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0 Einleitung

Wenn Atome so weit abgekühlt werden bzw. ihre Dichte so weit erhöht wird, dass die
Kohärenzlänge ihrer Materiewellen

(1) λdB =
2π~

m
√

〈v2〉T

gößer wird als ihr mittlerer Abstand n−1/3, kann vom Quantencharakter der Atome nicht
mehr abgesehen werden

(2) nλ3
dB ≥ 1 =⇒ Quantenregime

Durch die Erfindung der Laserkühlung und anderer effizienter Kühlungsverfahren
für Atome (erste Ideen: T.W Hänsch & A. Schawlow; Nobelpreis 1997: Claude Cohen-
Tanoudji, Steven Chu, William Philipps) ist es Mitte der 90er Jahre erstmals gelungen,
ein makroskopisches Quantenphänomen, die Bose-Einstein Kondensation, an ultrakalten
neutralen Atomen zu beobachten. Dies ist 2001 mit dem Nobelpreis für Eric A. Cornell,
Wolfgang Ketterle und Carl E. Wiemann gewürdigt worden. In dieser Vorlesung werden
wir uns mit diesem und anderen Quantenphänomenen in Ensemblen identischer Atome
beschäftigen.

Komposit Teilchen:

Solange der mittlere Abstand der Atome groß gegen den Atomradius ist, und Übergänge

zwischen verschiedenen internen Zuständen der Atome entweder energetisch oder aufgrund
von Auswahlregeln verboten sind, können sie als Kompositteilchen betrachtet werden.
Atome im selben internen Zustand werden als ununterscheidbar betrachtet. Der Spin der
Kompositteilchen setzt sich aus Kern- und Elektronenspins zusammen.

Bei neutralen Alkaliatomen mit vollständig besetzten Rumpfzuständen ist der Ge-
samtspin nur durch das Leuchtelektron und den Kern bestimmt. Alkaliatome mit gerader
Anzahl von Nukleonen (Protonen und Neutronen) haben halbzahligen Spin und sind daher
Fermionen. Alkaliatome mit ungerader Nukleonenzahl sind Bosonen. Für Erdalkaliatome
mit zwei Leuchtelektronen gilt das Umgekehrte:

Bosonen: 1H, 7Li, 23Na, 89K, 85Rb, 87Rb, 133Cs, 4He, 24Mg, 40Ca, 88Sr, 138Ba
Fermionen: 3He, 6Li, 40K
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1 Zweite Quantisierung des Schrödingerfeldes

1.1 Systeme identischer Teilchen

Heisenbergsche Unschärfe =⇒ “Bahnen” mikroskopischer Teilchen in Wechselwirkungs-
prozessen nicht mehr verfolgbar.

Identische Quantenteilchen müssen als ununterscheidbar angesehen werden. Erwar-
tungswerte von Observablen dürfen sich daher bei Vertauschen zweiter Teilchen nicht
ändern

(1)

∫
dxNψ∗(x1, . . . xj . . . xk . . . xN )B̂ψ(x1 . . . xj . . . xk . . . xN)

!
=

∫
dxNψ∗(x1 . . . xk . . . xj . . . xN )B̂ψ(x1 . . . xk . . . xj . . . xN )

wobei x ≡ (~r, s) Orts- und Spinfreiheitsgrade zusammengefaßt. D.h. es dürfen nur solche
Wellenfunktionen zugelassen werden, die (1)∗ für alle Observablen erfüllen. Bezeichne
P̂jK den Permutationsoperator zwischen Teilchen j und k

(2) P̂jkψ(x1 . . . xj . . . xk . . . xN) = ψ(x1 . . . xk . . . xj . . . xN )

so gilt:

(3) P̂ 2
jn = 1 P̂ −1

jn = P̂jn

Gl. (1) impliziert

(4) 〈ψ| B̂ |ψ〉 = 〈ψ| P̂ +
jkB̂P̂jk |ψ〉 ∀jk

mit 〈φ| B̂ |ψ〉 =
1

4

{

〈φ+ ψ| B̂ |φ+ ψ〉 − 〈φ− ψ| B̂ |φ− ψ〉 − i 〈φ+ iψ| B̂ |φ+ iψ〉

+ i 〈φ− iψ| B̂ |φ− iψ〉
}

folgt auch

(5) 〈φ| B̂ |ψ〉 = 〈φ| P̂+
jkB̂P̂jk |ψ〉

d.h.

