified by the number of events in
those bins. It is not possible to count the number of times
an atom gets excited to the Rydberg state and decays back
to the ground state, and at the same time, not all atoms that
have been excited end up ionized. Therefore, the experimental
magnitude of an avalanche cannot be exactly mapped to either
the area or size exponent, and we are unable to define an
exact relation between the empirical τm and τa as well as τs.
However, the difference in theoretical prediction between both
exponents in the ADP regime is negligible compared to the
experimental uncertainty.

When the system evolves from the active to the absorbing
state, it eventually becomes critical. It is, however, not trivial
to precisely determine at what time tcrit the critical point is

reached, as can be seen by looking at the average ion count
rate during the measurement shown in the left plot of Fig. 7.
Starting in the active phase, we observe a steep drop in the
signal 2 ms after the pulse started, corresponding to a rapid
reduction in the number of facilitation partners due to loss into
the inert state.

In contrast, after 15 ms the strongly reduced decay rate
signals the absorbing phase where the decay is driven by
the off-resonantly created seeds and the exponentially dying
avalanches. The distribution of avalanche durations and mag-
nitudes continues to follow a power law around the critical
point as shown in Fig. 7. To account for the uncertainty in
the precise time tcrit at which the critical point is reached, we
analyze the avalanche exponents in three overlapping time
windows of length �twindow = 3 ms in the time range 3.5–
14.5 ms. By fitting a power law to the avalanche occurrence
statistics in the respective time window, we can extract the
time and magnitude exponents for the avalanches. Since the
power-law behavior prevails even away from the critical point,
its presence alone cannot serve as an indicator for the time
at which the system is critical. Instead, to estimate tcrit , we
analyze the activity distribution in the corresponding time
windows as detailed in Appendix C and obtain an estimate
of tcrit ≈ 8 . . . 13 ms (light green in Fig. 6), i.e., centers of the
overlapping evaluation windows ranging from 9.5 to 11.5 ms
(dark green in Fig. 6).

In Fig. 6 we plot the results for the simulation along with
the data extracted from the experiment. The horizontal er-
ror bars in the left plot denote the uncertainty regarding the
lifetime of the Rydberg states. In the right plot, the contin-
uously changing avalanche exponents are shown. Additional
contributions to the uncertainty in the exponent values emerge
from systematic sources such as the choice of tbin and are not
shown.
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FIG. 7. (Left) Average ion countrate during the excitation pulse, averaged over 1000 realizations (purple). The dynamics starts in the active
phase. The shaded purple area illustrates the standard deviation between runs. The colored vertical boxes show the �twindow = 3 ms long time
windows used to extract the avalanche exponents (centered at blue: 5 ms, orange: 9 ms, green: 13 ms). (Middle) Normalized distribution of
(middle) avalanche durations and (right) avalanche magnitudes in the three different time windows (blue, orange, and green). Dashed data
points have been ignored for fitting the power-law distribution.

We can see that the experimental time exponent for the
critical interval falls into the ADP range and is clearly in-
compatible with the DP universality class. The magnitude
exponent is smaller than expected for ADP universality, how-
ever it is unclear if this deviation might be caused by our
measurement imperfections.

Additionally, the experimental data allows to exclude other,
similar universality classes like the Manna class [10], where
in three dimensions a time exponent of τManna

t ≈ 1.78 is ex-
pected. We can also rule out that the Rydberg gas belongs
in the BTW-class universality, as for that model a three-
dimensional (3D) time exponent of τt ∼ 0.92 was predicted
[2]. However, one should note that the two-dimensional (2D)
predictions of said Ref. [2] are the subject of intense debate
since no simple finite-size scaling seems to exist [17,40,41].

IV. INFLUENCE OF DISSIPATION

A. Effect of self-organization on Erdős-Rényi
character of excitation graph

One important question is how the decay channel bγ into
the inert state |0〉, responsible for the self-organization of
the facilitated Rydberg gas to the critical point, affects the
properties of the network of possible excitations. As atoms
in the inert state no longer interact with other atoms, we do
not consider them as part of the graph. Furthermore since the
decay into the inert state affects only atoms in the Rydberg
state, it may lead preferentially to a loss of large clusters of
atoms that are pairwise in facilitation distance. This could
affect the structure of the network in particular for a frozen
gas, where this network is a static Erdős-Rényi network.
To analyze this effect, we calculate the degree distribution
P(k) for an initially percolating graph with loss parameter
b = 0.3 > 0 (see Fig. 8).

By fitting with a Poissonian function, with fit parameter
〈k〉, we find that the degree distribution P(k) remains Poisso-
nian, albeit with a continuously changing average degree 〈k〉,
plotted in the inset.

B. Effect of dissipation on the universality class

Dissipation is an essential ingredient of the SOC mech-
anism. It typically introduces characteristic length and time
scales and thus strict scale invariance is lost. In the context
of branching processes, for example, nonconservation of the
particle number leads to a self-organization into an attractor
state that is not critical but subcritical, leading to an exponen-
tially truncated distribution of avalanches [42]. As a result, the
distribution functions of avalanches no longer decay as a pure
power law, but rather as

P(t ) ∼ t−τt ht (t/tc),

P(s) ∼ s−τs hs(s/sc),

P(a) ∼ a−τa ha(a/ac), (11)

where the hμ(x) are cutoff functions with cutoff scales xc that
grow with decreasing dissipation strength. Some authors have
referred to this as quasicriticality [16]. It is also argued [16]

FIG. 8. Node degree distribution (dots) for different times in the
frozen gas with loss parameter b = 0.3 and Poissonian fit with fit
parameter 〈k〉 (solid lines). Fit parameter (average degree) 〈k〉 over
time (inset).
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FIG. 9. Finite-size extrapolated avalanche exponents over loss parameter b, for the cases of v = 0 in the DP regime (left) and v = 1.37rfγ

for the ADP case (right). The red, blue, and green bars show the expected exponents of area, size, and time, respectively, for the universality
class as stated. Note that in the case of the frozen gas for b > 0.1 the distributions of area, size, and time become increasingly characterized
by an early exponential cutoff, resulting in a poor power-law fit, which is why we focus on b < 0.1. Importantly, for both velocity cases the
exponents do not approach the values expected from the dynamical percolation (DyP) universality class.

that a “loading mechanism” can counteract the dissipation by
replenishing the lost particles after each avalanche, as is done
in, e.g., the OFC model of SOC [43].

As long as there are no observable differences for exper-
imentally relevant system sizes, we will here not distinguish
between quasi-critical and critical, i.e., truly scale-free be-
havior. Instead, we focus on the question of whether or not
dissipation modifies the universality class in the spreading
process of Rydberg facilitation, i.e., if the critical exponents
τμ in Eq. (11) are modified. In particular, we will explore
by numerial simulations if dissipation acts as a relevant per-
turbation in the renormalization sense. Since our atom loss
mechanism is conceptually very similar to that of the general-
ized epidemic process (GEP) or, more generally, of dynamical
percolation (DyP), the presence of dissipation may change the
critical behavior to that of the DyP universality class, and we
will compare our results with the corresponding predictions.
In the GEP and DyP models, an individual’s probability to be
infected for the first time and that of all subsequent infections
differ, the latter being set to zero in the extreme (GEP) case,
which is referred to as perfect immunization. For the more
general case of reduced repeated infection probability, the
phase transition is part of the DyP universality class [17,44].
The three-dimensional case of DyP is characterized by the
critical exponents [17]

β = 0.417, ν‖ = 1.169, ν⊥ = 0.875, (12)

which via (10) then result in

τa ≈ 1.159, τs ≈ 1.123, τt ≈ 1.357. (13)

In our model of Rydberg facilitation, dissipation is con-
trolled by the b parameter. The value b = 0 corresponds to
a dynamics where all Rydberg atoms return to the ground
state after an exponentially distributed time. The value b = 1,
however, leads to the guaranteed irreversible loss of this atom
from a Rydberg state.

To address the effect of dissipation, we simulate the
avalanches in the system with varying values of b > 0. Gener-
ically, we find a power law scaling over 1–2 orders of
magnitude truncated by an exponential cutoff function, Eq.
(11). We extract the power-law exponents and perform finite-
size extrapolations. The result can be seen in Fig. 9. We
observe that at v = 0 for loss parameters b < 0.01, we do not
find a difference in the values of the exponents larger than
our uncertainty. For larger b, the found exponents diminish
in magnitude, especially the time exponent. For the case of
v = 1.37rfγ , which is approximately the gas velocity in the
experiment, we find that the avalanche exponents follow a
nonmonotonous behavior of increase for smaller b and de-
creasing in magnitude again for larger b. Importantly, this
implies that the avalanche exponents found in the experiment,
which we also show in Fig. 9, do not incur a significant
additional systematic error based on nonvanishing b values. In
Fig. 9 we also show the predicted values for DyP. We observe
that neither the simulated nor the experimentally measured
values agree with those of DyP, showing that despite the
conceptual similarity, Rydberg facilitation cannot be simply
pictured as an epidemic spreading with immunization. We
have checked that this deviation does not result from the
network structure set by the random atom positions in a gas by
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repeating our avalanche simulations on a regular 2D lattice of
atoms with nearest-neighbor facilitation. Here, we also find no
agreement with DyP exponents for b → 1. We speculate that
the difference might be found in the infection mechanism: In
lattice models of DyP, an infected site passes on the infection
to adjacent sites with a given probability, but decays after a
single step of discrete time [44,45], whereas in our model,
both infection and decay occur probabilistically according to
certain rates.

V. CONCLUSION

We studied the critical properties of excitation growth
in a gas of atoms under conditions of Rydberg facilitation,
which represents an experimentally accessible model sys-
tem for a spreading process on a random and dynamical
network. In particular we determined the power-law expo-
nents of the distribution of avalanches at the critical point
of the absorbing-state phase transition (ASPT) from both nu-
merical simulations and experimental measurements. These
exponents can be related to the full set of critical exponents of
the nonequilibrium phase transition and thus uniquely deter-
mine the universality class Eq. (10). In a previous theoretical
work we have provided numerical evidence that with increas-
ing rms velocity of the atoms in the gas, the character of
the ASPT smoothly changes from directed percolation (DP)
universality through different classes of anomalous directed
percolation (ADP) to eventually mean-field (MF) behav-
ior, which also explained previous experimental observations
[24]. The velocity-dependent crossover was interpreted using
a phenomenological model that mapped the Rydberg facil-
itation in the gas of moving atoms, resembling a dynamic
network to an excitation spreading process on a random static
network with Lévy-flight tails in the distribution of excitation
distances [28]. Our simulations together with experimental re-
sults confirm that the avalanche distribution exponents follow
the predictions obtained from the phenomenological model
in Ref. [28] using the mapping relations (10) combined with
previous results on the velocity dependence of the Lévy-flight
parameter at the ASPT. Furthermore, our work has given
experimental evidence of ADP universality.

We also investigated the network structure and its effects
on the SOC mechanism. Since SOC on dynamical networks
has been little researched and is as of yet poorly understood,
we first characterize the dynamical properties of the underly-
ing network structure of atoms in mutual facilitation distance
as a function of gas velocity and quantify the number of
dynamical connections. Secondly, we investigated the influ-
ence of dissipation, important for the SOC, on the critical
behavior. For the frozen gas, we first verified that the Erdős-
Rényi character of the network is unaffected by decay. We
then analyzed the influence of decay on the critical scaling in
the DP and ADP regimes. While we cannot make any claims
about the presence or absence of true critical behavior over
arbitrary time and length scales, the observed power laws in
the avalanche distributions over extended parameter ranges
even in the presence of losses are consistent with at least
quasi-critical behavior. The question we addressed instead
was whether losses modify the universality class of the ASPT
in Rydberg facilitation, which could be the case if dissipation

was a relevant perturbation in the renormalization sense. For
a frozen gas we find that below a minimal dissipation proba-
bility we cannot detect a measurable influence on the scaling
exponents. At stronger dissipation we see that the avalanche
exponents are slightly reduced in magnitude. However, de-
spite the conceptual similarities, we do not obtain exponents
belonging to the dynamical percolation (DyP) universality
class.
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APPENDIX A: RATE EQUATION MODELING

All numerical data is obtained using fixed-time-step Monte
Carlo simulations [47] of classical rate equations in the high
dephasing limit. It has been shown that in this limit dynamics
become effectively classical and can therefore be described
by classical Monte Carlo simulations to a high degree of
accuracy [33].

