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0.IN/-roducti--
OAPhasesofilatterandspontaneonssymmetrybreabin-

Mos t phases ofmatter consisting o f t h e s a m e constituents
c a n b e distinguished byspontaneously broken symmetries

• example: Terromagnet ← Paramagnet

Heisenberg mode l H = - 3 2 7 §;.SI. 3 > 0

< i j )
H h a s 0 6 ) symmetry; i .e .

D -' H D = H D =
e

!"

Ä ot

s t i l l I t describes t w o different phases

Paramagnet fe r r o magnet

t t

0131 symmetric spontaneously b ro ke n
0 (3 ) symmetry



Ätofitt] = 0

b u t

<48157*1403=0 415*1483#0
T > T c R T C

Phase transitions o f this type c a n bedescribed by
a Ginzburg-Landau theo ry :
• f ree energy F C H ) = U - T S

FLAT = Fo + d . G ) Ä h d a t ) Ä "

X . 3 0 L z = L ( T - T c )

FLAT

#

min ⇒ T I Ä

1 -< T c I I I - F I t o
0 . 2 Beyond symmetry breaking: Quantum Hall
ett-CAICIassi.ca/
Halleffectot2Dekchongfreedech0ns

i n B

⇒ m e t a l l "

"## ##
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#



Lorentzforce # = - e . (Ex
#

+

B ) = m i r

stationaritycondition Ä=o

5=10,0,B ) E - (Ex , Eg, 0)

E - -Exis
cur ren t J E - E S E

j×= -

#

E y jg=e§ E x
Hall resistivity
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=

E E

6×5=55 = B -
e s e

töff

#

÷ :

adamping
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consistent w i t h observations i n classical regime.ie.
/

❤

W B high temperature

→ quantum regime?



(B) t h e d iscove r ies o f v o n Klitzing (esso) a n d
Tsai.StormevandGossavoC--
o@KIausu.Klitzing:resistivity i n highmagnetic f ield a f loa t

Nobel prize 1 9 8 5
n = 3

n = 4 .
• plateaus a t
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65

#
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• a n d

eWikipedia

integer quantum Ha l l effect

• H . I . Störmer, D .C .Ts u i , A .G .Go s s a rd experiment
R . Laughlin theory

Nobelprize
Stürmer Tsa i , Laughlin 1988

• plateaus a t fractional
n umbe r s

Sxg=¥¥zf-

#

f rac t i ona l quantum
Ha l l effect



phenomena robu s t against d i s o rd e r
→ s t a b l e phases

p rob ten phasetransitions b u t n o spontaneously
brokensymmetries!?

⇒ begondlandanainzburgß

• anothe r system w i t h different phases w / o spontaneously

b ro ke n symmetries ⇒ sp in l iquids

But phases c a n be characterizedbgdiscretequantunambers-i.vew i l l s e e t h a t t h e s e a r e

topologicalquantamnumbe
usttowd o e s topology c o m e i n t o t h e game?

→ quantum s t a t e s have a phase !

O.3Berryphase-
@ConsidaaHamiHoniauthatde.p

e n d s smoothly o n a

parameter I
H = HÄ )

①

define instantaneous eigenvalues/eigenstates

② H E I I n E ) = E n

"

I n( E )



Adiabahytheore-

I f E - ÄH) changes sufficiently slowlyi n time,asystempreparedattimet-
oinaneigenst.de/nlt=oDwi&rema in i n t h a t eigenstate a t la te r t i m e s t

P r o f (3) 149ft) = [cneidr.tt/nltDdn=-ffodEEnlz3

f rom S E ¥14A ) =

#

Htt )

1 4HD fo l l ow s

(4) [ ( in e i n

%

I nHD + Gehn#In#D) = p

⇒ Im A ) = -[(net) eiHH-dmlttlg.tn)
n e e d < m i n ) = ? <m i n ) = E n "

¥ / H t t 1 h AM = E n # 1 n A )

<ml/ Ä h ) + H i n ) = Enlnt-E . l i )

l m ) # I n s <ml Ä h ) t Eman t i n ) = Entmin )

⑤ ⇒ antut

## ##

ie.com = -Imame"""-*" "SEYIT
n o w a t t o system i n s ta te I n H H ) , i . e .