(6) B̂ = P̂+
jk B̂ P̂jk

im Hilbertraum der zugelassenen Wellenfunktionen. Für B̂ = 1̂ hat man

(7) P̂−1
jk = P̂jk = P̂+

jk

mit den Eigenwerten

(8) λ = ±1

∗Gleichungsnummerierung in jedem Kapitel neu
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Aus (6) folgt weiterhin

(9)
[

B̂, P̂jk

]

= 0 insbesondere
[

Ĥ, P̂jk

]

= 0

D.h. jede Lösung der stationären Schrödingergleichung im Raum der zugelassenen Wellen-
funktionen ist simultane Eigenfunktion von Ĥ und allen P̂jk. Dabei sind die Eigenwerte

aller P̂jk gleich, denn

(10) P̂jk = P̂1j P̂2k P̂12 P̂2k P̂1j

d.h.

(11) P̂jk |ψ〉 = (λ1j)
2(λ2k)

2λ12 |ψ〉

Definition:
Eine Vielteilchenwellenfunktion ψ(x1, . . . xN ) (Diraczustand |ψ〉) heißt:

symmetrisch ⇐⇒ P̂jkψS = ψS ∀jk
antisymmetrisch ⇐⇒ P̂jkψA = −ψA ∀jk

Die Menge aller möglichen Permutationsoperatoren

(12) P̂ =
∏

P̂jk

bilden eine (nichtabelsche) Gruppe, die Permutationsgruppe SN mit der Hintereinander-
ausführung als Gruppenoperation

Für P̂ ∈ SN gilt

(13) P̂ψS = ψS P̂ψA = sgn(P )ψA

wobei sgn (P ) = +1 falls P aus gerader Anzahl elementarer Permutationen Pjk und sgn (P )
= -1 gilt, falls P aus einer ungeraden Anzahl zusammengesetzt ist.

Der Raum der symmetrischen Wellenfunktionen ist orthogonal zum Raum der anti-
symmetrischen Wellenfunktionen, da

〈
ψA|ψS

〉
= 〈ψA| P̂jk |ψS〉 = 〈ψA| P̂+

jk |ψS〉 = −
〈
ψA|ψS

〉

Symmetriepostulat Der Hilbertraum der Zustände identischer Teilchen enthält entweder

nur symmetrische (Bosonen) oder nur antisymmetrische (Fermionen) Funktionen

Spin-Statistik Theorem (W. Pauli, Phys. Rev. 58, 716 (1940))

Bosonen haben ganzzahligen Spin, Fermionen halbzahligen

Bei der Definition von ψS und ψA haben wir angenommen, dass gemeinsame Eigenfunktio-
nen zu allen P̂jk existieren. Da die P̂jk nicht kommutieren, ist dies nicht klar. Wir werden
jetzt durch explizite Konstruktion die Existenz dieser beweisen. Seien

(14) Ŝ =
∑

P∈SN

P̂ Â =
∑

P∈SN

sgn(P )P̂
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der Symmetrisierungs- bzw. Antisymmetrisierungsoperator, dann gilt für jede normierte
Funktion f(x1, . . . , xN ) bis auf Normierung

(15) Ŝ f(x1, . . . , xN) = fS(x1, . . . , xN)

(16) Â f(x1, . . . , xN) = fA(x1, . . . , xN)

denn:

