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0 Einleitung

Wenn Atome so weit abgekiihlt werden bzw. ihre Dichte so weit erhoht wird, dass die
Kohérenzldnge ihrer Materiewellen

(1) )\dB =

ma/ (V)

goBer wird als ihr mittlerer Abstand n~'/3, kann vom Quantencharakter der Atome nicht
mehr abgesehen werden

(2) n\jp >1 = Quantenregime

Durch die Erfindung der Laserkiihlung und anderer effizienter Kiihlungsverfahren
fiir Atome (erste Ideen: T.W Hénsch & A. Schawlow; Nobelpreis 1997: Claude Cohen-
Tanoudji, Steven Chu, William Philipps) ist es Mitte der 90er Jahre erstmals gelungen,
ein makroskopisches Quantenphdnomen, die Bose-Einstein Kondensation, an ultrakalten
neutralen Atomen zu beobachten. Dies ist 2001 mit dem Nobelpreis fiir Eric A. Cornell,
Wolfgang Ketterle und Carl E. Wiemann gewiirdigt worden. In dieser Vorlesung werden
wir uns mit diesem und anderen Quantenphénomenen in Ensemblen identischer Atome
beschéftigen.

Komposit Teilchen:

Solange der mittlere Abstand der Atome gro gegen den Atomradius ist, und Ubergéinge

zwischen verschiedenen internen Zusténden der Atome entweder energetisch oder aufgrund
von Auswahlregeln verboten sind, konnen sie als Kompositteilchen betrachtet werden.
Atome im selben internen Zustand werden als ununterscheidbar betrachtet. Der Spin der
Kompositteilchen setzt sich aus Kern- und Elektronenspins zusammen.

Bei neutralen Alkaliatomen mit vollstindig besetzten Rumpfzustdnden ist der Ge-
samtspin nur durch das Leuchtelektron und den Kern bestimmt. Alkaliatome mit gerader
Anzahl von Nukleonen (Protonen und Neutronen) haben halbzahligen Spin und sind daher
Fermionen. Alkaliatome mit ungerader Nukleonenzahl sind Bosonen. Fiir Erdalkaliatome
mit zwei Leuchtelektronen gilt das Umgekehrte:

Bosonen: H, "Li, #Na, %K, ®Rb, 8"Rb, 133Cs, *He, 2*Mg, °Ca, %8Sr, **Ba
Fermionen: 3He, 5Li, 9K



1 Zweite Quantisierung des Schrodingerfeldes

1.1 Systeme identischer Teilchen

Heisenbergsche Unschéirfe = “Bahnen” mikroskopischer Teilchen in Wechselwirkungs-
prozessen nicht mehr verfolgbar.

Identische Quantenteilchen miissen als ununterscheidbar angesehen werden. Erwar-
tungswerte von Observablen diirfen sich daher bei Vertauschen zweiter Teilchen nicht
dndern

fdew*(azl,...xj...xk...xN)Bw(azl...a:j...a:k...a:N)

;fdew*(xla:kxjxN)éw(ajlxka:Ja:N)

(1)

wobei = (7, s) Orts- und Spinfreiheitsgrade zusammengefaft. D.h. es diirfen nur solche
Wellenfunktionen zugelassen werden, die (1)* fiir alle Observablen erfiillen. Bezeichne

A

Pji den Permutationsoperator zwischen Teilchen j und k

(2) pjkw(xlx]xkxN):w(xla:kxij)
so gilt:

to S s
(3) Pgn_l P]n_P]n

GL (1) impliziert

(4) (V| By = (Y| PLBPy|y)  Vjk

{(6+v1Blo+v) = (0= v Blo—v) —ilo+ | Blo+iv)
+ilp— i Blo—iv)}

= =

mit (4| B|y) =

folgt auch

(5) (¢l Bl) = (8] BBy |v)
d.h.

(6) B =P} B Py,

im Hilbertraum der zugelassenen Wellenfunktionen. Fiir B =1 hat man

(7) Pyl =Py, =Py,

mit den Eigenwerten

(8) A= =1

*Gleichungsnummerierung in jedem Kapitel neu



Aus (6) folgt weiterhin

9) [3, Iajk} =0  insbesondere [f[, pjk} =0

D.h. jede Losung der stationdren Schrodingergleichung im Raum der zugelassenen Wellen-
funktionen ist simultane Eigenfunktion von H und allen Pj;. Dabei sind die Eigenwerte
aller Pjj, gleich, denn

(10) Py, = Pyj Py, Pro Py Py
d.h.

