Please note: Exercises 14 and 15 are mandatory and have to be submitted to the postboxes in the 5th floor of building 46.

Exercise 14.
Consider a one-dimensional gas of electrons \(S = 1/2 \) with \(N \) particles in \((0, L)\).

(a) What are the Fermi momentum \(p_F \) and Fermi energy \(\epsilon_F \)?

(b) Calculate \(\mu = \mu(T, N/L) \) analogously to the lecture.

Exercise 15.
Calculate the particle-number fluctuation \(\Delta n_p^2 \) of an ideal quantum gas (bosons and fermions) in the grand canonical ensemble at temperature \(T \) and in momentum state \(p \). Express them via the expectation value \(\langle n_p \rangle \). What is the qualitative difference between bosons and fermions?