2 Thermodynamik nicht wechselwirkender Bosonen

Wir betrachten ein Ensemble von Bosonen im thermodynamischen Gleichgewicht in der
groffkanonischen Gesamtheit. Obwohl diese fiir Temperaturen unterhalb der kritischen
Temperatur der Bosekondensation an manchen Stellen fragwiirdig wird, wollen wir sie
hier verwenden, da sie eine einfache Behandlung im Rahmen der zweiten Quantisierung
erlaubt. Der statistische Operator in der groflkanonischen Beschreibung lautet

(1) gz%exp {—ﬂ(ﬁ—uN>}

Hierbei sind § = . H der Hamiltonoperator, N der Teilchenzahloperator, p ist das
sog. chemische Potentlal Z ist die Zustandssumme

B 21 o (-0 -0 |

Tr bedeutet Spurbildung iiber alle Zustdnde ¢, mit n = 0,1,2,... Teilchenzahlen. Im
Falle eines idealen, d.h. nicht wechselwirkenden Bosegases gilt

(3) - / do b ()b (o) = Y e bib, = 3 e

v v

wobei die €, die Einteilchenenergien und n, = Bjéy der Teilchenzahloperator des zugehori-
gen Energiezustandes bedeutet. Da ebenfalls gilt

(4) N = / dz Ut (z Zn

findet man fiir die Zustandssumme

Z _ v {e_ﬁ ;(Su_ﬂ)ﬁu}

(5) — H i e~ Blev—pn

v n=0

A~

wobei das bekannte Eigenwertspektrum von 7, = btb, (A |n) = nin) n=0,1,2,...)
verwendet wurde. Das liefert

(6) 2=

1- ze—ﬁev

mit 2 = e* der sog. Fugazitiit. Die Zustandssumme liefert alle relevanten thermodyna-
mischen Groflen. Z.B. hat man

W = ﬁ{zﬁvg}:%Tr{ZmeW”%}

11 5’ S(ex—m)nn
(7) = ZBou {6 ¥
10 0 0
= kBT Ea—Z—kBT%hlZ—Zglnz
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_Bu 1

(8) (N)=:Ci—m =2 tm

Die Forderung (N) = N legt z bzw. das chemische Potential g = (N, T) fest.
Damit (V) posititv ist fiir beliebige 5 (Temperaturen) und da €, > 0 muss fiir die
Fugazitiat gelten

(9) 0<z<1

Der Grundzustand des Systems habe die Energie ¢y = 0, alle anderen Zusténde €, > 0.
Betrachten wir als néchstes die mittlere Anzahl der Teilchen in angeregten Zustédnden.
Dann konnen wir folgende Abschédtzungen machen:

Z 16’861’ —

e

1
v#0

Da der Ausdruck auf der rechten Seite nicht mehr von g = p(N,T) abhéngt, ist er
unabhéngig von N. Ist N/ endlich, bedeutet (10), dass bei einer gegebenen Temperatur
nur eine Maximalzahl von Teilchen in die angeregten Zustédnde passen. Wird N iiber
diesen kritischen Wert erhéht, miissen alle weiteren Teilchen in den Grundzustand gehen
und es kommt zu einer makroskopischen Besetzung dieses Zustandes. Man spricht von
einer

‘ Bose-Kondensation ‘

Der Effekt tritt auch auf, wenn die Teilchenzahl festgehalten wird und die Temperatur
unter einen kritischen Wert 7T, fillt.

Wir wollen dieses Phinomen jetzt fiir verschiedene Situationen untersuchen:

(A) ideales Bosegas in co ausgedehntem Raum

h2k?
11 —
(1) 0=t
Einsetzen in Gl. (10) mit
( o0 1 .
L2fdk— 1—D L Lénge
2
(12) d A 27rfd:vk(2 E 2—D A Fliche
v#0 O+
V-Ar f dk k* (21>3 3—D V Volumen
\ 0+ T
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liefert fiir die Dichte der angeregten Atome n’ ergibt sich:

o0

1
nl = /dk f(k) 1 Bn2 K2
Zeam —1
o+ z

(13) — Z/dk Flk)zme?
n:lo+

wobei f(k) = 2 in 1D, f(k) = (gg; in 2D, und (4%2 in 3D ist.

1-dimensionales, ideales, homogenes Bosegas

)N AL 1
(14) nip=—L = 7«;1 it 91/2(2) 3
mit A = ;ZZQT g1/2(2) divergiert fiir z — 1 = n/, nicht von oben beschrankt =

A Bosekondensation in 1-D
in einem homogenen System

2-dimensionales, ideales, homogenes Bosegas

, o oM N2 1\ 2

15 T Nop — Z_<_> = <_>
(15) o= =5 2(5) =65
auch g;(z) divergiert fiir z — 1

A Bosekondensation in 2-D

in einem homogenem Sy-

stem
3-dimensionales, ideales, homogenes Bosegas

N X Zm r1N\3 1\3
(10) mho = = % 5 (5) = en)(5)
g3/2(1) = ¢(3/2) = 2.61238 ¢-Riemann Zeta Funktion

1\ 3

(17) = nyp =((3/2) (X) Bosekondensation fiir ngp > nsp!