P̂jk Ŝ =
∑

P∈SN

P̂jk P̂ =
∑

P̂ ′∈SN

P̂ ′ = Ŝ

P̂jk Â =
∑

P∈SN

sgn (P̂ )P̂jk P̂ =
∑

P∈SN

(−sgn (P̂jkP̂ ))P̂jk P̂

= −
∑

P̂ ′∈SN

sgn (P̂ ′)P̂ ′ = −Â �

Beispiel: System nicht wechselwirkender Teilchen

(17) Ĥ =
N∑

i=1

ĥi mit Ĥi ≡ ĥ

Eigenfunktionen von ĥ seien bekannt:

(18) ĥφν(x) = ǫνφν(x)

⇒
(19) fν1,...,νN

(x1, . . . , xN) = φν1
(x1) . . . φνN

(xN )

⇒

(20) φ
(S)
ν1,...,νN (x1, . . . , xN) = 1

r

N !
Q

k

nk!

∑

P∈SN

Pφν1
(x1) . . . φνN

(xN)

(21)

φ
(AS)
ν1,...,νN (x1, . . . , xN) = 1√

N !

∑

P∈SN

sgn(P )Pφν1
(x1) . . . φνN

(xN)

= 1√
N !

φν1
(x1) φν1

(x2) · · · φν1
(xN)

...
...

. . .
...

φνN
(x1) φνN

(x2) · · · φνN
(xN )

nk ist die Anzahl der Teilchen im selben Zustand νk

Aus (21) folgt unmittelbar das Pauli-Prinzip

(22) φ(A) ≡ 0

{

falls νi = νj für ein Paar i 6= j

falls xi = xj für ein Paar i 6= j

Falls {φν(x)} einen vollständigen Satz von Wellenfunktionen im 1-Teilchen Hilbert-
raum bilden, sind die {φ(S)} und {φ(A)} vollständig im Raum der zugelassenen Vielteil-
chenwellenfunktionen.
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1.2 Zweite Quantisierung und Vielteilchenwellenfunktionen

Die Quantentheorie identischer Teilchen läßt sich formal sehr einfach in der Sprache der
zweiten Quantisierung formulieren. Die zweite Quantisierung führt dabei zu keiner neuen
Physik, sondern ist im Wesentlichen nur eine elegante Form der Buchhaltung. Im Rahmen
der Vielteilchentheorie gibt es keine Teilchenerzeugung bzw. -vernichtung. Die Teilchen-
zahl bleibt stets erhalten (Superauswahlregel).

(A) Fock-Raum und Erzeugungs- und Vernichtungsoperatoren

H(N ) sei Hilbertraum von N identischen Teilchen. Dann seien ĉk, ĉ
+
k bzw. b̂k, b̂

+
k lineare

Abbildungen

b̂k, ĉk : H(N) −→ H(N − 1) “Vernichter”

b+k c
+
k : H(N) −→ H(N + 1) “Erzeuger”(23)

mit den Eigenschaften:

Fermionen

ĉkφ
(A)
ν1...νN

(x1, . . . , xN) = 0 k /∈ {ν1, . . . , νN}
ĉkφ

(A)
ν1...νN

= (−1) j−1φ (A)
ν1...νj−1 νj+1...νN

k = νj(24)

wobei die {φ (A)
ν1...νN} den vollständigen Satz der Slaterdeterminanten aus nicht wechselwir-

kenden N Fermionen bedeutet.

Bosonen

b̂k φ
(S)
ν1...νN

= 0 k /∈ {ν1, . . . , νN}
b̂k φ

(S)
ν1...νN

=
√
nk φ

(S)
ν1...νj−1 νj+1...νN

k = νj(25)

wobei nk die Anzahl der Teilchen im selben Zustand νi = k bedeutet.