For atom i, the excitation probability is given by the projec-
tion operator onto the Rydberg state |R〉i, i.e., n̂i = |R〉i 〈R|i.
Using the Lindblad master equation, given by Eq. (1), we can
formulate a set of differential equations for the ground state
|G〉i, Rydberg state |R〉i, and inert state |0〉i of the ith atom.
After adiabatic elimination of coherences, e.g., d

dt σ
gr
i = 0,

(where σ gr = |G〉〈R|), we receive the rate equations [22,34]
d

dt
p(i)

r = −(γstim + γspont )p(i)
r + γstim p(i)

g , (A1)

d

dt
p(i)

g = −γstim p(i)
g + (γstim + (1 − b)γspont )p(i)

r , (A2)

d

dt
p(i)

0 = bγspont p
(i)
r . (A3)
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FIG. 10. Finite-size expansion of the avalanche exponents. The
shaded area corresponds to the uncertainty interval. Size values are
shifted slightly along the x axis for better visibility.

Here, γspont corresponds to the spontaneous decay rate and
γstim corresponds to the stimulated (de)excitation rate. Explic-
itly, the stimulated rate reads

γstim = 2�2γ⊥

γ 2
⊥ + �2

(∑
j �=i
j∈�

r6
f

r6
i j

− 1
)2

, (A4)

where � corresponds to the subset of atoms in the Rydberg
state.

We initiate N atoms with random positions in a cubic
simulation box with length L and periodic boundary condi-
tions. Velocities are sampled from the Maxwell-Boltzmann
distribution, i.e., a Gaussian in each direction, with the most
probable velocity v. Furthermore, we dynamically adjust the
(fixed) time-step length depending on the facilitation rate with

f dt = 1

10 . In order to receive good avalanche fits, we use
approximately 200 000 trajectories per parameter set.

APPENDIX B: FINITE-SIZE EXPANSION
OF AVALANCHE DATA

All of the simulation exponent values reported in this paper
were obtained using a system size extrapolation. We fit a
linear function f (1/L), where L is the linear system size,
to the exponent values for different system sizes and then
extrapolate to f (0). In Fig. 10 we show the extrapolation
for the case of v = 1.37rfγ in the ADP phase. For the time
exponent we see a clear finite-size scaling with an increasing
value for larger systems, whereas the area and size exponents
do not show a clear trend over system size as well as a
much smaller variation. The shaded areas correspond to the
uncertainty region.

APPENDIX C: DETERMINING THE CRITICAL POINT

1. Numerical simulations

Finding the correct critical point �c is essential in ob-
taining power-law distributed avalanches. We determine �c

in our numerical simulations by starting from the fully in-
verted state (all atoms in the Rydberg state) and considering
the decay process as a function of the system size. In the

FIG. 11. Finite-size expansion of the active density decay
method of finding �c for v = 10rfγ . For all values of �, we show
the averaged decay data for L ∈ {5, 7, 9}rf ; for �/γ = 2.06 we also
show L = 12rf . The linestyles with increasing system size are: dot-
ted, dash-dotted, dashed, and solid.

absorbing phase, the decay is exponential and shows no strong
dependence on system size. In the active phase, the Rydberg
density approaches a constant. For values of � close to the
critical point, a regime with power-law decay emerges for
intermediate time scales, where the precise value of �c is then
obtained by fitting a power-law function with the exponent
δ = β

ν‖
to increasing system sizes L as shown in Fig. 11. Note

that for the absorbing as well as the active case the curves
for all system sizes lie on top of each other. Also see Ref.
[38] for more details. We find �c/γ ≈ 3.40 for the frozen
gas, �c/γ ≈ 2.325 for the ADP regime (v = 1.37rfγ ), and
�c/γ ≈ 2.06 for the mean-field regime (v = 10rfγ ).

2. Experimental data

The extracted exponents of the power-law distributed
avalanches strongly depend on the time windows in which
they are evaluated. It is a challenging task to determine the
correct point in time at which the critical point is reached.
In the active phase, the system typically forms a single large
cluster of Rydberg excitations where the total number of ex-
cited atoms is effectively limited by the size of the system. In
Fig. 12 we show histograms of the count numbers in a single
evaluation bin for different time windows. As the number
of ions in a fixed time tbin is proportional to the number of
Rydberg atoms times the decay rate, this can be understood as
a measure for the activity of the system. In the active phase,
which is our starting point, the histograms show a characteris-
tic activity bump for large counts. We estimate that the active
phase ends when the distribution shows no residuals of such
an activity bump clearly visible in the first evaluation frame.
In our experiment, we estimate that this is the case between 8
and 13 ms, i.e., time window centers of 9.5 and 11.5 ms.

We note that other, more indirect ways to estimate the
critical point are possible, e.g., by exploiting scaling rela-
tions of avalanche shapes [48]. Moreover, the critical point
may be reached after slightly different times in each indi-
vidual experimental realization, given that the loss process
is stochastic.
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FIG. 12. The activity distribution of the experimental system at different time intervals. In each subplot, the activitiy distribution for a
different time interval of �t = 3 ms is shown, centered as indicated in the corner of the plot. The distribution of count numbers in 50-µs bins is
shown. The fitted lines serve as a guide to the eye to evaluate whether the distribution is active. For early times up until the interval of 6–9 ms
we find a “bump” at large activity sizes, which is indicative of the active phase. We estimate that in the subsequent time windows of 8–13 ms
the critical point is reached.
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6. Non-Classical Spin-Phonon
Correlations Induced by Rydberg
Facilitation in a Lattice

D. Brady and M. Fleischhauer
arXiv:2504.19679 (2025)

Here we shift gears from studying facilitation in a gas of Rydberg atoms to a one-
dimensional lattice of Rydberg atoms in tweezer arrays, explicitly taking into account
motional degrees of freedom of the atoms. While gases of Rydberg atoms generically
feature high dephasing rates, damping quantum effects and leading to largely classical
dynamics [21–24], the same is not true in a lattice. This makes tweezer arrays of Ry-
dberg atoms especially interesting for the field of quantum simulation [35–41] (see also
Sec. 1.2). For 1D tweezer arrays, facilitation dynamics effectively reduce to the growing
and shrinking of spin domains, where the Rydberg state corresponds to spin-up |R⟩ ≡ |↑⟩
and the ground state corresponds to spin-down |G⟩ ≡ |↓⟩ [25].

Figure 6.1.: Spin and phonon dynamics in the Rydberg facilitation chain under a
quadratic spin-spin interaction potential. (Left) Local phonon observables
within a spin domain. Phonons are quickly excited from the vacuum |0⟩
state and, despite a purely unitary time evolution, thermalize over long
time-scales. (Center and right) Spin up population over time and lattice
site j, starting with an initial spin domain of size 9. Without spin-phonon
interactions (center) the spin domain expands ballistically, whereas in the
presence of spin-phonon interactions (right) the domain size oscillates in
time (Bloch oscillations) and remains spatially localized. The red dashed
line corresponds to our analytically derived Bloch period.

One open question is how the dipolar forces between Rydberg atoms, which become
especially strong in the facilitation regime, affect the stability of the array. Ref. [26] in-
vestigates this by explicitly accounting for the motional degree of freedom of the atoms
in their respective tweezer traps. Specifically, they linearize the dipolar interaction po-
tential between Rydberg atoms and treat atomic motion (phonons) with bosonic ladder
operators. It is important to note that this interaction completely cancels out in linear
order within the spin domain, making higher orders relevant. The authors of Ref. [26]
find the dipolar interaction to act as a source of motional excitations (phonons) at the
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border of the spin domain, which in turn slows what would otherwise be a ballistic
expansion of the spin domain.

Furthermore, in a recent experiment the dipolar Rydberg-Rydberg interaction po-
tential was tailored to a Lennard-Jones style potential by laser-coupling to an avoided
crossing of high-lying Rydberg levels [27]. Consequently, the dipolar interaction poten-
tial becomes quadratic (harmonic) in leading order. Motivated by this, we investigate
the spin-phonon dynamics in the presence of a quadratic (harmonic) Rydberg-Rydberg
interaction potential. In particular this quadratic potential would stabilize the chain, as
opposed to pushing the atoms apart.

Starting with an initial spin-up domain of neighboring Rydberg atoms (spin-ups),
we investigate the time dynamics modified by the coupling to motional degrees of free-
dom. We simulate the full dynamics using a time-evolving block decimation (TEBD)
algorithm [122] and analytically decouple spin and phonon degrees of freedom using a
Born-Oppenheimer approximation. Despite the apparent simplicity of the model, we
find a number of nontrivial effects at play. In particular, we find the Rydberg-Rydberg
interaction to bring phonons into non-classical position states (squeezed states) and
to mediate strong correlations between individual phonons. Furthermore, we find the
displacement of phonons from their respective trap centers to be correlated and to be
in-phase for a harmonic coupling potential and out-of-phase for an inverted harmonic
coupling potential.

Finally, as a result of a shift in ground state energy which phonons experience depend-
ing on if they are inside or outside of the spin domain, the energy of the spin domain
depends on its size. In particular, the energy grows linearly with the spin domain size.
This is reminiscent of a Wannier-Stark ladder [123, 124] and results in Bloch oscillations
in the spin-domain size in the presence of spin-phonon coupling. Through the diago-
nalization of the phonon Hamiltonian within a given spin domain and a mapping to a
tight-binding model [125], we are able to analytically describe the Bloch period.
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We investigate the interplay between mechanical forces and the internal-state dynamics of a chain
of Rydberg atoms trapped in tweezer arrays under the facilitation constraint. Dipole interactions
between Rydberg atoms couple electronic (spin) degrees of freedom with excited motional (phonon)
states. We show that this interaction leads to highly correlated and non-classical phonon states in
the form of squeezed center of mass position states of the Rydberg atoms. Coupling with either a
normal or an inverted Lennard-Jones-type potential, resulting from an avoided crossing of Rydberg
potential curves, leads to in-phase or out-of-phase correlated oscillations in the atom positions
respectively. Furthermore, the growth dynamics of a finite cluster of excited Rydberg atoms can be
mapped to the dynamics of a single particle in a semi-infinite lattice subject to a linear potential
gradient caused by spin-phonon interactions. This results in Bloch oscillations in the spin cluster
size, which in turn localize spin excitations in the system.

Introduction – Rydberg atoms have become a pow-
erful tool for constructing neutral-atom quantum simu-
lators and quantum information systems [1] due to their
strong, long-range dipole interactions. These interactions
are typically on the order of GHz and on µm length scales
[2] and can be tailored simply by adjusting laser param-
eters. With advances in ultra-cold atom trapping us-
ing tweezer arrays, arbitrary geometries of neutral atoms
can be programmed [3–5]. Through this high level of
experimental control, Rydberg simulators of many-body
quantum spin systems [6] have found a wide use of appli-
cations, for example to study the quantum Ising model
[7–11], coherent transport properties [12], modeling topo-
logical systems [13], or quantum phase transitions to ZN

symmetric phases [14–16], and spin liquid phases [17, 18].
When coupling with an off-resonant laser, the dipole in-
teraction between Rydberg atoms can compensate the
laser detuning, allowing for the resonant excitation of
Rydberg atoms only if they are in the presence of an-
other. These so-called facilitation systems [19] behave
similar to epidemics [20, 21] and feature an absorbing-
state phase transition [22, 23], can adhere to multiple dif-
ferent non-equilibrium universality classes [24], and can
feature kinetic constraints, leading to non-ergodic behav-
ior [25, 26].

A key problem of Rydberg quantum simulators are the
mechanical forces accompanying the dipole-dipole inter-
actions, which can lead to a dephasing of optical tran-
sitions [27] and mechanical instabilities. Consequently
quantum simulations involving Rydberg blockade or fa-
cilitation are typically performed on short time scales,
where motional effects can be neglected. Here we show
that the mechanical forces in fact give rise to very rich
physics. They can induce non-classical spin-phonon cor-
relations and lead to an oscillatory dynamics in the Ry-
dberg facilitation akin of Bloch oscillations in a lattice.