Der relative Anteil der Teilchen im Grundzustand kann wie folgt abgeschitzt werden
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0 1/2 1
z=cPH

Abbildung 1: Funktionen gy,2/2), g1(2) und gs/5(2)

Ny, . N — N'max mksT\** V
Ot T~ (3/9) [ 225 -
N N ¢/ )< onh? ) N
N, TN 3/2
(18) 7 =1 (T) fiir T < T,

mit der kritischen Temperatur

27 h? N\
(19) Te= mkp[((3/2)]*/ (7)

Bosekondensation tritt entweder fiir N > N5 oder T' < T, auf, was mit Hilfe der
Phasenraumdichte durch

(20) n A3 =nX(T.) = ((3/2) = 2.61238

ausgedriickt werden kann.

Bemerkung: Die Nichtexistenz langreichweitiger Ordnung (Bose-Kondensation u.i.)
in 1-D und 2-D homogenen System ist von Hohenberg, Phys. Rev. 158
383 (1967) und Mermin und Wagner, Phys. Rev. Lett. 17, 1133 (1966)
allgemein diskutiert worden.

Fiir das chemische Potential findet man aus (8)mit v =0

2z =ePr = !
(21) L+ 5

oder | = —kgTIn (1 + NLO)

im TD Limes Ny —oco: pu—0
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(B) Bosekondensation in harmonischen Fallen

In einem aufleren harmonischen Potential

1
(22) Vi=gm (w2a® + wly® + w2z?)

welches wir zur Vereinfachung als isotrop betrachten wollen, d.h. w, = w, = w, = w sind
die Energiezusténde durch

l, 1D
(23) E=lhw (={0,+1, 2D
lo+0,+ (. 3D

gegeben. Damit findet man fiir die Besetzung der angeregten Zusténde v #0
£= {éx} T {gm ey: gz}

1
A
N = Zleﬁﬁhw_l
#0 ?

(24> _ Zzzke—ﬁékhw

k=1 [#0

- 5 ()

d = Dimension

Nun gilt fiir grofle

1 d L d=2
2 —1<<¢

Der Fall d = 1 muss gesondert behandelt werden:

d=2
(26) N, < ,i z—i (ﬁ%w)z = g2(2) (%)2
d=3
(27) N}, < ,i z_’; (ﬁ%w)g = g3(2) (%)3
mit  go(2) < ¢(2) = 1.64493 ...

<¢
g3(2) < ¢(3) = 1.20206. ..
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folgt, dass Bosekondensation in 3-D und 2-D existiert.

Man findet analog zu den Rechnungen im homogenen Fall

2d
N, T \? hw
2 v _ - T(Qd) N1/2
28) ( N ) (T@) O
3d
N, T \? hew
2 0) [ —— T3d) 7N1/3
(29) (N ) (n@@) WO

Fiir d = 1 kann die Summe in (24) numerisch ausgewertet werden fiir z = 2z, = 1

m

=2 ()

k=1

7 Bho=0.05
3
BrhosS,, 0.1
2 0.2
1.5
1

0 20 40 60 80 100

m
Abbildung 2: Numerische Auswertung von g,, fiir verschiedene Werte von hw

Diese Summe ist in Abb. 3 dargestellt. D.h. in einem externen harmonischen Potential
gibt es auch Bose-Kondensation in 1-D

Bemerkung: e kgT.> hv falls N > 1
Kondensation tritt auf, wenn thermische
Energie grofl gegen Energieabstand

e obige Diskussion auf Fille mit unterschied-
lichen Frequenzen erweiterbar

(30) W — W= JWywyw,

Fir die Bosekondensation in einer Falle ist neben der Teilchenzahl auch die Teilchenzahl-
dichte von Interesse:

(31) o(F) = (I (P ¥(M)
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Abbildung 3: Teilchenzahl im Grundzustand als Funktion der Temperatur
In wechselwirkungsfreien Fall gilt
(32) H=> &h, N=> #,
(33) V(M) =" (M,

wobei die ¢, () die Einteilchenwellenfunktionen des harmonischen Fallenpotentials sind.

o(r) = —Z% f*)%(F)Tr{ b+bAe —B Y ev =) }

= leoa )

5 1
(34) _ —me (——z)g
, 1 0nZ

= -l %,

a

~ 6(1)\

1 :
— Z |pa ()| W (siche GI. 7, 8)

