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Allgemeine Hinweise: Die mit � gekennzeichneten Aufgaben bzw. Teilaufgaben sind als Hausaufgaben zu

bearbeiten und in den dafür vorgesehenen Briefkasten im 5. Stock, Geb. 46 abzugeben.

Aufgabe 10. Kohärente Zustände 1

Zeigen Sie, dass für die kohärenten Zustände des harmonischen Oszillators
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wobei l0 =
√
~/mω die Standardlänge des Oszillators bedeutet und p0 = ~/l0.

Aufgabe 11. Kohärente Zustände 2 (6 Punkte)�

(a) Zeigen Sie, dass die kohärente Zustände normiert sind, d.h. 〈α|α〉 = 1, jedoch nicht ortho-
gonal. Was ist 〈α|β〉?

(b) Zeigen Sie mit Hilfe des Baker-Hausdorff Theorems

eÂ+B̂ = eÂeB̂e−
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2 [Â,B̂]

(falls
[
Â,
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gilt, wobei |0〉 der Eigenzustand von n̂ = â†â zum Eigenwert 0 bedeutet.

Aufgabe 12. Gekoppelte Oszillatoren; Normalkoordinaten

In der Vorlesung wurden die Eigenwerte des harmonischen Oszillators hergeleitet. Gegeben seien
nun zwei gekoppelte harmonische Oszillatoren mit
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wobei 0 < γ < 1 den Kopplungsgrad charakterisiert.

(a) Wie lauten die Energieeigenwerte für verschwindende Kopplung (γ = 0)? Welchen Entar-
tungsgrad besitzen die zugehörigen Eigenfunktionen, d.h. wieviel verschiedene Eigenfunk-
tionen gibt es zu jedem Eigenwert?

Bitte wenden!



(b) Führen Sie die durch x1 = 1√
2
(ξ + η) und x2 = 1√

2
(ξ − η) definierten neuen Variablen ξ und

η ein. Wie lautet der Hamiltonoperator in diesen neuen Koordinaten und den zugehörigen
Impulsen?

(c) Berechnen Sie die Eigenwerte für γ 6= 0. Zeigen Sie, dass der Kopplungsterm i.A. die in (a)
gefundene Entartung aufhebt.
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