( n 1 0 1 = 1 C m # n ( O K O



t h e n

c m l o t ) = - i h GEFIEL,feitenEnt¥ . )
s o lcmlottlarif-E-mm.tn

(6)

adiabaticcondih.TK
characteristic r a t e o f change o f t h e Hamiltonian

mu s t be s m a l l compared t o energy separation f r om othe r
s ta tes

⇒ systemwi th energy gap

knowingt h a t t h esystem rema ins i n t h e eigenstate i s
n o t sufficient s i n c e t h e r e i s a ph a s e amb i g !

adiabatic l im i t C n a ⇒ ⇒ K n a s t = 1

Ansatz ( n ( H = e i t A )

i n = i j a n

"

- e n C h i n )

<g.( 4 )

⑦ jHI-ifazhnad.tn#Berry phase



h o w

j H I = i Gl#Inkl) Ä
(8) J A ) = i Ja

"

( n u l l für 1h47)
Berryphase i s n o t unique. I t depends o n gauge choice

I n

!

D

→ e i n

!

I nE D = INTED

(s) g ' = 8 - J aE . F i t

c .

"

#"###"""

" " " "

i s i n v a r i a n t u n d e r gauge transformations!
i f a smooth gauge exists!

oj=f

#

Betryconnedit
hl Aj-z.hn/0jn)=Aj*-d

I l i k e a gauge potential i n Edges)

note 9-L u l u ) = 0 ⇒ (DjhI n > + Leid;D = 0

depends o n gauge
( n ' Ä ' = Ä -

"

¢



Berrycurva
tung,I n

= i (9-An-0nA;)n-ifojnldkhs-hdnnlds.tn

(l ike f ie ld t e n s o r i n Edges)

(B) Ri-E.j.f-u-i.E://f.tn/dun)-ldnnIf.n

( l i k e magnetic field i n Edgar)

I n a 3-dimensional parameter space

"

E 1123

( a ) Ä I DI * Ä
a n d using Stokes theorem

(15) j=§dÄÄ=$d5

#

S k )

# # ##

net : S i s n o t
a d o s e d
s u r fa c e !
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There i s a n important general relation f o r 2 E R 3

B I B)= I m

%

×

<NED) = . . .

= I m [ , LEN Im ) × ( m 15h)
m t u

=-smE.mu#tIm.EY5-
⇒

E s u m o f Berryphases o v e r(4) a l l eigenstates vanishes

• Generalizationtondegenerateeigensta-2

S o f a r w e have assumed non-degenerate eigenstates.
W h a t happens i ft h e r e a r e degenerates (even only
f o r few o a k e n o f 2 ) ?

d - fo ld degeneracy {Ihn?---.,Mal}

D u e t o degeneracy ( a t s o m e v a l u e s of2 ) n o
a d i a b a t i c following possible a n d transit ion between
s ta tes possible ⇒ consider whole subspace
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HI!

#"

frei:#

"µ:
" !

" e -

A ; → ¥ ; matrix i n d -dimensional

s p a c e

¥ 1 , = ihhuldjhe) matrix-valued

Berry(16)
connection⇐*

maybe n o n - A b e l i a n i f e . g . non-Abelian

Berry
⑦ [¥ Ä h , # E ) t o connection

Fortpartially) degenerate s ta tes w e have t o
c o n s i d e r (non-Abelian) Berry connections.



Berryphaseandparakeltran
spativ

%

In l i e d ) )

freedom |

##!#"#&

.....

1 4 7<4 1
parameter path

parallel transport o f s t a t e 14C)) → 149ha )

481 11 1 4 1 ) - l a u t drill

#

min

14%21)/
Inked))

Berry phase J a

t

" #

parameter path



0 . 4 Absence o f smooth gauge ,
chernnamb-
instructiuee.am#
( B ) H > FC I )

#

I E R ?

where i i i . E . 15539)
c o s t

eigenstates

E - ⇒ =

""#

/

###"##

×

KO)

E i n E ) = (cafe")
sülz

• Beng connections i n 0 a n d of direction

( a ) HÄ> ICE-Idee-3=0. Hör ILEIFEED
= s ü l z

Ä defined everywhere except a t s o u t h po le
s i n c e fo r 0 - - 7

E ) = (%")

%

notdetined !