Fiir z — 1 ist der Term o = 0 (¢y = 0) dominant

1
—1

(35) o(r) — leo(P)IF T— = l@o(P)I’N

Z

Ein allgemeiner Ausdruck fiir o(7) 1afit sich durch Verwendung der Eigenfunktionen des
isotropen harmonischen Oszillators finden. Alternativ verwendet man |, (7)|* = (F|ea) {€a|7)

und somit
F>

1
%eﬁﬁ -1

(36) o(r) = <F
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wobei A der 1-Teilchenhamiltonoperator abziiglich der Grundzustandsenergie 3/2hw ist.
Reihenentwicklung und (d = 3)

2

37) (e = (2) (1—6—2&%)—3/2@@{_”1;7" - [MQMH

liefert

3
1)2 1 O _ 3/2
o(r) = (ﬁ) = ) (L e
r? Bkhw
exp{——2a% tanh[—2 }}
i

ag = (Qmw)l/ % ist der Radius der Grundzustandswellenfunktion.

(38)

7 =

999

3_
210
I
0_
0 5 10 15 20
r/a

Abbildung 4: Dichte eines idealen Bosegases in einer harmonischen Falle fiir verschiedene
Werte der Fugazitét z fiir kgT = 20w (logarithmische Skala).

Die ausgeprégte Erhéhung der Dichte im Zentrum der Falle ist eine deutliche Signatur
der Bosekondensation. Man beachte kgT > hw
(C) Besetzungszahlstatistik im homogenen Kondensat

Fiir die Wahrscheinlichkeit PS¢ (n) den vten Energiezustand im groBkanonischen Ensem-
ble mit n Teilchen besetzt zu haben findet man

PS°(n) = ,(n|Tres{dce}n),

1 .
) = 5 T, fale ™ Beleoio ), )
= (1 —z e_’ge”)e_ﬂ(“_“)” = (1 — ze_ﬂ€“)z" e PBevn
7182(5(1*#)'&04 1
d Z == TTK{ o } — - =
enn e 1:[ T——
mit
1 _ﬁeu
(40) () = =

Tefe —1 1 —zePe
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Abbildung 5: Erster experimenteller Nachweis der Bosekondensation von Rb in einer Falle.
Anderson et al. Science 269, 198 (2005).

folgt

() 1"

() +1 [{A,) +1

(41) Py (n) =

Diese Verteilung ist fiir einen makroskopisch besetzten Grundzustand extrem breit
Die Schwankungsbreite der Teilchenzahl im Grundzustand ist

(ANG) = (V) — (o)

(42) ~ () ]y

T<T,

D.h. fiir T < T, skaliert (ANZ) wie N2! Dies ist ein Artefakt der groBkanonischen Beschrei-
bung, in der die Gesamtteilchenzahl thermische Fluktuationen (AN2) ~ (N)2 aufweist.
Fiir T' < T, iibertragen sich diese Fluktuationseigenschaften auf den Kondensatzustand.
Im kanonischen bzw. mikrokanonischen Ensemble tritt dieses Problem nicht auf. Die Be-
rechnung physikalischer Gréfien in diesen Gesamtheiten ist wegen der Einschrinkung auf
eine fixe Teilchenzahl (kanonisch) bzw. eine fixe Teilchenzahl und eine fixe Energie (mi-
krokanonisch) jedoch weitaus komplizierter, Z.B. findet man fiir die kanonische Zustands-
sumine

no=0 n1=0

welche aufgrund der Delta-Funktion schwierig auszuwerten ist.

(D) Einteilchendichtematrix und Impulsverteilung des homogenen idealen
Bosegases

In Abschnitt (B) haben wir die 1-Teilchendichte o(7) = (¥*(7)W(F))s kennengelernt.
Um alle 1-Teilcheneigenschaften, d.h. z.B. auch die Impulsverteilung o(7) berechnen zu
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Abbildung 6: Besetzungszahlstatistik B¢ (n) im grofikanonischen Ensemble mit (fg) =
Ny, oberhalb, bei und unterhalb der kritischen Temperatur.

konnen, benotigt man die sog. 1-Teilchenmatrix

(44) o (71, 7) = (UF(7) U(7))s

Fiir den Fall eines idealen homogenen Bosegases konnen wir o(A7r) = o(r; — 73) leicht
berechnen:

(45) (7. 72) = > _(Na)@a(71)@a()

a

Die homogenen Wellenfunktionen sind aufler fiir g = 0 ebene Wellen ﬁei’;’? d.h.

(46) o(AF) =

v e ) e
0+ z

<N0> 1 / d3]; eik.AF

Damit erhélt man fiir die Impulsverteilung

— -

14 37 —ig€/h
o) = @mpjﬁﬁdae é

V 1

(47) = N,o(p) + @h)® () _

Das Auftreten eines singuldren Anteils 0(p) ist ein Ausdruck der Bosekondensation.
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