Fock-Raum

(26) F = H(0) ⊕H(1) ⊕H(2) ⊕ · · · ⊕ H(N) ⊕ · · ·

Bisher Ortsdarstellung des Vielteilchenzustandes

(27) φν1...νN
(x1, . . . , νN) = 〈x1, . . . , xN |φ〉

Oft jedoch sog. Besetzungzahldarstellung vorteilhaft

|n1, n2, . . . nN〉
{

ni ∈ {0, 1} Fermionen

ni ∈ N Bosonen

↑
Anzahl der Teilchen

im Zustand ν1
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In dieser Darstellung läßt sich die Wirkung der Erzeugung- und Vernichtungsoperatoren
wie folgt schreiben

(28) ĉk|n1, . . . nN〉 =
Fermi

(−1)

P

j<k

nj

nk|n1, . . . nk−1, 0k, nk+1 . . . nN

〉

(29) b̂k|n1, . . . nN

〉
=

Bose

√
nk |n1, . . . nk−1, (nk − 1), nk+1 . . . nN

〉

In (28) kann der Vorfaktor nk auch durch
√
nk ersetzt werden. Die Wirkung der Erzeu-

gungsoperatoren b̂+k und ĉ+k ergibt sich aus (28), (29) durch adjungieren

(30) ĉ+k |n1, . . . nN

〉
=

Fermi
(−1)

P

j<k

nj

(1 − nk)|n1 . . . 1k . . . nN

〉

(31) b̂+k |n1, . . . nN

〉
=

Bose

√
nk + 1 |n1, . . . (nk + 1) . . . nN

〉

Aus (30) und (31) sieht man, dass alle N -Teilchenzustände durch Anwendung von Erzeu-
gungsoperatoren aus dem Vakuum (keine Teilchen) generiert werden können

|n1 . . . nN 〉 =
Fermi

ĉ+n1

1 . . . ĉ+nN

N |0
〉

(32)

=
∏

j

(ĉ+j )nj |0
〉

nj ∈ {0, 1}

(33) |n1 . . . nN 〉 =
∏

j

(b̂+j )nj

√
nj !

∣
∣0

〉

nj ∈ N

Die Erzeugungs- und Vernichtungsoperatoren genügen den folgenden Vertauschungsre-
geln:

(34)
[

b̂k, b̂ℓ

]

= 0
[

b̂k, b̂
+
ℓ

]

= δkℓ

(35) {ĉk, ĉℓ} = 0
{

ĉk, b̂
+
ℓ

}

= δkℓ

Beweis:
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(i) Bosonen:

• b̂k b̂ℓ = b̂ℓb̂k trivial

• b̂k b̂
+
k | . . . nk . . .

〉
= b̂k

√
nk + 1| . . . (nk + 1) . . .

〉

= (nk + 1) |. . . nk . . .〉
b̂+k b̂k |. . . nk . . .〉 = b̂+k

√
nk| . . . (nk − 1) . . .

〉

= nk| . . . nk . . .
〉

⇒ (bkb
+
k − b+k bk)| . . . nk . . .

〉
= | . . . nk . . .

〉
�

(ii) Fermionen: θℓ ≡ (−1)

P

j<ℓ

nj

• ĉkĉℓ| . . . nk . . . nℓ . . .
〉

= θℓĉknℓ| . . . nk . . . 0ℓ . . .
〉

= θℓθk nℓnk| . . . 0k . . . 0ℓ . . .
〉

ĉℓĉk| . . . nk . . . nℓ . . .
〉

= θkĉknℓ| . . . 0k . . . nℓ . . .
〉

= −θℓθknℓnk| . . . 0k . . . 0ℓ . . .
〉

⇒ (ĉℓĉk + ĉkĉℓ)| . . . nk . . . nℓ . . .
〉

= 0 �

• ĉkĉ
+
k + ĉkĉℓ)| . . . nk . . .

〉
= ĉkθk(1 − nk)| . . . 1k . . .

〉

= θ2
k(1 − nk)| . . . 0k . . .

〉

ĉ+k ĉk| . . . nk . . .
〉

= ĉ+k θknk| . . . 0k . . .
〉

= ĉ+k θknk| . . . 0k . . .
〉

(ĉkĉ
+
k + ĉ +k ĉk)| . . . nk . . .