Specifically, we investigate the dynamics of interact-
ing Rydberg atoms in a 1D tweezer array in the facili-

FIG. 1. System schematics. (a) Sketch of 1D tweezer array
with lattice spacing rf (facilitation distance) and trapping fre-
quency ω. (b) Two atom energy spectrum depending on dis-
tance r. Laser coupling with Rabi frequency Ω to an avoided
crossing of attractive and repulsive Rydberg-Rydberg interac-
tion potentials creates a nearly harmonic potential. (c) Spin
domain dynamics. Due to strong detuning (see text) spin do-
mains can only grow or shrink symmetrically at the edges,
but they cannot coalesce or split. Here m is the domain size
and i is the spin position within the domain.

tation regime. Dipole interactions couple the electronic
(spin) degrees of freedom with excited motional states
(phonons) in the tweezer traps. This coupling produces
strong non-local correlations throughout the spin domain
and non-classical center of mass movements of the Ry-
dberg atoms in the form of squeezing. Finally, a shift
in phonon ground state energy slightly detunes Rydberg
atoms from resonance, causing emergent Bloch oscilla-
tions [25] in the growth dynamics of spin domains.

Physical System – We consider a 1D chain ofN atoms
in tweezer traps with lattice spacing rf , each having an
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internal electronic (spin) and a vibrational (phonon) de-
gree of freedom with trapping frequency ω, see Fig. 1a.
The atoms are laser coupled with a Rabi frequency Ω be-
tween a ground |↓⟩ and a high lying Rydberg |↑⟩ state.
Furthermore, the laser has a large detuning from reso-
nance ∆, such that ∆ ≫ Ω. Strong dipolar interactions
between Rydberg atoms give rise to a Rydberg-Rydberg
interaction potential V (r̂ij), where r̂ij corresponds to the
interatomic distance. The full Hamiltonian is given by

Ĥ =
N∑

j=1

Ωσ̂x
j +∆n̂j +ω

(
â†j âj +

1

2

)
+
∑

i<j

V (r̂ij)n̂in̂j , (1)

with σ̂x = |↑⟩ ⟨↓| + |↓⟩ ⟨↑|, and projection operator onto
Rydberg states n̂ = |↑⟩ ⟨↑|, and ℏ = 1.

Typically the dipole potential takes the form of a van-
der-Waals (vdW) potential, i.e. V (r̂ij) ∼ r̂−6

ij [2], which
is nearly linear at the lattice spacing rf , and gives rise
to strong repulsive (or attractive) forces between atoms
in the Rydberg state. While mechanical forces resulting
from these interactions completely cancel out inside a de-
fect free domain of excited Rydberg atoms (spin domain),
they are highly relevant at the edges. This phonon source
at the borders can make the spin domain unstable and
thus severely affect the facilitation dynamics [26]. This
strong effect can be partially avoided by laser coupling
from a ground state to an avoided crossing of two high-
lying Rydberg states (see Fig. 1b), which is the situation
we consider here (cf. [28] for an experimental realization).
In this case the interaction potential is approximately
harmonic, and can even be inverted when laser coupling
to the lower avoided crossing level. As opposed to the
vdW potential, the resulting Lennard-Jones-type poten-
tial actually stabilizes neighboring Rydberg atoms, in-
stead of pushing them apart. Finally, we consider the sys-
tem under the facilitation constraint, i.e. V (rf) + ∆ = 0,
where the detuning cancels out the dipole potential at
the lattice spacing rf . As a result, atoms neighbored by
exactly one Rydberg atom are resonantly coupled to the
light field.

Assuming the Lennard-Jones-type potential and
only nearest neighbor interactions, we can write
the Rydberg-Rydberg interaction to second-order as
V (r̂j,j+1) ≈ V (rf) + 1

2V
′′(rf)(r̂j,j+1 − rf)

2. The relative
distance can be expressed as r̂j,j+1 = rf + x̂j+1 − x̂j ,
where x̂j is the position operator of the jth atom rel-
ative to the center of tweezer trap j. Expressing the
position operator in terms of bosonic creation and anni-

hilation operators, i.e. x̂j =
√

1
2mω (â†j + âj), we receive

the spin-phonon Hamiltonian as

Ĥ =
N∑

j=1

{
Ωσ̂x

j + ∆n̂j + ω
(
â†j âj +

1

2

)
+ V

(0)
NN n̂j n̂j+1

+ κ
(
Ŝj + Ŝj+1 − 2T̂j,j+1

)
n̂j n̂j+1

}
, (2)

with V
(0)
NN ≡ V (rf) and spin-phonon coupling

κ = V ′′(rf)/4mω. Here we introduced the opera-

tors Ŝj = â†2j + â2j + 2â†j âj + 1 describing local squeezing

terms and T̂j,j+1 = â†j+1â
†
j + â†j+1âj + h.c. describing

non-local pair-creation/annihilation, as well as phonon
transport terms. κ is positive (negative) when coupling
to the upper (lower) avoided crossing level, see Fig. 1b.
As we will show in the following, the quadratic and
transport terms, not present in the linear approximation
of strictly local phonons assumed in [26], are crucial
as they lead to non-classical correlations in the atomic
positions and to a fast thermalization of local degrees of
freedom in the dynamics from a general initial state.

We perform numerical simulations using a time evolv-
ing block decimation (TEBD) algorithm [29] on the
Hamiltonian (2). For all simulations we use ω = 8Ω,

N = 100, V
(0)
NN = 500Ω, and we truncate the local phonon

Hilbert space at nmax = 7. As a result of the strong de-
tuning ∆, only atoms with a single Rydberg neighbor are
resonantly laser coupled. Consequently, the many-body
spin dynamics reduce to the dynamics of spin domains
which can either grow or shrink at the edges with rate Ω.
However, due to Rydberg blockade two domains cannot
coalesce or split [25] (see Fig. 1c).

Squeezed phonon states inside a Rydberg cluster – Let
us first discuss the behaviour of the system well inside a
large connected cluster of m excited Rydberg atoms. In-
side the domain the Rabi coupling is far off-resonant as
any given atom experiences the shift from two Rydberg

atoms, where we assume Ω ≪ ∆ = V
(0)
NN . As a conse-

quence we can disregard the spin dynamics and consider
only the motional degrees of freedom.

The phonon Hamiltonian inside the fixed spin domain
reads

ĥp =

m∑

j=1

{
ω
(
â†j âj +

1

2

)
+ κ
(
Ŝj + Ŝj+1 − 2T̂j,j+1

)}
(3)

In the Supplemental Material we diagonalize this phonon
Hamiltonian by introducing the Fourier and Bogoliubov
transformed phonon operator with normalized lattice
momentum k = 2π

m−1q, and q = 1, 2, . . .m− 1:

d̂k =
1√
m− 1

m−1∑

j=1

e−ijkd̂j , (4)

where d̂j =
(
u âj − v â†j

)
, and u = cosh θ and

v = sinh θ. Squeezing terms are eliminated at the angle

θc = 1
2artanh

(
− 4κ(1−cos aq)

ω+4κ(1−cos aq)

)
, with a = 2π

m−1 . Assum-

ing a sufficiently large spin domain, we can introduce

continuous fields d̂(k) = limm→∞ d̂k

√
m−1
2π (see Supple-

mentary) and find

ĥp(m) ≈
∫ 2π

0

dk ω̃(k)
(
d̂†(k)d̂(k) +

m− 1

4π

)
. (5)
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FIG. 2. Phonon Dynamics. (a) Dispersion relation from
eq. (6) for different values of κ/Ω (inline numbers). Here,
κ/Ω = −0.5 corresponds to the critical coupling strength κc

and κ/Ω = −0.75 is in the unstable phase as ω̃ becomes imag-
inary for |k| ≳ 0.6π. (b) Dynamics of expectation values of
local oscillators âj in center of spin domain of size m = 9
and for κ = Ω. The faint blue and orange lines are the
corresponding values without phonon transport, i.e. setting
T̂j,j+1 = 0 in Hamiltonian (2). (c) Variance of generalized
position operator minus vacuum variance, i.e. ⟨∆Q2

j ⟩ − 1,

with Q̂j = eiθâ†
j + e−iθâj for site j in center of cluster of size

m = 9, with κ = Ω, and at time Ωt = 20. For positive cou-
plings, κ > 0, the system exhibits squeezed position states and
for negative couplings, κ < 0, the system exhibits squeezed
momentum states.

The phonon dispersion (plotted in Fig. 2a) is given by

ω̃(k) =
√
ω2 + 8ωκ

(
1 − cos k

)
. (6)

From this we can readily see that the phonons become un-
stable at the critical coupling strength κc ≡ − ω

16 . Since
we use ω = 8Ω for all simulations, this corresponds to
κc = − 1

2Ω. At κc we find a mode softening for k = ±π.
For κ > κc the ground state of the phonon Hamiltonian is
the vacuum state in all d̂q, corresponding to a correlated
squeezed vacuum of the local oscillators âj .

Since in any realistic experiment, the ground state of
the total Hamiltonian cannot be prepared, we in the fol-
lowing consider a system prepared in a finite spin domain
of length m and all atoms to be prepared in the ground
state of the local oscillators âj . As shown in Fig.3b due
to the phonon transport terms, local observables quickly
approach a stationary value in the center of a large spin
chain.

The long-time expectation values of the local phonon
operators within the spin domain, i.e. ⟨â†â⟩ and ⟨â2⟩,
can be calculated as follows: As the phonon Hamiltonian
is diagonal in the d̂ basis, ⟨d̂†d̂⟩ is constant, and ⟨d̂2⟩t =

⟨d̂2⟩0 e−2iω̃t. Therefore, the time averaged values of ⟨â†â⟩
and ⟨â2⟩ can be obtained by expressing these operators in

the d̂ basis and neglecting ⟨d̂2⟩ terms. We receive the time
averaged operator values (for details see Supplementary
Material) as

⟨â†â⟩ = +
κ

ω
+

1

8

(√
ω

ω + 16κ
− 1

)
(7a)

⟨â2⟩ = −κ

ω
+

1

8

(√
ω

ω + 16κ
− 1

)
. (7b)

In Fig. 2b we have plotted these values as dashed lines
along with the time evolution of local phonon correla-
tions inside the domain including (dark lines) and ex-
cluding (faint lines) transport, obtained by TEBD simu-
lations. We see a very good agreement. Without trans-
port terms, i.e. T̂j,j+1 = 0, the local phonon operators
oscillate, whereas, in the presence of phonon transport
these quantities thermalize despite the pure unitary evo-
lution of Ĥ, following the eigenstate thermalization hy-
pothesis (ETH) [30, 31].

Finally, we want to quantify the degree of squeezing
present in local oscillators, as a result of dipolar inter-
actions. To this extent, we can regard the variance of
a generalized position operator ⟨∆Q̂2⟩, defined as [32]
Q̂ = eiθâ† + e−iθâ, where the angle θ allows us to sample
(q, p) phase space. Under this convention, the vacuum
value is ⟨∆Q̂2⟩vac = 1. In Fig. 2d, ⟨∆Q̂2⟩ − 1 is plotted
over the coupling κ and the angle θ. In the figure, nega-
tive values correspond to states which are more strongly
localized than vacuum fluctuations, i.e. squeezed states.

For positive couplings, i.e. κ > 0, we find squeezed po-
sition states, i.e. the variance is minimal for θ = 0. This
results from atoms being subject to the tweezer trapping
potential and an additional trapping potential emerg-
ing from the Rydberg-Rydberg interaction. For negative
couplings, i.e. κ < 0, the Rydberg-Rydberg interaction
potential is inverted and the system converges toward a
mode softening at criticality at k = ±π. Consequently,
momentum states become squeezed.

Correlated Phonon Behavior - Having discussed the
local behavior of phonons we now turn to their correla-
tions. To this extent, we can regard the displacement
correlation Cij ≡ ⟨x̂ix̂i+j⟩. For positive values of Cij ,
phonons i and j displace from equilibrium in the same
direction, whereas for negative values of Cij they dis-
place in opposite directions. Within spin domains we
find strong phonon-phonon correlations, which become
long-range near κc. Moreover, we find the oscillatory be-
havior of phonons in the domain to change qualitatively
from in-phase correlations (κ > 0) to out-of-phase corre-
lations (κ < 0) (see Fig. 3a).

