Klassischer Grenzfall idealer Quantengase (z = e#? < 1)

Fiir hinreichend grofie Temperaturen k7' > 1 kann man erwarten, dafl sich Quantengase wie
klassische Gase verhalten. Um die Zustandsgleichung in diesem Grenzfall ndherungsweise zu
bestimmen, wollen wir zunéchst Ausdriicke fiir die verallgemeinerte Zeta-Funktionen g, f,
fiir kleine z ableiten:
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Nun gilt mit y = z(l + 1)
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Damit findet man
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Beriicksichtigung von Termen bis zur zweiten Ordnung in z liefert einen Zusammenhang
zwischen Teilchendichte und Fugazitit z = ¢’ bzw. chemischen Potential 1
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Unter Beriicksichtigung von z < 1 kénnen wir diese Relation iterativ nach z auflosen. In
niedrigster Ordnung ergibt sich
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In néchster Ordnung ergibt sich somit der Zusammenhang zwischen Fugazitdt und Teilchen-
zahl
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Auflésen nach dem chemischen Potential und Entwicklung des Logarithmus liefert
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Analog zu Gleichung(2) kann man verfahren um das groflkanonische Potential ® mit
GL.(1) zu bestimmen
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Dies liefert schliefllich die thermische Zustandsgleichung eines idealen Quantengases
im quasi-klassischen Grenzfall
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Der erste Term ist der Beitrag des klassischen idealen Gases. Der zweite Term beschreibt die
Quantenkorrekturen zum Druck:

e Bosonen: Verringerung des Druckes (effektive Anziehung)

e Fermionen:  Erhohung des Druckes (effektive Abstofiung)