(11) Pir|) = (Mj)* (Aak)*Mas [9)
Definition:

Eine Vielteilchenwellenfunktion ¢ (xy,...zy) (Diraczustand [¢)) heifit:

symmetrisch <= pjkwg =g Vik
antisymmetrisch <= Pj0a = -4 Vjk

Die Menge aller moglichen Permutationsoperatoren
(12) P=1]Px

bilden eine (nichtabelsche) Gruppe, die Permutationsgruppe Sy mit der Hintereinander-
ausfiihrung als Gruppenoperation
Fir P € Sy gilt

(13) Pips = s Pipy = sgn(P)ia

wobei sgn (P) = +1 falls P aus gerader Anzahl elementarer Permutationen P;;, und sgn (P)
= -1 gilt, falls P aus einer ungeraden Anzahl zusammengesetzt ist.

Der Raum der symmetrischen Wellenfunktionen ist orthogonal zum Raum der anti-
symmetrischen Wellenfunktionen, da

(Valtos) = (Ya| Pix, [s) = (¢4 P;;Z lhs) = —(Valts)

Symmetriepostulat Der Hilbertraum der Zusténde identischer Teilchen enthélt entweder

nur symmetrische (Bosonen) oder nur antisymmetrische (Fermionen) Funktionen

Spin-Statistik Theorem (W. Pauli, Phys. Rev. 58, 716 (1940))

Bosonen haben ganzzahligen Spin, Fermionen halbzahligen

Bei der Definition von ¢s und ¢4 haben wir angenommen, dass gemeinsame Eigenfunktio-
nen zu allen P}, existieren. Da die Pj; nicht kommutieren, ist dies nicht klar. Wir werden
jetzt durch explizite Konstruktion die Existenz dieser beweisen. Seien

(14) S= S P A= Y sgn(P)P

PeSn PeSn




der Symmetrisierungs- bzw. Antisymmetrisierungsoperator, dann gilt fiir jede normierte
Funktion f(xq,...,zxy) bis auf Normierung

(15) S'f(;vl,...,xN) = fs(x1,...,xN)
(16) Af(xl,...,.TN):fA(xl,...,.TN)
denn:
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P'eSn
Beispiel: System nicht wechselwirkender Teilchen
N
(17) H=>"h; mit H=h
i=1

Eigenfunktionen von h seien bekannt:

(18) ho,(x) = e,,()

=

(19) fl/1 ----- VN($17“‘7$N):¢Vl(x1)"'¢VN(xN)
=

(20) &??...,VN(-TM“-;-TN): \/Nli Z P¢V1(x1)"‘¢VN(xN)

| |
! P23,

AS
o) (@1, o) = 7w 2 580(P) Pou (@) .. by (aw)
N

(21) ¢u1 (xl) ¢V1 (x2) T ¢V1 (xN>

1

ol : : " :
¢VN(x1) ¢VN(x2) ¢VN(xN)

ny, ist die Anzahl der Teilchen im selben Zustand v,
Aus (21) folgt unmittelbar das Pauli-Prinzip

(22) ¢(A) =0 falls v; = v; fiir ein Paari # j
falls z; = z; fiir ein Paari # j

Falls {¢,(x)} einen vollstindigen Satz von Wellenfunktionen im 1-Teilchen Hilbert-
raum bilden, sind die {¢¥)} und {¢*} vollstindig im Raum der zugelassenen Vielteil-
chenwellenfunktionen.



1.2 Zweite Quantisierung und Vielteilchenwellenfunktionen

Die Quantentheorie identischer Teilchen l&8t sich formal sehr einfach in der Sprache der
zweiten Quantisierung formulieren. Die zweite Quantisierung fithrt dabei zu keiner neuen
Physik, sondern ist im Wesentlichen nur eine elegante Form der Buchhaltung. Im Rahmen
der Vielteilchentheorie gibt es keine Teilchenerzeugung bzw. -vernichtung. Die Teilchen-
zahl bleibt stets erhalten (Superauswahlregel).