Using x̂i = â†i + âi, we can express Cij in terms of d̂-

basis phonons. Neglecting the oscillating terms d̂2, this
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FIG. 3. Phonon Correlations. (a) Time-averaged displace-
ment correlation Cij ≡ ⟨x̂ix̂i+j⟩ from TEBD simulations for
i = −3 and an initial spin domain size r0 = 9 (i = 0 is the
domain center). A positive product (red) signifies phonons
oscillating in phase and a negative product (blue) corresponds
to out of phase oscillations. (b) Spatial correlation of i, j for
κ/Ω = [−0.44,−0.34,−0.24,−0.14] and for i = −3 from nu-
merics (dots), as well as analytically calculated correlation Cij

from eq. (8) (solid lines). (c) Correlation length ξ taken from
exponential fit of decay of Cij with distance between (i, j)
from numerics (dots) and analytics (solid black line). The
correlation length extracted from numerics saturates due to
the finite size of the spin domain. Approaching κc, ξ diverges
yielding the mean field exponent β = 1

2
.

yields

Cij =
1

2π

∫ 2π

0

dk (8)

eik(i−j)(u+ v)2 + 2v2(u+ v)2 cos
(
k(i− j)

)
,

where u and v are k dependent (see text above). The so-
lution to this integral yields an exponential decay of Cij

with the distance between (i, j) for |κ− κc| > 10−4 (solid
lines in Fig. 3b). From this we can extract a correlation

length ξ using Cij ∼ e−
i−j
ξ . This correlation length di-

verges near the critical point κc and scales as

ξ ∼ |κ− κc|−β , (9)

yielding the mean field critical exponent β = 1
2

(cf. Fig. 3c).
Dynamics of spin domains – Finally, we want to in-

vestigate the dynamics of spin domains. As stated above,
spin domains can either grow or shrink at rate Ω, but can
never coalesce or split. Given an initial spin domain of
size, say m0 = 5, the domain can either grow or shrink by
flipping a spin on the left or right. Therefore, the domain
state, characterized by its size and denoted as |5⟩, is res-
onantly coupled to the states |6L⟩, |6R⟩, |4L⟩, and |4R⟩ at

rate Ω. Here, the number refers to the size of the domain,
and L (left) and R (right) refer to the position of the
flipped spin relative to the domain center. The Hamilto-
nian conserves parity. Therefore, the initial state |5⟩ only
couples to the symmetric states |6S⟩ ≡ 1√

2
(|6L⟩ + |6R⟩)

and |4S⟩ ≡ 1√
2
(|4L⟩ + |4R⟩). The states |6S⟩ and |4S⟩ in

turn couple resonantly with the states |7S⟩ and |3S⟩ re-
spectively. Therefore, the dynamics of the spin domain
reduce to a ladder, with individual states being charac-
terized only by their size. Utilizing this, we can describe
the spin domain of size m as a particle at position m in
a lattice [25] and the Hamiltonian reduces to

Ĥ =
∞∑

m=1

Ω(|m⟩ ⟨m+ 1| + h.c.)

+
[
m∆ + (m− 1)V

(0)
NN + ĥp(m)

]
|m⟩ ⟨m| .

(10)

This Hamiltonian describes the tight-binding model [33]
of a particle at position m in a semi-infinite lattice, i.e.
m ∈ [1,∞), with hopping amplitude Ω. Furthermore,

there is a site dependent energy given by ĥp (cf. eq. (5))

under the facilitation constraint, i.e. ∆ + V
(0)
NN = 0. For

sufficiently large cluster sizes, where the continuum ap-
proximation (5) is valid, only the vacuum term in the

phonon Hamiltonian ĥp(m) depends on the cluster size

m, and d̂†(k)d̂(k) which is a constant of motion, can be
treated as a number C. Thus the Hamiltonian reduces
to

Ĥ =
∞∑

m=1

Ω
(
|m⟩ ⟨m+ 1| + h.c.

)
+ ϵ0(m) |m⟩⟨m|, (11)

where ϵ0(m) = C+m∆+(m−1)
[
V

(0)
NN +

⟨ω̃(k)⟩k
2 − ω

2

]
, and

⟨ω̃⟩k = 1
2π

∫ 2π

0
dk ω̃(k) (this integral is explicitly evalu-

ated in the Supplementary Material). Importantly the
on-site energy ϵ0(m) is linear in m, which corresponds
to a potential gradient. Such a system is known to
show Bloch oscillations [34]. The Bloch period is given
by T = 2π/|∂mϵ0|. Under the facilitation constraint,

∆+V
(0)
NN = 0, T only depends on the difference in phonon

ground state energy between the â and d̂ basis, and is
given by

T =
4π

| ⟨ω̃(k)⟩k − ω| . (12)

In Fig. 4 we have shown the cluster dynamics starting
from an initial cluster of size 9, obtained from TEBD
simulations of the microscopic Hamiltonian (2), for dif-
ferent values of the spin-phonon coupling strength κ.
Both, density plots (a)-(c) and the autocorrelation func-
tion (d) clearly show Bloch-like oscillations with a period
that agrees perfectly with eq.(12) (see red dashed lines
in Fig. 4).
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FIG. 4. Spin Dynamics. Population of Rydberg state |↑⟩
over time under the facilitation constraint with: (a) no spin-
phonon coupling κ = 0 showing ballistic expansion, and with
coupling showing Bloch oscillations in time for (b) κ = 0.4Ω
and (c) κ = 1.2Ω. Autocorrelation function in time (d) show-
ing periodic behavior, which diverges without coupling at
κ = 0 and when the phonons become unstable at κ = κc (see
main text). The red dashed line in all figures corresponds to
the Bloch period given by eq. (12). The initial domain size is
r0 = 9.

Summary – In summary, we have looked at the dy-
namics of a chain of Rydberg atoms trapped in tweezer
arrays under the facilitation constraint. By tailoring the
interaction potential to a Lennard-Jones-type potential,
spin-phonon coupling due to Rydberg-Rydberg interac-
tions not only stabilize the chain from mechanical forces,
but also lead to the emergence of strong correlations and
non-classical motional states in the system. Moreover,
as a result of spin-phonon interactions causing emergent
Bloch oscillations, the original spin domain becomes lo-
calized for spin-phonon coupling strengths on the order
of the Rabi frequency.
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SUPPLEMENTAL MATERIAL
COHERENT SPIN-PHONON COUPLING IN A LATTICE USING RYDBERG FACILITATION

Diagonalization of Phonon Hamiltonian

In the following we diagonalize the phonon Hamiltonian under the Born-Oppenheimer approximation for a fixed
domain length m. This is given by

ĥp =
m−1∑

l=1

ω
(
â†l âl +

1

2

)
+ κ
(
Ŝl + Ŝl+1 − 2T̂l,l+1

)
, (13)

with local squeezing terms Ŝl = â†2l + â2l + 2â†l âl + 1 and non-local pair creation/annihilation and transport terms

T̂l,l+1 = â†l+1â
†
l + â†l+1âl + h.c. First, we perform a Fourier transform of the phonon operators with

âl =
1√
m− 1

m−1∑

q=1

eiqjaÂq, (14)

with the integer q = 1, 2, . . . ,m− 1 and a = 2π
m−1 . Inserting eq. (14) into Hamiltonian (13), we receive

ĥp =
m−1∑

q=1

ω + 4κ

2
+
(
ω + 2γq

)
Â†

qÂq + γq

(
Â†

qÂ
†
−q + ÂqÂ−q

)
, (15)

with γq ≡ 2κ(1 − cos(aq)). This corresponds to a squeezing Hamiltonian, with the strength of squeezing given by
γk ∝ κ and vanishing for κ = 0. With the Bogoliubov transformation

Â†
q = ud̂†q + vd̂−q, (16)

with u = cosh θ, v = sinh θ, and u2 − v2 = 1, we can eliminate the squeezing terms. Inserting eq. (16) into the Fourier
transformed Hamiltonian (15), we receive

ĥp =
r−1∑

q=1

ω + 4κ

2
+
(

(ω + 2γq)uv + γq(u2 + v2)
)

(d̂†qd̂
†
−q + d̂qd̂−q)

+
(

(ω + 2γq)(u2 + v2) + 4γquv
)(
d̂†qd̂q +

1

2

)
− ω + 2γq

2
. (17)

Where the following term vanishes, if the domain size is large enough, i.e.

m−1∑

q=1

ω + 4κ

2
− ω + 2γq

2
= −2κ

m−1∑

q=1

cos(aq) ≈ 0. (18)

The squeezing terms d̂†qd̂
†
−q and d̂qd̂−q in eq. (17) are eliminated for the critical angle

θc =
1

2
artanh

(
− 4κ(1 − cos aq)

ω + 4κ(1 − cos aq)

)
. (19)

Inserting θc into eq. (17), following some arithmetic we receive the Hamiltonian

ĥp(m) =
∑

k

ω̃k

(
d̂†kd̂k +

1

2

)
, (20)

where we have introduced the normalized lattice momemntum k = 2π
m−1q with q = 1, 2, . . . ,m− 1, and the oscillator

frequency

ω̃k = (ω + 2γq) cosh 2θc + 2γq sinh 2θc (21)

=
ω + 2γq√

1 −
(

2γq

ω+2γq

)2 +
− 4γ2

q

ω+2γq√
1 −

(
2γq

ω+2γq

)2 (22)

=
√
ω2 + 8ωκ(1 − cos(k)). (23)
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Hamiltonian (20) is now diagonal in the d̂ basis. Assuming a sufficiently large domain, we can perform an integral

approximation of the sum in eq. (20). With this, the ladder operators d̂k are now treated as field operators d̂(k) for
the continuous variable k. Assuming m≫ 1 and using the continuum mapping

d̂k −→ d̂(k)

√
2π

m− 1
,

∑

k

−→ m− 1

2π

∫ 2π

0

dk, (24)

such that
∑

k d̂
†
kd̂k =

∫
dk d̂†(k)d̂(k) we receive the Hamiltonian

ĥp(m) =

∫ 2π

0

dk ω̃(k)
(
d̂†(k)d̂(k) +

m− 1

4π

)
, (25)

with ω̃(k) =
√
ω2 + 8ωκ(1 − cos k). In particular, with the exception of the factor (m− 1) in the vacuum term, ĥp is

completely independent of the domain size, position, center of mass, or any real space index j.

Squeezed Phonon Ground State Energy

From eq. (25) we can get the ground state energy of ĥp for d̂†(k)d̂(k) = 0. The solution of the integral is given by

⟨ω̃(k)⟩k ≡ 1

2π

∫ 2π

0

dk ω̃(k) (26)

=
1

2π

∫ 2π

0

dk
√
ω2 + 8ωκ(1 − cos k) (27)

=
1

2π

[
2ω EllipticE

(
− 16κ

ω

)
+ 2
√
ω2 + 16ωκ EllipticE

( 16ωκ

ω2 + 16ωκ

)]
, (28)

where EllipticE( · ) denotes the complete elliptic integral of the second kind. Therefore, we find the ground state

energy of the phonon Hamiltonian to be (m− 1)
⟨ω̃⟩k
2 , i.e. it is proportional to the domain size m and parametrically

dependent on κ and ω.

