
1 . Topology o f B l o ch h am i l t o n I a n s :

a n i n t r o d u c k e n -
I n t h e following w e w i l l consider latliaH.am/toui-hlb)
w i t h d i s c r e t e t rans la t i ona l i nva r i ance . Here t h e
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a n important quantity i s the Cen t e r of m a s s
o f Wa n n i e r function w i t h respect t o u n i t ce l l
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• What happens i f w e adiabatically change t h ep a r a m e -
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s i e IR?
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We recognizetha t theshifto f Centerofm a s s i n • dosed
loop i s a n integral o v e r a Berry cur va tu re , which mus t
b e a n integer

integer-valued topological i nva r ian t
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⇒ physical consequence of nontrivial invariant:

quantized transport i n b u l k : Thodess pump



F-1-skotopologicaphase transition
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closing of energy gap

Now c o n s i d e r a many-body system w i t h a completely

f i l led l ower band ; i .e . e a c h b l o c k s t a t e 14 -KD

i s occupied by o n e fermion, Th i s i s a n insulator

Still, f rom t h e m e d i a s o f Wannier centers w e expect

a quantized transport by ✓ particles
p e r period. I c h calculate t h e c u r r e n t i n periodT
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Since w e expect j u n k w e a v e d f irst-order
homadiabat ic corrections o f t i m e evolved Blockstates
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I f a l l states i n t h e Brillouin z o n e o f t h e n ' t h Bloch band
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The> integration o v e r a whole cycle gives indeed
a quantized transport
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The winding of t h e Z a k phase o f t h esingle-particle
B l o ch states implies a n integer-quantized ad iaba t i c
par t icle t r a n s p o r t i n t h e insulating many-bodystate
of a completely f i l l e d Bloch b a n d .

Thoul e s s p um p (D.3 .Thonless P R B 27,60834983))



1.is/heSu-SchriefferHeegerCssH)m--

Lets have a look again a t t h e Z a k Phase o ft h e Rice-
Me l e m o d e l

-

-

The Z a k phase i s cons tan t f o r t = 0 a n d jumps by I T
between t h e t w o regions t s - t z < 0 a n d t z - t z >0 .

Rice-Nele mode l w i t h D =0 : Sa-Schiefer Heeger
( S H )m o d e l
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b u l b properties a r e unchanged i f t r o t z ,
H ow e v e r w e s e e t h e Z a k phase differs by T L .
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- tz
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No te t h a t Z a k phase depends o n t h e choice o f .
Origin o f t h e u n i t e d .

We w i l l s e e t h a t theSSH Hamiltonian has t w o
topologically d i s t i n c t ground states characterized
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Since t h e Pau l imat ix Jz i s missing, ICK)
c a n b e described by a u n i t v e c t o r 5 h )
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There i s a n interesting relation between t h e
Z a k phase a n d t h e winding o f t h e vector 5 l b )
+ n > t z t z = t z t z < t z
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topolog. Phase-
t rans i t i on

I n t h e Rice-Mele model there i s also az-component

(681 d z ( h ) = A

i .e . here E ( k ) i s not confined t o t h e X y plane.

The confinement o f Ä h ) t o the X y plane i s
assoc ia ted w i t h a generalized (anti-unitary)
Symmetry. We w i l l d i s c u s s t h e s e generalizedsqueaks
i n deta i l l a t e r b u t h e r e a Sho r t r e m a r k :



unitarysymmetry
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generalized(anti-unitary)symmetry

here ch i r a l symmetry
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physical consequence (here o f symmetry
protected)

t o p o l o g g i e d g e s t a F
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I n t h e c a s e ¢#ER there a r e t w o additionalstates
w i t h energy E = D , loca l i zed a t t h e edges

edge states
• away from d imen zed l i m i t :

symmetric t w o mid-gap
states also

anti-symmetric away from
dimerized
l i m i t

b u l k

t a



• localization length i nc reases w i t h % - t z → o

• a s s o o n a s edges ta te w a v e functions s t a r t t o
over l ap i n a f inite latt ice theyhybridizea n d
t h e i r energysplits
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t h e r i s a n exponentially
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1 . 4 A two-dimensional Bloch hami l ton ian with

ropologicalproperties.TheQ-a-
Zhang.INSect. 1 . 3 w e havediscussed a one-dimensional Bloch
Hamiltonian w i t h a n addit ional periodic parameter
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( 8 ) t z = - 1

J = - s i n k t )
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go)
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N o w l e t sg o t o a 2Dsgstem a n d replace t h e

periodic f u n c t i o n s c o s a n ds i n k t ) bg
c o s (Kg) a n d S i n (Kg). A f te r a n additional
(unimportant) r o t a t i o n i n s p a c e w e o b t a i n t h e
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4 = - 2 ↳ = kg
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T point
2 = 0 K E V K y e R

o r K x = D kg = ,
t w o × points

4 = + 2 ↳ = kg = P M po in t

F r o m t h e Bloch eigenstates 144kg) ) o n e

( a n ca lcu la te t h e C h em numbers Ofthebands
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topologically non-trivial

ratspacettamittonicein-
versetouriertransform ⇒ real-space Hamiltonian

f o r t w o "spin"components
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edges ta l c
N o w t h e edge i s one-dimensional a nd t h i s gives
r i s e t o add i t i ona l interesting phenomena. C o n s i d e r

hatf-
infinihes
hs.pe/||||| i n g - = - u n di.
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independent I D c h a i n s
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ljkjlfcoskybztsukg.bg + hdz)
j = n

• f o r every cha i n w i t h given kg O n e finds

edgesta tes localized e i t h e r d t * T o r × = L

• energies E y e = EUR (Kg) a r e s m o o t h

functions o f kg 1 D edge modes



• t h e edge modes have a dispersion wi th

f i x e d !

(as) 0%91 s o 0%14) < o

they c a n carry a current, b u tonly i n
d i r e c t
chiraledgemodesttt

a n interface between t w o topologically different
b a t h regions there havet o b e states t h a t d o s e t h e

gap, s i n c e topological integers cannotchange
smoothly a n d only by dosing t h e energy gap.



robasthessofedgestatulmodes-

Perturbations t h a t d u n o t close t h e energy gap o r
b re a k symmetries i n t h e c a s e o fsymmetry protected
topology d o n o t r e m o v e edge states/modes.

E . g . h (kg) → KG)
h 'G)= h (kg) + TEDC H I (µ"the"c o s (2kg))

+ I

$

↳

GEH (µ"t h ! l o sKkg))
[ = - 1 C = 0

presence o f

edge m o d e s
s u r v i v e s !

< ,

Furthermore,since edgem o d e s a r e ch i ra l a local ized
impurity c a n n o t l e a d t o a resistance because there
i s n o b a c kscattering

⇒ robustness o fedge c u r r e n t s t o d i s o rd e r