(A) Fock-Raum und Erzeugungs- und Vernichtungsoperatoren

H(N) sei Hilbertraum von N identischen Teilchen. Dann seien &, & bzw. by, b lineare
Abbildungen

be,ép:  H(N) — H(N —1)  “Vernichter”
(23) bl H(N) — H(N+1) “Erzeuger”
mit den Eigenschaften:
Fermionen

A (A) _

Ck‘qbul...z/N(xlw”azN)—O k¢{V1,...,VN}
(24) ék¢ I(/114)1/N - (_1)371¢,(/’14')”Vj71 Vj41...UN k = Vj

wobei die {¢ l(ff_),,,,N} den vollstéindigen Satz der Slaterdeterminanten aus nicht wechselwir-
kenden N Fermionen bedeutet.

Bosonen
i)kd)l(/?)y]v =0 k¢ {Vl,...,l/N}
(25) i gbl(;lg)w\r = VI d)l(/?-)--’/j—l Vj41..UN k=v;

wobei ny, die Anzahl der Teilchen im selben Zustand v; = k bedeutet.

Fock-Raum
(26) F=HO)oH() dH(2) &---&H(N) B---
Bisher Ortsdarstellung des Vielteilchenzustandes

(27) ¢1/1...1/N(-T17"'aVN) = <.CE1,...,.TN|¢>

Oft jedoch sog. Besetzungzahldarstellung vorteilhaft

n; € {0,1} Fermionen
|n17 no, nN)
n; € N Bosonen

1
Anzahl der Teilchen

im Zustand v



In dieser Darstellung 148t sich die Wirkung der Erzeugung- und Vernichtungsoperatoren
wie folgt schreiben

(28)

(29)

R 2
Ck|77,1,...77,N> = (—1)J<k nk\nl,...nk,l,Ok,nk+1...nN>
Fermi
I;k\nl,...n]\/> = w/nk\nl,...nk,l,(nk—1),nk+1...nN>
Bose

In (28) kann der Vorfaktor ny auch durch /my ersetzt werden. Die Wirkung der Erzeu-
gungsoperatoren IS; und ¢ ergibt sich aus (28), (29) durch adjungieren

(30)

(31)

R 2
c$|n1,...nN> = (—1)J<k (1—7’Lk)|77,11k77,N>
Fermi

B,ﬂnl,...m\;> = Vg + 1|, (n+1) . ony)

Bose

Aus (30) und (31) sieht man, dass alle N-Teilchenzustinde durch Anwendung von Erzeu-
gungsoperatoren aus dem Vakuum (keine Teilchen) generiert werden kénnen

(32)

(33)

Ini...ny) = ML ey |0)

Fermi

= JI@)=)y  ne{o1}

J

|n1...nN):H(A;L)nj ’0> n; € N

Die Erzeugungs- und Vernichtungsoperatoren geniigen den folgenden Vertauschungsre-

geln:

(34)

(35)

Beweis:

G

(en 8} =0 {ck 13;} — S




(i) Bosonen:

[ [;k[;g:[;g[;k trivial

b /gl (g — 1))

> nj
(ii) Fermionen: O, = (—1)<t
° ékég\nkw> = Hgékng|nk05>
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Darstellung von Operatoren des N-Teilchensystems in zweiter Quantisierung

Observable in einem System von N ununterscheidbaren Teilchen miissen Operatoren
entsprechen, die auf alle Teilchen gleichsam wirken. Fiir Einteilchen-Observable gilt

N
i=1

D.h. fiir Erwartungswerte erholt man mit der Vielteilchenwellenfunktion in Ortsdarstel-
lung

~

(H) = /de¢*(x1...xN)]:]D¢(x1...xn)

N
j=1
Fiir 2-Teilchen-Observable gilt entsprechend
N
(38) V=Y o; iy=d
i#j=1



(39) <V> /dx Z v ( N)Upli, xi](xy . . )

i#j=1

usw. Hierbei ist die Abhéngigkeit “[x;]” bzw. “[z;, z;]” symbolisch gemeint und kann auch
(%_ enthalten.

Den Observablen im Hilbertraum H(N') von N identischen Tilchen lassen sich Ope-
ratoren im Fockraum JF zuordnen. Da die Observablen den Superauswahlregeln geniigen
miissen, d.h. mit dem Teilchenzahloperator kommutieren miissen, ist die Wirkung der
Fockraumoperatoren auf Zustédnde mit N Teilchen identisch zu der Wirkung der Hil-
bertraumoperatoren. Wir werden spéter sehen, dass es fiir bestimmte Rechnungen oft
niitzlich ist, die Superauswahlregeln ein wenig zu verletzen und in Approximationen eine

Verletzung der Erhaltung der Teilchenzahl zuzulassen.