Calculation of Phonon Observables

In this section we want to calculate the phonon observables ⟨â†â⟩, ⟨â2⟩, and Cij ≡ ⟨x̂ix̂i+j⟩. All of these can be

obtained by expression them in the d̂-basis and neglecting fluctuations, i.e. ⟨d̂2⟩ ≈ 0. Since nd ≡ ⟨d̂†d̂⟩ is constant,

we can write nd(t) = nd(0). For the initial condition that â-phonons are in the Fock |0⟩ state, all contributions ⟨â†j âj⟩
and ⟨â2j ⟩ vanish at t = 0, and the population of d̂ phonons is given by

nd(t) = nd(0) = v2. (29)

Expressing the above mentioned observables in d̂-phonons, with a = 2π
m−1 , and neglecting fluctuations, we receive in

the homogeneous limit

⟨â†j âj⟩ =
1

m− 1

∑

q

(u2 + v2)v2 + v2 ≡ 1

m− 1

∑

q

2u2v2 (30a)

⟨â2j ⟩ =
1

m− 1

∑

q

(u2 + v2)uv (30b)

Cij =
1

m− 1

∑

q

eiqa(i−j)(u+ v)2 + 2(u2 + v2)v2 cos(qa(i− j)), (30c)

where we used u2 − v2 = 1. Assuming a sufficiently large cluster, m≫ 1, we can perform an integral approximation.
Inserting u = cosh θc and v = sinh θc, with θc given by eq. (19), using trigonometric relations we receive the integrals

6. Non-Classical Spin-Phonon Correlations Induced by Rydberg Facilitation in a Lattice
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⟨â†j âj⟩ =
1

π

∫ 2π

0

dk
4κ2(1 − cos k)2

ω2 + 8ωκ(1 − cos k)
(31a)

⟨â2j ⟩ =
1

2π

∫ 2π

0

dk
−2ωκ(1 − cos k) − 8κ2(1 − cos k)2

ω2 + 8ωκ(1 − cos k)
(31b)

Cij =
1

2π

∫ 2π

0

dk eik(i−j)(u+ v)2 + 2(u2 + v2)v2 cos(k(i− j)). (31c)

The first two integrals can be analytically solved, yielding

⟨â†â⟩ = +
κ

ω
+

1

8

(√
ω

ω + 16κ
− 1

)
(32a)

⟨â2⟩ = −κ

ω
+

1

8

(√
ω

ω + 16κ
− 1

)
. (32b)
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Due to State-Dependent Dipole
Forces
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arXiv:2505.09314 (2025)

In our final study, we want to find an analytic description of the dephasing rate of
the Rydberg state. High dephasing rates are a well-known feature of Rydberg systems
[18–20], however, a quantitative understanding has largely been missing. In this study,
we analyze one source of dephasing, namely the dipolar repulsion between Rydberg
atoms and derive an analytic expression for the dephasing rate. In the regime where
the detuning is only slightly larger than the Rabi frequency, we are able to extract a
dephasing rate from our simulations and find this to fit very well with our analytic
expression.

Figure 7.1.: Dynamics of ground (blue) and Rydberg state (red) wave packets in the
dipole potential of an external Rydberg atom (located at x = 0.) At
x/xf = 1 the atom is facilitated, i.e. the Rydberg state can be excited res-
onantly. Over time, the ground state diffuses in place, while the Rydberg
state is first excited and then subsequently repelled away.

We consider an atom, laser-driven between an internal ground state with wavefunction
ΨG and a high-lying Rydberg state with wavefunction ΨR. The atom is initially in its
ground state and inside a tweezer trap with width σ which is turned off at time t = 0.
We consider the atom to be in the dipole potential of an external Rydberg atom at
the facilitation distance xf . Since typically xf ≫ σ, for short time evolutions we can
consider the problem to be one-dimensional, i.e. with the radial distance x to the
external Rydberg atom.

In the dipole potential of the external Rydberg atom a force acts on the Rydberg state
of the atom, repelling it, while the ground state of the atom diffuses in place. When
looking at the density matrix ρ of the atom, we can identify the overlap of the ground
and Rydberg state wavefunctions as the coherence of the atom, i.e.

ρRG =

∫ ∞

−∞
dx Ψ∗

R(x, t)ΨG(x, t). (7.1)
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From the Maxwell-Bloch equations of a two-level atom in the presence of dephasing
(with rate γ⊥), we expect the coherence to decay exponentially. In our simulations and
for facilitation conditions, where the laser detuning ∆ is much larger than the Rabi
frequency Ω, we find this coherence to decay incredibly fast. However, for ∆ ≳ Ω, we
find the coherence to decay exponentially on a longer time-scale than Ω, allowing us to
extract a dephasing rate by fitting this decay with an exponent function.

In our analytic approach, we model the atom in first quantization. Starting from a
Gaussian wave packet ΨG(x, t = 0) in the potential U(x) of the external Rydberg atom,
we time evolve the system with respect to the time-dependent Schrödinger equation

i
d

dt

(
ΨR(x, t)
ΨG(x, t)

)
=

[
− 1

2m

(
∂2x 0
0 ∂2x

)
+

(
U(x) Ω

Ω 0

)](
ΨR(x, t)
ΨG(x, t)

)
. (7.2)

Assuming only small displacements from the facilitation distance, i.e. x ≈ xf , allows us
to use perturbation theory in U(x), where U(xf) = 0. Using this, we can analytically
solve the differential equation (7.2) and we receive a very good agreement between our
analytical values of the dephasing rate γ⊥ and those extracted from numerical simulations
of the wave packet dynamics.
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Dephasing in Rydberg Facilitation Due to State-Dependent Dipole Forces

Tom Schlegel∗, Evangelia Konstantinidou∗, Michael Fleischhauer, and Daniel Brady1

1Department of Physics and Research Center OPTIMAS,
RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany

(Dated: May 15, 2025)

Rydberg atoms allow for the experimental study of open many-body systems and nonequilibrium
phenomena. High dephasing rates are a generic feature of these systems, and therefore they can
often be described by rate equations, i.e. in the classical limit. In this work, we analyze one potential
origin of the decoherence in Rydberg atoms: dipole-force induced dephasing. As the wave function
of the Rydberg (spin-up) state is repelled in the presence of another nearby Rydberg atom, while
the ground (spin-down) state diffuses in place, the Franck-Condon overlap between the two spin
components quickly decays causing a decoherence of the spin transition. With an analytic approach
we obtain a simple expression for the dephasing rate of the Rydberg state depending on atomic and
laser parameters, which agrees with numerical findings.

I. INTRODUCTION

Many-body systems of Rydberg atoms have proven to
be an incredibly useful and versatile platform to study
interacting spin systems, both in the quantum and clas-
sical regime, due to their strong interactions and long
lifetimes [1]. Through recent advances in experimental
control of neutral atoms, e.g. with tweezer arrays [2–4],
Rydberg systems offer a powerful approach to investigate
many-body lattice models [5, 6]. This includes simula-
tions of the quantum spin Ising model [7–11], topological
transport properties [12, 13], and nonequilibrium phase
transitions [14–17] to name a few.

Laser driven Rydberg gases often feature strong de-
phasing. While this is a well known feature of these
systems [18–20], a comprehensive understanding along
with a quantitative description is largely missing. In the
present paper, we identify one mechanism responsible for
such a dephasing, which is of particular relevance for Ry-
dberg facilitation. When regarded in the anti-blockade
(facilitation) regime, excitations of Rydberg atoms can
only occur in the presence of an already excited Rydberg
atom [21]. In tweezer arrays, this allows for the study
of many-body dynamics under localization [22] and ki-
netic constraints [23, 24]. When regarding the dynamics
in a gas, strong dephasing rates emerge. Consequently,
the dynamics become effectively classical and very large
systems can be described to great accuracy by diagonal
density matrix elements, leading to classical rate equa-
tions [25–28]. The incoherent regime is especially well
suited for the study of open systems and nonequilibrium
phase transitions [14, 17, 29]. In particular, in this regime
experiments can be compared to large-scale numerical
simulations.

In studies of lattice spin models with Rydberg atoms,
ground-state atoms are initially trapped in an optical
lattice or in tweezer potentials, which are subsequently
switched off during the interaction. Therefore, we con-
sider the case of an initially localized ground state atom
here. In the regime of Rydberg facilitation differential
dipole forces acting on the excited and ground states

cause a rapid dephasing of the transition, which we will
analyze in the following.

FIG. 1: (a) Internal atomic structure of an atom in an ex-
ternal Rydberg potential VRR. The initially spatially lo-
calized ground state |G⟩ is laser-coupled with a high-lying
Rydberg state |R⟩ with Rabi frequency Ω and detuning
from resonance ∆. The Rydberg potential repels the ex-
cited part of the atom. (b) Spatially and temporally re-
solved dynamics of the ground (blue) and Rydberg state
(red) wave packets for ∆/Ω = 30 and ξ/Ω = 0.01 · 10−3.

In the facilitation regime, the laser coupling between
the internal ground |G⟩ and Rydberg |R⟩ states of the
atom, with Rabi frequency Ω, is off-resonant, with de-
tuning from resonance ∆ ≫ Ω (cf. Fig. 1a). In the ab-
sence of further couplings, the large detuning strongly
suppresses the excitation of the Rydberg state. However,
in the presence of another Rydberg atom, the energy of
the excited state is shifted and becomes resonant at the
interatomic distance xf , i.e. VRR(xf) − ∆ = 0. As a re-
sult of the repulsive van-der-Waals potential, a strong
dipole force acts on the excited state. Consequently,
there is a fast decay of the Franck-Condon overlap be-
tween the ground and Rydberg state wavefunctions of
the atom (cf. Fig. 1b). As we quantitatively analyze in
the following, this leads to an effective dephasing of the
internal-state dynamics. The motion-induced dephasing
will in general not follow a simple exponential law and
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the dephasing rate will be time dependent. However, for
the excitation dynamics only short times after excitation
are relevant and we will focus on this regime.

II. SYSTEM

To investigate the short-time dephasing dynamics, we
consider a two-level atom coupled by a laser between its
ground and a high-lying Rydberg state. The coupling
laser has the Rabi frequency Ω and detuning from reso-
nance ∆. Additionally, we consider the atom to be in the
dipolar potential of an external Rydberg atom, located
at position x = 0. This dipolar potential typically takes
the form VRR = cν

|x|ν , where ν is an integer and cν is the

potential coefficient [1]. If both atoms are coupled to the
same Rydberg state, e.g. |nS⟩, then the interaction po-
tential is of a van-der-Waals (vdW) type [6] and ν = 6. In
order to account for the interplay between dipole forces
acting on the spatial degree of freedom of the atom in the
Rydberg state, we treat the atom in second quantization
with two Schrödinger fields Ψ̂G(x) and Ψ̂R(x) describing
the ground and Rydberg states, respectively. Since the
vdW potential only depends on the euclidean distance
between the atoms, we can restrict the problem to one
spatial dimension, i.e. the radial distance x. For the rel-
evant time scales, diffusion in the orthogonal directions
is negligible.

The total potential Uν(x) acting on the Rydberg state
is the sum of the dipole potential VRR and the detuning
∆, i.e.

Uν(x) =
cν
xν

− ∆. (1)

At the facilitation distance xf ≡ ν
√

cν
∆ the interaction po-

tential cancels the detuning and a resonant excitation
of the state |R⟩ becomes possible, i.e. Uν(xf) = 0 (cf.
Fig. 1a).

In the following, we consider an initial state |ψ0⟩ of
the atom as a wave packet in the ground state with
width σ and initial position at the facilitation distance,
i.e. x(t = 0) = xf .

ΨR(x, t = 0) = ⟨0|Ψ̂R(x)|ψ0⟩ = 0. (2a)

ΨG(x, t = 0) = ⟨0|Ψ̂G(x)|ψ0⟩ =
1

(πσ2)
1
4

e−
(x−xf )

2

2σ2 (2b)

Under the time-dependent Schrödinger equation, the
equations of motion for the ground and Rydberg state
wave packets are given as

i∂t

(
ΨR

ΨG

)
=

(
− ∂2

x

2m + Uν(x) Ω

Ω − ∂2
x

2m

)(
ΨR

ΨG

)
, (3)

where we set ℏ = 1.

III. ANALYTICAL APPROACH

In the following, we derive an analytic expression for
the short-time evolution of the coherence ρRG(t) from
which we extract a dephasing rate γ⊥. To this extent, we
linearize the potential Uν(x) at the facilitation distance
xf and define y ≡ (x−xf)/xf . Applying this to the time-
dependent Schrödinger equation (3), we obtain

i∂t

(
ΨR

ΨG

)
=

(
−ξ∂2y − ν∆y Ω

Ω −ξ∂2y

)(
ΨR

ΨG

)
, (4)

where we defined ξ ≡ 1/2mx2f . This allows us to treat
the system in a perturbative approach with the linearized
potential −ν∆y as the perturbation under the assump-
tions σ ≪ xf and |y| ≪

∣∣ Ω
ν∆

∣∣. The latter constraint also
restricts this approach to be valid only for short times as
a result of diffusion and dipolar repulsion. In addition,
this implies an upper limit to the ratio ∆/Ω.

