

Please note: Exercises 12 and 13 are mandatory and have to be submitted to the postboxes in the 5. floor of building 46.

Exercise 12.

(a) A harmonic oscillator with small anharmonicities has the energy:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) - \gamma \hbar\omega n^2, \quad n = 0, 1, 2, \dots \quad (1)$$

where γ is a small parameter. Calculate the partition function Z by neglecting all terms which are non-linear in γ . Determine the free energy F in the same approximation.

(Note: $\sum_{n=0}^{\infty} n^2 e^{-\alpha n} = \frac{\partial^2}{\partial \alpha^2} \sum_{n=0}^{\infty} e^{-\alpha n}$)

(b) Expand the free energy of (a) for low temperatures and only keep terms of first order of $\exp(-\hbar\omega/k_B T)$. From this calculate the entropy S and the specific heat C_V and compare it to the results of a harmonic oscillator.

Exercise 13.

To describe ideal Fermi gases at low temperatures one has to solve integrals of the form

$$I = \int_0^{\infty} d\varepsilon f(\varepsilon) n(\varepsilon), \quad (2)$$

where $n(\varepsilon)$ is the Fermi distribution of the energy ε . For low temperatures $n(\varepsilon)$ only slightly deviates from the step function $\Theta(\mu - \varepsilon)$. Therefore one can approximate:

$$I = \int_0^{\mu} d\varepsilon f(\varepsilon) + \int_0^{\infty} d\varepsilon f(\varepsilon) [n(\varepsilon) - \Theta(\mu - \varepsilon)] \quad (3)$$

$$\simeq \int_0^{\mu} d\varepsilon f(\varepsilon) + \int_{-\infty}^{\infty} d\varepsilon f(\varepsilon) [n(\varepsilon) - \Theta(\mu - \varepsilon)]. \quad (4)$$

Expand $f(\varepsilon)$ at $\varepsilon = \mu$ and show that one obtains:

$$I = \int_0^{\mu} d\varepsilon f(\varepsilon) + \frac{\pi^2}{6} (k_B T)^2 f'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 f'''(\mu) + \dots \quad (5)$$

Use the expressions of the grand canonical potential and particle number derived in the lecture to prove that the following expansions hold true ($T_F = \varepsilon_F/k_B$):

$$\mu = \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \dots \right], \quad (6)$$

$$p = \frac{2N}{5V} \varepsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \dots \right], \quad (7)$$

$$U = \frac{3}{5} N \varepsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \dots \right]. \quad (8)$$

What is the specific heat C_V of an ideal Fermi gas at constant volume?