〉
=

{

|. . . 0k . . .〉 nk = 0

|. . . 1k . . .〉 nk = 1

= |. . . nk . . .〉 �

Darstellung von Operatoren des N -Teilchensystems in zweiter Quantisierung

Observable in einem System von N ununterscheidbaren Teilchen müssen Operatoren
entsprechen, die auf alle Teilchen gleichsam wirken. Für Einteilchen-Observable gilt

(36) Ĥ =

N∑

i=1

ĥi ĥi ≡ ĥ

D.h. für Erwartungswerte erhölt man mit der Vielteilchenwellenfunktion in Ortsdarstel-
lung

〈
Ĥ

〉
=

∫

dxNψ∗(x1 . . . xN)ĤD ψ(x1 . . . xn)

=

∫

dxN

N∑

j=1

ψ∗(x1 . . . xN)ĥD[xi]ψ(x1 . . . xN)(37)

Für 2-Teilchen-Observable gilt entsprechend

(38) V̂ =

N∑

i6=j=1

v̂ij v̂ij ≡ v̂
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(39)
〈
V̂

〉
=

∫

dxN

N∑

i6=j=1

Ψ∗(xk . . . xN)v̂D[xi, xj ]ψ(x1 . . . xN)

usw. Hierbei ist die Abhängigkeit “[xi]” bzw. “[xi, xj]” symbolisch gemeint und kann auch
∂

∂xi
enthalten.
Den Observablen im Hilbertraum H(N ) von N identischen Tilchen lassen sich Ope-

ratoren im Fockraum F zuordnen. Da die Observablen den Superauswahlregeln genügen
müssen, d.h. mit dem Teilchenzahloperator kommutieren müssen, ist die Wirkung der
Fockraumoperatoren auf Zustände mit N Teilchen identisch zu der Wirkung der Hil-
bertraumoperatoren. Wir werden später sehen, dass es für bestimmte Rechnungen oft
nützlich ist, die Superauswahlregeln ein wenig zu verletzen und in Approximationen eine
Verletzung der Erhaltung der Teilchenzahl zuzulassen.

(40) ĤN =
N∑

j=1

ĥj ↔ Ĥ =
∑

k,ℓ

〈k| ĥ |ℓ〉 ĉ+k ĉℓ

mit orthogonalen Einteilchenwellenfunktionen φℓ(x) und

(40a) 〈k| ĥ |ℓ〉 =

∫

dxφ+
k (x)ĥD(x)φℓ(x)

sowie

(41) V̂N = 1
2

N∑

i6=j=1

v̂ij ↔ V̂ = 1
2

∑

kℓmn

〈kℓ| v̂ |nm〉 ĉ+k ĉ+ℓ ĉmĉn

mit

(41a) 〈kℓ| v̂ |mn〉 =

∫

dx

∫

dx′φ∗
k(x)φ

∗
ℓ(x

′)v̂D(x, x′)φm(x)φk(x
′)

Analoge Ausdrücke findet man für Bosonen mit ĉ→ b̂

(B) Feldoperatoren

In den Gleichungen (40) und (41) tauchen stets Größen der Art (ĉ → Fermionen, b̂ →
Bosonen)

(42)

Ψ̂+(x) ≡ ∑

j

φ∗
j(x)ĉ

+
j

Ψ̂(x) ≡ ∑

j

φj(x)ĉj

bzw. mit b̂+j

bzw. mit b̂j

auf, wobei die {φj(x)} einen vollständigen (hier diskreter) und orthogonalen Satz von Ein-
teilchenwellenfunktionen darstellen. Diese Größen wollen wir Schrödinger-Feldoperatoren
nennen. Die Vollständigkeit der φj(x)

(43)
∑

j

φ∗
j(x)φj(x

′) = δ(x− x′)

impliziert die folgenden Vertauschungsregeln:
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(i) Bosonen:

(44)
[
Ψ̂(x), Ψ̂(x′)

]
= 0

[
Ψ̂(x), Ψ̂+(x′)

]
=

∑

ij

φi(x) φ
∗
j(x

′)
[
bi, b

+
i

︸ ︷︷ ︸

δij

]
= δ(x− x′)

(45)
[
Ψ̂(x), Ψ̂+(x′)

]
= δ(x− x′)