The unperturbed system, i.e. −ν∆y = 0, can be solved
exactly in k-space. It obeys Rabi-oscillations between
the ground and Rydberg states, as expected, with the
solution given by

Ψ̃
(0)
R/G(k, t) = Ψ̃G(k, 0) e−iξk2t

{
−i sin Ωt

cos Ωt
, (5)

where Ψ̃
(0)
R/G(k, t) correspond to the unperturbed solu-

tions. In first order perturbation theory, the time-
dependent Schrödinger equation in k-space reads

i∂t

(
Ψ̃

(1)
R

Ψ̃
(1)
G

)
=

(
ξk2 Ω
Ω ξk2

)(
Ψ̃

(1)
R

Ψ̃
(1)
G

)

+ iν∆k

(
σ2

x2f
+ i2ξt

)(
Ψ̃

(0)
R
0

)
.

(6)

We can solve eq. (6) exactly using variation of constants
and receive

Ψ̃
(1)
R (k, t) = Ψ̃G(k, 0) e−iξk2t

[
−i sin Ωt+ ν∆k

2Ω

·
(

ξ
Ω sin Ωt− ξt cos Ωt− iΩ(σ2

x2
f
t+ iξt2) sin Ωt

)]
(7a)

Ψ̃
(1)
G (k, t) = Ψ̃G(k, 0) e−iξk2t

[
cos Ωt− ν∆k

2Ω

·
(

σ2

x2
f

sin Ωt+ iξt sin Ωt− Ω(σ2

x2
f
t+ iξt2) cos Ωt

)]
. (7b)

Inserting the inverse Fourier transform ΨR/G(y, t) =
1√
2π

∫
dk Ψ̃R/G(k, t) eiky, the coherence then reads

ρRG(t) = xf

∫
dk Ψ̃∗

R(k, t)Ψ̃G(k, t). (8)

This finally yields an analytical expression for the coher-
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ence ρRG(t) and up to first order in t it is

Re[ρRG] = − ν2∆2

8Ω

(
ξ

Ω2
sin2 Ωt− 2ξ

Ω
t sin Ωt cos Ωt

)

+ O(t2) (9a)

Im[ρRG] = sin Ωt cos Ωt− ν2∆2

8Ω

(
σ2

x2f
+
ξ2x2f
Ω2σ2

)
t sin2 Ωt

+ O(t2). (9b)

From eq. (9a), we recognize that

Re[ρRG](tn) = − ν2∆2

16mx2
f Ω

3 ( 1
2 − Ωtn), where Ωtn = π

4 + nπ

and n being an integer. Here, the real part of ρRG only
yields a negligible contribution compared to the imag-
inary part at short times tn (cf. Fig. 3). This allows
us to approximate |ρRG|(tn) ≈ |Im[ρRG]|(tn), since
Re[ρRG]2 ≪ Im[ρRG]2. Consequently, we extract the de-
phasing rate simply from the imaginary part. Evaluating
eq. (9b) at the times tn yields

|ρRG|(tn) ≈ 1

2
(1 − γ⊥tn) + O(t2n) (10)

with the dephasing rate

γ⊥
Ω

=
ν2

8

(
∆

Ω

)2(
σ

xf

)2
[

1 +
(xf
σ

)4( ξ
Ω

)2
]
. (11)

Eq. (11) is the main result of our work. For Rydberg
facilitation |∆| ≫ Ω, so the first term is large. Note, how-
ever, that we assumed σ ≪ xf , and thus the second factor
compensates the first. The impact of the atom mass is de-
scribed by ξ as its reciprocal value, i.e. x4f ξ

2 = 1/(2m)2.
When m → ∞ the second term in the bracket vanishes.
Note, however, that for a given trapping (tweezer) po-
tential also σ → 0 as m→ ∞.

IV. NUMERICAL BENCHMARK

In order to benchmark our analytic results on the ef-
fect of the differential dipole forces on the coherences
between the internal states of the atom, we performed
numerical simulations. To this extent, we solve eq. (3)
numerically for a time interval [0, t], discretize time in
steps δt, and use a split-step Fourier algorithm [30] to
compute the unitary time evolution. The time evolution

operator e−iĤδt for the time step δt is split according
to a second-order Trotter-Suzuki decomposition [31] as

e−i(T̂+V̂ )δt = e−iT̂ δt
2 e−iV̂ δte−iT̂ δt

2 + O(δt3), where

T̂ =
p̂2

2m
· 1 V̂ =

(
Uν(x) Ω

Ω 0

)
. (12)

Here, T̂ corresponds to the kinetic and V̂ to the poten-
tial components of the coupled partial differential equa-
tions (PDEs). In the simulation, the kinetic time evolu-
tions are calculated in k-space by using a Fast-Fourier-
Transformation (FFT) of the wave function. The po-
tential term is evaluated in real space, following another

FFT. However, since V̂ is not diagonal, we express the

time evolution operator e−iV̂ δt in terms of Pauli matrices

using ei an̂·
ˆ⃗σ = 1 cos a + i n̂ · ˆ⃗σ sin a, for a real valued a

and with |n̂| = 1. Applying this onto the time evolution

operator of the potential term, i.e. e−iV̂ δt, we receive the
real space evolution in a time step as

ΨR(t+ δt) = e−iφ

(
cos(ωδt) − i sin(ωδt)

Uν(x)

2ω

)
ΨR(t)

− ie−iφ sin(ωδt)Ω
ω ΨG(t) (13a)

ΨG(t+ δt) = e−iφ

(
cos(ωδt) + i sin(ωδt)

Uν(x)

2ω

)
ΨG(t)

− ie−iφ sin(ωδt)Ω
ω ΨR(t), (13b)

with φ = Uν(x)
2 δt and ω =

√
1
4U

2
ν (x) + Ω2.

0 2 4 6 8 10
10−2

10−1

100
|ρ

R
G
|

(a)

0 5 10 15 20
10−2

10−1

100

|ρ
R

G
|

(b)

0 5 10 15 20
Ωt

10−2

10−1

100

|ρ
R

G
|

(c)

FIG. 2: Absolute value of ρRG (grey) over time from
numerical simulations. The maxima (black circles) are
fitted with an exponential decay function (red), yield-
ing the dephasing rate. Here, the parameters are (a)
∆/Ω = 28.57, ξ/Ω = 0.07 · 10−3 (b) ∆/Ω = 1.32,
ξ/Ω = 1.25 · 10−3 and (c) ∆/Ω = 2.14, ξ/Ω = 0.03 ·10−3.
In (c) the decay does not perfectly follow an exponential
form, consequently values of γ⊥ extracted from such fits
are marked as hollow points in later plots when compared
to analytic predictions (cf. Fig. 4).
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The algorithm generates the wavefunctions ΨR(x, t)
and ΨG(x, t), where we discretize space in the interval
x/xf ∈ [0.1, 10.5] using N = 217 ∼ 105 grid points. Fi-
nally, we calculate the coherence with

ρRG(t) =

∫
dxΨ∗

R(x, t)ΨG(x, t). (14)

We find the absolute value of the coherence |ρRG| to
oscillate and decay in amplitude over time, before reach-
ing a steady state. In particular, during this time, we
find the maxima of |ρRG| to decay exponentially to a
reasonable degree of accuracy. We fit this decay with an
exponential function of the form e−γ⊥t, where γ⊥ is then
identified as the dephasing rate.

For typical facilitation parameters, i.e. where
∆/Ω ≫ 1, we find this decay to be on the order of, or
faster than Rabi oscillations, making a rigorous fitting
of the maxima difficult (cf. Fig. 2a). For this reason,
we investigate the regime where ∆/Ω ≳ 1. Finally, for
all simulations we use σ/xf = 0.05, which corresponds to
typical experimental ratios between tweezer trap spacings
and trap widths. In Fig. 2b-c we give two examples of
such a simulation, showing Rabi-oscillations damped by
an effective dephasing. Note that spontaneous emission
was assumed to be negligible on the time scales shown.

0 2 4 6 8 10
Ωt

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Im[ρRG] Re[ρRG]

FIG. 3: Time resolved imaginary value (orange), and
real value (blue) of the coherence ρRG from numerics
(solid) and from analytics in first order perturbation
theory (cf. eq. (9)) (dashed), using ∆/Ω = 1.32 and
ξ/Ω = 1.25 · 10−3.

In Fig. 3 we compare the analytic short-time approxi-
mations to the full numerics. We recognize good agree-
ment between analytics and numerics and see that at the
peak values of Im[ρRG](t) the real part Re[ρRG](t) is in-
deed small.

We now compare the analytic predictions for the short-
time dephasing rate, eq. (11), with numerical simulations.
This is shown in Fig. 4, where we plotted γ⊥/Ω as func-
tion of ∆/Ω for different ξ/Ω. One recognizes very good
agreement.

FIG. 4: Dephasing rate from exponential fit of numeric
simulations. Hollow dots correspond to simulations were
ρRG(t) does not perfectly follow an exponential function
in time (cf. Fig. 2c). The lines correspond to eq. (11).

V. SUMMARY

In the present paper we discussed the effects of the
dipole force acting on the Rydberg-state wavefunction on
the dynamics of a single atom, laser coupled between an
initially spatially localized ground state and a high-lying
Rydberg state under conditions of Rydberg facilitation,
i.e. in the presence of an already excited Rydberg atom
at the facilitation distance. In the dipole potential of an
already excited Rydberg atom, the atom under consid-
eration experiences a decay of coherences due to dipole
forces acting solely on the Rydberg state.

We model this in second quantization, by explicitly
taking into account the motional degrees of freedom of
the atomic ground and Rydberg states, coupled by a
laser. Initially, the atom is assumed in the ground state
with a well-localized spatial wavefunction, typical for lat-
tice experiments with Rydberg atoms. As a result of
dipole forces, the Rydberg state wave function is repelled
from the external Rydberg atom, and the overlap be-
tween ground and Rydberg state wavefunctions decays.
Using a perturbative solution of the coupled equations,
we derived an analytic expression for the (short time)
dephasing rate γ⊥, which we have benchmarked with nu-
merical simulations for values of ∆/Ω up to ∼ O(1).
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ber, N. Lang, H. P. Büchler, T. Lahaye, and A. Browaeys,
Science 365, 775 (2019).

[14] S. Helmrich, A. Arias, G. Lochead, T. Wintermantel,
M. Buchhold, S. Diehl, and S. Whitlock, Nature 577,
481 (2020).

[15] T. Wintermantel, M. Buchhold, S. Shevate, M. Morgado,
Y. Wang, G. Lochead, S. Diehl, and S. Whitlock, Nature
Communications 12, 103 (2021).

[16] D. Brady, J. Bender, P. Mischke, S. Ohler,
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8. Summary and Outlook

In the first part of this thesis, we used large scale numeric Monte Carlo simulations
to analyze a three-dimensional gas of Rydberg atoms in the high dephasing regime.
We found that at low temperatures, the dynamics are constrained to an underlying
Erdős–Rényi (ER) network, which, depending on the density of the gas, is either perco-
lating or non-percolating. Furthermore, in the non-percolating regime, we have proven
the existence of a heterogeneous Griffiths phase and have shown this to arise from the
underlying network structure and not from different velocity classes of Rydberg atoms
as was postulated in Ref. [16].

Furthermore, we improve on the mean field Langevin equations presented in Ref. [12],
by adding the effects of Rydberg blockade and the underlying network structure. For
low temperatures, we find that even in the percolating regime, the network structure
needs to be taken into account in the mean field equations. We have found the modified
mean field equations to agree much better with our Monte Carlo simulations.

Building on this, we investigated the universality class of the absorbing-state phase
transition, characteristic for Rydberg facilitation, and have found this to fall into directed
percolation (DP) universality in the low temperature, percolating gas and mean field uni-
versality in the high temperature gas. For the low temperature, non-percolating gas we
found no universal collapse of data reflecting the extended Griffiths which replaces the
absorbing-state phase transition. For intermediate temperatures and a percolating gas,
we have found universal behavior at each gas temperature, albeit with a continuously
varying critical exponent. This behavior emerges from rare, long-range spreading pro-
cesses called Lévy flights. Here, a few, very fast Rydberg atoms are able to facilitate
(infect) atoms at very large distances. This behavior gives rise to the anomalous directed
percolation (ADP) universality class, which is characterized by critical exponents that
depend on the characteristic length scale of the Lévy flights [10].