N .
(40) Hy =Y hj < H=3 (klh|0)é&e
j=1

k0

mit orthogonalen Einteilchenwellenfunktionen ¢,(z) und

(100) 10 = | oo @)ho(w)on(o)

sowie

(41) Vy = %é;: 1@,- V= %%@;ﬂ (k€] D |nm) &Féf e,
mit

(41a) (ktomn) = [ do [ a1 (2)67(@in (e, )6 (2)on(x)

Analoge Ausdriicke findet man fiir Bosonen mit ¢ — b

(B) Feldoperatoren

In den Gleichungen (40) und (41) tauchen stets GroBen der Art (¢ — Fermionen, b —
Bosonen)

UH(z) = quj(a?)éj bzw. mit l;;r
j

42 I
(42) U(z) =3 05(x)¢ bzw. mit b;

auf, wobei die {¢;(x)} einen vollstdndigen (hier diskreter) und orthogonalen Satz von Ein-
teilchenwellenfunktionen darstellen. Diese Groflen wollen wir Schrodinger-Feldoperatoren
nennen. Die Vollsténdigkeit der ¢;(z)

(43) qu 2)=6(x— 1)

impliziert die folgenden Vertauschungsregeln:

9



(i) Bosonen:

(44) [0 (), ¥(a')] =0
[V (x), ¥ (2")] = Z ¢i(x) @5 (') [ bi, b | = 6(x — ')
(45) (U (), U ()] = 8(x — o)

Analog findet man fiir

(ii) Fermionen:

(46) {¥(x), ()} =0

(47) {U(2), U*(2")} = 6(x — )

Mit Hilfe der Feldoperatoren lassen sich die Ein- bzw. Zweiteilchenoperatoren wie folgt
schreiben

(48) H [ de¥t(z) hp(z) U(z)
(49) V=1 [de [da VUt (z) () Opla,a’) U(z) P(2)
Bem:

(i) Wir haben hier nur diskrete Spektren betrachtet. Das ist fiir unsere Zwecke aus-
reichend. In einer echten Quantenfeldtheorie treten natiirlich auch kontinuierliche
Spektren auf, deren Behandlung etwas mehr Sorgfalt erfordert.

(ii) Die zweite Quantisierung wurde hier konstruktiv am Beispiel nichtrelativistischer
Teilchen eingefiihrt. Ein alternativer und allgemeinerer Zugang geht iiber den Lagrange-
Hamilton Formalismus fiir Felder.

(C) Zusammenhang zwischen Vielteilchenwellenfunktionen und Feldopera-
toren

Jede erlaubte N-Teilchenwellenfunktion 148t sich nach symmetrischen bzw. antisymme-
trischen Basisfunktionen entwickeln

¢($1, s 7*TN> = Z 5V1---VN qbz(/jf/?/zv (xl - 'xN)

(50) = (1.wx|d)y

bzw.

‘d))N = /d‘fl/d‘TNLfll‘N) <$1...:L‘N‘gf)>N

(51) = /dxl.../da:N;](Vxl...xN):cl...xm
10



Behauptung:

(52) 2. o) = (@) . T (ay) |0)

Beweis:

@) = $7()l0)
Wl (@) 0) = <y\2¢i(x)63!0> = <y\2¢i(ar) 1
= Z¢u )(ylL,) = Z¢ y)=0z-y O

=

(53) ¢y = [day... [doy ¢z ...an)0T (@) ... T (zx) |0)

Damit sehen wir z.B.

wlololoy = [ o /dwzv/dyl [ oy o))

0] W () T (y) VI () L T () [0)
= /dwl /da:n/dyl /dyN /dx/dxqﬁ Ty X)W1 - YN)
(O W(z1) ... W(an) U (2) T (o)) Vi (z, ') U (2 ) U (2 )‘1’+(yl) U (yw) |0)

Durchtauschen aller U+ nach links bzw. ¥(z) nach rechts liefert unter Ausnutzung der
Vertauschungsregeln (45) bzw. (47)

w(61910)y = [z Z¢ T, )V 2)0(01 - Tx)
i#j=
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