Analog findet man für

(ii) Fermionen:

{
Ψ̂(x), Ψ̂(x′)

}
= 0(46)

{
Ψ̂(x), Ψ̂+(x′)

}
= δ(x− x′)(47)

Mit Hilfe der Feldoperatoren lassen sich die Ein- bzw. Zweiteilchenoperatoren wie folgt
schreiben

Ĥ
∫
dxΨ̂+(x) ĥD(x) Ψ̂(x)(48)

V̂ = 1
2

∫
dx

∫
dx′ Ψ̂+(x) Ψ̂+(x′) v̂D(x, x′) Ψ̂(x) Ψ̂(x′)(49)

Bem:

(i) Wir haben hier nur diskrete Spektren betrachtet. Das ist für unsere Zwecke aus-
reichend. In einer echten Quantenfeldtheorie treten natürlich auch kontinuierliche
Spektren auf, deren Behandlung etwas mehr Sorgfalt erfordert.

(ii) Die zweite Quantisierung wurde hier konstruktiv am Beispiel nichtrelativistischer
Teilchen eingeführt. Ein alternativer und allgemeinerer Zugang geht über den Lagrange-
Hamilton Formalismus für Felder.

(C) Zusammenhang zwischen Vielteilchenwellenfunktionen und Feldopera-
toren

Jede erlaubte N -Teilchenwellenfunktion läßt sich nach symmetrischen bzw. antisymme-
trischen Basisfunktionen entwickeln

φ(x1, . . . , xN) =
∑

ν1,...,νN

ξν1...νN
φ(A/S)

ν1...νN
(x1 . . . xN )

=
〈
x1 . . . xN

∣
∣φ

〉

N
(50)

bzw.

|φ〉N =

∫

dx1 . . .

∫

dxN |x1 . . . xN 〉
〈
x1 . . . xN

︸ ︷︷ ︸

1̂N

|φ
〉

N

=

∫

dx1 . . .

∫

dxN φ(x1 . . . xN ) |x1 . . . xN〉(51)
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Behauptung:

(52) |x1 . . . xN 〉 = ψ̂+(x1) . . . ψ̂
+(xN ) |0〉

Beweis:

|x〉
?
= ψ̂+(x) |0〉

〈y| ψ̂+(x) |0〉 = 〈y|
∑

ν

φ∗
ν(x)ĉ

+
ν |0〉 = 〈y|

∑

ν

φ∗
ν(x) |1ν〉

=
∑

ν

φν(x)
〈
y|1ν

〉
=

∑

ν

φ∗
ν(x)φν(y) = δ(x− y) �

⇒

(53) |φ〉N =
∫
dx1 . . .

∫
dxN φ(x1 . . . xN)ψ̂+(x1) . . . ψ̂

+(xN) |0〉

Damit sehen wir z.B.

N 〈φ| ν̂ |φ〉N =

∫

dx1 . . .

∫

dxN

∫

dy1 . . .

∫

dyN φ
∗(x1 . . . xN )φ(y1, . . . , yN)

· 〈0| Ψ̂(x1) . . . Ψ̂(xN ) V̂ Ψ̂+(y1) . . . Ψ̂
+(yN) |0〉

=

∫

dx1 . . .

∫

dxn

∫

dy1 . . .

∫

dyN
1

2

∫

dx

∫

dx′φ∗(x1 . . . xn)φ(y1 . . . yN)

〈0| Ψ̂(x1) . . . Ψ̂(xN )Ψ̂+(x)Ψ̂+(x′)VD(x, x′) Ψ̂(x′)Ψ̂(x)Ψ̂+(y1) . . . Ψ̂
+(yN) |0〉

Durchtauschen aller Ψ+ nach links bzw. Ψ̂(x′) nach rechts liefert unter Ausnutzung der
Vertauschungsregeln (45) bzw. (47)

N 〈φ| ν̂ |φ〉N =

∫

dxN
n∑

i6=j=1

φ∗(x1, . . . , xN)VD(xi, xj)φ(x1 . . . xN)
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