In the experiment of Ref. [12], a significant deviation from the expected DP critical
exponent was measured and it was postulated that self-organized criticality (SOC) might
be modifying the universal behavior. However, we were able to replicate the value of
this exponent, showing that this deviation stems from Lévy flights. Furthermore, by
numerically determining DP critical exponents in the frozen gas and in the presence of
SOC, we have shown that SOC does not modify universal behavior in Rydberg facili-
tation. Finally, we underlined this by calculating and measuring avalanche exponents
at criticality. Since a mapping of the DP critical exponents to the avalanche exponents
exists [10], we were able to extract the full set of DP critical exponents from avalanches.

Our work has allowed for a deeper understanding of universality in the Rydberg fa-
cilitation gas. In particular, the temperature dependent, tuneable universality class we
discovered allows for the study of DP and ADP universality in controlled, experimental
environments. Furthermore, we have shown that facilitation is constrained to a static
network at temperature T = 0, and that this network becomes dynamic at finite tem-
perature, with links changing between nodes on the time-scale of excitation spreading.
Future experiments could thus allow for a deeper understanding of nonequilibrium uni-
versality and spreading processes on dynamic networks.

One open question which remains, is how the universality class is affected in the quan-
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8. Summary and Outlook

tum regime. One major result from equilibrium statistical mechanics is the equivalence in
the universal behavior of the d-dimensional quantum Ising model to the d+1-dimensional
classical Ising model near criticality [82]. However, as the observation of universal behav-
ior typically requires large numbers of atoms in an ensemble, fully quantum simulations
remain out of reach. However, some semi-classical approaches, most notably the trun-
cated Wigner approximation for spins [126] might allow for the exploration of this regime
after all.

Following this, we switched gears from the gas of Rydberg atoms to a 1-dimensional
tweezer array of Rydberg atoms. Here, facilitation dynamics simplify to the growing
and shrinking of spin (Rydberg ≡ |↑⟩, ground ≡ |↓⟩) domains [25]. Dipole interactions
between Rydberg atoms lead to a coupling of spin states with motional (phonon) states
within the respective tweezer traps [26]. In Ref. [26], the dipole potential was expanded
up to linear order and the resulting spin-phonon interaction led to a slower-than-ballistic
growth of spin domains. However, up to linear order, all spin-phonon interaction terms
within a given domain completely cancel out and there is no phonon transport. For this
reason, we have regarded this system up to quadratic order with a harmonic dipole inter-
action potential between Rydberg atoms. We have found this simple system to house a
number of non-trivial effects, such as strong phonon correlations, non-classical positional
states of the Rydberg atoms in their tweezer traps (squeezed states), or the emergence
of Bloch oscillations in the spin domain size over time. By analytically decoupling spin
and phonon degrees of freedom, we have derived an analytic understanding of the effects
at play within the tweezer array.

While a in leading order purely harmonic potential can be realized in Rydberg atoms
using a Lennard-Jones style dipole potential [27], the question arises as to how the system
behaves under a dipole expansion with both linear and quadratic terms. Here, the linear
terms act as phonon source on the edges of the domain, while the quadratic terms allow
for phonon transport through the domain. It is unclear how this interplay affects the
properties of the system, e.g. if non-ergodic behavior in the form of Bloch oscillations
can persist in the presence of phonon sources. If this were to be the case, it would have a
profound impact on Rydberg facilitation experiments in tweezer arrays, as these effects
would be a generic feature of these systems.

In our final study, we shifted gears yet again to the dynamics of single, laser-driven
atom in the dipole potential of an external Rydberg atom. Here, we derived an analytic
expression for the dephasing rate a Rydberg atom experiences as a result of dipole forces.
We have shown this to agree very well with numeric simulations for laser detunings ∆,
which are larger, but on the order of the Rabi frequency Ω. This paves the way for
a better understanding of dephasing rates in Rydberg systems and an experimental
verification of this would be highly useful.
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A. Simulating a Gas of Rydberg Atoms using the Monte
Carlo Method

In this Appendix, the Monte Carlo algorithm used for the numeric simulations of the
Rydberg facilitation gas in [P1, P2, P3, P4, P7] will be explained. First, the general fixed
time-step Monte Carlo (ftsMC) algorithm for simulating the time dynamics of a many-
body system according to a set of classical rate equations will be detailed. Following
this, the ftsMC algorithm will be applied to the many-body gas of Rydberg atoms in
the high dephasing regime.

The Monte Carlo Method

The Monte Carlo method is based on using the average of many, random trajectories to
accurately describe a system. Originally created by Nicholas Metropolis and Stanis law
Ulam in Los Alamos in 1949 [127], they named the method Monte Carlo after the Monte
Carlo casino in Monaco, inspired by the gambling habits of Ulam’s uncle. Today, the
Monte Carlo method refers to an entire family of methods which utilize averaging random
trajectories to solve problems, e.g. Monte Carlo integration for solving integrals.

Many problems in classical and quantum physics can be - to various degree of approx-
imation - reduced to a master equation of the form [128]

d

dt
P (sk, t) =

∑

j

Γ(sj → sk)P (sj , t) −
∑

j

Γ(sk → sj)P (sk, t), (A.1)

where P (sk, t) is the probability of finding the system in state sk at time t and Γ(sl → sk)
is the rate at which the system changes from state sl to sk. The solution of eq. (A.1)
describes the time evolution of the probability of finding the system in a given state.
This equation describes a continuous-time Markov process [128] and the Monte Carlo
method provides a numerical solution to it [129].

For dynamical simulations, multiple different Monte Carlo algorithms exist [130]. For
the application to a many-body system of interacting particles two candidates emerge:
kinetic Monte Carlo (KMC) and ftsMC. In a KMC algorithm, the time between transi-
tions is a random variable and is determined by a Poissonian distribution [129] as

δt = − log u∑
j Γj

, (A.2)

where u ∈ (0, 1] is a uniformly distributed random number and Γj are the transition
rates in the system. At each time step exactly one transition occurs, i.e. the algorithm
is rejection free. On the other hand, in an ftsMC algorithm, the length of time steps
are constant and any number of transitions can occur in a given time step. Here, δt
is chosen in such a way, that more than one transition occurring in a given time step
becomes unlikely.

Typically one would use the KMC algorithm as the ftsMC algorithm is merely an
approximation of the KMC algorithm, becoming more accurate as δt→ 0 [130, 131].
However, the waiting time in a KMC algorithm requires constant transition rates Γj

during the waiting time δt. If the transition rates change within the time interval δt
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between transitions, one has to resort to the ftsMC algorithm. In a gas of Rydberg
atoms with motion, i.e. a gas temperature T > 0, transition rates will change in during
the time interval δt, since interactions are distance dependent. Moreover, specifically
Rydberg facilitation, the transition rates can be very sensitive to the distance between
atoms (cf. Fig. B.1). For this reason, we utilize the ftsMC algorithm for all our Monte
Carlo simulations.

The Fixed Time Step Monte Carlo Algorithm

The ftsMC algorithm uses a fixed time step δt with a stochastic number of transitions
per time step. Strictly speaking, the ftsMC algorithm is only valid if no more than one
transition occurs in a given time step. Therefore, a fixed time step δt is chosen such that∑

j Γjδt≪ 1, making it unlikely that more than one transition occurs in δt. However,
since the number of transitions per time step is stochastic, more than one transition
per time step can always occur. Therefore, it is advisable to benchmark the simulation
results for different δt, to see at which δt the results begin to converge.

For a given system in the state sk, and with n transition rates Γ(sk → sl), the ftsMC
algorithm goes as follows:

1. Initialize simulation: t = 0, sk = s0

2. Calculate transition rates: Γl ≡ Γ(sk → sl) ∀l

3. Calculate the probability that a transition will occur: ptrans = 1 − e−
∑

l Γlδt

4. Generate a random number u1 ∈ [0, 1)

5. If u1 < ptrans a transition occurs (5a. – 5c.):

5a. Generate a random number u2 ∈ [0, 1)

5b. Find the smallest j such that u2 <
∑j

l=1 Γl∑n
k=1 Γl

5c. Execute transition sk → sj

6. Advance time t+ δt

7. Repeat from step 2. until tfinal is reached.

Application to a Gas of Optically Driven Atoms

We will now apply the ftsMC algorithm to a gas of N interacting Rydberg atoms in
the high dephasing regime. The algorithm is schematically displayed as a flowchart in
Fig. A.1. In the following, steps I.-V. from the flowchart will be detailed.
I. Initialize system – The simulation starts at time t = 0 and we initialize the

internal (ground / Rydberg) and external (position / velocity) states for each of the
N atoms. The internal states are saved in a vector s of length N with entries si ∈
N corresponding to the internal state of the atom, i.e. the ground state 0 =̂ |G⟩, the
Rydberg state 1 =̂ |R⟩, and a removed/ionized atom 2 =̂ |0⟩.

For the external states, the positions are randomly sampled within a 3-dimensional
box of size L, i.e. each component of xi is a random number between 0 and L. The
velocities are then sampled from a Maxwell-Boltzmann distribution, i.e. each component
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Figure A.1.: Flowchart of the ftsMC algorithm used to simulate the gas of Rydberg
atoms. For details on each of the steps see parts I.-V. in the main text.
The updating of internal states (blue box) can and should be vectorized as
opposed to looping over each atom.

117



Appendix

of vi is sampled from a Gaussian distribution with mean 0 and standard deviation

σ =
√

2kBT
m ≡ v̂, corresponding to the most likely velocity.

II. Calculate transition probabilities – Due to interactions between Rydberg
atoms, transition probabilities depend on the internal states of other atoms. In the
classical, rate equation limit, the dynamics of the internal ground, Rydberg, and ionized
states of a given atom with index i, are given by

d

dt
P

(i)
R = −(γstim + γspont)P

(i)
R + γstimP

(i)
G , (A.3a)

d

dt
P

(i)
G = +(γstim + (1 − b)γspont)P

(i)
R − γstimP

(i)
G , (A.3b)

d

dt
P

(i)
0 = +bγspontP

(i)
R , (A.3c)

where γspont corresponds to the spontaneous decay rate, and b ∈ [0, 1] is the branch-
ing factor, which determines which portion of spontaneously decaying Rydberg atoms
decay into the |0⟩ state and can no longer reach |G⟩ or |R⟩ states. The stimulated
(de-)excitation rate γstim is given by1

γstim =
2Ω2γ⊥

γ2⊥ + (∆ +
∑

j<i VijΠj)2
, (A.4)

with the Rabi frequency Ω, the laser detuning ∆, the dephasing rate of the Rydberg
state γ⊥, the Rydberg-Rydberg interaction potential Vij (cf. Sec. 1.2), and the projector

Πj =

{
1, j in Rydberg state,

0, else.
(A.5)

Note that the stimulated (de-)excitation rate of atom i depends on the states and dis-
tances of other atoms. In the van-der-Waals regime, regarded in all publications [P1-P7],
the interaction potential takes the form Vij = c6

|ri−rj |6 . For very small distances between

atoms i and j, Vij can take extreme values making the simulation unstable. For this
reason, the maximum of Vij must be truncated. In our Monte Carlo simulations we
truncate the potential with

Vij =

{
c6

|ri−rj |6 , |ri − rj | > 10−2,

c6 · 1012, else,
(A.6)

with the potential being in units of the decay rate γ and all distance being in units of
the facilitation distance rf .

For the ftsMC algorithm, the probability that a transition occurs depends on the rate
at which the system leaves its current state. This rate is given by the decay rate of

1The stimulated rate, and furthermore even the rate equations, can simply be derived from the Lindblad
master equation. A derivation can be found in the Supplementary Materials of Ref. [12], albeit with
slightly different factors in the Hamiltonian.
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the given state in eqs. (A.3). For example, if atom i is in the Rydberg state, then from
eq. (A.3a) the rate at which it leaves this state is given by

Γi = γstim + γspont. (A.7)

From the Poissonian distribution, the transition probability, i.e. the probability that a
transition occurs within the time interval δt, is given by

pi = 1 − e−Γiδt. (A.8)

III. Generate N random numbers – In a typical KMC algorithm one would choose
one random number which determines if the transition occurs. Here, any number of
transitions can occur in a given time step, and therefore, we need to generate N random
numbers ui, uniformly distributed in the interval ui ∈ [0, 1].