• 0 - k . S o 6 h choose a different gange (phaseofstate)

IE I ) = ei lt I E ± )
i .e .

④ / E ) = (surf
- c o s¥ e -

ich
)

/ E f ) = (cos¥
sin#e-

in)

" ° "

Ä = 0 Hä = - i o s¥(23)

b u t n o w Ä ' i s undefined a t no r th pole s ince t o

⑦⇒ I E ! > = f-Gia) d notdefined

F o r t h i s examp l e w e c a n n o t f i n d a g a ug e
whe r e t h e Berry connection i s we l l defined i n
t h e w h o l e parameter s p a c e !

⇒ # globally s m o o t h gauge ( i )

N o w l e t u s ca lcu la te t h e Berry curvature

n ö = i (doÄäaeää)'
i n gauge E i e E s t ( h i s gauge invariant)

( 4 ) hög= l üg = E s u r f
-

.



I f w e ca lcu la te t h e surface intepel
O v e r t h e c l o s e d surface o f t h e sphere

T L 2 1 2

( 2 ) IJN-fdahjq-1-C.JO
0

w e obtain a n integer, c a l l e d Chem
n u m b e r

⇒ The Chem number i s n o n - z e r o I i i )

Summarizing ( i ) a n d I i i )

I f o n a closed surface O n e c a n n o t define
a globallys m o o t h Berry connection t h e
corresponding surface integral o v e r t h e
Berryconnection, t h e C h em n u m b e r i shorizon

remark: The fact t h a t t h e Chem number
i s a n integer h a s a n instructive

interpretation using Gauß l a w ( IR I )

② ) $25-Ä

#%

du

d i rÜ "
S a n



F o r o u r example Ä±= F
{¥3

corresponds t o a Monopol a t t h e Origin

d i r Ä ±
= ± 2 n d

"
( 5 )

HH ( ± = ¥ GdF.Ä#=#Saudiu E # = F 1

Q5someelementarynotionsfron
stopologg-
t 'Atopologist i s a mathematician which c a n n o t

distinguish a coffee c a p f rom a d o n u t b a t

f rom a b a n a n a o r a n apple"



"topology i s t h e mathematicalstudy o f the properties
t h a t a r e preserved through s m o o t h deformations
twisting a n d stretching o f objects. Tearing,
however i s n o t a l l owed "

E r i c W . Weisstei n "topology"

objects t ha t c a n smoothly be transformed into
e a c h o t h e r a r e c a k e d homotop

W e w i l l s e e t h a t a l l Hamiltonians o f a quantum Hall
system fo r magnetic f ields corresponding t o t h es a m e
Hall plateau a r e homotop, i . e . belong t o t h es a m e
topologicalphase



topologically d i s t i n c t surfaces i n R }

c a n be distinguished by integernumbers

topological invar iants -

example o f topological invar iant : Gauss-Bonnet
-

t h e o r e m

2nd compactsurface embedded i n 1123

"# "#

0¥ = 0¥⇒ a t (0,01

Surface i n neighborhood o f 10.01

zcx.s i = ELIF (8¥ 8¥74;)
Für 8¥

-

Hesse matrix H

eigenvalues o f H = i nve rse r a d i i o f curvature

H d z = r i . r i d e t C H I - l r . r s ) "



example: sphere d . = D E R "

Gauß B o n n e t

(28) faAtezz-2RXE.LT/
2-2g)z:Ea te r characteristics} c - ¥ ,
g : genas

topological invariants

.to:9?::::::i:-a..o.

%

H = ICE)

!

ÄH) = E

E ±
= H E I E ) = ( "¥") E ) = (EE;)

- l o s !

( ± = ± 1

* a t Hami l ton ian s ( 29 1 a r e topologically
equivalent f o r a l l I I I

• n o w l e t s a d d a shift

Go) I C E ) → 545) = E x e )



t h e n o n e f i n d s :

( ± (151 < e ) = ± 1
(3)

b ) ( ± ( I I I > e ) = 0

S o something happens a t I I I = 1 !

( 3 )
H e r e

E + ( 151=1) = E - (151=1)
i . e . t h e r e i s adegenerate),(32 ) charac te r i ze w h a t w e c a l l a

topological phase transition


