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Please note: Exercises 12 and 13 are mandatory and have to be submitted to the postboxes in the 5. floor
of building 46.

Exercise 12.
(a) A harmonic oscillator with small anharmonicities has the energy:
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where + is a small parameter. Calculate the partition function Z by neglecting all terms which are
non-linear in . Determine the free energy F' in the same approximation.
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(Note: 3522 nZeam = 22 529 o=am)

(b) Expand the free energy of (a) for low temperatures and only keep terms of first order of exp(—hw/kgT).
From this calculate the entropy S and the specific heat Cy and compare it to the results of a har-
monic oscillator.

Exercise 13.
To describe ideal Fermi gases at low temperatures one has to solve integrals of the form
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where n(e) is the Fermi distribution of the energy . For low temperatures n(e) only slightly deviates
from the step function ©(u — €). Therefore one can approximate:
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Expand f(e) at € = p and show that one obtains:
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Use the expressions of the grand canonical potential and particle number derived in the lecture to prove
that the following expansions hold true (Tr = er/kp):
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What is the specific heat Cy of an ideal Fermi gas at constant volume?