It is advisable to use a random number generator and set a seed for each trajectory. In
Python, using NumPy, one could use the command: numpy.random.default rng(seed).
If a seed is not used and trajectories are run in parallel, it can occur that separate tra-
jectories utilize the same random numbers leading to numeric errors in the data.
IV. Choose and execute transition – Once it is determined that atom i will leave

its current state, i.e. ui < pi, the transition it performs needs to be chosen. Similar to
the KMC algorithm, this is done by comparing the individual rates. Again, using the
example of atom i being in the Rydberg state, two channels emerge, i.e. it can decay to
|G⟩ or |0⟩, and the respective decay probabilities are given by

pR→G =
γstim + (1 − b)γspont

γstim + (1 − b)γspont + bγspont
≡ γstim + (1 − b)γspont

γstim + γspont
, (A.9)

pR→0 =
bγspont

γstim + (1 − b)γspont + bγspont
≡ bγspont
γstim + γspont

. (A.10)

V. Integrate positions and velocities – After updating the internal states of all
atoms, the positions and velocities need to be updated as well. These are integrated
from their equations of motion using a Verlet ”leapfrog” integrator [132]. Due to the
symplectic nature of this integrator, it is often more accurate than simple second-order
integrators [128]. The leapfrog integrator scheme is given by

ri(t+ δt) = ri(t) + vi(t)δt+
1

2
ai(t)(δt)

2, (A.11a)

vi(t+ δt) = vi(t) +
1

2

[
ai(t) + ai(t+ δt)

]
δt, (A.11b)

where ai(t+ δt) is the acceleration calculated using the positions ri(t+ δt).
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B. Derivation of the Facilitation Width

In this Appendix, we derive the width of the facilitation shell δrf in the high dephasing
limit where facilitation dynamics are accurately described by classical rate equations
[21–24]. This width determines the density at which the percolation transition occurs
in the Rydberg facilitation gas, i.e. nperc = 1

Vs
≈ 1

4πδrfr
2
f
, where Vs is the volume of the

facilitation shell. For a system of N atoms coupled between a ground |G⟩ and Rydberg
state |R⟩ with Rabi frequency Ω and detuning from resonance ∆, the system Hamiltonian
is given by

Ĥ =
N∑

i=1

Ωσ̂xi − ∆n̂i +
∑

j ̸=i

∆
r6f
r6ij
n̂jn̂i, (B.12)

with the interatomic distance rij and the projection operator onto the Rydberg state
n̂i. Furthermore, we consider spontaneous decay from the Rydberg state to the ground
state with rate γ and dephasing of the Rydberg state with rate γ⊥. Using this, we can
define a Lindblad master equation for the density matrix ρ̂ as

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑

l

L̂lρ̂L̂
†
l −

1

2
{L̂†

l L̂l, ρ̂}, (B.13)

with the jump operators L̂1 =
√
γ |G⟩ ⟨R| and L̂2 =

√
γ⊥ |R⟩ ⟨R|. The equation of motion

of the projection operator n̂i is given by

d

dt
⟨n̂i⟩ = Tr

{
n̂i

d

dt
ρ̂
}
. (B.14)

After adiabatic elimination of coherences (cf. [12] for an explicit formulation) we receive
the facilitated transition rate Γij between the ground and Rydberg states of atom j as
[P1] (cf. [12]2)

Γj = 2Ω2 γ⊥

γ2⊥ + ∆2
(

1 −∑i ̸=j
r6f
r6ij
n̂i

)2 . (B.15)

If we consider atom j to be in the presence of exactly one Rydberg atom, then the sum
only has one non-zero value. In the Rydberg gas, this is a good approximation since the
interaction potential decays as r−6 and the density of Rydberg atoms is relatively low
due to Rydberg blockade. In this case, we can write the facilitation rate depending on
the distance r of atom j to a Rydberg atom as

Γ(r) = 2Ω2 γ⊥

γ2⊥ + ∆2
(

1 − r6f
r6

)2 . (B.16)

2Note the Hamiltonian in this reference is slightly different.
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Assuming small displacements from rf , we can Taylor expand the term corresponding to
the interaction potential, giving us

(
1 − r6f

r6

)
= 0 + 6

r − rf
rf

+ ... (B.17)

Inserting this into eq. (B.16) and truncating after the first order we receive

Γ(r) = 2Ω2 γ⊥

γ2⊥ +
(
6∆
rf

(r − rf)
)2 (B.18)

=
2Ω2rf

6∆

γ⊥
6∆rf( γ⊥

6∆rf
)2

+ (r − rf)2
. (B.19)

Figure B.1.: Facilitation rate depending on distance to Rydberg atom. (Left) Compar-
ison of distance dependent facilitation rate Γ(r) (solid) with a Lorentzian
L(r) (dashed). Rydberg blockade and off-resonant excitation rates cause
Γ(r) to deviate from L(r). (Right) Two curves with equal pulse area, i.e.
Afac = Arec. The blue curve is the distance dependent facilitation rate Γ(r)
and the orange curve is a rect function with width δrf and height max{Γ}.

In the first order expansion of the interaction potential, we see that Γ(r) corresponds
exactly to a Lorentzian function L(x), with width ν and center x0, i.e. [133]

L(x) =
1

π

1
2ν

(x− x0)2 +
(
1
2ν
)2 . (B.20)

The higher order terms of the interaction potential expansion represent deviations in
the facilitation rate from a pure Lorentzian due to the off-resonant excitation rate and
Rydberg blockade (see Fig. B.1 (left)). Comparing eq. (B.18) and eq. (B.20), we can
identify δrf ≡ ν, and write down the width of the facilitation shell in the high dephasing
limit and in first order approximation of the interaction potential as
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δrFWHM
f =

γ⊥
3∆

rf . (B.21)

We receive a slightly different width if we do not regard the FWHM of the Lorentzian,
but instead search for a rectangle function with the same maximum and the same pulse
area as the Lorentzian (see Fig. B.1 (right)). The logic behind this is that we are
interested in total number of excitations which a Rydberg atom can facilitate. At very
large distances the Lorentzian still gives a non-zero, albeit very small, contribution to
the facilitation rate, meaning here excitations can still occur. These are neglected when
only regarding the FWHM.

To this extent, we define the following rectangular function as

rect(r) =

{
2Ω2

γ⊥
, |r − rf | < δrPulsef /2,

0, else,
(B.22)

with the width δrPulsef . We determine this width by comparing the pulse areas of the
two functions. The pulse area is received by integrating eq. (B.18), i.e.

Afac =
Ω2rf
3∆

∫ ∞

0
dr

γ⊥
6∆rf( γ⊥

6∆rf
)2

+ (r − rf)2
(B.23)

=
Ω2rf
3∆

· π (B.24)

≈ Ω2

∆
rf . (B.25)

Equating this pulse area Afac with the pulse area of the rect function, given by Arect =
2Ω2

γ⊥
δrPulsef , we receive the width of the facilitation shell for equal pulse areas as

δrPulsef ≈ γ⊥
2∆

rf . (B.26)
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[31] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, “An atom-
by-atom assembler of defect-free arbitrary two-dimensional atomic arrays”, Sci-
ence 354, 1021–1023 (2016).

[32] M. Endres et al., “Atom-by-atom assembly of defect-free one-dimensional cold
atom arrays”, Science 354, 1024–1027 (2016).

126

https://doi.org/https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.100.113003
https://doi.org/10.1088/1367-2630/11/5/055014
https://doi.org/10.1103/PhysRevLett.110.213005
https://doi.org/10.1103/PhysRevLett.110.213005
https://doi.org/10.1088/0953-4075/39/11/L02
https://doi.org/10.1088/0953-4075/39/11/L02
https://doi.org/https://doi.org/10.1103/PhysRevLett.111.215305
https://doi.org/10.1088/1751-8113/47/48/482001
https://doi.org/10.1088/1751-8113/47/48/482001
https://doi.org/10.1088/0953-4075/49/18/184003
https://doi.org/10.1088/0953-4075/49/18/184003
https://doi.org/https://doi.org/10.1103/PhysRevLett.126.103002
https://doi.org/https://doi.org/10.1103/PhysRevLett.126.103002
https://doi.org/https://doi.org/10.1103/PhysRevLett.132.133401
https://doi.org/10.1126/science.aaw4150
https://doi.org/10.1126/science.aaw4150
https://doi.org/https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/https://doi.org/10.1038/nphys1178
https://doi.org/https://doi.org/10.1038/nphys1178
https://doi.org/https://doi.org/10.1038/nphys1193
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah375


Bibliography

[33] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, and A. Browaeys, “Synthetic
three-dimensional atomic structures assembled atom by atom”, Nature 561, 79–
82 (2018).

[34] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A rydberg
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[80] K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, “Experimental realization
of directed percolation criticality in turbulent liquid crystals”, Physical Review E
80, 051116 (2009).

[81] J. A. Bonachela and M. A. Munoz, “Self-organization without conservation: true
or just apparent scale-invariance?”, Journal of Statistical Mechanics 2009, P09009
(2009).

[82] M. Vojta, “Quantum phase transitions”, Reports on Progress in Physics 66, 2069
(2003).

[83] H. J. Jensen, Self-organized criticality: emergent complex behavior in physical and
biological systems, Vol. 10 (Cambridge University Press, 1998).

[84] D. Sornette, Critical phenomena in natural sciences: chaos, fractals, selforganiza-
tion and disorder: concepts and tools (Springer Science & Business Media, 2006).

[85] B. Drossel and F. Schwabl, “Self-organized critical forest-fire model”, Physical
Review Letters 69, 1629 (1992).

129

https://doi.org/https://doi.org/10.1038/381600a0
https://doi.org/https://doi.org/10.1016/j.physa.2006.04.007
https://doi.org/https://doi.org/10.1016/j.physa.2006.04.007
https://doi.org/10.1088/2058-7058/12/4/23
https://doi.org/https://doi.org/10.1007/BF02980577
https://doi.org/https://doi.org/10.1007/BF02980577
https://doi.org/https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/https://doi.org/10.1063/1.1734338
https://doi.org/https://doi.org/10.1063/1.1696618
https://doi.org/https://doi.org/10.1063/1.1696618
https://doi.org/https://doi.org/10.1063/1.1733766
https://doi.org/https://doi.org/10.1063/1.1733766
https://doi.org/https://doi.org/10.1016/0031-9163(66)90088-6
https://doi.org/https://doi.org/10.1103/PhysRevLett.76.451
https://doi.org/https://doi.org/10.1023/A:1023021409588
https://doi.org/https://doi.org/10.1023/A:1023021409588
https://doi.org/https://doi.org/10.1103/PhysRevE.80.051116
https://doi.org/https://doi.org/10.1103/PhysRevE.80.051116
https://doi.org/10.1088/1742-5468/2009/09/P09009
https://doi.org/10.1088/1742-5468/2009/09/P09009
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/https://doi.org/10.1103/PhysRevLett.69.1629
https://doi.org/https://doi.org/10.1103/PhysRevLett.69.1629


Bibliography

[86] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “Epidemic
processes in complex networks”, Reviews of Modern Physics 87, 925–979 (2015).

[87] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical
theory of epidemics”, Proceedings of the Royal Society of London. Series A 115,
700–721 (1927).

[88] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and
control (Oxford University Press, 1991).

[89] N. T. J. Bailey, “The mathematical theory of epidemics”, Journal of the Royal
Statistical Society. Series C 8, 60–61 (1959).

[90] M. J. Keeling and K. T. D. Eames, “Networks and epidemic models”, Journal of
the Royal Society Interface 2, 295–307 (2005).

[91] C. Viboud, L. Simonsen, and G. Chowell, “A generalized-growth model to char-
acterize the early ascending phase of infectious disease outbreaks”, Epidemics 15,
27–37 (2016).

[92] A.-L. Barabási, “Network science”, Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 371, 20120375 (2013).
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